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Chapter 1

Introduction

1.1 The Hanbury Brown-Twiss effect

The exploration of space is a great dream of mankind. The observation
of distant stars cannot be separated from the development of science and
technology. Because the angular diameters that stars subtend at the sur-
face of the Earth are exceedingly small, they cannot be measured directly
even with the largest available telescopes. A. A. Michelson showed theo-
retically in 1890 and then, together with F. G. Pease [Michelson and
Pease, 1921], demonstrated experimentally in the 1920s that the angular
diameter of a star and, in principle, also the intensity across the stellar
disk may be obtained with the help of an interferometer as shown schemat-
ically in Fig. (1.1). The principle of the technique may be understood as
follows. Light from the star is incident on the outer mirrors M1 and M2 of
the interferometer, is then reflected at two inner mirrors M3 and M4 and
is brought to the back focal plane F of a telescope to interfere. The inner
mirrors M3 and M4 are fixed while the outer mirrors M1 and M2 can be
separated symmetrically in the direction joining M3 and M4.

The visibility of the interference fringes in the back focal plane F
depends on the separation d between the mirrors M1 and M2. Michelson
showed that if the stellar disk is rotationally symmetric and uniform, the
visibility curve will have zeros for a certain separation distance d0 [Wolf,

9



10 1.1. The Hanbury Brown-Twiss effect

Figure 1.1: A schematic diagram of the Michelson stellar interferometer.
The mirrors are denoted by the symbol M . F is the back focal plane of a
telescope on which an interference pattern is formed.

2007]

d0 =
0.61λ0

α
, (1.1)

where λ0 denotes a spectral wavelength component and α is the angular
radius of the star. Thus, from a measurement of d0 the angular diameter of
the star may be determined. Since the time when the first Michelson stellar
interferometer was built, this technique has been used mainly in radio
astronomy. Although the principle has been applied with great success to
map the radio sky, practical difficulties were encountered. The extremely
small angles subtended by stars at the Earth’s surface require the use
of interferometers with baselines of several kilometers. Obviously, the
required stability cannot be maintained over such long distances.
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In the early 1950s a British engineer, Robert Hanbury Brown, con-
sidered the possibility of using a different type of stellar radio interfer-
ometer as shown in Fig. (1.2). Instead of interfering fields, he suggested
to use “intensity interfering”. In the Hanbury Brown and Twiss inter-
ferometer the intensity arriving at antenna one and antenna two (or at
two photoelectric detectors) are compared with each other by use of a
correlator (multiplier). The first interferometer of this type was described
in 1952 [Hanbury Brown et al., 1952]. It was used to determine the
angular diameters of two stars, using antennas separated by a few kilome-
ters [Hanbury Brown and Twiss, 1954]. In 1956, Hanbury Brown and
Twiss performed laboratory experiments to determine whether the tech-
nique worked also with visible light [Hanbury Brown and Twiss, 1956].
The experimental results agreed well with the theoretical predications for
the intensity interfering of partially coherent light [Hanbury Brown and
Twiss, 1958]. Ever since Hanbury Brown and Twiss (HBT) reported their
results, the eponymous “HBT effect”, has been applied in many branches
of physics. The original description of the HBT effect, which assumes a
scalar wave field and is described in [Wolf, 2007], was later generalized
to electromagnetic beams, see [Mandel and Wolf, 1995] and [Shirai
and Wolf, 2007; Volkov et al., 2008; Al-Qasimi et al., 2010; Has-
sinen et al., 2011]. In this thesis we study the HBT effect in partially
coherent electromagnetic beams. We therefore begin by briefly reviewing
some concepts that will be used later on. In doing so we heavily borrow
from [Mandel and Wolf, 1995; Wolf, 2007].

1.2 Vector coherence theory

In this section we will discuss the extension of scalar theory by taking
the vector nature into account, i.e., we will combine the coherence and
polarization of optical fields.

Let us consider a random electromagnetic beam propagating along the
z-axis, from the plane z = 0 into the half space z > 0. The statistical prop-
erties of such a stochastic electromagnetic beam, in the space-frequency
domain, is characterized by the cross-spectral density matrix which is de-



12 1.2. Vector coherence theory

Figure 1.2: A diagram of an intensity interferometer.

fined as [Wolf, 2007]

W(r1, r2, ω) =

(
Wxx(r1, r2, ω) Wxy(r1, r2, ω)
Wyx(r1, r2, ω) Wyy(r1, r2, ω)

)
, (1.2)

with

Wij(r1, r2, ω) = 〈E∗i (r1, ω)Ej(r2, ω)〉 , (i, j = x, y), (1.3)

where Ei(r, ω) denotes a Cartesian component of the electric field at a
point r at frequency ω, of a typical realization of the statistical ensemble
representing the beam. The spectral density at one point r equals the sum
of the expectation values of the squared modulus of both components, i.e.,

S(r, ω) = Tr W(r, r, ω), (1.4)

where Tr denotes the trace. We regard the state of coherence of an elec-
tromagnetic beam as its ability to produce fringes in Young’s experiment.
Let us assume a stochastic, statistically stationary, electromagnetic beam
which propagates close to the z-axis and is incident on an opaque screen
A, containing two identical small openings at points Q(ρ1) and Q(ρ2) (see
Fig. (1.3)). Let {E(r, ω)} represent the statistical ensemble of the electric
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Figure 1.3: Notation relating to Young’s interference experiment with
stochastic electromagnetic beams.

vector at the point P (r). A typical realization E(r, ω) of this ensemble is
given as

E(r, ω) = K1E(ρ1, ω)eikR1 +K2E(ρ2, ω)eikR2 , (1.5)

where E(ρα, ω), with α = 1, 2, denotes the electric vector at point Q(ρα),
R1 and R2 are the distances from the points Q(ρ1) and Q(ρ2), respectively
to the point P (r). The propagation factors K1 and K2 are given as

Kα ≈ −
i

λRα
dA. (1.6)

Here dA is the area of the two pinholes. On substituting Eqs. (1.2) and
(1.5) into Eq. (1.4), we find that

S(r, ω) = S(1)(r, ω) + S(2)(r, ω)

+ 2
√
S(1)(r, ω)

√
S(2)(r, ω)Re[η(ρ1, ρ2, ω)eik(R2−R1)], (1.7)

where Re denotes the real part. Here S(1)(r, ω) is the spectral density at
the point P (r) if only the pinhole at position Q(ρ1) is open. Thus we have

S(1)(r, ω) = |K1|2S(ρ1, ω). (1.8)
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A strictly similar expression is obtained for the spectral density S(2)(r, ω).
We can see from Eq. (1.7), that the spectrum at the point P (r) at the ob-
servation plane B contains three parts. The first two parts are the spectra
of the two individual fields from points Q(ρ1) and Q(ρ2), respectively.
The third part is the interference term with

η(ρ1, ρ2, ω) =
Tr W(ρ1, ρ2, ω)√
S(ρ1, ω)

√
S(ρ2, ω)

. (1.9)

Here the term η(ρ1,ρ2, ω) is the complex spectral degree of coherence of
the stochastic electromagnetic field between Q(ρ1) and Q(ρ2).

It should be noted that the spectral degree of coherence, η(ρ1,ρ2, ω)
depends only on the diagonal elements of the cross-spectra density matrix
W. It is defined as the capability of the field at those points to produce
interference fringes. According to the Fresnel-Argo laws, two orthogonally
linearly polarized waves do not interfere. However, the fact that the two
orthogonal components of a random electric field do not interfere with
each other does not imply that these components are uncorrelated.

Although the off-diagonal elements of the cross-spectral density matrix
W do not contribute to the degree of coherence, they play an import role
in determining the polarization of beams. The polarization of a stochastic
electromagnetic beam can be characterized by the degree of polarization
that is defined as

P (r, ω) =

√
1− 4Det W(r, r, ω)

[Tr W(r, r, ω)]2
, (1.10)

where Det denotes the determinant. The physical meaning of P (r) is the
ratio of the intensity of the completely polarized part to the total inten-
sity. When P (r) = 0 it means that the light is unpolarized, e.g. natural
light, and when P (r) = 1 it means that the light is completely polarized,
e.g. linear polarization or circular polarization. When the value of P (r)
is between 0 and 1 the light is partially polarized. The state of polariza-
tion is further characterized by the Stokes parameters. For a stochastic
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electromagnetic beam, the spectral Stokes parameters are defined as

〈S0(r, ω)〉 = Wxx(r, r, ω) +Wyy(r, r, ω), (1.11)

〈S1(r, ω)〉 = Wxx(r, r, ω)−Wyy(r, r, ω), (1.12)

〈S2(r, ω)〉 = Wxy(r, r, ω) +Wyx(r, r, ω), (1.13)

〈S3(r, ω)〉 = i[Wyx(r, r, ω)−Wxy(r, r, ω)]. (1.14)

These parameters can be determined experimentally in a similar way to
how one determines the usual Stokes parameters, provided that the light
is filtered to become quasi-monochromatic around the frequency ω.

1.3 Higher-order coherence

Let us begin by recalling the definition in the space-time domain of the
second-order correlation function of a fluctuating scalar wavefield, repre-
sented by an analytic signal V (r, t), namely

Γ(r1, r2, t1, t2) = 〈V ∗(r1, t1)V (r2, t2)〉, (1.15)

where the angular brackets now denote the time average. More explicitly,

Γ(r1, r2, t1, t2) =

∫∫
V ∗1 V2 p2(V1, V2; r1, t1; r2, t2) d2V1d2V2, (1.16)

where p2 is the joint probability density of the fluctuating field at the
two space-time points (r1, t1) and (r2, t2). Although this function is very
useful for analyzing various coherence phenomena it cannot, in general,
provide any information about the effects that involve probability densities
of the third and higher orders. Among the most important quantities
that are needed to elucidate coherence phenomena, which depend on the
probability densities of order higher than the second, are the correlation
functions

Γ(M,N)(r1, r2, ..., rM+N ; t1, t2, ..., tM+N )

= 〈V ∗(r1, t1)V ∗(r2, t2)...V ∗(rM , tM )

× V (rM+1, tM+1)V (rM+2, tM+2)...V (rM+N , tM+N )〉 (1.17)
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or, more explicitly,

Γ(M,N)(r1, r2, ..., rM+N ; t1, t2, ..., tM+N )

=

∫
...

∫
(M+N)

V ∗1 V
∗

2 ...V
∗
MVM+1VM+2...VM+N

× pM+N (V1, V2, ..., VM+N ; r1, t1; r2, t2; ...; rM+N , tM+N ) d2V1d2V2...d
2VM+V .
(1.18)

We refer to Γ(M,N) as the cross-correlation function (in the space-time
domain) of order (M,N) of the random field V (r, t).

To simplify the notation, we set

rm, tm = pm, m = 1, 2, ...,M
rM+n, tM+n = qn, n = 1, 2, ..., N

(1.19)

Eq. (1.17) may then be re-written as

Γ(M,N)(p1,p2, ...,pM ; q1,q2, ...,qN )

= 〈V ∗(p1)V ∗(p2)...V ∗(pM )V (q1)V (q2)...V (qN )〉. (1.20)

Based on the above definition, there are two important properties that
can be derived, namely[

Γ(M,N)(p1,p2, ...,pM ; q1,q2, ...,qN )
]∗

= Γ(N,M)(q1,q2, ...,qN ; p1,p2, ...,pM ), (1.21)

and ∣∣∣Γ(M,N)(p1,p2, ...,pM ; q1,q2, ...,qN )
∣∣∣2

≤ Γ(M,M)(p1,p2, ...,pM ; p1,p2, ...,pM )

× Γ(N,N)(q1,q2, ...,qN ; q1,q2, ...,qN ). (1.22)

The above correlation functions are defined in the space-time domain.
In a similar manner we can introduce space-frequency correlation func-
tions [Mandel and Wolf, 1995] as

Φ(M,N)(r1, r2, ..., rM+N ;ω1, ω2, ..., ωM+N )

= 〈Ṽ ∗(r1, ω1)Ṽ ∗(r2, ω2)...Ṽ ∗(rM , ωM )

× Ṽ (rM+1, ωM+1)Ṽ (rM+2, ωM+2)...Ṽ (rM+N , ωM+N )〉, (1.23)
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where Ṽ (r, ω) is the Fourier transform of a fluctuating scalar field repre-
sented by an analytic signal V (r, t) which is not necessarily stationary and
let us represent it as

Ṽ (r, ω) =

∞∫
−∞

V (r, t)eiωtdt. (1.24)

Hence we can obtain expression for the spectral cross-correlation functions
in the form of the space-time correlation functions

Φ(M,N)(r1, r2, ..., rM+N ;ω1, ω2, ..., ωM+N )

=

∞∫
−∞

dt1

∞∫
−∞

dt2...

∞∫
−∞

dtM+NΓ(M,N)(r1, r2, ..., rM+N ; t1, t2, ..., tM+N )

×
M∏
j=1

exp(−iωjtj)
M+N∏
k=M+1

exp(iωktk). (1.25)

The space-time correlation functions Γ(M,N) will be invariant with respect
to translation of the origin of time if we suppose that the field is stationary.
We set

τl = tl − t1, (l = 2, 3, ...,M +N), (1.26)

Γ(M,N) will be independent of t1 and there is

Γ(M,N) = Γ(M,N)(r1, r2, ..., rM+N ; τ2, τ3, ..., τM+N ). (1.27)

On substituting from Eq. (1.27) into Eq. (1.25) and carrying out the in-
tegration with respect to t1, we get

Φ(M,N)(r1, r2, ..., rM+N ;ω1, ω2, ..., ωM+N )

= δ(ω1 + ω2 + ...+ ωM − ωM+1 − ωM+2 − ...ωM+N )

×
∞∫
−∞

dτ2

∞∫
−∞

dτ3...

∞∫
−∞

dτM+NΓ(M,N)(r1, r2, ..., rM+N ; τ2, τ3, ..., τM+N )

×
M∏
j=2

exp(−iωjτj)

M+N∏
k=M+1

exp(iωkτk). (1.28)
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From Eq. (1.28), we find that

Φ(M,N)(r1, r2, ..., rM+N ;ω1, ω2, ..., ωM+N ) = 0, (1.29)

unless

ω1 + ω2 + ...+ ωM − ωM+1 − ωM+2 − ...− ωM+N = 0. (1.30)

When the M +N frequencies satisfy Eq. (1.30), the components Ṽ (rj , ωj)
will in general be correlated.

