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It was recently shown that so-called coherence vortices, singularities of the two-point correlation function,
generally occur in partially coherent electromagnetic beams. We study the three-dimensional structure of these
singularities and show that in successive cross sections of a beam a rich variety of topological reactions takes place.
These reactions involve, apart from vortices, the creation or annihilation of dipoles, saddles, maxima and minima
of the phase of the correlation function. Since these reactions happen generically, i.e., under quite general
conditions, these observations have implications for interference experiments with partially coherent, electromag-
netic beams. © 2013 Optical Society of America
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1. INTRODUCTION
It is well known that wave fields exhibit remarkable structures
near their zeros of intensity [1]. These zeros may exist briefly,
for example, when pulsed fields are interfering with each
other, or they may be permanent, when the fields are mono-
chromatic. At such a zero, the amplitude of the field vanishes
and its phase is, therefore, undefined or singular. Around
these phase singularities the phase typically has a vortex-like
behavior. Apart from phase singularities, phase dipoles, phase
extrema, and phase saddles may also occur. These different
structures can exist arbitrarily close to one another, and can
in fact be created or annihilated in so-called topological

reactions, see for example [2–7].
The most often-studied phase singularities are those of

scalar wave fields, the Airy rings of focal fields being a prime
example, see [8, Section 8.8.4] and [9]. Singularities of the
Poynting vector have also been analyzed. These occur in
Sommerfeld’s diffraction problem [8, Section 11.5], in focused
fields [10], and in the transmission of light by subwavelength
apertures [11,12]. Singularities of individual Cartesian compo-
nents of the electric field vector have also been described in
focal fields [13]. Studies of this type (and also of polarization
singularities, with which we will not be concerned here) have
given rise to the relatively new discipline of singular optics.
Reviews are presented in [14,15].

In recent years, singular optics has been expanded to
include partially coherent wave fields. Many fields that are
encountered in practice, such as those generated by multi-
mode lasers or fields that have traveled through atmospheric
turbulence, belong to this category. In such fields the phase is
a random quantity and therefore they do not contain “tradi-
tional” phase singularities. However, the statistical properties
of these fields are described by two-point correlation func-

tions, which do have a definite phase [16–18]. A few years

ago it was pointed out that these functions can also exhibit
singular behavior [19]. Such correlation singularities, or
“coherence vortices,” occur at pairs of points at which the
field is completely uncorrelated. Coherence vortices have
since been found in optical beams [20–27], in focused fields
[28], in the far-zone of quasi-homogeneous sources [29],
and in fields produced by Mie scattering [30,31]. Some of these
studies have been carried out in the space-time domain, others
in the space-frequency domain. Here we will use the latter
approach. This means that the main two-point correlation
function we will be dealing with is the spectral degree of

coherence [16]. Just like their monochromatic counterparts,
coherence vortices can also undergo topological reactions.
Thus far such reactions have hardly been studied. Notable
exceptions are [32–34].

In all the coherence studies mentioned above, the analysis
was limited to scalar wave fields. Only recently has it has been
shown that coherence singularities occur generically in par-
tially coherent electromagnetic beams [35]. For the wide class
of electromagnetic Gaussian Schell-model (GSM) beams [17]
it was demonstrated that, even in the absence of ordinary
phase singularities, the spectral degree of coherence typically
displays singular behavior. (Notice that scalar GSM beams
have no such coherence singularities.)

In this article we demonstrate that electromagnetic GSM
beams are intrinsically three-dimensional in nature. We illus-
trate this by examining the structure of surfaces of equal
phase of the correlation function. In particular, this three-
dimensional character implies that different beam cross sec-
tions have different topological features [2]. Thus, an observer
moving through successive cross-sectional planes will notice
a sequence of topological reactions. From the conservation of
topological charge and topological index [14,36], it is to be ex-
pected that the creation or annihilation of coherence vortices
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involves phase saddles. We find this to be the case, but reac-
tions between phase extrema (maxima and minima), dipoles,
and phase saddles of the correlation function are also ob-
served. As we will show, a rich variety of topological reactions
occurs on propagation of these partially coherent, electromag-
netic GSM beams. The observation that different cross sec-
tions of a GSM beam have different coherence properties,
has profound implications for their use in scattering [37]
and interference experiments [17].

