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Chapter 1

Introduction

1.1 Introduction

Light scattering is perhaps the most fundamental of optical processes.
It is encountered in many branches of the natural sciences, for example
in astronomy, meteorology, atomic physics, and in solid-state physics. An
important example is scattering by a spherical object. Descartes described
the rainbow in terms of refraction and reflection of light rays by spherical
water droplets almost 400 years ago [Haussmann, 2016]. But it was not
until 1908 that Mie [Mie, 1908] provided a rigorous (but very complicated)
solution to the problem of scattering of light by spherical particles. Since
then, Mie’s theory has been applied to fields like quantum scattering,
non-linear optics, and atmospheric scattering [Hergert and Wriedt
(eds.), 2012]. In this thesis, we will make extensive use of scalar Mie
theory.

Another topic of this thesis is optical coherence theory. Its gener-
al framework has been described in numerous publications [Beran and
Parrent, 1964; Born and Wolf, 1995; Goodman, 1985; Mandel and
Wolf, 1995; Marathay, 1982; Perina, 1985; Schouten and Viss-
er, 2008; Troup, 1985; Wolf, 2007; Gbur and Visser, 2010]. Coher-
ence is essentially a consequence of correlations between some components
of the fluctuating electric field at two (or more) points in space or in time,
and is manifested by the sharpness of fringes in Young’s interference ex-
periment. The basic tools of coherence theory are correlation functions
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12 1.2. Elements of optical coherence

and correlation matrices which, unlike some directly measurable quanti-
ties such as the spectrum of light, obey precise propagation laws. With
the help of these laws one may determine, for example, spectral and po-
larization changes that occur as the light propagates.

In this thesis we study the effects of coherence on scattering. We
therefore begin by briefly reviewing these two topics.

1.2 Elements of optical coherence

In physics one can distinguish two types of processes: those that are de-
terministic, and those that are random. Deterministic processes are pre-
dictable. In classical mechanics, for example, knowledge of the present
position of an object, together with its mass, velocity and the forces that
act upon it, completely determines its future position and velocity. Ran-
dom processes, on the other hand, are inherently non-predictable. An ex-
ample is provided by quantum mechanics, which holds as a central tenet
the stochastic nature of an event like spontaneous emission. Such random
or non-deterministic processes can be characterized by their statistical
behavior. This behavior describes the average value of a process, how
much it fluctuates, and how fast or slow these fluctuations occur in spa-
ce and time. In other words, we can describe random processes by their
mean, their standard deviation, and their correlation functions. We begin
this informal description of random optical processes by briefly reviewing
fundamental concepts such as the complex analytic signal representation,
ensembles, ergodicity and stationarity. This will allow us to introduce cor-
relation functions in both the space-time domain (Section 1.2.2) and the
space-frequency domain (Section 1.2.3). The propagation of correlation
functions is governed by precise laws, as is discussed in Section 1.2.4.

1.2.1 Complex analytic signals

Although optical fields are real-valued, it is often more convenient to use
complex-valued quantities. We therefore begin our mathematical descrip-
tion of wave fields by introducing their so-called complex analytic signal
representation [Mandel and Wolf, 1995, Sec. 3.1]. Let us write a scalar
optical field u(r, t), where r denotes a position in space and t is a moment
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in time, as a temporal Fourier transform, namely

u(r, t) =

∫ ∞

−∞
ũ(r, ω) e−iωt dω. (1.1)

Because u(r, t) is real-valued, we have that

ũ(r,−ω) = ũ∗(r, ω). (1.2)

This result implies that the negative frequency components (ω < 0) do
not contain any information that is not present in the positive frequency
components (ω > 0). We can therefore associate with the field a new
function

V (r, t) =

∫ ∞

0
ũ(r, ω) e−iωt dω, (1.3)

where the integral now ranges from zero to infinity. The field V (r, t) is
called the complex analytic signal representation of the real field u(r, t).
One can readily show that

u(r, t) = 2ReV (r, t). (1.4)

In words, the real-valued field u(r, t) is equal to two times the real part of
its associated complex analytic signal V (r, t).

An optical wave field u(r, t) has a temporal mean that is zero: the
probability that it takes on a positive value is equal to the probability
that it is negative, i.e.,

⟨u(r, t)⟩ ≡ lim
T→∞

1

2T

∫ +T

−T
u(r, t) dt = 0. (1.5)

A proof that the analytic signal representation of u(r, t) is also a zero-
mean function can be found in [Mandel and Wolf, 1995, Sec. 3.1.3].
We will continue our discussion of optical fields by using the function V ,
rather than u.

1.2.2 Correlation functions in the space-time domain

An experiment to determine the time average of any process would in-
volve keeping track of its behavior over a very, very long period of time.



14 1.2. Elements of optical coherence

According to Eq. (1.5) one would have to take, in principle at least, an
infinite numbers of readings of the same system. Suppose now that we
have, instead of a single system, a very large set (called an “ensemble”) of
copies of this system and that we take just a single measurement of each of
these so-called realizations of the system, and then calculate their average.
If each realization of the ensemble carries the same statistical information,
then the outcome of this procedure, which gives an ensemble average, is
equal to the time average produced by observing a single system. If this is
the case the system is said to be ergodic. In the following we will always
assume ergodicity. An extensive overview of this concept can be found
in [Papoulis, 1991].

As remarked in the previous section, the fact that the real field u(r, t)
has a time average of zero, Eq. (1.5), implies that its complex analytic
signal representation V (r, t) is also a zero-mean function:

⟨V (r, t)⟩ ≡ lim
T→∞

1

2T

∫ +T

−T
V (r, t) dt = 0. (1.6)

Many different mechanisms, like the before-mentioned spontaneous emis-
sion, but also electronic noise, thermal fluctuations, mechanical vibrations,
or the dynamic use of spatial light modulators, will cause the field to fluc-
tuate randomly. The statistical character of these fluctuations can be
described by the field’s cross-correlation function

Γ(r1, r2, t1, t2) = ⟨V ∗(r1, t1)V (r2, t2)⟩. (1.7)

This function represents the covariance of the two zero-mean processes
V (r1, t1) and V (r2, t2). It expresses the correlation between the field at
position r1 at time t1 and the field at position r2 at time t2.

In many cases the source that generates the fields will be stationary.1

This means that the cross-correlation Γ(r1, r2, t1, t2) depends on t1 and t2
only through their difference τ = t2 − t1. We then have

Γ(r1, r2, τ) = ⟨V ∗(r1, t)V (r2, t+ τ)⟩, (1.8)

= lim
T→∞

1

2T

∫ +T

−T
V ∗(r1, t)V (r2, t+ τ) dt. (1.9)

1Strictly speaking, what is assumed here is wide-sense stationarity. For a fuller
discussion we refer to [Mandel and Wolf, 1995].
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The function Γ(r1, r2, τ) is called the mutual coherence function. The no-
tion of temporal coherence refers to the situation where the two observation
points coincide, i.e. r1 = r2 = r. We can define the coherence time ∆t
as the duration after which Γ(r, r, τ) decreases by a factor 1/e from its
maximum value, which occurs at τ = 0:

Γ(r, r,∆t) = Γ(r, r, 0)/e. (1.10)

The field that is observed at the same position r at two moments in time,
is said to be correlated if the time difference is less than ∆t. If the time
difference exceeds ∆t the field is said to be uncorrelated.

The longitudinal coherence length is the distance that light travels dur-
ing the coherence time, i.e., this length equals c∆t, with c the speed of
light.

In a similar manner, the spatial coherence length ∆r of the field is
defined by setting the time difference τ = 0, and considering the separation
distance between r1 and r2 for which Γ(r1, r2, 0) decreases by a factor 1/e
from its maximum value, which occurs at r1 = r2 = r:

Γ(|r1 − r2| = ∆r, 0) = Γ(r, r, 0)/e. (1.11)

When, at the same moment in time, the field is observed at two points that
are separated by a distance that is less than ∆r, the field is correlated. If
the separation is larger than ∆r, the field is uncorrelated.

The three arguments of the mutual coherence function suggest that we
cannot always distinguish between temporal coherence (where r1 = r2),
and spatial coherence (where τ = 0). In general, we are dealing with
the correlation of the field at two different points, with a non-zero time
difference between them. It is therefore said that Γ(r1, r2, τ) describes the
spatio-temporal coherence properties of the field.

The instantaneous intensity at a position r at time t may be defined
as the squared modulus of the field, i.e.,

I(r, t) = V ∗(r, t)V (r, t). (1.12)

It is clear from Eq. (1.9) that the average intensity at r equals

I(r) = ⟨I(r, t)⟩ = ⟨V ∗(r, t)V (r, t)⟩ = Γ(r, r, 0). (1.13)
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It will be convenient to use a normalized version of the mutual coherence
function by defining

γ(r1, r2, τ) =
Γ(r1, r2, τ)

[Γ(r1, r1, 0)Γ(r2, r2, 0)]1/2
. (1.14)

This so-called complex degree of coherence can be shown to satisfy the
inequalities [Mandel and Wolf, 1995, Sec. 4.3.1]

0 ≤ |γ(r1, r2, τ)| ≤ 1. (1.15)

The lower bound corresponds to a complete lack of coherence, whereas the
upper bound indicates full coherence. For intermediate values the field is
said to be partially coherent.