Let us return to the higher order correlation in the space-time domain.
The cross correlation function Γ(M,N) can be expressed in terms of the
lowest-order ones by use of the moment theorem if the fields obey Gaussian
statistics and at each point is of zero mean. From the Gaussian moment
theorem for a Gaussian random process, we get

Γ(M,N)(p1,p2, ...,pM ; q1,q2, ...,qN ) = 0 ifN 6= M (1.31)

and

Γ(M,M)(p1,p2, ...,pM ; q1,q2, ...,qM )

=
∑
π

Γ(1,1)(pi1 ,qj1)Γ(1,1)(pi2 ,qj2)...Γ(1,1)(piM ,qjM ), (1.32)

where the subscripts ip and jq (1 ≤ ip ≤ M, 1 ≤ jq ≤ M) are integers
and

∑
π

denotes summation over all the M ! possible permutations of the

subscripts. By substituting Eq. (1.32) into Eq. (1.25), we can express the
spectral cross-correlation functions φ(M,N) in terms of φ(1,1) as

φ(M,N)(r1, r2, ..., rM ; r′1, r
′
2, ..., r

′
N ;ω1, ω2, ..., ωM+N ) = 0 ifN 6= M

(1.33)

and

φ(M,M)(r1, r2, ..., rM ; r′1, r
′
2, ..., r

′
M ;ω1, ω2, ..., ω2M )

=
∑
π

φ(1,1)(ri1 , r
′
j1 ;ωi1 , ωj1)φ(1,1)(ri2 , r

′
j2 ;ωi2 , ωj2)

× ...φ(1,1)(riM , r
′
jM

;ωiM , ωjM ). (1.34)
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When we construct an ensemble of a monochromatic wave function {V (r, t) =
U(r, ω)e−iωt}, all of the same frequency ω, such that the cross-spectral den-
sity function of order (M,M) is equal to their cross-correlation function,
i.e.,

Φ(M,M)(r1, r2, ..., r2M ;ω, ω, ..., ω)

= W (M,M)(r1, r2, ..., r2M ;ω, ω, ..., ω)

= 〈U∗(r1, ω)U∗(r2, ω)...U∗(rM , ω)

× U(rM+1, ω)U(rM+2, ω)...U(r2M , ω)〉, (1.35)

then, the cross-spectral density W (M,M) can be expressed in terms of the
lowest-order ones by use of the moment theorem as

W (M,M)(r1, r2, ..., rM ; r′1, r
′
2, ..., r

′
M ;ω)

=
∑
π

W (1,1)(ri1 , r
′
j1 ;ω)W (1,1)(ri2 , r

′
j2 ;ω)...W (1,1)(riM , r

′
jM

;ω). (1.36)

As an example, let us consider the case when M = 2. For this case,
Eq. (1.36) gives

W (2,2)(r1, r2; r1, r2;ω)

= W (1,1)(r1, r1, ω)W (1,1)(r2, r2, ω)

+W (1,1)(r1, r2, ω)W (1,1)(r2, r1, ω). (1.37)

Since W 1,1(rj , rj , ω) = 〈I(rj)〉 is the average value of the spectral density,
Eq. (1.37) gives

W (2,2)(r1, r2; r1, r2;ω) = 〈I(r1)〉〈I(r2)〉+ |W (1,1)(r1, r2, ω)|2 (1.38)

Eq. (1.38) can be re-written as

W (2,2)(r1, r2; r1, r2;ω) = 〈I(r1)〉〈I(r2)〉(1 + |µ(r1, r2, ω)|2) (1.39)

where

µ(r1, r2, ω) =
W (1,1)(r1, r2, ω)

〈I(r1)〉〈I(r2)〉
(1.40)
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is the complex spectral degree of coherence for scalar fields.
Let us introduce the intensity fluctuations

∆I(r, ω) = I(r, ω)− 〈I(r, ω)〉. (1.41)

Then the correlation of the intensity fluctuations is

〈∆I(r1, ω)∆I(r2, ω)〉 = 〈I(r1, ω)I(r2, ω)〉 − 〈I(r1, ω)〉〈I(r2, ω)〉 (1.42)

Recalling Eq. (1.37), one can obtain

〈∆I(r1, ω)∆I(r2, ω)〉 = |W (1,1)(r1, r2, ω)|2. (1.43)

From Eq. (1.43), it is seen that the correlation of the intensity fluctuations
can be expressed as the second-order correlation W (1,1)(r1, r2, ω). The
normalized version of the correlation of the intensity fluctuations is

〈∆I(r1, ω)∆I(r2, ω)〉
〈I(r1)〉〈I(r2)〉

= |µ(r1, r2, ω)|2. (1.44)

Eq. (1.44) is the basic formula for intensity interferometry for thermal
radiation. It shows that the absolute value of the spectral degree of co-
herence of the field at one pair of points may be determined from the
measurements of the correlation of intensity fluctuations and the average
spectral density at each point.

Up to now we have considered a scalar field U(r, ω) in this section, so
that the preceding formulas cannot be used in the electromagnetic case.
For the electromagnetic field, let Ex(r, z, ω) and Ey(r, z, ω) be the Carte-
sian components of the electric field at frequency ω along two mutually
orthogonal x and y directions, perpendicular to the beam axis. The fluc-
tuations of the intensity is now defined as

∆I(r, ω) = I(r, ω)− 〈I(r, ω)〉
= |Ex(r, ω)|2 + |Ex(r, ω)|2 − 〈|Ex(r, ω)|2 + |Ex(r, ω)|2〉. (1.45)

For a stochastic electromagnetic field, assuming the field obeys Gaus-
sian statistics, the correlation of intensity fluctuations at a pair of points
is [Mandel and Wolf, 1995]

〈∆I(r1, ω)∆I(r2, ω)〉 =
∑
i,j

|Wij(r1, r2, ω)|2, (1.46)

where Wij(r1, r2, ω) are the elements of the cross-spectral density matrix.
Eq. (1.46) is the basic formula that is used throughout this thesis.
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1.4 Propagation of correlations

We next adress the fundamental question of how the coherence properties
of a source influence the state of coherence of the field that it produces.
The evolution of coherence functions on propagation can be described in
a more rigorous fashion, as we now discuss. The field V (r, t) satisfies the
wave equation, i.e., (

∇2 − 1

c2

∂2

∂t2

)
V (r, t) = 0, (1.47)

where

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(1.48)

denotes the Laplacian. If we now take the complex conjugate of this
expression and multiply it with the field at another point r2 at time t2,
we get

∇2
1V
∗(r1, t1)V (r2, t2) =

1

c2

∂2

∂t21
V ∗(r1, t1)V (r2, t2). (1.49)

Here the subscript 1 of the Laplacian indicates differentiation with respect
to r1. We can take the ensemble average of both sides and interchange
the order of differentiation and averaging to obtain

∇2
1〈V ∗(r1, t1)V (r2, t2)〉 =

1

c2

∂2

∂t21
〈V ∗(r1, t1)V (r2, t2)〉. (1.50)

If the field is statistically stationary, then

〈V ∗(r1, t1)V (r2, t2)〉 = Γ(r1, r2, τ), (1.51)

with the time difference τ = t2− t1, and Γ(r1, r2, τ) the mutual coherence
function. Clearly, ∂2/∂t21 = ∂2/∂τ2. That means that we can re-write
Eq. (1.50) as

∇2
1Γ(r1, r2, τ) =

1

c2

∂2

∂τ2
Γ(r1, r2, τ). (1.52)
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This result shows that, just like the field itself, the mutual coherence
function also satisfies the wave equation. Armed with this knowledge, we
can calculate precisely how the correlation of a random optical field evolves
on propagation through free space. Equation (1.52) is often applied in
coherence theory to investigate the properties of the field that is generated
by a source with a known (or prescribed) state of coherence.

By a completely similar approach as above, it can be derived that

∇2
2Γ(r1, r2, τ) =

1

c2

∂2

∂τ2
Γ(r1, r2, τ). (1.53)

In this equation the spatial differentiation is with respect to the variable
r2, rather than r1.

After this discussion it will perhaps not come as a surprise that the
cross-spectral density function, the space-frequency counterpart of the mu-
tual coherence function, satisfies a pair of Helmholtz equations, namely(

∇2
1 + k2

)
W (r1, r2, ω) = 0, (1.54)(

∇2
2 + k2

)
W (r1, r2, ω) = 0. (1.55)

Together the four formulas (1.52)–(1.55) are known as the Wolf equations,
after their discoverer Emil Wolf. It is fair to say that they form the basis
of the modern theory of optical coherence. One way these expressions can
be applied is to study how the correlation functions evolve on propagation
from a source plane on which the state of coherence is known. To illustrate
this, let us consider a random field W (0)(r1, r2, ω) in a plane z = 0, that
propagates into the half space z > 0. The solution of Eqs. (1.54) and
(1.55) is

W (ρ1,ρ2, ω, z) =
1

4π2

∫∫
W (0)(r1, r2, ω)

× ∂

∂z

(
e−ikR1

R1

)
∂

∂z

(
eikR2

R2

)
d2r1d2r2, (1.56)

where ρ1 = (u1, v1),ρ2 = (u2, v2), r1 = (x1, y1), r2 = (x2, y2) denote the
transverse position vector in the z plane and the source plane, respectively.
R1 =

√
(ρ1 − r1)2 + z2, R2 =

√
(ρ2 − r2)2 + z2 is the distance as showed
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Figure 1.4: A schematic diagram of the propagation of a beam in paraxial
approximation.

in Fig. (1.4). When R1, R2 � λ is satisfied, Eq. (1.56) can be simplified
to

W (ρ1,ρ2, ω, z) =
( z
λ

)2
∫∫

W (0)(r1, r2, ω)

×
(
e−ikR1

R2
1

)(
eikR2

R2
2

)
d2r1d2r2. (1.57)

When the Fresnel approximation holds, i.e., z � |u1 − x1|, |v1 − y1|
and z � |u2 − x2|, |v2 − y2|, Eq. (1.57) can be written as

W (ρ1,ρ2, ω, z) =

(
1

λz

)2 ∫∫
W (0)(r1, r2, ω) (1.58)

× exp

[
− ik

2z
(ρ1 − r1)2

]
exp

[
ik

2z
(ρ2 − r2)2

]
d2r1d2r2.

Eq. (1.58) is the propagation formula of the cross-spectral density func-
tion in free space that we frequently use in this thesis. In a similar way,
the propagation formula for a stochastic electromagnetic beam can be
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expressed as

W(ρ1,ρ2, ω, z) =

(
1

λz

)2 ∫∫
W(0)(r1, r2, ω) (1.59)

× exp

[
− ik

2z
(ρ1 − r1)2

]
exp

[
ik

2z
(ρ2 − r2)2

]
d2r1d2r2.

1.5 Outline of this thesis

This thesis is based upon four studies of the Hanbury Brown-Twiss effect
in stochastic, electromagnetic beams. In Chapter 1 the necessary mathe-
matical framework, the theory of optical coherence, is briefly reviewed.

Chapter 2 describes the radiation of a stochastic source, and how dif-
ferent correlations gradually build up as the field propagates. It is found
that fourth-order correlations, such as the HBT effect, display a more
complicated behavior than second-order correlations.

In Chapter 3 a special class of random sources is described, namely
those of the quasi-homogeneous type. Roughly speaking, those are sources
whose transverse spatial correlation length is much small than the source
dimensions. Recently, reciprocity relations were derived for such sources.
These relations describe the far-zone statistical properties of the field in
terms of the source parameters. In this chapter we apply them to study
the HBT effect. This leads to a new approach of an inverse problem:
determining the source shape from HBT measurements in the far field.
The HBT effect for a wide class of sources, so-called Gaussian Schell-
model sources, are the subject of Chapter 4. Using both analytical and
numerical tools, the influence of the state of polarization of the source on
the upper limit of the correlations is charted.

The final Chapter, number 5, shows that the HBT effect is just one
particular manifestation of a wider class of so-called Stokes fluctuation
correlations. Also the classic notion of a scintillation coefficient can be
generalized to what is termed a Stokes scintillation. It turns out that
these generalized correlations and scintillations are not independent, but
are related by sum rules. These results are illustrated for the case of a
Gaussian Schell-model beam.

We end this thesis with a summary in Dutch of our results.
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Chapter 2

Hanbury Brown-Twiss effect
with partially coherent
electromagnetic beams

This Chapter is based on

• Gaofeng Wu and Taco D. Visser, “Hanbury Brown-Twiss effect with
partially coherent electromagnetic beams,” Optics Letters, vol. 39,
2561–2564 (2014).

Abstract
We derive expressions that allow us to examine the influence of different
source parameters on the correlation of intensity fluctuations (the Hanbury
Brown-Twiss effect) at two points in the same cross-section of a random
electromagnetic beam. It is found that these higher-order correlations
behave quite differently from the lower-order amplitude-phase correlations
that are described by the spectral degree of coherence.

27
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2.1 Introduction

Ever since Hanbury Brown and Twiss (HBT) determined the angular di-
ameter of radio stars by analyzing the correlation of intensity fluctua-
tions of their radiation [Hanbury Brown and Twiss, 1954; Hanbury
Brown and Twiss, 1956], the eponymous “HBT effect” has been ap-
plied in many branches of physics [Baym, 1998; Schellekens et al.,
2005; Ottl et al., 2005; Gutierrez, 2006; Glauber, 1963; Kuebel
et al., 2013]. In many cases a scalar analysis as given in [Wolf, 2007,
Ch. 7] turns out to be sufficient. However, since the formulation of the
unified theory of coherence and polarization [Wolf, 2003b; Wolf, 2003a;
Roychowdhury and Wolf, 2003], several studies have been devoted to
the question of how the HBT effect in random electromagnetic beams
can be analyzed [Shirai and Wolf, 2007; Volkov et al., 2008; Al-
Qasimi et al., 2010; Hassinen et al., 2011; Li, 2014]. It is well known
that the fundamental properties of these beams, such as their spectrum,
degree of polarization, state of polarization and degree of coherence, can
all change significantly on propagation, even when the propagation is
through free space [James, 1994; Gori et al., 1998; Gori et al., 2001; Shi-
rai and Wolf, 2004; Korotkova and Wolf, 2005; Raghunathan
et al., 2012; Raghunathan et al., 2013]. However, until now a detailed
investigation of the evolution of the HBT effect in random electromagnetic
beams is lacking. In the present paper we intend to fill this void by ex-
amining the correlation of intensity fluctuations occurring in a wide class
of partially coherent beams, namely those of the Gaussian Schell-model
type [Gori et al., 2001]. We derive expressions that allow us to exam-
ine the influence of different source parameters on the HBT effect at two
points in the same cross-sectional plane.