2. PARTIALLY COHERENT
ELECTROMAGNETIC BEAMS
The properties of partially coherent electromagnetic beams
are described in detail in a textbook by Wolf [17]. Here,
we summarize some of the main definitions. The state of co-
herence and polarization of a random beam that propagates
along the z-axis is characterized by its electric cross-spectral

density matrix

W�r1; r2;ω� �
�
Wxx�r1; r2;ω� Wxy�r1; r2;ω�
Wyx�r1; r2;ω� Wyy�r1; r2;ω�

�
; (1)

where

Wij�r1; r2;ω� � hE�
i �r1;ω�Ej�r2;ω�i; �i; j � x; y�: (2)

Here, Ei�r;ω� is a Cartesian component of the electric field at
a point r at frequency ω, of a typical realization of the statis-
tical ensemble representing the beam, and the angled brackets
indicate the ensemble average. The spectral degree of coher-

ence η�r1; r2;ω� of the field is defined as

η�r1; r2;ω� �
TrW�r1; r2;ω�

�TrW�r1; r1;ω�TrW�r2; r2;ω��1∕2
; (3)

where Tr denotes the trace. A correlation singularity occurs at
pairs of points for which η�r1; r2;ω� � 0. (From now on we
suppress the ω-dependence of the various quantities.)

The presence of correlation singularities in a wave field has
several consequences. First, when the fields at points r1 and r2
are combined in Young’s experiment, the visibility of the en-
suing interference fringes crucially depends on the value of
η�r1; r2�, see [17, Section 9.2]. At a singularity, where
η�r1; r2� � 0, the fringe visibility will be zero. This is because
the local modulations of jExj2 and jEyj2 on the observation
screen have equal magnitude and opposite sign, resulting in
a zero visibility of the total spectral density. Second, in experi-
ments of the Hanbury Brown–Twiss type one determines the
correlation of intensity fluctuations at two points [38]. These
higher-order correlations depend on the so-called degree of

cross polarization [39]. Correlation singularities coincide
with a divergence of the degree of cross polarization, the
consequences of which are discussed in [40]. Furthermore,
it is to be noted that the phase singularities found in mono-
chromatic fields and the coherence singularities of partially
coherent fields are not independent of one another. The for-
mer can evolve into the latter when the coherence of the field
decreases [41–44].

Since we are dealing with beams, it is natural to investigate
the possible occurence of coherence vortices in a transverse
plane z � constant (see Fig. 1). We therefore set r1 � �ρ1; z�

and r2 � �ρ2; z�. According to Eq. (3), a coherence vortex
exists when both

jWxx�ρ1; ρ2; z�j � jWyy�ρ1; ρ2; z�j; (4)

and

arg�Wxx�ρ1; ρ2; z�� − arg�Wyy�ρ1; ρ2; z�� � π�mod 2π�; (5)

where arg denotes the argument or phase of the matrix
element.

3. ELECTROMAGNETIC GSM BEAMS
GSM beams [17] form a wide class of partially coherent elec-
tromagnetic beams that includes the lowest-order Gaussian
laser mode. For such beams the elements of the cross-spectral
density matrix in the source plane z � 0 read

Wij�ρ1;ρ2;z� 0� �
��������������������������
Si�ρ1�Sj�ρ2�

q
μij�ρ2 − ρ1�; �i; j� x;y�

(6)

with the spectral densities of the two individual components
of the electric field vector Si�ρ� � Wii�ρ; ρ� and the correla-
tion coefficient μij�ρ2 − ρ1� both assumed to be Gaussian
functions, i.e.,

Si�ρ� � A2
i exp�−ρ2∕2σ2i �; (7)

μij�ρ2 − ρ1� � Bij exp�−�ρ2 − ρ1�2∕2δ2ij �: (8)

The parameters Ai, Bij, σi, and δij are independent of position,
but may depend on the frequency ω. In addition, they have to
satisfy certain constraints to ensure that the field is beam-like
[17]. As the beam propagates to a plane z > 0, and if we take
σx � σy � σ, the matrix elements become (see [17], where the
one but last minus sign of Eq. (10) on p. 184 should be a plus
sign)

Wij�ρ1; ρ2; z� �
AiAjBij

Δ2
ij�z�

exp
�
−
�ρ1 � ρ2�2
8σ2Δ2

ij�z�

�

× exp
�
−
�ρ2 − ρ1�2
2Ω2

ijΔ
2
ij�z�

�
exp

�
ik�ρ22 − ρ21�
2Rij�z�

�
; (9)

where

Δ2
ij�z� � 1� �z∕kσΩij�2; (10)

z = 0

z

ρ

Fig. 1. Illustrating the notation. A partially coherent, electromagnetic
GSM beam propagates in the z-direction. The source plane is taken to
be at z � 0. The vector ρ � �x; y� indicates a transverse position.
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1

Ω2
ij

� 1

4σ2
� 1

δ2ij
; (11)

Rij�z� � �1� �kσΩij∕z�2�z (12)

with k � ω∕c the wavenumber associated with frequency ω,
c being the speed of light in vacuum.

We note that the diagonal matrix elements as given by
Eq. (6) are real-valued and positive. Therefore, according to
Eq. (5), there are no correlation singularities in the source
plane. However, as we will illustrate in Section 4, such singu-
larities can be created as the beam propagates.