R
1

R
2

A B

r
1

r
2

incident field
fringes

P

Figure 1.1: Young’s two pinhole experiment. A partially coherent field is
incident on an opaque screen A that contains two identical small apertures
(“pinholes”) at r1 and r2. The light that is transmitted forms interference
fringes on a second, parallel screen B, and is observed at P .

The function γ(r1, r2, τ) has a clear physical meaning, as we will now
discuss. The state of coherence of a wave field determines its possibility
to form interference patterns. This is illustrated by examining Young’s
experiment with partially coherent light. Consider the setup sketched in
Fig. 1.1. An optical field is incident on an opaque screen A that has two
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identical small apertures, which are located at r1 and r2. The light that
passes through the apertures forms an interference pattern on a second,
parallel screen B. Since the two pinholes both emit spherical waves, the
total field at a point P on the observation screen can be written as2

V (P, t) = V (r1, t−R1/c)
eikR1

R1
+ V (r2, t−R2/c)

eikR2

R2
, (1.16)

where R1 and R2 are the distances from the two pinholes to P . According
to Eq. (1.13), the average intensity at P equals

I(P ) = ⟨V ∗(P, t)V (P, t)⟩, (1.17)

=
I(r1)

R2
1

+
I(r2)

R2
2

+
2

R1R2
Re
{
eik(R2−R1)Γ(r1, r2, τ)

}
, (1.18)

with the time difference τ = (R2−R1)/c. Let us first assume that the point
P is so far away from the two apertures that we may use the approximation

1

R1
≈ 1

R2
=

1

R
. (1.19)

We next assume that the average intensity at the two pinholes is the same,
i.e.

I(r1) = I(r2) = I(r). (1.20)

Substitution of these two assumptions in Eq. (3.38) yields the expressions

I(P ) =
2I(r)

R2
+

2

R2
Re
{
eik(R2−R1)Γ(r1, r2, τ)

}
, (1.21)

=
2I(r)

R2
{1 + |γ(r1, r2, τ)| cos[k(R2 −R1) + ϕ(r1, r2, τ)]} , (1.22)

where we have used the definition (1.14) of the complex degree of coher-
ence, and written

γ(r1, r2, τ) = |γ(r1, r2, τ)|eiϕ(r1,r2,τ), (1.23)

2We make use of a simplified form of the so-called propagator function [Born and
Wolf, 1995, Sec. 8.2]. However, this will not affect our result.



18 1.2. Elements of optical coherence

with ϕ(r1, r2, τ) the phase (or “argument”) of γ(r1, r2, τ). Let us now
imagine that the observation point P is slightly moved across the screen
B (i.e., up or down in Fig. 1.1). The factor R2 − R1 then changes,
which causes the last term in Eq. (1.22) to vary between |γ(r1, r2, τ)| and
−|γ(r1, r2, τ)|. That means that the maximum intensity and the minimum
intensity in the immediate neighborhood of P are given by

Imax =
2I(r)

R2
(1 + |γ(r1, r2, τ)|), (1.24)

Imin =
2I(r)

R2
(1− |γ(r1, r2, τ)|), (1.25)

respectively. The local sharpness or visibility V of the fringe pattern in
Young’s experiment is defined as

V ≡ Imax − Imin

Imax + Imin
. (1.26)

If we substitute from Eqs. (1.24) and (1.25) into (1.26), we get the result
that

V = |γ(r1, r2, τ)|. (1.27)

So we find that the visibility of the interference fringes that are produced
in Young’s experiment is equal to the modulus of the complex degree of
coherence of the field that is incident at the two pinholes. This is illustrat-
ed in Fig. 1.2 where the interference fringes are plotted for three different
values of |γ(r1, r2, τ)|. On the left this modulus is 1, which means that
the field is fully coherent, and that the intensity minimums are zero. The
situation for a partially coherent field, with |γ(r1, r2, τ)| = 0.5, is shown in
the middle. The modulation of the intensity with position is now signifi-
cantly less. When the field at the two pinholes is completely uncorrelated,
i.e. when |γ(r1, r2, τ)| = 0, a constant, unmodulated intensity pattern is
formed, with zero visibility. This situation is shown on the right-hand side
of the figure.

The physical meaning of the phase ϕ of the complex quantity γ(r1, r2, τ)
follows from Eq. (1.22). This phase determines the shift of the fringes with
respect to the case when the incident field is fully coherent and co-phasal,
i.e., when γ(r1, r2, τ) = 1.
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Intensity

Position

γ|   | = 1 |   | = 0.5 |   | = 0γ γ

Figure 1.2: Interference fringes in Young’s experiment for three different
values of the modulus of the complex degree of coherence γ(r1, r2, τ).
On the left |γ(r1, r2, τ)| = 1 and the fringes have what is called perfect
visibility, with the intensity minimums being zero. In the middle pan-
el |γ(r1, r2, τ)| = 0.5 and it is seen that the minima are non-zero. On
the right, γ(r1, r2, τ) = 0. This means that the intensity pattern has a
constant value without any spatial modulation.

It should be noted that the assumption of stationarity is crucial for
the derivation of the results in this Section. An important example of a
field that is not stationary, is the output of a pulsed laser. In the descrip-
tion of the coherence properties of such a field both time arguments t1
and t2 that appear in Eq. (1.7) have to be retained. A thorough descrip-
tion of non-stationary fields can be found in the work by Bertolotti and
coworkers [Bertolotti et al., 1995; Bertolotti et al., 1997].

1.2.3 Correlations in the space-frequency domain

Until now we have studied the coherence properties of optical fields in the
space-time domain. In many cases, however, it is much easier to work
in the space-frequency domain. Consider, for example, the situation in
which a light wave is scattered at several points, at different times. In the
space-time domain we need to keep track of all these events and take their
relative time difference into account in order to calculate the resulting
scattered field. No such need exists in the space-frequency domain where
time has been “transformed away”, and only a single frequency component
of the field is considered.

So, in order to study correlations in the space-frequency domain, we
begin by introducing the cross-spectral density function by taking the tem-
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poral Fourier transform of the mutual coherence function:

W (r1, r2, ω) =
1

2π

∫ ∞

−∞
Γ(r1, r2, τ)e

iωτ dτ. (1.28)

The question now arises if W (r1, r2, ω) can, just like its space-time coun-
terpart Γ(r1, r2, τ), be interpreted as an ensemble average of the product
of two random fields. The answer is yes, and for the somewhat complicated
derivation the reader is referred to [Mandel and Wolf, 1995, Sec. 4.7.2],
where it is shown that

W (r1, r2, ω) = ⟨U∗(r1, ω)U(r2, ω)⟩. (1.29)

Here U(r, ω) represents a monochromatic wave field at position r with
frequency ω. Each realization of this field has a random phase and am-
plitude. When the two spatial arguments of the cross-spectral density
coincide (r1 = r2 = r) this function becomes the power spectrum of the
field. The so-called spectral density is therefore defined as

S(r, ω) = W (r, r, ω) = ⟨U∗(r, ω)U(r, ω)⟩. (1.30)

Just like for the mutual coherence function, it is advantageous to intro-
duce a normalized version of the cross-spectral density function, called the
spectral degree of coherence, by defining

µ(r1, r2, ω) =
W (r1, r2, ω)

[S(r1, ω)S(r2, ω)]1/2
. (1.31)

One can show [Mandel and Wolf, 1995, Sec. 4.3.2] that it satisfies the
two inequalities

0 ≤ |µ(r1, r2, ω)| ≤ 1. (1.32)

The lower bound corresponds to the absence of coherence of the field at
r1 and r2 at frequency ω, whereras the upper bound indicates complete
coherence. For intermediate values of |µ(r1, r2, ω)| the field is said to
be partially coherent. The physical meaning of the spectral degree of
coherence can be explained by considering a modified version of Young’s
experiment, as shown in Fig. 1.3. Both pinholes are now covered by a
narrow-band spectral filter with central frequency ω.
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R
1

R
2

A B

r
1

r
2

incident field
fringes

P

filter

filter

Figure 1.3: A modified version of Young’s two pinhole experiment. A
field is incident on an opaque screen A that contains two pinholes. Both
pinholes are covered by a narrow-band spectral filter that transmits only
fields with a frequency around ω. This light then forms interference fringes
on the observation screen B.