2.2 Correlation of the intensity fluctuations

Let us consider a stochastic, wide-sense stationary, electromagnetic beam
propagating close to the z direction into the half space z > 0 (see Fig. 2.1).
The source plane is taken to be the plane z = 0. The vector ρ = (x, y)
indicates a position in a transverse plane. Let Ex(ρ, z, ω) and Ey(ρ, z, ω)
be the Cartesian components of the electric field at frequency ω along
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two mutually orthogonal x and y directions, perpendicular to the beam
axis. The intensity of a single realization of the beam at a point (ρ, z) at
frequency ω can be expressed as

I(ρ, z, ω) = |Ex(ρ, z, ω)|2 + |Ey(ρ, z, ω)|2. (2.1)

From now on we will suppress the dependence on the frequency ω in our
notation. The intensity I(ρ, z) is a random quantity and its variation from
its mean value is

z

ρ

z = 0

source plane

Figure 2.1: Illustrating the notation.

∆I(ρ, z) = I(ρ, z)− 〈I(ρ, z)〉 , (2.2)

where the angular brackets denote the ensemble average. The statistical
properties of the beam at a pair of points in a cross-section z are described
by the electric cross-spectral density matrix W(ρ1,ρ2, z), whose elements
are defined as

Wij(ρ1,ρ2, z) = 〈E∗i (ρ1, z)Ej(ρ2, z)〉 , (i, j = x, y). (2.3)

It follows from this definition that the ensemble-averaged intensity can be
expressed as

〈I(ρ, z)〉 = Tr W(ρ,ρ, z), (2.4)

where Tr denotes the trace.
The correlation of the intensity fluctuations at two points ρ1 and ρ2 in
the same cross-section z is defined as

C(ρ1,ρ2, z) = 〈∆I(ρ1, z)∆I(ρ2, z)〉 . (2.5)
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We assume that the statistical properties of the beam are Gaussian. It
then follows, by use of the Gaussian moment theorem for complex random
processes, that the correlation of the intensity fluctuations at two positions
may be expressed as [Mandel and Wolf, 1995, Ch. 8]

C(ρ1,ρ2, z) =
∑
i,j
|Wij(ρ1,ρ2, z)|2. (2.6)

2.3 Electromagnetic Gaussian Schell-model
beams

We will study the correlation properties of a wide class of random beams,
namely, those of the Gaussian Schell-model type [Gori et al., 2001]. For
these beams the elements of the cross-spectral density matrix in the source
plane z = 0 read

Wij(ρ1,ρ2, 0) =
√
Si(ρ1)Sj(ρ2)µij(ρ2 − ρ1), (2.7)

with the spectral densities Si(ρ) = Wii(ρ,ρ) and the correlation coeffi-
cients µij(ρ2 − ρ1) both Gaussian functions; i.e.,

Si(ρ) = A2
i exp(−ρ2

/
2σ2

i ), (2.8)

µij(ρ2 − ρ1) = Bij exp[−(ρ2 − ρ1)2
/

2δ2
ij ]. (2.9)

The parameters Ai, Bij , σi and δij are independent of position, but may
depend on the frequency ω. They cannot be chosen arbitrarily. In par-
ticular, it follows from the definition of the cross-spectral density matrix
that

Bxx = Byy = 1, (2.10)

Bxy = B∗yx, (2.11)

and

δxy = δyx. (2.12)
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In addition, the source parameters have to satisfy certain constraints to en-
sure that the field is beam-like at wavelength λ [Korotkova et al., 2004],
and that the cross-spectral density matrix is positive definite, viz. [Gori
et al., 2008]

1

4σ2
+

1

δ2
ii

� 2π2

λ2
, (2.13)

√
δ2
xx + δ2

yy

2
≤ δxy ≤

√
δxxδyy
|Bxy|

, (2.14)

and

|Bxy| ≤
2

δyy/δxx + δxx/δyy
. (2.15)

If we take σx = σy = σ, then the matrix elements of the propagated beam
in a plane z read (see [Wolf, 2007], where the one but the last minus sign
of Eq. (10) on p. 184 should be a plus sign)

Wij(ρ1,ρ2, z) =
AiAjBij
∆2
ij(z)

exp

[
−(ρ1 + ρ2)2

8σ2∆2
ij(z)

]

× exp

[
− (ρ1 − ρ2)2

2Ω2
ij∆

2
ij(z)

+
ik(ρ2

2 − ρ2
1)

2Rij(z)

]
, (2.16)

where

∆2
ij(z) = 1 + (z/σkΩij)

2, (2.17)

1

Ω2
ij

=
1

4σ2
+

1

δ2
ij

, (2.18)

and

Rij(z) = [1 + (σkΩij/z)
2]z. (2.19)

In the following we take the reference point ρ1 to be on the z axis, i.e.,
ρ1 = 0. On substituting from Eq. (2.16) into Eq. (2.6), we obtain the
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expression

C(0,ρ2, z) =
∑
i,j

A2
iA

2
j |Bij |

2

∆4
ij(z)

× exp

[
− ρ2

2

4σ2∆2
ij(z)

− ρ2
2

Ω2
ij∆

2
ij(z)

]
.

(2.20)

Notice that Eq. (2.20) implies that C(0,ρ2, z) is rotationally symmetric
about the z axis, i.e., it only depends on ρ2 = |ρ2|. We define the normal-
ized correlation function as

CN (0,ρ2, z) =
C(0,ρ2, z)

〈I(0, z)〉 〈I(ρ2, z)〉
, (2.21)

where

〈I(0, z)〉 =
A2
x

∆2
xx(z)

+
A2
y

∆2
yy(z)

, (2.22)

and

〈I(ρ2, z)〉 =
A2
x

∆2
xx(z)

exp

[
− ρ2

2

2σ2∆2
xx(z)

]

+
A2
y

∆2
yy(z)

exp

[
− ρ2

2

2σ2∆2
yy(z)

]
.

(2.23)

It can be shown that CN (0,ρ2, z) is bounded by zero and unity [Hassinen
et al., 2011]. It is easily derived that

lim
z→∞

CN (0,ρ2, z) =

∑
i,j
A2
iA

2
j |Bij |

2Ω4
ij(

A2
xΩ2

xx +A2
yΩ

2
yy

)2 . (2.24)

Notice that this asymptotic value is independent of the choice of the point
ρ2. Eq. (2.24) is generally valid, in contrast to the much more restricted
analysis presented in [Li, 2014]. We will compare the fourth-order corre-
lation function CN (0,ρ2, z) with the second-order spectral degree of co-
herence. The latter is defined as [Wolf, 2007, Sec. 9.2]

η(0,ρ2, z) =
Tr W(0,ρ2, z)√
〈I(0, z)〉

√
〈I(ρ2, z)〉

, (2.25)
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and is a direct measure of the visibility of the fringe pattern produced in
Young’s experiment. Note that, in contrast to Eq. (2.24),

lim
z→∞

η(0,ρ2, z) = 1. (2.26)

We now employ the above theoretical development to study the evolu-
tion of the second- and fourth-order correlations of a GSM beam on prop-
agation in free space. In the examples we set λ = 0.6328 µm, σ = 4 mm,
Ax = 1, Ay = 3, |Bxy| = 0.2, δxx = 3 mm, δxy = 2.7 mm and δyy = 1 mm,
unless specified otherwise. For these values, the conditions (2.13)–(2.15)
are all satisfied. A comparison of the contours of CN (0,ρ2, z) and those of
|η(0, ρ2, z)| in the zρ2-plane (Figs. 2.2 and 2.3) indicates that the evolution
of the correlation of intensity fluctuations is more complicated than that
of the spectral degree of coherence. This is further illustrated by Fig. 2.4
from which it is seen that |η(0, ρ2, z)| increases monotonically to the value
1, whereas CN (0,ρ2, z) quickly rises to its maximum value, then decreases,
after which it slowly rises to its asymptotic limit.
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Figure 2.2: Contours of the normalized correlation of intensity fluctuations
CN (0,ρ2, z) in the zρ2 plane.
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Figure 2.3: Contours of the modulus of the spectral degree of coherence
|η(0, ρ2, z)| in the zρ2 plane.

An essential difference between the spectral degree of coherence and
the correlation of intensity fluctuations is that η(0, ρ2, z) only depends on
the diagonal elements of the cross-spectral density matrix, whereas the
definition of CN (0,ρ2, z) contains all four matrix elements. A direct con-
sequence is that the spectral degree of coherence is unaffected by changes
in the coherence length δxy. The correlation of intensity fluctuations, on
the other hand, is quite sensitive to changes in this parameter, as is shown
in Fig. 2.5. The influence of the coherence length δxx at a fixed point in
the beam is shown in Fig. 2.6. It is seen that |η(0, ρ2, z)| is less sensitive
than CN (0,ρ2, z). A similar result is obtained when the amplitude Ay is
varied. This is illustrated in Fig. 2.7.

We noted before that the asymptotic value of CN (0,ρ2, z) is indepen-
dent of the choice of the point ρ2. In Fig. 2.8(a) the variation of the
correlation of intensity fluctuations is plotted for several values of ρ2. Al-
though these curves are quite distinct as z < 100 m, they eventually all
approach the limiting value indicated by the dashed line. For comparison’s
sake the evolution of |η(0, ρ2, z)| is shown in Fig. 2.8(b).

It is interesting to note that expression Eq. (2.24) offers several options
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Figure 2.4: Evolution of (a) the normalized correlation of intensity fluc-
tuations, and (b) the modulus of the spectral degree of coherence for the
choice ρ2 = 0.65 mm. The dashed lines are the asymptotic values given
by Eqs. (2.24) and (2.26), respectively.
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Figure 2.5: Evolution of the normalized correlation of intensity fluctu-
ations as a function of z for different values of the parameter δxy with
ρ2 = 0.65 mm. . From bottom to top: δxy = 2.3 mm (blue), 2.6 mm
(red), 2.9 mm (green), 3.2 mm (purple).

to tailor the correlation of the intensity fluctuations in the far-field. One
possibility is to change the ratio of the two spectral densities Ax and Ay.
It immediately follows from Eq. (2.24) that lim

z→∞
CN (0,ρ2, z) = 1 if one of
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Figure 2.6: Variation of (a) the normalized correlation of intensity fluctua-
tions and (b) the modulus of the spectral degree of coherence as a function
of δxx at the point ρ2 = 2 mm, z = 200 m.
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Figure 2.7: Variation of (a) the normalized correlation of intensity fluctua-
tions and (b) the modulus of the spectral degree of coherence as a function
of Ay at the point ρ2 = 2 mm, z = 200 m.

the spectral densities is zero, i.e. if the beam is linearly polarized. As is
seen from Fig. 2.9, the asymptotic value of CN (0,ρ2, z) can be varied from
its maximum value of 1 down to a value of 0.5. In this example σ = 1 mm,
|Bxy| = 0.1, δxx = 3 mm, δxy = 2.5 mm and δyy = 3 mm .
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Figure 2.8: Evolution of (a) the normalized correlation of intensity fluctu-
ations and (b) the modulus of the spectral degree of coherence for different
choices of ρ2. From bottom to top : ρ2 = 1.5 mm (blue), 1 mm (red),
0.5 mm (green), 0.2 mm (purple), the dashed lines are the asymptotic
value given by Eq. (24) and Eq. (26), respectively.
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Figure 2.9: Variation of the far-zone value of CN (0,ρ2, z) as a function of
the ratio Ay/Ax.

2.4 Conclusions

In conclusion, we have studied the evolution of the Hanbury Brown-Twiss
effect on propagation of a electromagnetic Gaussian Schell-model beam.
The influence of the different source parameters was explored numerically.
It was found that the correlation of intensity fluctuations in the far-field
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can be tuned by adjusting, for example, the ratio of the amplitudes of the
two components of the electric field.



Chapter 3

Correlation of intensity
fluctuations in beams
generated by
quasi-homogeneous sources

This Chapter is based on

• Gaofeng Wu and Taco D. Visser, “Correlation of intensity fluctua-
tions in beams generated by quasi-homogeneous sources,” Journal
of the Optical Society of America A, vol. 31, pp. 2152–2159 (2014).