4. THREE-DIMENSIONAL STRUCTURE OF
CORRELATION SINGULARITIES
Let us first analyze the shape of the surfaces of equal phase of
the correlation function when there are no coherence singu-
larities present. We choose a fixed point of reference ρ1 and
then calculate the phase of η�ρ1; ρ2; z�. An example for
arg η�ρ1; ρ2; z� � π is shown in Fig. 2, where two sheets of this
constant phase can be seen. (On increasing the field of view,
more of these sheets become visible.) If we slightly reduce the
value of one of the correlation lengths to δyy � 0.14 mm, the
two initially smooth surfaces get somewhat “dented,” as is
shown in Fig. 3. These dents correspond to minima of the
phase in transverse cross sections of the beam (i.e., planes
for which z � constant), and will be discussed in Section 5.

On further decreasing δyy to 0.12 mm, correlation singula-
rities come into existence. These lines of coherence vortices
form a closed string, as shown in Fig. 4. For all values of the
phase, surfaces of equal phase end on this string. This can
either happen from “within” the string, or from “outside” of
the string. The former leads to a protrusion of the phase sur-
face, the latter leads to a hole in the surface. As is seen from

Fig. 5, both cases happen simultaneously: the string (indicated
in green) borders both a hole and a protrusion of the phase
sheet. Notice that the left-hand sheet is now dented even
more. If we further decrease the value of δyy, the string of
coherence vortices increases in size, and extends to both sur-
faces of equal phase, as is shown in Fig. 6. The protrusion of
Fig. 5 has grown in size and now connects the two sheets.
When the value of δyy decreased even more, the string of
singularities gradually moves to the left (i.e., to smaller values
of ρ2x), and only intersects the left-hand phase sheet. The
right-hand sheet has returned to its previous smooth state.
This is shown in Fig. 7.

From the complicated three-dimensional nature of the
correlation function, as illustrated in Figs. 2–7, it follows that
different transverse cross sections of the beam will have quite
different topological features. Therefore, an observer moving

Fig. 2. (Color online) Two surfaces for which the phase of η�ρ1; ρ2; z�
equals π. In this case δyy � 0.18 mm. The other parameters are
λ � 632.8 nm, δxx � 0.2 mm, σ � 1 mm, Ax � 1, and Ay � 3. The
reference point ρ1 � �2.5; 0� mm (Media 1).

Fig. 3. (Color online) Two surfaces for which the phase of η�ρ1; ρ2; z�
equals π. In this case δyy � 0.14 mm.

Fig. 4. (Color online) Closed string of coherence singularities (green
curve).
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from one transverse plane to another, witnesses a series of
topological reactions, as will be discussed in the next section.

5. TOPOLOGICAL REACTIONS
As noted above, the phase of monochromatic fields typically
has a vortex-like behavior around a phase singularity. This is
also true for the phase of the spectral degree of coherence
η�ρ1; ρ2; z� around a correlation singularity. On keeping ρ1

fixed, while traversing in a counterclockwise manner, a closed
circuit in the ρ2; z-plane which encompasses a single singular-
ity, the phase of η�ρ1; ρ2; z� changes by an amount of 2nπ.
The nonzero integer n is called the topological charge. To
the singularities (vortices and dipoles) and to the stationary
points (extrema and saddles) of the phase of the correlation
function we can also assign a topological index [45], which is
defined as the topological charge of the phase singularities of
the vector field ∇⊥ arg�η�ρ1; ρ2; z��, where ∇⊥ denotes differ-
entiation with respect to ρ2. In topological reactions both the
charge and index are conserved quantities [36]. In Table 1,
they are listed for different types of points.

In the following examples we first choose a fixed reference
point ρ1, and then, keeping all other parameters fixed, we cal-
culate the phase contours of η�ρ1; ρ2; z� in successive cross
sections of the beam. (Changing the choice of the reference
point may lead to different topological reactions, as was re-
marked by Gu and Gbur [33].) A first result is shown in Fig. 8
for the plane z � 0.1 m. On the left there is a phase minimum
together with a phase saddle (the intersection of the red con-
tour line with itself), whereas on the right a phase maximum
and another phase saddle can be seen. If the plane of observa-
tion is moved away from the source, the minimum and the
nearby saddle gradually move together and the phase of
η�ρ1; ρ2; z� at the minimum and at the saddle point converge.
This goes on until the minimum and the saddle annihilate each

Fig. 5. (Color online) Two surfaces for which the phase of η�ρ1; ρ2; z�
equals π. In this case δyy � 0.12 mm. A closed string of coherence
vortices (green curve) has come into existence. The right-hand
phase sheet terminates on the string, creating a hole and a protrusion
of the sheet.