The field at an observation point P is again the sum of the two spherical
waves emanating from the pinholes:

U(P, ω) = U(r1, ω)
eikR1

R1
+ U(r2, ω)

eikR2

R2
. (1.33)

It follows from Eqs. (1.30) and (1.33) that the spectral density at P is
given by the expression

S(P, ω) =
S(r1, ω)

R2
1

+
S(r2, ω)

R2
2

+
2

R1R2
Re{eik(R2−R1)W (r1, r2, ω)}.(1.34)

Let us again assume that

1

R1
≈ 1

R2
=

1

R
, (1.35)

and that the spectral density of the light that is incident at the two pin-
holes is the same, i.e.,

S(r1, ω) = S(r2, ω) = S(r, ω). (1.36)
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On making use of these two assumptions in Eq. (1.34), we find that

S(P, ω) =
2S(r, ω)

R2

[
1 + Re{eik(R2−R1)µ(r1, r2, ω)}

]
. (1.37)

An important consequence of Eq. (1.37) is that only in the special case
when µ(r1, r2, ω) = 0 will the spectrum that is observed on screen B be
proportional to the spectrum S(r, ω) that is incident on the two pinholes.
In general, though, the observed spectrum will be different from that at the
two pinholes, because it is modified by the term containing the spectral
degree of coherence. This is an example of so-called coherence-induced
spectral changes, meaning that the spectrum of the light that is observed
is not necessarily identical to the spectrum of the source, because of its
random nature. An extensive review of this subject, sometimes called
the Wolf effect, is given in [Wolf and James, 1996]. Spectral changes
that are caused by coherence are to be distinguished from those that are
diffraction-induced and occur, e.g., in the focusing of spatially coherent,
polychromatic light [Gbur et al., 2002; Visser and Wolf, 2003].

Let us next write

µ(r1, r2, ω) = |µ(r1, r2, ω)| eiδ, (1.38)

where δ denotes the phase of the spectral degree of coherence (for brevity
the arguments of δ are not displayed). We then have that

S(P, ω) =
2S(r, ω)

R2

[
1 + |µ(r1, r2, ω)|Re {eik(R2−R1)eiδ}

]
. (1.39)

If the position of the observation point P is gradually changed, then the
spectral density will take on values between its maximum and minimum,
namely

Smax =
2S(r, ω)

R2
[1 + |µ(r1, r2, ω)|] , (1.40)

Smin =
2S(r, ω)

R2
[1− |µ(r1, r2, ω)|] . (1.41)

In analogy with Eq. (1.26) we define the local spectral visibility of the
fringes as

Vspec ≡
Smax − Smin

Smax + Smin
. (1.42)
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If we substitute from Eqs. (1.40) and (1.41) into (1.42), we get the result
that

Vspec = |µ(r1, r2, ω)|. (1.43)

So, we can identify the visibility of the fringes in Young’s experiment with
spectral filters as the modulus of the spectral degree of coherence. It is
seen from Eq. (1.39) that the phase δ plays a role that is analogous to that
of the phase of the complex degree of coherence: a change in this phase
results in a transverse shift of the interference pattern.

We end this section by noting that although the mutual coherence
function Γ(r1, r2, τ) and the cross-spectral density function W (r1, r2, ω)
are each other’s Fourier transform, this is, in general, not the case for
their normalized versions γ(r1, r2, τ) and µ(r1, r2, ω). This is due to the
terms in the denominatior of their respective definitions.

1.2.4 How correlations propagate

We next adress the fundamental question of how the coherence properties
of a source influence the state of coherence of the field that it produces.
Let us begin by examining a very simple system, namely two uncorrelat-
ed, random point sources, S1 and S2. The fields that they generate are
observed at two points P1 and P2, as sketched in Fig. 1.4. We will arrive
at the somewhat counter-intuitive conclusion that the total field of these
sources acquires a high degree of coherence on propagation.
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Figure 1.4: Two random point sources, S1 and S2, emit uncorrelated wave
trains that are observed at P1 and P2.

Let V1(P1, t) and V1(P2, t) be the fields at P1 and P2 due to S1, and
let V2(P1, t) and V2(P2, t) be the fields at P1 and P2 that are caused by
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S2. Furthermore, Rij , with i, j = 1, 2, denotes the distance from Si to Pj .
If the path difference |R11 − R12| is less than the longitudinal coherence
length of source S1, we can make the approximation

V1(P1, t) ≈ V1(P2, t). (1.44)

Similarly, if |R21 − R22| is less than the longitudinal coherence length of
source S2, we also have that

V2(P1, t) ≈ V2(P2, t). (1.45)

The total fields at P1 and P2, denoted by V (P1, t) and V (P2, t), are both
the sum of the contributions of S1 and S2, i.e.,

V (P1, t) = V1(P1, t) + V2(P1, t), (1.46)

V (P2, t) = V1(P2, t) + V2(P2, t). (1.47)

But it is clear from using Eqs. (1.44) and (1.45) in Eqs. (1.46) and (1.47)
that

V (P1, t) ≈ V (P2, t). (1.48)

This last expression shows that, in spite of the fact that the wave trains
that are emitted by S1 and S2 are completely uncorrelated, their superpo-
sitions at P1 and P2 are quite similar, and are therefore strongly correlated.
This example demonstrates how coherence can build up on propagation.
It is precisely this mechanism that is the underlying principle of the cele-
brated experiments carried out by Michelson and Pease [Wolf, 2007,
Sec. 3.3.1]. They found that light from distant stars, when observed on
Earth, gives rise to interference fringes with a clear visibility. According
to Eq. (1.27) this means that this light has acquired a non-zero degree
of coherence on propagation, even though we may consider the stars to
be composed of a huge collection of completely uncorrelated atomic point
sources.

The evolution of coherence functions on propagation can be described
in a more rigorous fashion, as we now discuss. The field V (r, t) satisfies
the wave equation, i.e.,(

∇2 − 1

c2
∂2

∂t2

)
V (r, t) = 0, (1.49)
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where

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(1.50)

denotes the Laplacian. If we now take the complex conjugate of this
expression and multiply it with the field at another point r2 at time t2,
we get

∇2
1V

∗(r1, t1)V (r2, t2) =
1

c2
∂2

∂t21
V ∗(r1, t1)V (r2, t2). (1.51)

Here the subscript 1 of the Laplacian indicates differentiation with respect
to r1. We can take the ensemble average of both sides and interchange
the order of differentiation and averaging to obtain

∇2
1⟨V ∗(r1, t1)V (r2, t2)⟩ =

1

c2
∂2

∂t21
⟨V ∗(r1, t1)V (r2, t2)⟩. (1.52)

If the field is statistically stationary, then

⟨V ∗(r1, t1)V (r2, t2)⟩ = Γ(r1, r2, τ), (1.53)

with the time difference τ = t2− t1, and Γ(r1, r2, τ) the mutual coherence
function that we defined earlier in Eq. (1.9). Clearly, ∂2/∂t21 = ∂2/∂τ2.
That means that we can re-write Eq. (1.52) as

∇2
1Γ(r1, r2, τ) =

1

c2
∂2

∂τ2
Γ(r1, r2, τ). (1.54)

This result shows that, just like the field itself, the mutual coherence
function also satisfies the wave equation. Armed with this knowledge, we
can calculate precisely how the correlation of a random optical field evolves
on propagation through free space. Equation (1.54) is often applied in
coherence theory to investigate the properties of the field that is generated
by a source with a known (or prescribed) state of coherence.

By a completely similar approach as above, it can be derived that

∇2
2Γ(r1, r2, τ) =

1

c2
∂2

∂τ2
Γ(r1, r2, τ). (1.55)
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In this equation the spatial differentiation is with respect to the variable
r2, rather than r1.

After this discussion it will perhaps not come as a surprise that the
cross-spectral density function, the space-frequency counterpart of the mu-
tual coherence function, satisfies a pair of Helmholtz equations, namely(

∇2
1 + k2

)
W (r1, r2, ω) = 0, (1.56)(

∇2
2 + k2

)
W (r1, r2, ω) = 0. (1.57)

Together the four formulas (1.54)–(1.57) are known as the Wolf equations,
after their discoverer Emil Wolf. It is fair to say that they form the basis
of the modern theory of optical coherence. One way these expressions can
be applied is to study how the correlation functions evolve on propagation
from a source plane on which the state of coherence is known. To illustrate
this, let us consider a field U (0)(r, ω) in a plane z = 0, that propagates
into the half space z > 0. According to the Fresnel-Huygens principle, at
an arbitrary point of observation P (r) the field equals

U(r, ω) =

∫∫
z=0

U (0)(r′, ω)G(r, r′, ω) d2r′, (1.58)

withG(r, r′, ω) the free-space Green’s function pertaining to the Helmholtz
equation:

G(r, r′, ω) =
eikR

R
, (1.59)

where R = |r′ − r|. We next assume the point P to be far away from
the source, and that its location is specified by r = rs, where s is a unit
directional vector as sketched in Fig. 1.5. We can then approximate the
distance R in the exponent by the distance r minus the projection of the
position vector r′ onto the vector s, i.e.,

R = |r′ − r| ≈ r − r′ · s. (1.60)

If we also use that R−1 ≈ r−1, we find the asymptotic form of the Green’s
function as

G(r, r′, ω) ∼ eikr

r
e−ikr′·s. (1.61)
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Figure 1.5: Illustrating the far-zone form of the Green’s function.