Abstract
We derive expressions for the far-zone correlation of intensity fluctuations
(the Hanbury Brown-Twiss effect) that occurs in electromagnetic beams
that are generated by quasi-homogeneous sources. Such sources often have
a radiant intensity pattern that is rotationally symmetric, irrespective of
the source shape. We demonstrate how from the far-zone correlation of
intensity fluctuations the spectral density distribution across the source
plane may be reconstructed.
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3.1 Introduction

In the mid 1950s Hanbury Brown and Twiss (HBT) determined the angu-
lar diameter of radio stars by analyzing their correlation of intensity fluc-
tuations [Hanbury Brown and Twiss, 1954; Hanbury Brown and
Twiss, 1956]. Since then such correlation measurements have proven to
be a powerful tool that can be applied across all branches of physics, see
for example, [Baym, 1998; Ottl et al., 2005; Schellekens et al., 2005;
Kuebel et al., 2013]. The original description of the HBT effect, which
assumes a scalar wave field and is described in [Wolf, 2007, Ch. 7], was
later generalized to electromagnetic beams, see [Mandel and Wolf,
1995, Ch. 8] and [Shirai and Wolf, 2007; Volkov et al., 2008; Al-
Qasimi et al., 2010; Hassinen et al., 2011]. One major class of par-
tially coherent electromagnetic beams are those generated by so-called
Gaussian Schell-model sources [Gori et al., 2001]. Quite recently two
studies were dedicated to the occurrence of the HBT effect in beams of
this type [Li, 2014; Wu and Visser, 2014b]. Another important class
of partially coherent sources, which partially overlaps with those of the
Gaussian Schell-model type, is formed by quasi-homogeneous sources. In
the space-frequency domain, scalar, secondary, planar quasi-homogeneous
sources are characterized by a correlation function, the so-called spectral
degree of coherence µ(0)(ρ1,ρ2, ω) that, at each frequency ω, depends on
the source points ρ1 and ρ2 only through their difference ρ2 − ρ1, see
Fig. 3.1. In addition, these sources have a spectral density S(0)(ρ, ω)
that varies much slower with ρ than the modulus of the spectral degree
of coherence varies with ρ2 − ρ1. The properties of quasi-homogeneous
sources and those of the far-zone fields they generate, are related by two
reciprocity relations. One connects the spectral density of the far field
to the spatial Fourier transform of the spectral degree of coherence in
the source plane. The other connects the far-zone spectral degree of co-
herence to the spatial Fourier transform of the spectral density of the
source [Collett and Wolf, 1980; Li and Wolf, 1982; Wolf and
Carter, 1984; Carter and Wolf, 1985; Kim and Wolf, 1987; Fo-
ley and Wolf, 1995; Carter and Wolf, 1997; Visser et al., 2006].
Quite recently, the notion of quasi-homogeneity has been extended to elec-
tromagnetic sources, and reciprocity relations have been derived for the
beams that they generate [Raghunathan et al., 2013]. These relations
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were then used to illustrate how fundamental field properties such as its
spectrum, polarization and state of coherence in the far zone typically
differ from those in the source plane. In the present paper we apply these
novel reciprocity relations, under the assumption of Gaussian statistics, to
study the HBT effect. We derive general expressions for the correlation of
intensity fluctuations of the far-zone field, and illustrate our results with
several examples. Quasi-homogeneous sources can produce a radiant in-
tensity that is rotationally symmetric, even when the source distribution
lacks any symmetry. We demonstrate that the HBT correlations, in con-
trast to the radiant intensity, provide information about the source shape.
For example, in certain cases the aspect ratio of the source can be recov-
ered. Since HBT correlations are obtained from intensity measurements,
rather than phase measurements, this provides a reconstruction scheme
that is relatively robust to signal degrading factors such as turbulence.

3.2 Correlation of intensity fluctuations of
partially coherent electromagnetic beams

Let us consider a stochastic, wide-sense stationary, electromagnetic beam
propagating close to the z direction into the half space z > 0 (see Fig. 3.1).
The source is taken to be the plane z = 0. The vector ρ = (x, y) denotes
a position in a transverse plane. Let Ex(ρ, z, ω) and Ey(ρ, z, ω) be the
Cartesian components of the electric field at frequency ω along two mutu-
ally orthogonal x and y directions, perpendicular to the beam axis. The
intensity of a single realization of the beam at a point (ρ, z) at frequency
ω can be expressed as

I(ρ, z, ω) = |Ex(ρ, z, ω)|2 + |Ey(ρ, z, ω)|2. (3.1)

From now on we suppress the dependence on the frequency ω in our nota-
tion. The intensity is a random quantity, and its variation from its mean
value is

∆I(ρ, z) = I(ρ, z)− 〈I(ρ, z)〉 , (3.2)

where the angular brackets denote an ensemble average. The statistical
properties of such a beam at a pair of points in a cross-sectional plane z



42
3.2. Correlation of intensity fluctuations of partially coherent

electromagnetic beams

are described by the 2 × 2 cross-spectral density matrix which is defined
as [Wolf, 2003b]

z = 0

O
. z

r = r s

θ
ρρ

Figure 3.1: Illustrating the notation. The origin O of a right-handed
Cartesian coordinate system is taken in the source plane z = 0. The
transverse two-dimensional vector ρ = (x, y) indicates the position of a
source point. The position vector r of a point in the far zone makes an
angle θ with the positive z axis. Also, r = |r|, and s is a directional unit
vector.

W(ρ1,ρ2, z) =

[
Wxx(ρ1,ρ2, z) Wxy(ρ1,ρ2, z)
Wyx(ρ1,ρ2, z) Wyy(ρ1,ρ2, z)

]
. (3.3)

It follows from this definition that the ensemble-averaged intensity can be
expressed as

〈I(ρ, z)〉 = Tr W(ρ,ρ, z), (3.4)

where Tr denotes the trace. The correlation of intensity fluctuations at
points ρ1 and ρ2 in the same cross-sectional plane z is defined as

C(ρ1,ρ2, z) = 〈∆I(ρ1, z)∆I(ρ2, z)〉 . (3.5)

We assume that the random fluctuations of the source are governed by a
Gaussian process. It then follows, by use of the Gaussian moment theorem,
that the correlation of intensity fluctuations may be expressed in terms
of elements of the cross-spectral density matrix as [Mandel and Wolf,
1995, Ch. 8]

C(ρ1,ρ2, z) =
∑
i,j

|Wij(ρ1,ρ2, z)|2, (i, j = x, y). (3.6)
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3.3 Quasi-homogeneous, secondary planar
electromagnetic sources

In this section we establish our notation and briefly review some recently
derived reciprocity relations.

The elements of the cross-spectral density matrix in the source plane
can be written in the form [Wolf, 2007, Ch. 9.4.2]

W
(0)
ij (ρ1,ρ2) =

√
S

(0)
i (ρ1)S

(0)
j (ρ2)µ

(0)
ij (ρ2 − ρ1), (i, j = x, y) (3.7)

where S
(0)
i (ρ) = 〈|Ei(ρ)|2〉 denotes the spectral density associated with

the Cartesian component Ei of the electric field vector in the plane z = 0.
Its two-dimensional spatial Fourier transform is defined as

S̃
(0)
i (f) =

1

(2π)2

∫
z=0

S
(0)
i (ρ) exp(−if · ρ) d2ρ. (3.8)

We also introduce the function

S(0)
xy (ρ) =

√
S

(0)
x (ρ)

√
S

(0)
y (ρ), (3.9)

and its Fourier transform

S̃(0)
xy (f) =

1

(2π)2

∫
z=0

√
Sx

(0)(ρ)

√
Sy

(0)(ρ) exp(−if · ρ) d2ρ. (3.10)

Similarly, the spatial Fourier transform of the four correlation coefficients

µ
(0)
ij (ρ) is given by the expression

µ̃
(0)
ij (f) =

1

(2π)2

∫
z=0

µ
(0)
ij (ρ) exp(−if · ρ) d2ρ. (3.11)

In Ref. [Raghunathan et al., 2013] it was derived that for a planar,
secondary quasi-homogenous source, the elements of the cross-spectral
density matrix in the far zone, labeled by the superscript (∞), are con-
nected to the source properties, labeled by the superscript (0), through
the reciprocity relations

W (∞)
xx (r1s1, r2s2) = (2πk)2 cos θ1 cos θ2

eik(r2−r1)

r2r1

× S̃(0)
x [k(s2⊥ − s1⊥)] µ̃(0)

xx [k(s2⊥ + s1⊥)/2], (3.12)
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W (∞)
xy (r1s1, r2s2) = (2πk)2 cos θ1 cos θ2

eik(r2−r1)

r2r1

× S̃(0)
xy [k(s2⊥ − s1⊥)] µ̃(0)

xy [k(s2⊥ + s1⊥)/2], (3.13)

W (∞)
yx (r1s1, r2s2) = (2πk)2 cos θ1 cos θ2

eik(r2−r1)

r2r1

× S̃(0)
xy [k(s2⊥ − s1⊥)] µ̃(0)∗

xy [k(s2⊥ + s1⊥)/2], (3.14)

W (∞)
yy (r1s1, r2s2) = (2πk)2 cos θ1 cos θ2

eik(r2−r1)

r2r1

× S̃(0)
y [k(s2⊥ − s1⊥)] µ̃(0)

yy [k(s2⊥ + s1⊥)/2], (3.15)

where k = 2π/λ is the wave number associated with wavelength λ, and
sα⊥ = (sin θα cosφα, sin θα sinφα) is the two-dimensional projection of the
directional unit vector sα onto the xy-plane (α = 1, 2). Furthermore, θα
is the angle between sα and the positive z axis, and φα is the azimuthal
angle in the xy plane.

The radiant intensity of the beam is defined as [Mandel and Wolf,
1995, Sec. 5.2]

J(rs) = r2 Tr W(∞)(rs, rs),

= (2πk cos θ)2
[
S̃(0)
x (0) µ̃(0)

xx (ks⊥) + S̃(0)
y (0) µ̃(0)

yy (ks⊥)
]
. (3.16)

It is seen from Eq. (3.16) that if the functions µ̃
(0)
xx (ks⊥) and µ̃

(0)
yy (ks⊥) are

both rotationally symmetric, i.e. if they only depend on |ks⊥|, than the
radiant intensity is rotationally symmetric about the normal to the source
plane, irrespective of the spectral density distribution of the source. As we
will see in Section 3.6, it is possible to construct sources whose radiant
intensities have rotational symmetry, but whose correlation of intensity
fluctuations lack such symmetry.

3.4 Beam conditions for quasi-homogeneous
sources

In order that the field generated by a quasi-homogeneous source is beam-
like, the radiant intensity J(rs) must be negligible except when the unit
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vector s lies in a narrow solid angle about the z axis. It follows from
Eq. (3.16) that this will be the case when both

|µ̃(0)
xx (ks⊥)| ≈ 0, (3.17)

|µ̃(0)
yy (ks⊥)| ≈ 0, (3.18)

unless s2
⊥ � 1. To illustrate these two conditions, we consider a quasi-

homogeneous source whose diagonal correlation coefficients are both Gaus-
sian, i.e.

µ(0)
xx (ρ) = exp

(
− ρ2

2δ2
xx

)
, (3.19)

µ(0)
yy (ρ) = exp

(
− ρ2

2δ2
yy

)
. (3.20)

In that case

µ̃(0)
xx (ks⊥) =

δ2
xx

2π
exp

(
−
δ2
xxk

2s2
⊥

2

)
, (3.21)

µ̃(0)
yy (ks⊥) =

δ2
yy

2π
exp

(
−
δ2
yyk

2s2
⊥

2

)
. (3.22)

Eqs. (3.17) and (3.18) are clearly satisfied if both

δxx � λ

π
√

2
, (3.23)

δyy �
λ

π
√

2
. (3.24)

These two beam conditions are a generalization of the result for scalar
fields that was derived in [Mandel and Wolf, 1995, Sec. 5.6.4].
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3.5 Correlation of intensity fluctuations

On substituting from Eqs. (3.12)–(3.15) into Eq. (3.6), we obtain for the
correlation of intensity fluctuations in the far-zone the expression

C(∞)(r1s1, r2s2) =

[
(2πk)2 cos θ1 cos θ2

r1r2

]2

(3.25)

×
{∣∣∣S̃(0)

x [k(s2⊥ − s1⊥)]µ̃(0)
xx [k(s2⊥ + s1⊥)/2]

∣∣∣2
+ 2
∣∣∣S̃(0)
xy [k(s2⊥ − s1⊥)]µ̃(0)

xy [k(s2⊥ + s1⊥)/2]
∣∣∣2

+
∣∣∣S̃(0)
y [k(s2⊥ − s1⊥)]µ̃(0)

yy [k(s2⊥ + s1⊥)/2]
∣∣∣2} .

We introduce a normalized correlation of intensity fluctuations, labeled by
the subscript N , by defining

C
(∞)
N (r1s1, r2s2) =

C(∞)(r1s1, r2s2)〈
I(∞)(r1s1)

〉 〈
I(∞)(r2s2)

〉 , (3.26)

where

〈I(∞)(rαsα)〉 = Tr W(∞)(rαsα, rαsα)

=

(
2πk cos θα

rα

)2 [
S̃(0)
x (0) µ̃(0)

xx (ksα⊥) +S̃(0)
y (0) µ̃(0)

yy (ksα⊥)
]
,

(α = 1, 2). (3.27)

From now on we consider pairs of observation points that are located
symmetrically with respect to the z axis (see Fig. 3.2), i.e., we set r1 =
r2 = r; s1⊥ = −s2⊥ = −s⊥, and θ1 = θ2 = θ.

Since the four correlation coefficients µ
(0)
ij are “fast” functions of their

argument, their Fourier transforms µ̃
(0)
ij will be “slow” functions. Hence

we may write

µ̃
(0)
ij (ks1⊥) ≈ µ̃(0)

ij (ks2⊥) ≈ µ̃(0)
ij

[
k(s2⊥ + s1⊥)

2

]
= µ̃

(0)
ij (0). (3.28)
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Figure 3.2: Two far-zone observation points r1 and r2 that are symmetri-
cally located with respect to the z axis.

On making use of these approximations in Eq. (3.26), we find for the
normalized correlation of the intensity fluctuations the formula

C
(∞)
N (rs1, rs2) =

{∣∣∣S̃(0)
x (2ks⊥)µ̃(0)

xx (0)
∣∣∣2 + 2

∣∣∣S̃(0)
xy (2ks⊥)µ̃(0)

xy (0)
∣∣∣2

+
∣∣∣S̃(0)
y (2ks⊥)µ̃(0)

yy (0)
∣∣∣2}

×
[
S̃(0)
x (0)µ̃(0)

xx (0) +S̃(0)
y (0)µ̃(0)

yy (0)
]−2

,

(r1 = r2 = r; s1⊥ = −s2⊥ = −s⊥).

(3.29)

We will employ Eq. (3.29) to investigate the Hanbury Brown-Twiss effect
for different kinds of sources.