Fig. 6. (Color online) Single surface for which the phase of
η�ρ1; ρ2; z� equals π. In this case δyy � 0.11 mm. The string of coher-
ence vortices (green curve) has expanded, causing the protrusion
of Fig. 5 to grow. The two formerly disjointed phase sheets are
now connected.

Fig. 7. (Color online) Two surfaces for which the phase of η�ρ1; ρ2; z�
equals π. In this case δyy � 0.06 mm. The string of coherence vortices
(green curve) has moved sideways and now only intersects the left-
hand phase sheets. The two phase sheets are again disconnected.

Table 1. Topological Charge and Index of

Singular and Stationary Points

Charge Index

Vortex �1 1
Saddle 0 −1
Maximum 0 1
Minimum 0 1
Dipole 0 2
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other near z � 2.06 m. This process is illustrated in Figs. 9
and 10.

From here on we will concentrate on the maximum and its
nearby saddle point of Fig. 8 which, as we will see, go through
a rich series of topological reactions in which both the zero
total topological charge and the zero topological index are

conserved. As the plane of observation is gradually moved
away from the source, the saddle decays into a minimum
and two saddle points (near z � 0.89 m). The end result of
this reaction is shown in Fig. 11.

On further moving the cross-sectional plane another reac-
tion occurs: the two phase extrema move closer to each other
(along the ρ2x-axis) until they form a dipole [46] with index 2
(near z � 1.18 m), as is illustrated in Fig. 12. A dipole is
formed when the cross-sectional plane is tangential to the vor-
tex string shown in Fig. 4. This dipole immediately decays into
two phase vortices with opposite topological charge, which in
successive cross sections gradually move away from each
other along the ρ2y-direction. The result is depicted in Fig. 13.
Notice that two vortices occur whenever the cross-sectional
plane intersects the vortex string at two points.

According to Eq. (12), the factor Rij�z� becomes infinite as
z → ∞. This implies that in that limit Eq. (5) can no longer be
satisfied, since both diagonal elements of the cross-spectral
density matrix become real-valued and positive. Therefore,
the correlation vortices must eventually disappear. Indeed
we find that near z � 2.35 m the two vortices briefly form
a second dipole, which decays into a maximum and a
minimum. These two phase extrema, together with the two
remaining saddle points, are shown in Fig. 14.

Fig. 8. (Color online) Phase contours of η�ρ1; ρ2; z� in the plane
z � 0.1 m. A minimum, a maximum, and two saddle points (intersec-
tions of the red curves) can be seen. In this and in the following
examples we have taken ρ1 � �2.5; 0� mm, Ax � 1, Ay � 3, σ � 1 mm,
δxx � 0.2 mm, δyy � 0.12 mm, and the wavelength λ � 633 nm.

Fig. 9. (Color online) Phase of η�ρ1; ρ2; z� at the minimum and at the
phase saddle (visible on the left-hand side in Fig. 8), in various cross
sections of the beam.

Fig. 10. (Color online) Position ρ2x of the minimum (blue curve) and
that of the saddle (red curve) in various cross sections of the beam.
Near z � 2.06 m the minimum and the saddle point annihilate each
other.

Fig. 11. (Color online) Phase contours of η�ρ1; ρ2; z� in the plane
z � 1.12 m. The right-hand side phase saddle of Fig. 8 has decayed
into a minimum and two saddles (intersections of the two red curves).

Fig. 12. (Color online) Phase contours of η�ρ1; ρ2; z� in the plane
z � 1.1808 m, containing a dipole and two saddle points (intersec-
tions of the red curves).
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The next reaction takes place in the plane z � 2.81 m.
There the minimum and the two saddle points merge together
to form a single saddle point. This is illustrated in Fig. 15.

The final reaction occurs at z � 3.33 m. The maximum and
the saddle annihilate each other, leaving a field without
topological features, as is depicted in Fig. 16.

6. CONCLUSIONS
We have studied the properties of the correlation function of
an electromagnetic partially coherent beam of the GSM class.
Although the spectral density of such beams has no singular
points, the phase of its correlation function does show a rich
variety of saddles, extrema, dipoles, and vortices. The struc-
ture of the correlation function is found to be essentially
three-dimensional. This was illustrated by its complex-shaped
surfaces of equal phase. On smoothly changing a parameter
that characterizes the beam, these surfaces are first slightly
deformed and then torn when correlation singularities come
into existence. Since different cross sections of the beam have
different topological features, an observer moving from one
transverse plane to another, will witnesses a series of compli-
cated topological reactions. In all these reactions the topolo-
gical charge and the topological index are conserved. We
emphasize that all these reactions are generic, i.e., they occur
quite generally and not just for special choices of the para-
meters that characterize the beam. The observation that dif-
ferent cross sections of partially coherent electromagnetic
beams have quite different coherence properties has profound
implications for interference and scattering experiments with
such beams.
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