On using this expression in Eq. (1.58) the field can be written as

U (∞)(rs, ω) =
eikr

r

∫∫
z=0

U (0)(r′, ω)e−ikr′·s d2r′, (1.62)

where the superscript (∞) indicates that we are dealing with an observa-
tion point in the far zone. If we next define

r′ = (x′, y′, z′), (1.63)

ρ′ = (x′, y′), (1.64)

s = (sx, sy, sz), (1.65)

s⊥ = (sx, sy), (1.66)

we get the result that

U(rs, ω) =
eikr

r

∫∫
z=0

U (0)(ρ′, 0, ω)e−ikρ′·s⊥ dx′dy′. (1.67)

If we define the two-dimensional Fourier transform of a function g(ρ) as

g̃(u) =
1

(2π)2

∫
g(ρ)e−iu·ρ d2ρ, (1.68)

we can re-write Eq. (1.67) as

U(rs, ω) = (2π)2
eikr

r
Ũ(ks⊥, ω). (1.69)

This equation will be recognized as the central result of Fraunhofer dif-
fraction. It states that the far-zone field is, apart from a prefactor, equal
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to the two-dimensional spatial Fourier transform of the field in the source
plane. We can use Eq. (1.67) to calculate the cross-spectral density func-
tion of the field in the far zone. According to its definition, given by (1.29),
we have

W (∞)(r1s1, r2s2, ω) = ⟨U (∞)∗(r1s1, ω)U
(∞)(r2s2, ω)⟩, (1.70)

=
eik(r2−r1)

r1r2
⟨
∫∫∫∫

z=0
U (0)∗(ρ′

1, 0, ω)U
(0)(ρ′

2, 0, ω)

×e−ik(ρ′
2·s2⊥−ρ′

1·s1⊥) dx′1dy
′
1dx

′
2dy

′
2.⟩ (1.71)

Interchanging the order of integration and ensemble averaging yields the
expression

W (∞)(r1s1, r2s2, ω) =
eik(r2−r1)

r1r2

∫∫∫∫
z=0

W (0)(ρ′
1, 0,ρ

′
2, 0, ω)

×e−ik(ρ′
2·s2⊥−ρ′

1·s1⊥) dx′1dy
′
1dx

′
2dy

′
2. (1.72)

If we now define the four-dimensional Fourier transform of a function
f(ρ1,ρ2) as

f̃(u,v) =
1

(2π)4

∫∫∫∫
f(ρ1,ρ2)e

−i(u·ρ1+v·ρ2) d2ρ1d
2ρ2, (1.73)

and compare this with Eq. (1.72), it is seen that

W (∞)(r1s1, r2s2, ω) =
(2π)4eik(r2−r1)

r1r2
W̃ (0)(−ks1⊥, ks2⊥, ω).(1.74)

We thus find the important result that the cross-spectral density in the
far zone is proportional to the four-dimensional spatial Fourier transform
of the same function in the source plane. The striking analogy between
Eqs. (1.74) and (1.69) is a direct consequence of the fact that both the
field itself and its correlation function satisfy the Helmholtz equation.

We saw earlier from Eq. (1.30) that the spectral density is given by
the cross-spectral density function evaluated at two identical positions.
From Eq. (1.74) it therefore follows immediately that the far-zone spectral
density is given by the expression

S(∞)(rs, ω) = W (∞)(rs, rs, ω), (1.75)

=
(2π)4

r2
W̃ (0)(−ks⊥, ks⊥, ω). (1.76)
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From this equation we see that the spectrum in the far zone of a source
is determined by the correlation function in the source plane. This is the
underlying cause of the aforementioned Wolf effect: the spectrum that
is observed away from the source can be substantially different from the
spectrum of the source. For more details and experimental confirmation of
this effect we refer to the review presented in [Wolf and James, 1996].

Another implication of Eq. (1.76) is that it shows the spectrum
S(∞)(rs, ω) to be a secondary quantity that is derived from knowledge
of the correlation function W (∞)(r1s1, r2s2, ω) evaluated at two coinci-
dent points. The cross-spectral density function in the far zone can be
calculated by “propagating” the correlation function of the source using
Eq. (1.74). All this is a consequence of the fact that the cross-spectral
density function obeys a pair of precise propagation laws, namely the two
Helmholtz equations given by Eqs. (1.56) and (1.57). No such propagation
law exists for the spectral density.

1.3 Elements of optical scattering

In this section we describe the first-order Born approximation for the case
of a partially coherent, incident field on a partially coherent scatterer.

Let us begin by considering the scattering of a monochromatic wave

V (inc)(r, t) = U (inc)(r, ω)e−iωt, (1.77)

that is incident upon a linear scatterer, which occupies a finite domain
D in free space as shown in Fig. 1.6. Here r denotes an arbitrary point
either outside or inside the scatterer, t denotes the time and ω denotes the
frequency. We assume that the scatterer has a refractive index n(r, ω).
Let

V (r, t) = U(r, ω)e−iωt, (1.78)

be the total field at a point r. U(r, ω) then satisfies the Helmholtz equation

∇2U(r, ω) + k2n2(r, ω)U(r, ω) = 0, (1.79)

where ∇2 denotes the Laplacian, and k is the free-space wave number
associated with frequency ω, i.e.

k = ω/c, (1.80)
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Figure 1.6: The scattering of a monochromatic wave by a scatterer occu-
pying a domain D.

c being the speed of light in vacuum. We can rewrite Eq. (1.79) as

∇2U(r, ω) + k2U(r, ω) = −4πF (r, ω)U(r, ω), (1.81)

where the quantity

F (r, ω) =
1

4π
k2[n2(r, ω)− 1] (1.82)

is called the scattering potential of the medium.
Let us represent the field U(r, ω) as the sum of the incident field

U (inc)(r, ω) and the scattered field U (sca)(r, ω), i.e.,

U(r, ω) = U (inc)(r, ω) + U (sca)(r, ω). (1.83)

The incident field is assumed to satisfy the free-space Helmholtz equation

(∇2 + k2)U (inc)(r, ω) = 0, (1.84)
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everywhere. By making use of the outgoing Green’s function pertaining
to the Helmholtz equation, it can be shown that the total field obeys the
equation [Born and Wolf, 1995, Sec. 3.1.1]

U(r, ω) = U (inc)(r, ω) +

∫
D
F (r′, ω)U(r′, ω)G(|r− r′|, ω)d3r′, (1.85)

with
G(R,ω) = eikR/R, (1.86)

with R = |r − r′|. Eq. (1.85), together with Eq. (1.83), is the basic
expression for the scattered field. It is usually called the integral equation
of potential scattering.

In general, it is not possible to solve Eq. (1.85) in a closed form. How-
ever, when the scattering is weak, an important approximation can be
made. Let us assume that the magnitude U (sca) of the scattered field is
much smaller than the magnitude U (inc) of the incident field:

|U (sca)(r, ω)| ≪ |U (inc)(r, ω)| (1.87)

throughout the scatterer. It is seen from Eqs. (1.82) and (1.85) that this
will be the case if the refractive index is close to unity. We can then replace
the total field U by the incident field U (inc) in Eq. (1.85), i.e. write that

U(r, ω) ≈ U (inc)(r, ω) +

∫
D
F (r′, ω)U (inc)(r′, ω)G(|r− r′|, ω)d3r′. (1.88)

This formula is known as the first-order Born approximation.
We will now consider the more complicated situation when the light

incident on a deterministic scatterer is not monochromatic but is partially
coherent. Let W (inc)(r1, r2, ω) be the cross-spectral density function of the
incident field. As before,

W (inc)(r1, r2, ω) = ⟨U (inc)∗(r1, ω)U
(inc)(r2, ω)⟩. (1.89)

In a similar fashion, the scattered field may be written as

W (sca)(r1, r2, ω) = ⟨U (sca)∗(r1, ω)U
(sca)(r2, ω)⟩. (1.90)
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If we substitute from Eq. (1.88) into Eq. (1.90) we obtain the formula

W (sca)(r1, r2, ω) =

∫
D

∫
D
W (inc)(r1, r2, ω)F

∗(r′1, ω)F (r′2, ω)

×G∗(|r1 − r′1|, ω)G(|r2 − r′2|, ω) d3r′1d3r′2. (1.91)

Until now we have assumed that the scatterer is deterministic. The scat-
tering potential F (r, ω) is then a well-defined function of position. Fre-
quently, however, this is not so; the scattering potential is then a random
function of position. An example is the turbulent atmosphere in which
the refractive index varies randomly both in time and in space. From
Eq. (1.91), we obtain

W (sca)(r1, r2, ω) =

∫
D

∫
D
W (inc)(r1, r2, ω)CF (r

′
1, r

′
2, ω)

×G∗(|r1 − r′1|, ω)G(|r2 − r′2|, ω)d3r′1d3r′2. (1.92)

where
CF (r

′
1, r

′
2, ω) = ⟨F ∗(r′1, ω)F (r′2, ω)⟩ (1.93)

is the correlation function of the scattering potential and the angled brack-
ets indicate the average taken over an ensemble of realizations of the scat-
tering potential at position r1 and r2. We will make use of Eq. (1.92) in
Chapter 2.