3.6 Examples

Let us first consider an unpolarized, quasi-homogeneous source with an
arbitrary shape. In that case we have

S(0)
x (ρ) = S(0)

y (ρ) = S(0)(ρ), (3.30)

µ(0)
xy (ρ) = 0. (3.31)

We note that for an unpolarized source it is not necessary to have µ
(0)
xx (ρ) =

µ
(0)
yy (ρ), see also the discussion in [Visser et al., 2009]. Substitution from
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Eqs. (3.30) and (3.31) into Eq. (3.29) yields the expression

C
(∞)
N (rs1, rs2) =

∣∣∣µ̃(0)
xx (0)

∣∣∣2 +
∣∣∣µ̃(0)
yy (0)

∣∣∣2[
S̃(0)(0)

]2 [
µ̃

(0)
xx (0) +µ̃

(0)
yy (0)

]2 |S̃
(0)(2ks⊥)|2. (3.32)

This result shows that for any planar, secondary quasi-homogeneous, unpo-
larized source the normalized correlation of intensity fluctuations between
two symmetrically located far-zone points is proportional to |S̃(0)(2ks⊥)|2,
i.e., to the squared modulus of the Fourier transform of the source spectral
density at spatial frequency 2ks⊥.

Next, we consider the case of a disk-shaped source of radius a with two
(possibly different) uniform spectral densities, and with Gaussian correla-
tion coefficients, i.e.,

S
(0)
i (ρ) = A2

i circ(ρ/a), (3.33)

where the circle function

circ(ρ) =

{
1 if |ρ| ≤ 1,
0 if |ρ| > 1,

(3.34)

and

µ
(0)
ij (ρ) = Bij exp

(
− ρ2

2δ2
ij

)
, (i, j = x, y). (3.35)

The assumption of quasi-homogeneity implies that a� δij , for all i, j. The
parameters Ai, Bij and δij are independent of position, but may depend on
the frequency ω. They cannot be chosen arbitrarily. In particular [Wolf,
2007, Ch.9],

Bxx = Byy = 1, (3.36)

Bxy = B∗yx, (3.37)

|Bxy| ≤ 1, (3.38)

δxy = δyx. (3.39)

To ensure that the source generates a beam-like field, the two correlation
lengths δxx and δyy must satisfy the conditions (3.23) and (3.24). Finally,
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in order for the source to be physically realizable, its cross-spectral density
matrix must be positive definite. This implies that [Gori et al., 2008]√

δ2
xx + δ2

yy

2
≤ δxy ≤

√
δxxδyy
|Bxy|

. (3.40)

[Note that although Eq. (3.40) is derived in Ref. [Gori et al., 2008] in the
context of Gaussian Schell-model sources, it only depends on the proper-
ties of the correlation coefficients and not on those of the spectral density
of the source. It therefore applies to our example.] In the present case the
relevant Fourier transforms are

S̃
(0)
i (f) =

A2
i a

2

2π

J1 (af)

af
, (3.41)

S̃(0)
xy (f) =

AxAya
2

2π

J1 (af)

af
, (3.42)

µ̃
(0)
ij (f) =

Bijδ
2
ij

2π
exp

(
−
δ2
ijf

2

2

)
, (3.43)

where f = |f | and J1 is the Bessel function of the first kind and first order.
On substituting from Eqs. (3.41)–(3.43) into Eq. (3.29), we find that

C
(∞)
N (rs1, rs2) = 4D

[
J1 (2ka sin θ)

2ka sin θ

]2

, (3.44)

with

D =

∑
i,j
A2
iA

2
j |Bij |

2δ4
ij(

A2
xδ

2
xx +A2

yδ
2
yy

)2 , (3.45)

and where we have made the use of the fact that |s⊥| = sin θ. From

Eqs. (3.44) and (3.45) it is seen that C
(∞)
N (rs1, rs2) is rotationally sym-

metric about the z axis. We notice that the off-diagonal coefficient Bxy
only appears in the numerator of the function D. That means that an
unpolarized, quasi-homogeneous source with |Bxy| = 0 has a weaker cor-
relation of its intensity fluctuations than a partially polarized source with
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|Bxy| 6= 0. This is shown in Fig. 3.3 where C
(∞)
N (rs1, rs2) is plotted for

selected values of |Bxy|. When this parameter is nearing its upper value
(blue curve), which can be calculated from Eq. (3.40), the maximum value

of C
(∞)
N (rs1, rs2) almost reaches unity.

Another parameter that significantly influences the far-zone correla-
tions is the ratio of the two spectral amplitudes Ax and Ay. Examples
are shown in Fig. 3.4. When Ay � Ax, i.e. approaching the case of a
y polarized source, the correlation reaches its maximum value of unity
at θ = 0◦. The curve decreases with decreasing Ay until this spectral
amplitude reaches about 0.7. For lower values the correlation of intensity
fluctuations rises again, as the source becomes more and more like a linear
polarized source, but now with its main polarization along x.
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  )8

Figure 3.3: Variation of the normalized correlation of intensity fluctuations
in the far-zone, as a function of the observation angle θ for different values
of |Bxy|. From top to bottom: |Bxy| = 0.9 (blue), 0.6 (purple), 0.3 (olive),
0 (green). In this example a = 3 cm, δxx = 0.4 mm, δxy = 0.51 mm,
δyy = 0.6 mm, Ax = 2, Ay = 1, and λ = 632.8 nm.

Let us next consider a source with a rectangular shape, with sides a
and b, with two uniform spectral densities, and with Gaussian correlation
coefficients. In that case we have

S
(0)
i (ρ) = A2

i rect(x/a) rect(y/b), (3.46)
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Figure 3.4: Variation of the normalized correlation of intensity fluctua-
tions in the far-zone as a function of θ for different values of the spectral
amplitude Ay, with Ax kept fixed at 1. From top to bottom: Ay = 20
(blue), 2 (purple), 1 (olive), 0.7 (green). In this example Ax = 1,
a = 3 cm, δxx = 0.4 mm, δxy = 0.51 mm, δyy = 0.6 mm, |Bxy| = 0.6,
and λ = 632.8 nm.

with the rectangle function

rect(x) =

{
1 if |x| ≤ 1/2,
0 if |x| > 1/2,

(3.47)

and

µ
(0)
ij (ρ) = Bij exp

(
− ρ2

2δ2
ij

)
. (3.48)

The assumption of quasi-homogeneity implies that a � δij and b � δij ,
for all i, j. The parameters Ai, Bij and δij satisfy the same constraints as
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in the previous example. The pertinent Fourier transforms are now

S̃
(0)
i (f) = ab

(
Ai
2π

)2

sinc

(
fxa

2

)
sinc

(
fyb

2

)
, (3.49)

S̃(0)
xy (f) = ab

AxAy
(2π)2

sinc

(
fxa

2

)
sinc

(
fyb

2

)
, (3.50)

µ̃
(0)
ij (f) =

Bij δ
2
ij

2π
exp

(
−
δ2
ijf

2

2

)
, (3.51)

where f = (fx, fy). On substituting from Eqs. (3.49)–(3.51) into Eq. (3.29),
we find for the far-zone correlation of intensity fluctuations of a rectangu-
lar source the expression

C
(∞)
N (rs1, rs2) = D sinc2 (kasx) sinc2 (kbsy) , (3.52)

with the function D defined by Eq. (3.45), and with the two directions
of observation set to s1 = (sx, sy, sz), s2 = (−sx,−sy, sz). Examples of
the correlation function for rectangular sources with different aspect ratios
a/b are shown in Fig. 3.5. Clearly, these patterns indicate the symmetry
properties of the four sources along the sx and sy axes.

It is interesting to compare the contours of C
(∞)
N (rs1, rs2) with those

of the radiant intensity. From Eq. (3.16) we have that

J(rs) =

abk2

2π
(1− s2

x − s2
y)
[
A2
xδ

2
xxe
−δ2xxk2(s2x+s2y)/2 +A2

yδ
2
yye
−δ2yyk2(s2x+s2y)/2

]
.

(3.53)

The normalized radiant intensity J(rs)/J(0) is plotted in Fig. 3.6. This
far-field radiation pattern has rotational symmetry, and is independent of
the aspect ratio a/b of the rectangular source: it contains no information
about the shape of the source or its spectral density distribution. This

is in contrast to the correlation of intensity fluctuations C
(∞)
N (rs1, rs2)

which, as can be seen from Eq. (3.29), provides the modulus of the spatial
Fourier transform of the spectral density distribution in the source plane
in this particular case.



Chapter 3. HBT effect for quasi-homogeneous sources 53

0

0.2

0.4

0.6

-3 10-5

0

3 10-5

s
y

-3 10-5 0 3 10-5

s
x

-3 10-5

0

3 10-5

s
y

-3 10-5 0 3 10-5

s
x

0

0.2

0.4

0.6

-3 10-5

0

3 10-5

s
y

-3 10-5 0 3 10-5

s
x

-3 10-5

0

3 10-5

s
y

-3 10-5 0 3 10-5

s
x

a b

c d

Figure 3.5: Contours of the normalized correlation of intensity fluctuations
of beams generated by rectangular sources with sides a and b. The sides
are chosen as b = a (a), b = 2a (b), b = 4a (c), and b = 8a (d). In these
examples Ax = 2, Ay = 1, Bxy = 0.2, δxx = 0.4 mm, δyy = 0.6 mm,
δxy = 0.75 mm, a = 2 cm, and λ = 632.8 nm.
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Figure 3.6: Contours of the normalized radiant intensity of beams gener-
ated by rectangular sources. The parameters are the same as in Fig. 3.5.

There is a large body of literature devoted to phase retrieval, i.e. the
reconstruction of an object by knowledge of the modulus of its Fourier
transform, see [Fienup, 2013] and the references therein. We demonstrate
the feasibility of using the correlation of intensity fluctuations for this pur-
pose with a simple example. Consider a partially coherent Laguerre-Gauss
beam, with Gaussian correlation coefficients. Let two linear polarizers that
only transmit x-polarized fields cover the intensity detectors. The relevant
spectral density and the autocorrelation coefficient are then

S(0)
x (ρ) = A2

x ρ
2 exp(−ρ2/2σ2

x), (3.54)

µ(0)
xx (ρ) = exp(−ρ2/2δ2

xx), (3.55)

with σx the effective width of the spectral density, and δxx the effective
correlation length. The assumption of quasi-homogeneity implies that
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σx � δxx. Under these assumptions Eq. (3.29) reduces to the form

C
(∞)
N (rs1, rs2) =

∣∣∣S̃(0)
x (2ks⊥)

∣∣∣2[
S̃

(0)
x (0)

]2 , (r1 = r2 = r; s1⊥ = −s2⊥ = −s⊥).

(3.56)

Since

S̃(0)
x (f) = (2− f2σ2

x)σ4
xA

2
x exp(−f2σ2

x/2)/2π, (3.57)

we obtain the expression

C
(∞)
N (rs1, rs2) = (1− 2k2σ2

x sin2 θ)2 exp(−4k2σ2
x sin2 θ). (3.58)

The iterative method proposed in [Fienup, 1978] was used to reconstruct
the spectral density distribution across the source plane from Eq. (3.58).
The principal constraint for each iteration being that the object is non-

negative. The contours of the spectral density S
(0)
x (ρ) and those of the

correlation of intensity fluctuations C
(∞)
N (rs1, rs2) are plotted in panels

a and b of Fig. (3.7). From the shape of the correlation function it is
seen that the source is rotationally symmetric. The initial “guess” that is
used to start the iteration process is therefore taken as a random pattern
with rotational symmetry, shown in panel c. The reconstructed source
spectral density after 80 iterations is shown in panel d. It is seen to be
very similar to the original spectral density of panel a. By rotating the

two linear polarizers that cover the detectors, the distribution of S
(0)
y (ρ)

can be reconstructed in a completely similar way.
Previously proposed methods to reconstruct the source spectral den-

sity of quasi-homogeneous sources rely on far-zone measurements of the
spectral degree of coherence, see [Mandel and Wolf, 1995, Sec. 5.3.3].
However, such interference experiments are quite difficult to carry out. On

the other hand, measuring the correlation function C
(∞)
N (rs1, rs2) involves

intensity measurements that are typically more robust to noise. The in-
version scheme as described above may therefore offer a more practical
approach for inverse imaging problems.
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Figure 3.7: Retrieval of a simulated spectral density from its normalized
correlation of intensity fluctuations in the far-zone. a: The spectral density
of a partially coherent Laguerre-Gauss beam in the source plane. In this
example λ = 632.8 nm and σx = 15 mm. b: The normalized correlation
of intensity fluctuations in the far-zone. c: The initial guess for the source
spectral density that is used to start the algorithm: a completely random
pattern with rotational symmetry and with values between 0 and 1. d:
The result of the reconstructed source spectral density after 80 iterations.
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3.7 Conclusions

We have studied the correlation of intensity fluctuations in the far zone
that occurs in electromagnetic beams generated by quasi-homogeneous
sources. The influence of the different source parameters was investigated
numerically. We found that the aspect ratio of rectangular sources with a
homogeneous intensity may be determined from the correlation of intensity
fluctuations. We also showed that the spectral density distribution in
the source plane can be reconstructed from measurements of the Hanbury
Brown-Twiss effect. This approach may find application in remote sensing
and imaging.
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Chapter 4

Polarization and coherence
in the Hanbury
Brown-Twiss effect

This Chapter is based on

• Xianlong Liu, Gaofeng Wu, Xiaoyan Pang, David Kuebel and Taco
D. Visser, “Polarization and coherence in the Hanbury Brown-Twiss
effect,” Journal of Modern Optics, vol. 65, pp. 1437–1441 (2018).

Abstract
We study the correlation of intensity fluctuations in random electromag-
netic beams, the so-called Hanbury Brown-Twiss effect (HBT). We show
that not just the state of coherence of the source, but also its state of polar-
ization has a strong influence on the far-zone correlations. Different types
of sources are found to have different upper bounds for the normalized
HBT coefficient.
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4.1 Introduction

In their landmark experiment Hanbury Brown and Twiss studied the cor-
relation of intensity fluctuations at two detectors with a variable separa-
tion distance, to determine the angular diameter of radio stars [Hanbury
Brown and Twiss, 1954; Hanbury Brown and Twiss, 1956; Han-
bury Brown, 1974]. Since then the eponymous HBT effect has been
applied in many other fields, such as nuclear physics [Baym, 1998] and
atomic physics [Ottl et al., 2005; Schellekens et al., 2005; Jeltes
et al., 2007]. In optics it has been used to study certain inverse prob-
lems [Kuebel et al., 2013; Wu and Visser, 2014a], and to determine
the mode index of vortex beams [Liu et al., 2016]. It is also explored in
classical versions of ghost imaging [Shirai, 2017].

In the original astronomical studies that were carried out by Hanbury
Brown and Twiss, polarization issues could be ignored, and therefore a
scalar description sufficed [Wolf, 2007, Ch. 7]. A generalization to ran-
dom electromagnetic beams, as generated for example, by multi-mode
lasers, can be found in [Mandel and Wolf, 1995, Ch. 8]. In recent
years several studies were dedicated to the correlation of intensity fluctu-
ations in such beams, among them [Shirai and Wolf, 2007] and [Al-
Qasimi et al., 2010], in which the degree of cross-polarization was intro-
duced. The usefulnes of this concept has been questioned in [Hassinen
et al., 2011]. The evolution of the HBT effect during propagation was
studied in [Li, 2014; Wu and Visser, 2014b].

In the present study we examine the far-zone HBT effect that occurs
in a wide class of partially coherent beams, the so-called Electromagnetic
Gaussian Schell-Model (EGSM) beams [Wolf, 2007]. As we will demon-
strate, not just the state of coherence of the source, but also its state of
polarization plays a major role. Also, different types of sources are found
to have different upper bounds for the normalized HBT coefficient.

4.2 The HBT effect in random electromagnetic
beams

We consider a stochastic, wide-sense stationary, electromagnetic beam
propagating close to the z axis into the half-space z > 0 (see Fig. 4.1).
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z = 0

source plane

z

D
1

D
2

correlator pc

far zone

Figure 4.1: Illustrating the Hanbury Brown-Twiss experiment. D1 and
D2 are intensity detectors, located in the far zone at (ρ1, z) and (ρ2, z),
whose output is sent to a correlator that is connected to a pc.

Ex(ρ, z, ω) and Ey(ρ, z, ω) are the Cartesian components of the electric
field at frequency ω along two mutually orthogonal x and y directions, per-
pendicular to the beam axis. The vector ρ = (x, y) denotes a transverse
position. To simplify the notation, we will from here on suppress the ω
dependence of the various quantities. In the space-frequency formulation
of coherence theory the coherence and polarization properties of a beam
at two points ρ1 and ρ2 in the same transverse plane z can be described
by its cross-spectral density (CSD) matrix [Wolf, 2007]

W(ρ1,ρ2, z) =

(
Wxx(ρ1,ρ2, z) Wxy(ρ1,ρ2, z)
Wyx(ρ1,ρ2, z) Wyy(ρ1,ρ2, z)

)
, (4.1)

with
Wij(ρ1,ρ2, z) = 〈E∗i (ρ1, z)Ej(ρ2, z)〉, (i, j = x, y), (4.2)

where the angled brackets denote an ensemble average. The intensity of a
single realization of the beam is defined as

I(ρ, z) = |Ex(ρ, z)|2 + |Ey(ρ, z)|2, (4.3)

whereas its expectation value is given by

〈I(ρ, z)〉 = 〈|Ex(ρ, z)|2〉+ 〈|Ey(ρ, z)|2〉 (4.4)

= Tr W(ρ,ρ, z), (4.5)

where Tr denotes the trace. The intensity variation is given by the ex-
pression

∆I(ρ, z) = I(ρ, z)− 〈I(ρ, z)〉. (4.6)
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We can introduce a measure of the correlation of intensity fluctuations at
two points by defining the HBT coefficient as

C(ρ1,ρ2, z) = 〈∆I(ρ1, z)∆I(ρ2, z)〉. (4.7)

If the source fluctuations are governed by Gaussian statistics, one can use
the Gaussian moment theorem to derive that [Shirai and Wolf, 2007,
Eq. (8)]

C(ρ1,ρ2, z) =
∑
i,j

|Wij(ρ1,ρ2, z)|2 . (4.8)

It is convenient to use a normalized correlation coefficient, indicated by
the subscript N , namely

CN (ρ1,ρ2, z) =
C(ρ1,ρ2, z)

〈I(ρ1, z)〉〈I(ρ2, z)〉

=

∑
i,j |Wij(ρ1,ρ2, z)|2

Tr W(ρ1,ρ1, z) Tr W(ρ2,ρ2, z)
. (4.9)

It can be shown [Hassinen et al., 2011] that 0 ≤ CN (ρ1,ρ2, z) ≤ 1.

4.3 Electromagnetic Gaussian Schell-model
beams

The cross-spectral density matrix elements of an EGSM beam in the source
plane z = 0 read

Wij(ρ1,ρ2, 0) = AiAjBij exp

[
− ρ2

1

4σ2
i

− ρ2
2

4σ2
j

− (ρ1 − ρ2)2

2δ2
ij

]
. (4.10)

The source parameters Ai, Bij , σi, and δij are independent of position, but
may depend on frequency. For their physical meaning we refer to [Gori
et al., 2001; Wolf, 2003b]. We will restrict ourselves to the case where
the width of the spectral densities associated with Ex and Ey are equal,
i.e., we assume that σx = σy = σ. The parameters have to satisfy several
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constraints, i.e., [Wolf, 2007, Sec. 9.4.2]

Bxx = Byy = 1, (4.11)

Bxy = B∗yx, (4.12)

|Bxy| ≤ 1, (4.13)

δxy = δyx. (4.14)

Furthermore, the two conditions for the source to generate a beam-like
field are [Korotkova et al., 2004]

1

4σ2
+

1

2δ2
ii

� 2π2

λ2
. (4.15)

And finally, the non-negativeness of the cross-spectral density matrix im-
plies that [Gori et al., 2008]√

δ2
xx + δ2

yy

2
≤ δxy ≤

√
δxxδyy
|Bxy|

. (4.16)

After propagating a distance z through free space, the CSD matrix ele-
ments evolve into (see [Wolf, 2007], where the one but last minus sign in
Eq. (10) on p. 184 should be a plus sign):

Wij(ρ1,ρ2, z) =
AiAjBij
∆2
ij(z)

exp

[
−(ρ1 + ρ2)2

8σ2∆2
ij(z)

]

× exp

[
− (ρ1 − ρ2)2

2Ω2
ij∆

2
ij(z)

+
ik(ρ2

2 − ρ2
1)

2Rij(z)

]
, (4.17)

where

1

Ω2
ij

=
1

4σ2
+

1

δ2
ij

, (4.18)

∆2
ij(z) = 1 + (z/σkΩij)

2, (4.19)

Rij(z) = [1 + (σkΩij/z)
2]z, (4.20)
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and k = ω/c is the wavenumber, c being the speed of light. Because we
intend to study the HBT effect in the far zone of the source, we note for
future use that

lim
z→∞

∆2
ij(z) =

z2

(σkΩij)2
, (4.21)

lim
z→∞

Rij(z) = z. (4.22)

We will apply Eqs. (4.17), (4.21) and (4.22) to beams that are generated
by different types of sources.

4.4 Unpolarized beams

For a rotationally symmetric, unpolarized source that generates an EGSM
beam, we have that

Ax = Ay = A, (4.23)

δxx = δyy = δ, (4.24)

Bxy = Byx = 0, (4.25)

δxy = δyx = 0. (4.26)

The two non-zero matrix elements are equal, i.e.,

Wxx(ρ1,ρ2, z) = Wyy(ρ1,ρ2, z) = W (ρ1,ρ2, z), (4.27)

with, in the far zone,

W (ρ1,ρ2, z) =

(
AkσΩ

z

)2

exp

[
−(ρ1 + ρ2)2k2Ω2

8z2

]
× exp

[
−(ρ2 − ρ1)2k2σ2

2z2

]
exp

(
ik
ρ2

2 − ρ2
1

2z

)
, (4.28)

where

1

Ω2
=

1

4σ2
+

1

δ2
. (4.29)

If we take the first reference point to be on the z axis (ρ1 = 0), then it
is seen from Eq. (4.28) that W (0,ρ2, z) is rotationally symmetric, i.e., it
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depends only on ρ2 = |ρ2|. In the far-field the polar angle θ ≈ tan θ =
ρ2/z. Hence the matrix elements can be expressed as

W (0, θ, z) =

(
AkσΩ

z

)2

exp

(
−θ

2k2Ω2

8

)
× exp

(
−θ

2k2σ2

2

)
exp

(
ik
θ2z

2

)
. (4.30)

Using Eq. (4.8) we obtain for the HBT coefficient the formula

C(0, θ, z) = 2

(
AkσΩ

z

)4

exp

(
−θ

2k2Ω2

4

)
exp

(
−θ2k2σ2

)
. (4.31)

From Eqs. (4.31) and (4.9) one readily finds that the normalized HBT
coefficent is given by the expression

CN (0, θ) =
1

2
exp

(
θ2k2Ω2

4

)
exp

(
−θ2k2σ2

)
=

1

2
exp

(
− 4θ2k2σ4

δ2 + 4σ2

)
, (4.32)

where the z dependence has dropped out. It is evident from Eq. (4.32) that
the far-zone HBT coefficient of an unpolarized, rotationally symmetric
beam depends on both the effective source size σ and the correlation length
δ. Also, it is seen that this coefficient has an upper bound of 1/2.

4.5 Linearly polarized beams

Let us next consider a source that is linearly polarized along the x direc-
tion. We then have

Ax = A, (4.33)

δxx = δ. (4.34)

The only non-zero matrix element, Wxx(ρ1,ρ2, z), takes on the far-zone
form

Wxx(ρ1,ρ2, z) =

(
AkσΩ

z

)2

exp

[
−(ρ1 + ρ2)2k2Ω2

8z2

]
× exp

[
−(ρ2 − ρ1)2k2σ2

2z2

]
exp

(
ik
ρ2

2 − ρ2
1

2z

)
. (4.35)
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As before, we take the first reference point, ρ1, to be on the z axis. Again
expressing the relevant quantities in terms of the polar angle θ, we obtain
for the HBT coefficient the expression

C(0, θ, z) =

(
AkσΩ

z

)4

exp

(
−θ

2k2Ω2

4

)
exp

(
−θ2k2σ2

)
. (4.36)

Hence, its normalized version

CN (0, θ) = exp

(
− 4θ2k2σ4

δ2 + 4σ2

)
. (4.37)

It is seen that the far-zone HBT coefficient for a linearly polarized EGSM
beam does not depend on the direction of polarization. Furthermore, it is
twice as large as the coefficient for unpolarized light, as given by Eq. (4.32),
the upper bound now being unity.

4.6 Partially polarized beams

As a third example we study a partially polarized, rotationally symmetric
source. In that case

Ax = Ay = A, (4.38)

δxx = δyy = δ. (4.39)

It immediately follows that

Ωxx = Ωyy = Ω 6= Ωxy, (4.40)

∆xx = ∆yy = ∆ 6= ∆xy. (4.41)
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The two inequalities follow from the fact that, in general, δxy 6= δ. For the
four matrix elements we now have the far-zone formulas

Wxx(ρ1,ρ2, z) = Wyy(ρ1,ρ2, z)

=

(
AkσΩ

z

)2

exp

[
−(ρ1 + ρ2)2k2Ω2

8z2

]
× exp

[
−(ρ2 − ρ1)2k2σ2

2z2

]
exp

(
ik
ρ2

2 − ρ2
1

2z

)
, (4.42)

Wxy(ρ1,ρ2, z) = Bxy

(
AkσΩxy

z

)2

exp

[
−

(ρ1 + ρ2)2k2Ω2
xy

8z2

]

× exp

[
−(ρ2 − ρ1)2k2σ2

2z2

]
exp

(
ik
ρ2

2 − ρ2
1

2z

)
, (4.43)

Wyx(ρ1,ρ2, z) = B∗xy

(
AkσΩxy

z

)2

exp

[
−

(ρ1 + ρ2)2k2Ω2
xy

8z2

]

× exp

[
−(ρ2 − ρ1)2k2σ2

2z2

]
exp

(
ik
ρ2

2 − ρ2
1

2z

)
, (4.44)

where in the last expression we made use of the fact that Byx = B∗xy and
Ωyx = Ωxy. Taking the first reference point ρ1 on axis and expressing
the relevant quantities in terms of the angle θ, we thus find for the HBT
coefficient the formula

C(0, θ, z) = 2

(
Akσ

z

)4

exp
(
−θ2k2σ2

)
(4.45)

×

[
Ω4 exp

(
−θ

2k2Ω2

4

)
+ |Bxy|2Ω4

xy exp

(
−
θ2k2Ω2

xy

4

)]
.



68 4.7. Conclusions

A straightforward calculation then yields the equations

CN (0, θ) =
1

2
exp

[
−θ2k2

(
σ2 − Ω2

2

)]
×

{
exp

[
−
(
θkΩ

2

)2
]

+

(
Ωxy

Ω

)4

|Bxy|2 exp

[
−
(
θkΩxy

2

)2
]}

(4.46)

=
1

2
exp

(
− 4θ2k2σ4

δ2 + 4σ2

)
×

{
1 + |Bxy|2

(
Ωxy

Ω

)4

exp

[
−
θ2k2(Ω2

xy − Ω2)

4

]}
. (4.47)

Equation (4.47) shows that the normalized far-zone HBT coefficient of a
rotationally symmetric, partially polarized source depends on its effective
size σ, the two coherence lengths δ and δxy, and the parameter Bxy. Com-
pared to the unpolarized case, given by Eq. (4.32), the coefficient is now
larger, due to the presence of the factor between curly brackets that is
always greater than unity. The upper bound now exceeds 1/2 due to the
fact that |Bxy| > 0 for partially polarized sources. Clearly, a non-zero cor-
relation between the two Cartesian components of the electric field in the
source plane increases the correlation of the intensity fluctuations in the
far zone. It is worth pointing out that the constraint expressed by (4.16)
defines an upper limit for the value of |Bxy|.

We illustrate our results in Fig. 4.2 in which the far-zone normalized
HBT coefficient is plotted for three different kinds of EGSM sources, i.e.,
an unpolarized source, a linearly polarized source and a partially polarized
source. The coefficient for the linearly polarized case is the only with a
unit upper bound, and its value always exceeds that of the other cases.
The partially coherent source produces an HBT coefficent that, at all
observation angles, is larger than that of its unpolarized counterpart.