The special case of scattering by a homogeneous, deterministic sphere,
so-called Mie scattering, is treated in many standard text books [van de
Hulst, 1981], [Born and Wolf, 1995], [Hergert and Wriedt (eds.),
2012]. In Chapters 3 and 4 we will apply several expressions found in these
sources.

1.4 Outline of this thesis

The second Chapter [Wang et al., 2015b] of this work discusses how to
control the scattered field dynamically by spatial coherence. Using a scalar
field model and applying the first-order Born approximation, the angular
distribution of the scattered field is examined. In particular, we study both
a Gaussian-correlated field and a Bessel-correlated field which are incident
on a Gaussian-correlated spherical particle. It is shown that, unlike the
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maximum forward scattered field which is generated by the Gaussian-
correlated field, the angular distribution of the scattered field which is
produced by the Bessel-correlated field, can be tuned to gradually suppress
the forward scattering intensity, and even create a cone-like scattered field.

In the third Chapter [Wang et al., 2015a] a tuneable, anomalously
scattered field is obtained by using a J0 Bessel-correlated beam which is
incident on a homogeneous sphere. We found that the direction of maxi-
mum scattering can be shifted by changing the spatial coherence length.
In this process the total power that is scattered remains constant.

The fourth Chapter [Wang et al., 2016b] is about how to strongly
suppress the forward or backward Mie scattering by using spatial coher-
ence. We derived analytic expressions relating Mie scattering with par-
tially coherent fields in the forward and backward directions to scattering
with fully coherent fields. It is found that the angle θmax in the forward
direction is quite insensitive to the precise value of the refractive index.
Moreover, for a large sphere, the angle θmax is very well approximated to
the value in a simpler but related situation, namely the scattering of J0-
correlated light by a Gaussian random scatterer while using the first-order
Born approximation. Our results show that the use of spatial coherence
offers a new tool to actively steer the Mie scattered field.

Chapter 5 [Wang et al., 2016a] deals with the scattering of a par-
tially coherent field by a periodic potential. Scattering from such crys-
talline structures produces highly directional peaks, that are called von
Laue spots. We analyze the von Laue pattern that is generated by a
wide-band, partially coherent source that is located in the far zone of the
crystal. In particular, we derive an analytic expression for the scattering
by an orthorhombic structure of identical point scatterers. When the in-
cident field is Gaussian correlated, the von Laue spots get more diffuse.
When the incident field is J0-Bessel correlated, the von Laure pattern
changes drastically. In the forward direction, multi-colored ellipses are
produced. In the backward direction the scattering generates overlapping,
near monochromatic rings.

In Chapter 6 [Wang et al., 2017] we turn our attention from Bessel-
correlated fields to beams with a Bessel intensity distribution. These so-
called non-diffracting beams have been the subject of intense investigation
during the last few years. However, most of the work was done within the
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framework of scalar diffraction theory. We have analyzed the electromag-
netic field that is produced by a paraxial axicon lens. We found, among
other things, that the axicon field is strongly dependent on the polariza-
tion of the incident beam. When this beam is linearly polarized, both
the on-axis and the transverse intensity are in good agreement with the
predictions of scalar theory. However, when the incident beam is radially
or azimuthally polarized, the field distribution changes dramatically.

We end this thesis with a summary in Dutch of our results.

1.4.1 Publications

This thesis is based on the following publications:

• YangyundouWang, Shenggang Yan, David Kuebel, and Taco D. Viss-
er, “Dynamic control of light scattering using spatial coherence,”
Physical Review A, vol. 92, 013806 (2015).

• Yangyundou Wang, Hugo F. Schouten, and Taco D. Visser, “Tun-
able, anomalous Mie scattering using spatial coherence,” Optics Let-
ters, vol. 40, pp. 4779–4782 (2015).

• Yangyundou Wang, Hugo F. Schouten, and Taco D. Visser, “Strong
suppression of forward or backward Mie scattering by using spatial
coherence,” Journal of the Optical Society of America A, vol. 33,
pp. 513–518 (2016).

• Yangyundou Wang, David Kuebel, Taco D. Visser, and Emil Wolf,
“Creating new von Laue patterns in crystal scattering with partially
coherent sources,” Physical Review A, vol. 94, 033812 (2016).

• Yangyundou Wang, Shenggang Yan, Ari T. Friberg, David Kuebel,
and Taco D. Visser, “The electromagnetic field produced by a re-
fractive axicon,” to be submitted.



Chapter 2

Dynamic control of light
scattering using spatial
coherence

This Chapter is based on

• YangyundouWang, Shenggang Yan, David Kuebel and Taco D. Viss-
er, “Dynamic control of light scattering using spatial coherence,”
Physical Review A, vol. 92, 013806 (2015).

Abstract
The scattering of light is perhaps the most fundamental of optical pro-
cesses. However, active, and dynamic control of the directionality of a
scattered light field has until now remained elusive. Here we show that
with an easily generated, Bessel-correlated field, this goal can be achieved,
at least partially. In particular, the angular distribution of a field scat-
tered by a random spherical particle can be tuned to gradually suppress
the forward scattering intensity, and even create a cone-like scattered field.
Our method provides a tool for the dynamic control of scattering patterns,
both macroscopically and microscopically.

35
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2.1 Introduction

The scattering of wave fields is a process that is encountered in many
branches of science, such as astronomy, atmospheric studies, solid state
physics, and optics. Because both of its fundamental importance and it-
s many applications, it is highly desirable to achieve active control over
the strength and directionality of the scattered field. When a wave is in-
cident on a spherical object, typically a substantial portion of the field
is scattered in the forward and in the backward direction. Examples of
strong forward scattering are the Mie effect [Born and Wolf, 1995,
Sec. 14.5], and the Arago-Poisson spot [van de Hulst, 1981, Sec. 8.1].
Kerker et al. [Kerker et al., 1983] seem to have been the first to ex-
amine under what conditions this angular distribution of the scattered
field is modified. Ever since their work, many researchers have analyzed
how the composition or geometry of a particle can be chosen such that
the scattering in certain directions is suppressed, see, e.g., [Alu and En-
gheta, 2010; Nieto-Vesperina et al., 2011; Garcia-Camara et al.,
2011; Geffrin et al., 2012; Person et al., 2013; Xie et al., 2015; Ko-
rotkova, 2015;Naraghi et al., 2015]. Here we demonstrate a completely
different approach to control the scattering process. By using a scalar field
model and applying the first-order Born approximation, we show that dy-
namic manipulation of the source that generates the incident field, rather
than of the scattering object, offers a simple tool to control the angular
distribution of the scattered field.

Over the years, many studies have been dedicated to the effects of spa-
tial coherence on the scattering process [Carter and Wolf, 1988; Jann-
son et al., 1988; Gori et al., 1990; Carney and Wolf, 1998; Cabaret
et al., 1998; Visser et al., 2006; Greffet et al., 2003; van Dijk et al.,
2010; Fischer et al., 2012]. One typically finds that the scattering re-
mains predominantly in the forward direction, but becomes more diffuse
when the spatial coherence of the incident field decreases. However, these
studies were limited to Gaussian-correlated fields. Here we report the
result that Bessel-correlated fields, which can readily be generated as re-
ported in [Raghunathan et al., 2010], allow one to dynamically vary the
scattering amplitude, making it possible to gradually suppress scattering
in the forward direction, and eventually even create a cone-like scattered
field. We examine scalar fields that are generated by partially coherent,
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planar sources, and use the first-order Born approximation to study the
scattered field that arises when a Gaussian-correlated sphere is placed in
the far zone. We compare so-called Gaussian Schell-model sources and
uncorrelated annular sources that produce Bessel-correlated fields.