4.7 Conclusions

We have examined the Hanbury Brown-Twiss effect that occurs in ran-
dom beams generated by electromagnetic Gaussian Schell-model sources.
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Figure 4.2: The normalized far-zone Hanbury Brown-Twiss coefficient for
three EGSM sources with different states of polarization: linearly polar-
ized (green curve), partially polarized (red curve) and unpolarized (blue
curve). In these examples the parameters are: λ = 632.8 nm, σ = 4 mm,
δ = 2 mm, δxy = 2.3 mm, and Bxy = 0.5.

Expressions for the normalized far-zone HBT coefficient were derived in
terms of the source parameters. This coefficient was shown to have an
upper limit that depends on the state of coherence and polarization in the
source plane. Our results show that the far-zone HBT effect coefficient
can be used to obtain properties of the source.



70 4.7. Conclusions



Chapter 5

A generalized Hanbury
Brown-Twiss effect in
partially coherent
electromagnetic beams

This Chapter is based on

• Gaofeng Wu, David Kuebel and Taco D. Visser, “Generalized Han-
bury Brown-Twiss effect in partially coherent electromagnetic beams,”
Physical Review A, vol. 99, 033846 (2019).

Abstract
The recently introduced concept of Stokes fluctuations generalizes both
the Hanbury Brown-Twiss effect and the notion of scintillation. Here we
apply this new framework to the specific example of a Gaussian Schell-
model (GSM) beam. We derive formulas for Stokes scintillations and
Stokes fluctuation correlations which explicitly express the dependence
of these quantities on the GSM source parameters. It is found that the
normalized Stokes scintillations vary significantly with position. Also, they
can be both positively or negatively correlated.
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5.1 Introduction

Recent work on intensity correlations has attempted to extend the study of
the Hanbury Brown-Twiss (HBT) effect [Hanbury Brown and Twiss,
1954; Hanbury Brown and Twiss, 1956; Hanbury Brown, 1974], as
customarily applied to fields of research such as astronomy and quantum
optics, to the case of vector electromagnetic beams. One avenue of in-
vestigation on this topic is to explore the possible relationship between
the state of polarization of the beam and the behavior of the observ-
able HBT coefficient. Such calculations have been presented in [Shirai
and Wolf, 2007; Hassinen et al., 2011; Wu and Visser, 2014a; Wu
and Visser, 2014b; Shirai, 2017; Liu et al., 2018]. In considering the
polarization-resolved HBT effect it seems natural to employ the traditional
Stokes parameters to describe the state of polarization of the beam. How-
ever, it is trivial to observe that the HBT coefficient itself can also be
expressed in terms of the first Stokes parameter, denoted by S0. The
correlation of the intensity fluctuations can therefore be thought of as a
quantity that is directly related to the polarization state. Recently this
observation was generalized by defining the complete class of Stokes fluc-
tuation correlations [Kuebel and Visser, 2019]. Similarly, the scintil-
lation coefficient, which is nothing but the local variance of S0, can be
generalized to a class of one-point correlations between the various Stokes
parameters. We refer to these generalized quantities as Stokes fluctuation
correlations and Stokes scintillations, respectively. Under the assumption
of Gaussian statistics, a single expression for all these quantities can be
derived. In this paper we apply the formalism that describes a general-
ized HBT experiment to a broad class of partially coherent beams, namely
those of the Gaussian Schell-model type. We study how the Stokes fluctu-
ation correlations and Stokes scintillations in the far zone are affected by
the beam parameters. Both these quantities are found to display a rich
behavior. For example, the normalized Stokes scintillations vary strongly
with position, and their correlations can either be positive or negative.

A sketch for a generalized, polarization-resolved HBT experiment that
could be used to measure the quantities of interest described in this paper
is shown in Fig. 5.1. The field that is incident on the two detectors is
spectrally filtered and passed through polarizing elements. The elements
are chosen such that each detector measures a particular spectral Stokes
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Figure 5.1: A polarization-resolved HBT experiment. The far-zone radia-
tion of a source is passed through a narrow-band spectral filter (SF) and
polarizing elements (P) that cover two intensity detectors D1 and D2. The
output of the detectors is correlated and sent to a computer (PC).

parameter. In a traditional HBT experiment these filters and polarizers
would be absent.

5.2 Stokes fluctuation correlations and Stokes
scintillations

The second-order statistical properties of a partially coherent electromag-
netic beam are described by its cross-spectral density matrix, which is
defined as [Wolf, 2007]

W(r1, r2, ω) =

(
Wxx Wxy

Wyx Wyy

)
. (5.1)

All the matrix elements are functions of the same three variables, and
given by the expression

Wij(r1, r2, ω) = 〈E∗i (r1, ω)Ej(r2, ω)〉, (i, j = x, y), (5.2)

where r1 and r2 are two points of observation, ω is the angular frequency,
and the angular brackets indicate an average taken over an ensemble of
beam realizations.

The state of polarization of the beam is described by the four Stokes
parameters [Born and Wolf, 1999]. Their average value can be ex-
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pressed in terms of the cross-spectral density matrix as

〈S0(r, ω)〉 = Wxx(r, r, ω) +Wyy(r, r, ω), (5.3)

〈S1(r, ω)〉 = Wxx(r, r, ω)−Wyy(r, r, ω), (5.4)

〈S2(r, ω)〉 = Wxy(r, r, ω) +Wyx(r, r, ω), (5.5)

〈S3(r, ω)〉 = i[Wyx(r, r, ω)−Wxy(r, r, ω)]. (5.6)

All preceding equations have an explicit frequency dependence, indicating
that they are defined for a specific frequency component of the optical
field. For brevity, we will no longer display this ω dependence from now
on.

For the case of a stochastic beam the Stokes parameters are not deter-
ministic, but they are random quantities. The fluctuations around their
average value (i.e., the Stokes fluctuations) are defined as

∆Sn(r) = Sn(r)− 〈Sn(r)〉 (n = 0, 1, 2, 3), (5.7)

where Sn(r) is the Stokes parameter pertaining to a single realization of
the beam, and 〈Sn(r)〉 denotes its ensemble average. We can now examine
how these Stokes fluctuations are correlated. All possible pairs of their
two-point correlations can be captured by introducing a 4 by 4 Stokes
fluctuations correlation matrix C(r1, r2), whose elements are

Cnm(r1, r2) ≡ 〈∆Sn(r1)∆Sm(r2)〉 (n,m = 0, 1, 2, 3). (5.8)

We recently showed, under the assumption that the source that generates
the beam is governed by Gaussian statistics, that these elements can be
expressed as [Kuebel and Visser, 2019]

Cnm(r1, r2) =
∑
a,b

∑
c,d

σnabσ
m
cdWad(r1, r2)W ∗bc(r1, r2), (a, b, c, d = x, y),

(5.9)

where σ0 denotes the 2 by 2 identity matrix, and the Pauli spin matrices
are defined as

σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 −i
i 0

)
, (5.10)
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respectively. We remind the reader that, in contrast to the Stokes fluctua-
tions whose correlations are described by Eq. (5.9), the Stokes parameters
themselves are related by the inequality [Born and Wolf, 1999]

S2
0(r) ≥ S2

1(r) + S2
2(r) + S2

3(r), (5.11)

with the equal sign holding only for a fully polarized beam.
Working out Eq. (5.9) for all sixteen elements results in

C00(r1, r2) = |Wxx|2 + |Wxy|2 + |Wyx|2 + |Wyy|2, (5.12)

C01(r1, r2) = |Wxx|2 − |Wxy|2 + |Wyx|2 − |Wyy|2, (5.13)

C02(r1, r2) = 2 Re [WxxW
∗
xy +WyyW

∗
yx], (5.14)

C03(r1, r2) = 2 Im [WyyW
∗
yx −WxxW

∗
xy], (5.15)

C10(r1, r2) = |Wxx|2 + |Wxy|2 − |Wyx|2 − |Wyy|2, (5.16)

C11(r1, r2) = |Wxx|2 − |Wxy|2 − |Wyx|2 + |Wyy|2, (5.17)

C12(r1, r2) = 2 Re [WxxW
∗
xy −WyyW

∗
yx], (5.18)

C13(r1, r2) = 2 Im [WxyW
∗
xx +WyxW

∗
yy], (5.19)

C20(r1, r2) = 2 Re [WxxW
∗
yx +WyyW

∗
xy], (5.20)

C21(r1, r2) = 2 Re [WxxW
∗
yx −WyyW

∗
xy], (5.21)

C22(r1, r2) = 2 Re [WxxW
∗
yy +WxyW

∗
yx], (5.22)

C23(r1, r2) = 2 Im [WxyW
∗
yx +W ∗xxWyy], (5.23)

C30(r1, r2) = 2 Im [WxxW
∗
yx −WyyW

∗
xy], (5.24)

C31(r1, r2) = 2 Im [WxxW
∗
yx +WyyW

∗
xy], (5.25)

C32(r1, r2) = 2 Im [WxyW
∗
yx +WxxW

∗
yy], (5.26)

C33(r1, r2) = 2 Re [WxxW
∗
yy −WxyW

∗
yx], (5.27)

where on the right-hand side the (r1, r2) dependence of the cross-spectral
density matrix elements Wij has been suppressed for brevity. It is seen
that, in the general case, all elements Cnm(r1, r2) are non-zero. This
means that the fluctuations of any Stokes parameter at a position r1 are
correlated with the fluctuations of all four Stokes parameters at another
position r2. As a partial check it can be verified that the expression for
the first matrix element, C00(r1, r2), is indeed equivalent to that of the
usual Hanbury Brown-Twiss coefficient [Shirai and Wolf, 2007].
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When the two spatial arguments of Cnm(r1, r2) coincide, it reduces to
the Stokes scintillation matrix Dnm(r), i.e.,

Dnm(r) ≡ Cnm(r, r). (5.28)

It can be derived that [Kuebel and Visser, 2019]

D00(r) =
1

2

[
〈S0(r)〉2 + 〈S1(r)〉2 + 〈S2(r)〉2 + 〈S3(r)〉2

]
, (5.29)

D11(r) =
1

2

[
(〈S0(r)〉2 + 〈S1(r)〉2 − 〈S2(r)〉2 − 〈S3(r)〉2

]
, (5.30)

D22(r) =
1

2

[
〈S0(r)〉2 − 〈S1(r)〉2 + 〈S2(r)〉2 − 〈S3(r)〉2

]
, (5.31)

D33(r) =
1

2

[
〈S0(r)〉2 − 〈S1(r)〉2 − 〈S2(r)〉2 + 〈S3(r)〉2

]
. (5.32)

From these expressions it is seen that D00(r) is greater than or equal to
the other three diagonal elements. The twelve off-diagonal elements are
given by the expressions

Dpq(r) = 〈Sp(r)〉〈Sq(r)〉, (p 6= q; and p, q = 0, 1, 2, 3). (5.33)

It is useful to introduce a normalized version of the two correlation matri-
ces, indicated by the superscript N , by defining

CNnm(r1, r2) =
Cnm(r1, r2)

〈S0(r1)〉 〈S0(r2)〉
, (5.34)

and

DN
nm(r) =

Dnm(r)

〈S0(r)〉2
. (5.35)

It can be shown that sum of the four diagonal elements of the CN (r1, r2)
matrix has a distinct physical meaning [Kuebel and Visser, 2019],
namely

3∑
m=0

CNmm(r1, r2) = 2 |η(r1, r2)|2 . (5.36)



Chapter 5. Generalized HBT effect 77

Here η(r1, r2) denotes the spectral degree of coherence [Wolf, 2007], the
magnitude of which indicates the visibility of the interference pattern pro-
duced in Young’s experiment with pinholes located at r1 and r2. Similarly,
the sum of the four normalized diagonal Stokes scintillations satisfies the
relation

3∑
m=0

DN
mm(r) = 2. (5.37)

The elementDN
00(r) is equal to the square of the scintillation index [Andrews

and Phillips, 2005], and is bounded, namely [Friberg and Visser,
2015]

1

2
≤ DN

00(r) ≤ 1. (5.38)

It follows from Eqs. (5.33) and (5.35) that the off-diagonal elements of
the DN (r) matrix are also not independent. For example, DN

23(r) =
DN

02(r)DN
03(r).

In the next section we calculate the Stokes fluctuation correlations and
the Stokes scintillations that occur in a specific type of beam.

5.3 Gaussian Schell-model beams

The cross-spectral density matrix elements of an electromagnetic Gaussian
Schell-model (GSM) beam in its source plane, indicated by the superscript
(0), are [Wolf, 2007]

W
(0)
ij (ρ1,ρ2) = AiAjBij exp

[
− ρ2

1

4σ2
i

− ρ2
2

4σ2
j

− (ρ1 − ρ2)2

2δ2
ij

]
, (i, j = x, y).