2.2 Partially coherent sources

Let us consider a secondary, partially coherent, planar source that is sit-
uated in the plane z = 0, as shown in Fig. 2.1. The symbol ρ = (x, y)
denotes a transverse vector. The coherence properties of the source field
at two points ρ1, and ρ2 at frequency ω can be characterized by the cross-
spectral density function [Mandel and Wolf, 1995, Sec. 4.3.2]

W (0)(ρ1,ρ2, ω) = ⟨U (0)∗(ρ1, ω)U
(0)(ρ2, ω)⟩, (2.1)

where the angled brackets indicate the average taken over an ensemble of
realizations of source fields U (0)(ρ, ω). The cross-spectral density in the
far zone of the source, denoted by W (∞), is given by the formula [Mandel
and Wolf, 1995, Eq. 5.3-4]

W (∞)(r1u1, r2u2, ω) =

(
k

2π

)2 exp[ik(r2 − r1)]

r1r2
cosα1 cosα2

×
∫∫

z=0
W (0)(ρ1,ρ2, ω)

× exp[−ik(u2⊥ · ρ2 − u1⊥ · ρ1)] d
2ρ1d

2ρ2, (2.2)

where u1⊥ and u2⊥ are the projections, considered as two-dimensional
vectors, of the three-dimensional directional unit vectors u1 and u2 onto
the source plane. α1 and α2 denote the angles which the vectors u1 and
u2 make with the positive z axis. A sphere with volume D is located in
the far zone of the source, at a distance ∆z. If the linear dimensions of
the scatterer are assumed to be small compared to ∆z, then the angle
subtended at the origin O by the scatterer is small, and cosα1 ≈ cosα2 ≈
1. Furthermore, the factor k(r2 − r1) where ri = |(ρi, zi)|, with i = 1 or
2, can then be expressed as

k(r2 − r1) ≈ k[z2(1 + ρ22/2z
2
2)− z1(1 + ρ21/2z

2
1)], (2.3)

≈ k(z2 − z1), (2.4)
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where we have used the fact that ρ1 and ρ2 are both bounded by the
transverse size of the scatterer. In addition, the small size of the scatterer
implies that the factor 1/r1r2 does not vary appreciably over its domain
D, i.e., 1/r1r2 ≈ 1/(∆z)2. On making use of these approximations in
Eq. (2.2) we obtain the expression

W (∞)(r1u1, r2u2, ω) =

(
k

2π∆z

)2

exp[ik(z2 − z1)]

×
∫∫

z=0
W (0)(ρ1,ρ2, ω)

× exp[−ik(u2⊥ · ρ2 − u1⊥ · ρ1)] d
2ρ1d

2ρ2. (2.5)

It is worth noting that the factor exp[ik(z2 − z1)] implies that the far-
zone field is longitudinally fully coherent [Mandel and Wolf, 1995,
Sec. 5.2.1]. Before we can use Eq. (2.5) as an expression for the cross-
spectral density of the field that is incident on the scatterer, it must be
expressed in terms of the primed variables defined in Fig. 2.1. This is done
by noting that

ri = riui = (ρi, zi) = (ρ′
i, zi), i = 1, 2, (2.6)

and hence

ui⊥ = ρ′
i/ri ≈ ρ′

i/∆z. (2.7)

This allows us to re-write Eq. (2.5) as

W (inc)(r′1, r
′
2, ω) =

(
k

2π∆z

)2

exp[ik(z′2 − z′1)]

×
∫∫

z=0
W (0)(ρ1,ρ2, ω)

× exp[−ik(ρ′
2 · ρ2 − ρ′

1 · ρ1)/∆z] d2ρ1d
2ρ2, (2.8)

where the superscript “inc” indicates the incident field. We will make use
of Eq. (2.8) to determine the cross-spectral density of the field incident on
the scattering volume D for different kinds of sources.
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Figure 2.1: A secondary, partially coherent source is situated in the plane
z = 0. A sphere occupying a domain D is located in the far zone, at a
distance ∆z. The directional unit vector u and the position z are defined
with respect to the origin O = (0, 0, 0). The directional unit vector s and
the position z′ are defined with respect to a second origin O′ = (0, 0,∆z).
The transverse vectors ρ = (x, y) and ρ′ = (x′, y′) denote two-dimensional
positions.

2.3 Scattering by a Gaussian-correlated sphere

Suppose first that a deterministic field U (inc)(r, ω) is incident on a de-
terministic scatterer. The space-dependent part of the scattered field
U (sca)(r, ω) is, within the accuracy of the first-order Born approximation,
given by the expression [Born and Wolf, 1995, Sec. 13.1.2]

U (sca)(r, ω) =

∫
D
F (r′, ω)U (inc)(r′, ω)G(r, r′, ω) d3r′, (2.9)

where

F (r, ω) =
k2

4π
[n2(r, ω)− 1] (2.10)

denotes the scattering potential of the medium, n(r, ω) being its refractive
index, and

G(r, r′, ω) =
exp(ik|r− r′|)

|r− r′|
(2.11)

is the outgoing free-space Green’s function of the Helmholtz operator.
We choose the origin O′ of a second Cartesian coordinate system at the
front face of the scatterer and consider the field at a point r in its far



40 2.3. Scattering by a Gaussian-correlated sphere

zone, as sketched in Fig. 2.1. Setting r = rs, with s a unit directional
vector, the Green’s function in the far zone may be approximated by the
expression

G(r, r′, ω) ∼ exp(ikr)

r
exp(−iks · r′). (2.12)

For a random scatterer the scattering potential is a random function of
position. Let

CF (r
′
1, r

′
2, ω) = ⟨F ∗(r′1, ω)F (r′2, ω)⟩F (2.13)

be its correlation function. The angled brackets denote the average, taken
over an ensemble of realizations of the scattering potential. We will consid-
er scattering from a Gaussian-correlated, homogeneous, isotropic sphere.
Then

CF (r
′
1, r

′
2, ω) = C0 exp

[
−(r′2 − r′1)

2/2σ2
F

]
, (2.14)

where C0 is a positive constant, and the coherence length σF is assumed
to be small compared with the linear dimensions of the scattering volume.
This assumption will later allow us to extend the domain of integration to
R3. Next we assume that the incident field is partially coherent. Because
of the random nature of both the incident field and the scatterer, the
scattered field will, of course, also be random. Its cross-spectral density
function is defined, in complete analogy with Eq. (2.1), as

W (sca)(r1, r2, ω) = ⟨U (sca)∗(r1, ω)U
(sca)(r2, ω)⟩, (2.15)

where the angled brackets indicate the average, taken over an ensem-
ble of realizations of the scattered field. On substituting from Eqs. (2.9)
and (2.13) into Eq. (2.15) and interchanging the order of integration and
ensemble averaging, we find the formula

W (sca)(r1, r2, ω) =

∫∫
D
W (inc)(r′1, r

′
2, ω)CF (r

′
1, r

′
2, ω)

×G∗(r1, r
′
1, ω)G(r2, r

′
2, ω) d

3r′1d
3r′2. (2.16)



Chapter 2. Dynamic control of light scattering 41

The spectral density of the scattered field, S(sca)(r, ω), is obtained by
setting the two positions r1 and r2 equal, i.e.,

S(sca)(r, ω) = W (sca)(r, r, ω), (2.17)

=
C0

r2

∫∫
D
W (inc)(r′1, r

′
2, ω) exp

[
−(r′2 − r′1)

2/2σ2
F

]
× exp[−iks · (r′2 − r′1)] d

3r′1d
3r′2, (2.18)

where we have used Eqs. (2.12) and (2.14). Before proceeding, we note that
Eq. (2.18) relates the cross-spectral density of the incident field, W (inc),
with the distribution of the scattered field in the far zone, S(sca). This
relation has the form of a Fourier transform of the cross-spectral density,
weighed with a Gaussian factor. In view of Eq. (2.8), which is also a
Fourier transform, one might then suspect, on the basis of the van Cittert-
Zernike theorem [Mandel and Wolf, 1995, Sec. 4.4.4], that the shape
of a delta-correlated source is somehow mimicked by the scattered field.
This observation was the motivation for this study.

Next we will analyze the consequences of Eq. (2.18) for incident fields
generated by sources with different coherence properties. To simplify the
notation we suppress the ω dependence of the various quantities from now
on.

2.4 Gaussian Schell-model sources

Let us first assume that the source is of the Gaussian Schell-model type.
Such sources have a cross-spectral density of the form [Wolf, 2007, Sec. 5.3.1]

W (0)(ρ1,ρ2) = [S(0)(ρ1)]
1/2[S(0)(ρ2)]

1/2µ(0)(ρ1 − ρ2, ), (2.19)

with

S(0)(ρ) = A2 exp
(
−ρ2/2σ2

S

)
, (2.20)

µ(0)(ρ1 − ρ2) = exp[−(ρ2 − ρ1)
2/2σ2

µ], (2.21)

representing the spectral density and the spectral degree of coherence of
the source field, respectively, the constants A, σS and σµ being positive
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quantities. On substituting from Eqs. (2.19)–(2.21) into Eq. (2.8) we ob-
tain the formula

W (inc)(r′1, r
′
2, ) =

(
kAσSσeff

∆z

)2

exp[ik(z′2 − z′1)]

× exp

[
−k2σ2

S(ρ
′
2 − ρ′

1)
2

2(∆z)2

]
× exp

[
−k2σ2

eff(ρ
′
2 + ρ′

1)
2

8(∆z)2

]
, (2.22)

where
1

σ2
eff

=
1

4σ2
S

+
1

σ2
µ

. (2.23)

On making use of Eq. (2.22) in expression (2.18) we find that the normal-
ized distribution of the scattered intensity is given by the expression

S
(sca)
N (θ) = S(sca)(θ)/S(sca)(θ = 0), (2.24)

= exp
[
−k2σ2

F (1− cos θ)2/2
]
exp

[
−k2 sin2 θ/4Γ

]
, (2.25)

where

Γ =
k2σ2

S

2∆z2
+

1

2σ2
F

, (2.26)

and θ denotes the scattering angle, shown in Fig. 2.1. A detailed derivation
of Eq. (2.25) is presented in Appendix A. It is seen from Eq. (2.25) that
the scattered field depends on the two length scales σS and σF . Notice
that there is no dependence on the correlation length σµ of the source.
This is a consequence of the fact that the scattering volume is located in
the far zone, which means that the field in the vicinity of the z′ axis has
become essentially transversely coherent, as is discussed in [Mandel and
Wolf, 1995, Sec. 5.6.4]. In Fig. 2.2 the spectral density of the scattered
field is shown for different values of σF , the effective correlation length of
the scatterer. It is seen that the scattering becomes more directional when
σF increases. However, in all cases the scattering reaches its maximum
value in the forward direction (θ = 0). The scattered intensity for angles
larger than 0.08 is negligible.
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Figure 2.2: The normalized spectral density of the scattered field for se-
lected values of the effective correlation length of the sphere: σF = 10λ
(red), 20λ (green) and 100λ (blue). In these examples the wavelength
λ = 0.6328 µm, σS = 1 cm, and ∆z = 4 m.

2.5 Uncorrelated annular sources

Next we consider a completely incoherent (i.e., delta-correlated), ring-
shaped source with a uniform spectral density, and with inner radius
a and outer radius b. The realization of such a source was reported
in [Raghunathan et al., 2010]. In this case the spectral density and
the spectral degree of coherence in the source plane are

S(0)(ρ) = A2 [circ(ρ/b)− circ(ρ/a)] , (2.27)

µ(0)(ρ1,ρ2) = δ2(ρ2 − ρ1), (2.28)

where δ2 denotes the two-dimensional Dirac delta function, and circ(x)
the circle function, circ(x) = 1 if x ≤ 1, and 0 otherwise. Hence

W (0)(ρ1,ρ2) = A2 [circ(ρ1/b)− circ(ρ1/a)]
1/2

× [circ(ρ2/b)− circ(ρ2/a)]
1/2 δ2(ρ2 − ρ1). (2.29)
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On substituting from this formula into Eq. (2.8) we find that

W (inc)(r′1, r
′
2) =

kA2

2π∆z
exp[ik(z′2 − z′1)]

×
[
bJ1 (kb|ρ′

2 − ρ′
1|/∆z)

|ρ′
2 − ρ′

1|
− aJ1 (ka|ρ′

2 − ρ′
1|/∆z)

|ρ′
2 − ρ′

1|

]
, (2.30)

where J1 denotes the Bessel function of the first kind of order 1. On using
Eq. (2.30) in Eq. (2.18) we obtain for the scattered intensity the expression

S(sca)(θ) = C exp

[
−
k2σ2

F (1− cos θ)2

2

]
×
∫ ∞

0

[
bJ1

(
kbρ

∆z

)
− aJ1

(
kaρ

∆z

)]
× J0(kρ sin θ) exp

(
− ρ2

2σ2
F

)
dρ. (2.31)

where C is a constant, independent of the angle θ. A specified derivation
of Eq. (2.31) can be found in Appendix B. The results of a numerical
evaluation of Eq. (2.31) are shown in Fig. 2.3. When the inner radius
a = 0, meaning that the source is circular, the scattered field has a broad
distribution that is centered on the forward direction θ = 0. When a =
2 mm, the forward scattered field has a decreased intensity that is only
45% of the maximum value which occurs near θ = 0.01. Increasing the
inner radius a to 2 cm produces a scattered field that is essentially zero
in the forward direction and reaches a peak near θ = 0.025. The effects
of further increasing the inner radius a are illustrated in Fig. 2.4. The
scattered field distribution becomes gradually narrower, and the direction
of maximum intensity increases, eventually reaching a value of 8 degrees.
This cone-like scattering that is obtained with a Bessel-correlated field is
in marked contrast with the diffuse forward scattering that arises from a
Gaussian-correlated field as was shown in Fig. 2.2.

It is to be noted that although we have presented examples at opti-
cal frequencies and scatterers with dimensions of ∼ 100λ, we expect this
method to work equally well at at longer wavelengths and for larger ob-
jects.

Finally, the question how zero forward scattering can be compatible
with the optical theorem has been raised several years ago [Alu and
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Figure 2.3: Angular distribution of the scattered field for various choices
of the inner radius a of an annular source: a = 0 (red), 2 mm (dashed
green), and 2 cm (blue). The curves are normalized to unity. In this
example λ = 0.6328 µm, ∆z = 1 m, σF = 100 λ, and the outer radius
b = 15 cm.

Engheta, 2010]. Since this theorem holds only for deterministic scat-
terers that are illuminated by a fully coherent, monochromatic plane
wave [Carney et al., 1997], and because both conditions are not satisfied
here, it clearly does not apply to the present case.

2.6 Uncorrelated, infinitely thin annular sources

It is instructive to consider the idealized case of a completely incoherent,
infinitely thin “delta-ring” source. If this ring has a uniform spectral
density A2 and a radius c, then the cross-spectral density of the field in
the source plane is given by the expression

W (0)(ρ1,ρ2) = A2δ(ρ1 − c)δ2(ρ1 − ρ2). (2.32)

On substituting from this formula into Eq. (2.8) we find that

W (inc)(r′1, r
′
2) =

c

2π

(
Ak

∆z

)2

exp[ik(z′2 − z′1)]J0

(
kc|ρ′

2 − ρ′
1|

∆z

)
. (2.33)
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Figure 2.4: Angular distribution of the scattered field for various choic-
es of the inner radius a of an annular source: a = 5 cm (red), 10 cm
(dashed green), and 14 cm (blue). The curves are normalized to unity.
The parameters are the same as in Fig. 2.3.

On making use of expression (2.33) in Eq. (2.18) we find (see Appendix
C for details) that the distribution of the scattered intensity is now given
by the formula

S(sca)(θ) = exp

[
−
k2σ2

F (1− cos θ)2

2

]
×
∫ ∞

0
J0[kρ sin θ]J0

(
kcρ

∆z

)
exp

(
− ρ2

2σ2
F

)
ρ dρ. (2.34)

The product of the two oscillating J0 functions will tend to cancel on
integration, leading to a zero result. Except, however, when the arguments
of the two functions are identical (kρ sin θ = kcρ/∆z). This means that
we expect a scattered field that is negligibly small in all directions, with
exception of the angle θmax given by

θmax ≈ sin θmax = c/∆z. (2.35)

On numerically evaluating Eq. (2.34) we see that the scattered field is
indeed concentrated in a very narrow interval around the direction θmax,
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Figure 2.5: Normalized angular distribution of the scattered field for var-
ious choices of the radius c of an infinitely thin annular source: c = 5 cm
(red), 10 cm (dashed green), and 15 cm (blue). The predicted values of
θmax are 0.05, 0.10 and 0.15, respectively. The parameters are the same
as in Fig. 2.3.

as can be seen from Fig. 2.5. Notice that θmax is also the semi-angle that
is subtended by the source at the location of the scatterer.

2.7 Conclusions

We have demonstrated how the angular distribution of a field that is scat-
tered by a random, Gaussian-correlated sphere can be manipulated using
spatial coherence. Three types of sources were examined: Gaussian-Schell
model sources, incoherent annular sources, and incoherent, infinitely thin
annular sources. The first produces a Gaussian-correlated field, the rest
a Bessel-correlated field. Using the first-order Born approximation, it
was found that a Gaussian-correlated field gives rise to scattering that
is predominantly in the forward direction. In stark contrast, the Bessel-
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correlated field was shown to lead to a decreased forward scattering. By
simply varying the size of an uncorrelated annular source, the scattering
distribution can be tuned, and can even take on a cone-like form without
any forward scattering. Unlike using specially designed scatterers which
produce a single, static field distribution, our approach can be used to
dynamically alter the scattered field. We believe that our approach offers
a new tool for the many uses of light scattering [Hergert and Wriedt
(eds.), 2012]. For example, this method may be used to selectively ad-
dress detectors that are positioned at different angles, or in cloaking [Alu
and Engheta, 2009].