(5.39)

The parameters Ai, Bij , σi, δij are independent of position, but may
depend on frequency. They can not be chosen freely, but have to satisfy
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several constraints, i.e.,

Bxx = Byy = 1, (5.40)

Bxy = B∗yx, (5.41)

Bxy = |Bxy|eiφ,with |Bxy| ≤ 1, and φ ∈ R, (5.42)

δxy = δyx. (5.43)

Furthermore, the so-called realizability conditions are [Gori et al., 2008]√
δ2
xx + δ2

yy

2
≤ δxy ≤

√
δxxδyy
|Bxy|

. (5.44)

For the case σx = σy = σ, the source will generate a beam-like field
if [Korotkova et al., 2004]

1

4σ2
+

1

δ2
xx

� 2π2

λ2
, and

1

4σ2
+

1

δ2
yy

� 2π2

λ2
. (5.45)

On propagation to a transverse plane z the matrix elements evolve into [Wolf,
2007]

Wij(ρ1,ρ2, z)

=
AiAjBij
∆2
ij(z)

exp

[
−(ρ1 + ρ2)2

8σ2∆2
ij(z)

]
exp

[
− (ρ1 − ρ2)2

2Ω2
ij∆

2
ij(z)

+
ik(ρ2

2 − ρ2
1)

2Rij(z)

]
,

(5.46)

where

∆2
ij(z) = 1 + (z/σkΩij)

2, (5.47)

1

Ω2
ij

=
1

4σ2
+

1

δ2
ij

, (5.48)

Rij(z) = [1 + (σkΩij/z)
2]z. (5.49)

When z tends to infinity we have

∆2
ij(z) ∼

z2

(σkΩij)
2 , (5.50)

Rij(z) ∼ z. (5.51)
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We thus get for the far-zone elements, denoted by the superscript (∞),
the expressions

W
(∞)
ij (ρ1,ρ2, z) =

AiAjBij(kσΩij)
2

z2
exp

[
−(ρ1 + ρ2)2(kΩij)

2

8z2

]

× exp

[
−(ρ1 − ρ2)2(kσ)2

2z2
+
ik(ρ2

2 − ρ2
1)

2z

]
. (5.52)

Let us assume, for simplicity, that the amplitude of the two spectral den-
sities and the two autocorrelation radii are the same, i.e.,

Ax = Ay = A, (5.53)

δxx = δyy = δ. (5.54)

This implies that

Ωxx = Ωyy = Ω. (5.55)

In the far zone the observation points are given by the polar angle θ ≈
tan θ = ρ/z. Hence we can write

W
(∞)
ij (θ, θ, z) = K2BijΩ

2
ije
−θ2k2Ω2

ij/2, (5.56)

W
(∞)
ij (0, θ, z) = K2BijΩ

2
ije
−θ2k2Ω2

ij/8e−θ
2k2σ2/2eikθ2z/2, (5.57)

where

K2 =

(
Akσ

z

)2

. (5.58)

We will use these two expressions to study the far-zone scintillations and
the far-zone fluctuation correlations.

5.4 Stokes Scintillations

On substituting from Eq. (5.56) into Eq. (5.35), while making use of
Eqs. (5.12)–(5.27), we find for the four diagonal far-zone normalized Stokes
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Figure 5.2: The four diagonal Stokes scintillations on the far zone axis
(θ = 0) as a function of the argument φ of the coefficient Bxy. In this
example λ = 632.8 nm, σ = 1 cm, δ = 4 mm, δxy = 5 mm, and |Bxy| = 0.5.

scintillations that

DN
00(θ) =

1

2

[
1 + α4|Bxy|2e−θ

2k2(Ω2
xy−Ω2)

]
, (5.59)

DN
11(θ) =

1

2

[
1− α4|Bxy|2e−θ

2k2(Ω2
xy−Ω2)

]
, (5.60)

DN
22(θ) =

1

2

[
1 + α4|Bxy|2 cos(2φ)e−θ

2k2(Ω2
xy−Ω2)

]
, (5.61)

DN
33(θ) =

1

2

[
1− α4|Bxy|2 cos(2φ)e−θ

2k2(Ω2
xy−Ω2)

]
, (5.62)

where α ≡ Ωxy/Ω ≥ 1. This inequality is a direct consequence of the real-
izability conditions Eq. (5.44). It implies that the exponential functions in
Eqs. (5.59)–(5.62) all decrease with increasing θ. An example of how the
on-axis Stokes scintillations may behave is presented in Fig. 5.2. There
the four diagonal scintillation coefficients are plotted as a function of φ,
the argument of the complex coeffcient Bxy which is defined in Eq. (5.39).
Note that φ is the expectation value of the phase difference between Ex
and Ey. The first two coefficients, D00 (which is the usual scintillation co-
efficient) and D11, are independent of φ whereas the other two coefficients
display a harmonic behavior. This can be understood as follows: the scin-
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tillations of S0 and S1 are, according to their definitions, only dependent
on the fluctuations of |Ex|2 and |Ey|2 and are therefore independent of
the angle φ. Since the other two Stokes parameters, S2 and S3, contain
cross terms of Ex and Ey, their scintillations do depend on φ. Notice that
although the individual Stokes scintillations may vary, their sum remains
constant at two, in agreement with Eq. (5.37).

The off-diagonal scintillations can be expressed in terms of the average
of the Stokes parameters, as indicated by Eq. (5.33). Using Eqs. (5.3)–
(5.6) we find that

S
(∞)
0 (θ) = 2K2Ω2 exp

(
−k

2Ω2θ2

2

)
, (5.63)

S
(∞)
1 (θ) = 0, (5.64)

S
(∞)
2 (θ) = 2K2Ω2

xy|Bxy| cosφ exp

(
−
k2Ω2

xyθ
2

2

)
, (5.65)

S
(∞)
3 (θ) = 2K2Ω2

xy|Bxy| sinφ exp

(
−
k2Ω2

xyθ
2

2

)
. (5.66)

Hence the six non-zero off-diagonal scintillation coefficients are

DN
02(θ) = DN

20(θ) = α2|Bxy| cosφ exp

[
−θ

2k2

2

(
Ω2
xy − Ω2

)]
, (5.67)

DN
03(θ) = DN

30(θ) = α2|Bxy| sinφ exp

[
−θ

2k2

2

(
Ω2
xy − Ω2

)]
, (5.68)

DN
23(θ) = DN

32(θ) = α4|Bxy|2 cosφ sinφ exp
[
−θ2k2

(
Ω2
xy − Ω2

)]
. (5.69)

An example is shown in Fig. 5.3. The behavior is quite distinct from that
of the diagonal scintillation coefficients. Whereas for our model choice
the diagonal elements are always positive, the off-diagonal scintillation
coefficients can also attain negative values.

It is seen from Eqs. (5.67)–(5.69) that the off-diagonal Stokes scin-
tillations, unlike their diagonal counterparts, do not all have the same
exponential dependence on the angle of observation θ. This is illustrated
in Fig. 5.4. When θ gets larger, all scintillation coefficients tend to zero,
but they do so from different initial, on-axis values.
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Figure 5.3: The non-zero off-diagonal Stokes scintillations on the far zone
axis as a function of the argument φ of the coefficient Bxy. The parameters
are the same as in Fig. 5.2.
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parameters are the same as in Fig. 5.2.
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5.5 Stokes fluctuation correlations

For the far zone field we can use Eqs. (5.56) and (5.57) to derive the
diagonal correlations of the Stokes fluctuations. The results are

CN00(0, θ) =
1

2
exp

[
−k2θ2(σ2 − Ω2/2)

]
×

[
exp

(
−k

2Ω2θ2

4

)
+ α4|Bxy|2 exp

(
−
k2Ω2

xyθ
2

4

)]
, (5.70)

CN11(0, θ) =
1

2
exp

[
−k2θ2(σ2 − Ω2/2)

]
×

[
exp

(
−k

2Ω2θ2

4

)
− α4|Bxy|2 exp

(
−
k2Ω2

xyθ
2

4

)]
, (5.71)

CN22(0, θ) =
1

2
exp

[
−k2θ2(σ2 − Ω2/2)

]
×

[
exp

(
−k

2Ω2θ2

4

)
+ α4|Bxy|2 cos(2φ) exp

(
−
k2Ω2

xyθ
2

4

)]
,

(5.72)

CN33(0, θ) =
1

2
exp

[
−k2θ2(σ2 − Ω2/2)

]
×

[
exp

(
−k

2Ω2θ2

4

)
− α4|Bxy|2 cos(2φ) exp

(
−
k2Ω2

xyθ
2

4

)]
.

(5.73)

It is easy to show, given the constraints on the source parameters as out-
lined in Sec. 5.3, that these coefficients all decay exponentially as a function
of the angle θ. The angular dependence of the four diagonal Stokes fluc-
tuations coefficients is plotted in Fig. 5.5. The first coefficient, CN00(0, θ),
represents the usual HBT effect (blue curve). Clearly, as can be seen
from Eqs. (5.70)–(5.73), for our particular choice of a GSM beam, this
coefficient is larger than the other three diagonal Stokes fluctuation cor-
relations. As described above in Eq. (5.36), the sum of the these four
coefficients is directly related to the modulus of the spectral degree of co-
herence η(0, θ). This quantity is therefore also plotted. It is seen that its
angular half-width exceeds that of the four Stokes fluctuation correlations.
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Figure 5.5: The far-zone diagonal Stokes fluctuation coefficients CNnn(0, θ)
as a function of the angle θ. The argument of the coefficient Bxy is taken
to be φ = −1.0 and the other parameters are the same as in Fig. 5.2.
The dashed black curve indicates the modulus of the spectral degree of
coherence η(0, θ). The curves at θ = 0 represent, in descending order,
CN00(0, θ), CN33(0, θ), CN22(0, θ), and CN11(0, θ).

A direct calculation shows that only six off-diagonal elements of the C
matrix are non-zero, with only three of them being independent, namely

CN02(0, θ) = CN20(0, θ)

= α2 exp[−k2θ2(σ2 − Ω2/2)] exp[−k2θ2(Ω2 + Ω2
xy)/8]|Bxy| cosφ,

(5.74)

CN03(0, θ) = CN30(0, θ)

= α2 exp[−k2θ2(σ2 − Ω2/2)] exp[−k2θ2(Ω2 + Ω2
xy)/8]|Bxy| sinφ,

(5.75)

CN23(0, θ) = CN32(0, θ)

=
1

2
α4 exp[−k2θ2(σ2 − Ω2/2)] exp[−k2θ2Ω2

xy/4]|Bxy|2 sin(2φ).

(5.76)

Not coincidentally, the non-zero off-diagonal elements of CNnm occur for the
same values of n and m as those of the DN

nm matrix. They also express
the same functional dependence on the modulus of Bxy and its angle φ.
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5.6 Conclusions

Studies of the polarization properties of random electromagnetic beams,
such as [James, 1994; Korotkova and Wolf, 2005; Korotkova et al.,
2005; Friberg and Visser, 2015] have typically concentrated on the de-
gree of polarization, the Hanbury Brown–Twiss effect and scintillation.
Recently the two concepts of the HBT effect and scintillation were gener-
alized to so-called Stokes fluctuation correlations and Stokes scintillations.
We examined the behavior of these sixteen new quantities in the far zone
of a random beam that is generated by a Gaussian Schell-model source.
It was found that the different correlations and scintillations have varying
spatial distributions, and that their dependence on the source parame-
ters differs significantly. Our results also illustrate that these quantities
may non-trivially depend on the average phase difference φ between the
two electric field components of the beam. For the specific model chosen
here, for example, DN

22(r) and DN
33(r) vary sinusoidally with respect to φ,

and the off-diagonal scintillation coefficients may be negative. Further-
more, the classical HBT coefficient is larger than the other three Stokes
fluctuation correlation coefficients.

Our work shows that the HBT effect is just one of many correlations
that occur in a random electromagnetic beam. These generalized HBT
correlations can all be determined from intensity measurements and their
values can then be used to characterize a beam in more detail than was
previously done based on a single “classical” HBT measurement. They
may also find application in inverse problems in which source parameters
are reconstructed from far-zone observations.
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Summary in Dutch

De Nederlandse titel van dit proefschrift luidt: Het Hanbury Brown-Twiss
effect in elektromagnetische bundels. Dit effect treedt op in velden die niet
determistisch zijn, zoals de straling van sterren of van multi-mode lasers.
Het beschrijft de correlatie tussen de intensiteitsfluctuaties die gemeten
worden door twee detectoren. Naarmate de afstand tussen de detectoren
groter wordt, zal deze correlatie geleidelijk minder sterk worden. De oor-
spronkelijke toepassing, in de jaren vijftig van de twintigste eeuw, betrof de
bestudering van radiosterren. Als zo een ster vele lichtjaren ver weg staat,
is het niet mogelijk om door middel van een directe meting de grootte er-
van te bepalen. Met behulp van de HBT techniek kan dat echter wel. Door
de afname van de correlatie te plotten als functie van de afstand tussen de
beide detectoren kan, door gebruik te maken van het van Cittert-Zernike
theorema, de straal van de ster vastgesteld worden. De afgelopen zeventig
jaar zijn allerlei varianten van de HBT correlaties succesvol toegepast in
andere takken van de natuurkunde, zoals kernfysica, atoomfysica en kwan-
tum optica.

Dit proefschrift is gebaseerd op vier studies van het Hanbury Brown-
Twiss effect in stochastische, elektromagnetische bundels. In Hoofdstuk
1 wordt de benodigde wiskundige achtergrond, de zogenaamde coherentie
theorie, beschreven.

Hoofdstuk 2 behandelt hoe een stochastische bron straling uitzendt
waarin verschillende correlaties geleidelijk aan worden opgebouwd als het
veld zich voortplant. Het blijkt dat de tweede-orde correlaties een een-
voudiger gedrag vertonen dan vierde-orde correlaties zoals het HBT effect.

In hoofdstuk 3 wordt een speciaal type bron beschreven, de zoge-
heten quasi-homogene bron. Dat is, simpel gezegd, een bron waarvan
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de ruimtelijke coherentielengte veel kleiner is dan de afmetingen van de
bron zelf. Voor zulke bronnen zijn recentelijk reciprociteitsrelaties afgeleid.
Deze relaties beschrijven de statistische eigenschappen van het verre veld
in termen van de bronparameters. Ze kunnen ook worden gebruikt om
het HBT effect te analyseren. Dit leidt tot een nieuwe aanpak van een
inverse probleem: de bepaling van de vorm van een bron door middel van
het HBT effect in het verre veld.

Het HBT effect voor het veld van een brede klasse van stochastische
bronnen, de zogenaamde Gauss-Schell bronnen, staat centraal in Hoofd-
stuk 4. De invloed van de polarisatietoestand van de bron op de maximale
sterkte van de correlatie wordt in kaart gebracht door middel van analytis-
che en numerieke technieken.

Het laatste Hoofdstuk, nummer 5, laat zien dat het HBT effect eigenlijk
één bijzondere vorm is van een bredere klasse van zogenaamde Stokes
fluctuatie correlaties. Ook de klassieke notie van een scintillatie coëfficient
kan worden veralgemeniseerd tot een Stokes scintillatie. Het blijkt dat
deze gegeneraliseerde correlaties en scintillaties niet onafhankelijk zijn,
maar verbonden zijn door somregels. Deze resultaten worden gëıllustreerd
voor een brede klasse van stochastische, elektromagnetische bundels.
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