Appendix A - Derivation of Eq. (2.25)

Just as for the derivation of Eq. (2.22), it is advantageous to introduce
sum and difference variables by defining

ρ+ = (ρ′
1 + ρ′

2)/2, (A-1)

ρ− = ρ′
2 − ρ′

1, (A-2)

z+ = (z′1 + z′2)/2, (A-3)

z− = z′2 − z′1. (A-4)

The Jacobian of this transformation is unity. Next we express all quantities
in Eq. (2.18) in terms of these new variables. For the cross-spectral density
given by Eq. (2.22) this gives

W (inc)(ρ+, z+,ρ−, z−) = β exp(ikz−) exp

(
−
k2σ2

Sρ
2
−

2(∆z)2

)
× exp

(
−
k2σ2

effρ
2
+

2(∆z)2

)
, (A-5)

where

β =

(
kAσSσeff

∆z

)2

. (A-6)

For the correlation function of the scattering potential, Eq. (2.14), we now
get

CF (ρ−, z−) = C0 exp
[
−(ρ2− + z2−)/2σ

2
F

]
, (A-7)
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and the product of the two Green’s functions becomes

exp[−iks · (r′2 − r′1)]

r2
=

1

r2
exp(−iks⊥ · ρ−) exp(−ikszz−). (A-8)

Here s = (s⊥, sz), s⊥ being the two-dimensional projection, considered as
a vector, of the unit directional vector s onto the xy plane. Substitution
from Eqs. (A-2), (A-3) and (A-4) into Eq. (2.18) yields

S(sca)(rs) =
C0β

r2

∫
dz+

∫
exp

[
−
k2σ2

effρ
2
+

2(∆z)2

]
d2ρ+

×
∫

exp

(
−

z2−
2σ2

F

)
exp [−ik(sz − 1)z−] dz−

×
∫

exp

{
−ρ2−

[
k2σ2

S

2(∆z)2
+

1

2σ2
F

]}
exp (−iks⊥ · ρ−) d

2ρ−.

(A-9)

The first two integrals, those over z+ and ρ+, do not depend on the direc-
tion of scattering s. We let M denote their product. Making use of the
assumption that σF is small compared to the scatterer size, the integrals
over z− and ρ− may be extended to infinity. They are then both seen to
be a Fourier transform of a Gaussian distribution, whose evaluation yields∫ ∞

−∞
exp

(
−

z2−
2σ2

F

)
exp [−ik(sz − 1)z−] dz−,

=
√
2πσF exp

[
−
k2σ2

F (1− sz)
2

2

]
, (A-10)

and ∫ ∞

−∞
exp

{
−ρ2−

[
k2σ2

S

2(∆z)2
+

1

2σ2
F

]}
exp (−iks⊥ · ρ−) d

2ρ−,

=
π

Γ
exp

(
−
k2s2⊥
4Γ

)
, (A-11)

where

Γ =
k2σ2

S

2(∆z)2
+

1

2σ2
F

. (A-12)
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Thus we obtain

S(sca)(rs) =
C0βMσF

√
2π3/2

Γr2
exp

[
−
k2σ2

F (1− sz)
2

2

]
× exp

(
−
k2s2⊥
4Γ

)
. (A-13)

Using that sz = cos θ and s2⊥ = sin2 θ, we find that the normalized distribu-
tion of the spectral density of the scattered field is given by the expression

S
(sca)
N (θ) = S(sca)(θ)/S(sca)(θ = 0), (A-14)

= exp
[
−k2σ2

F (1− cos θ)2/2
]
exp

[
−k2 sin2 θ/4Γ

]
, (A-15)

which is Eq. (2.25).

Appendix B - Derivation of Eq. (2.31)

On making use of the sum and difference variables that were introduced
in Appendix A, and then substituting from Eq. (2.30) into Eq. (2.18) we
obtain the formula

S(sca)(rs) =
C0A

2k

2πr2∆z

∫
dz+

∫
d2ρ+

×
∫

exp

(
−

z2−
2σ2

F

)
exp [ikz−(1− sz)] dz−

×
∫ [

bJ1 (kbρ−/∆z)

ρ−
− aJ1 (kaρ−/∆z)

ρ−

]
× exp

(
−

ρ2−
2σ2

F

)
exp (−iks⊥ · ρ−) d

2ρ−. (B-1)

The first two integrals, those over z+ and ρ+, yield the volume of the
scatterer, which we denote by V .

Using the assumption that σF is much smaller than the size of the
particle, the integration over z− may be extended to infinity. The integral
is then seen to be a Fourier transform of a Gaussian distribution, for which
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we find ∫ ∞

−∞
exp

(
−

z2−
2σ2

F

)
exp [ik(1− sz)z−] dz−

=
√
2πσF exp

[
−
k2σ2

F (1− sz)
2

2

]
. (B-2)

The remaining integral over ρ− can be re-written as∫ [
bJ1 (kbρ−/∆z)

ρ−
− aJ1 (kaρ−/∆z)

ρ−

]
× exp

(
−

ρ2−
2σ2

F

)
exp (−iks⊥ · ρ−) d

2ρ−,

=

∫ ∞

0

∫ 2π

0
exp (−iks⊥ρ cos γ) [bJ1 (kbρ/∆z)− aJ1 (kaρ/∆z)]

× exp

(
− ρ2

σ2
F

)
dγdρ. (B-3)

Since ∫ 2π

0
exp (−iks⊥ρ cos γ) dγ = 2πJ0(kρs⊥), (B-4)

we obtain the formula

2π

∫ ∞

0
J0(kρs⊥) [bJ1 (kbρ/∆z)− aJ1 (kaρ/∆z)]

× exp

(
− ρ2

σ2
F

)
dρ. (B-5)

This integral can be evaluated numerically. Combining these results, while
using that sz = cos θ and s⊥ = sin θ, we finally find that

S(sca)(θ) = C exp

[
−
k2σ2

F (1− cos θ)2

2

]
×
∫ ∞

0

[
bJ1

(
kbρ

∆z

)
− aJ1

(
kaρ

∆z

)]
J0(kρ sin θ) exp

(
− ρ2

2σ2
F

)
dρ,

(B-6)
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with

C =
C0A

2kV
√
2πσF

r2∆z
, (B-7)

which is Eq. (2.31).

Appendix C - Derivation of Eq. (2.34)

On making use of the sum and difference variables that were introduced
in Appendix A, and then substituting from Eq. (2.33) into Eq. (2.18) we
obtain the expression

S(sca)(rs) =
cC0A

2k2

2π(∆z)2r2

∫
dz+

∫
d2ρ+

×
∫

exp

(
−

z2−
2σ2

F

)
exp [−ik(sz − 1)z−] dz−

×
∫

J0

(
kc

∆z
|ρ−|

)
exp

(
−
ρ2−
σ2
F

)
exp (−iks⊥ · ρ−) d

2ρ−. (C-1)

The first two integrals, those over z+ and ρ+, yield the volume of the
scatterer, which we denote by V .

Using the assumption that σF is much smaller than the size of the
particle, the integration over z− may be extended to infinity. The integral
is then seen to be a Fourier transform of a Gaussian distribution, for which
we find ∫ ∞

−∞
exp

(
−

z2−
2σ2

F

)
exp [ik(1− sz)z−] dz−,

=
√
2πσF exp

[
−
k2σ2

F (1− sz)
2

2

]
. (C-2)

Likewise, the remaining integral over ρ− can be re-written as∫ ∞

−∞
J0

(
kc|ρ−|
∆z

)
exp

(
−
ρ2−
σ2
F

)
exp (−iks⊥ · ρ−) d

2ρ−

=

∫ ∞

0

∫ 2π

0
exp (−ik|s⊥|ρ cos γ) J0

(
kcρ

∆z

)
exp

(
− ρ2

σ2
F

)
ρdγdρ. (C-3)
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Since ∫ 2π

0
exp (−iks⊥ρ cos γ) dγ = 2πJ0(kρs⊥), (C-4)

we find for the integral over ρ−

2π

∫ ∞

0
J0

(
kcρ

∆z

)
J0(k|s⊥|ρ) exp

(
− ρ2

2σ2
F

)
ρ dρ. (C-5)

This integral can be evaluated numerically. Combining these results, while
using that sz = cos θ and s⊥ = sin θ, we finally obtain the formula

S(sca)(θ) = C exp

[
−
k2σ2

F (1− cos θ)2

2

]
×
∫ ∞

0
J0

(
kcρ

∆z

)
J0(kρ sin θ) exp

(
− ρ2

2σ2
F

)
ρdρ, (C-6)

with

C =
cC0A

2V k2
√
2πσF

r2(∆z)2
, (C-7)

which is Eq. (2.34).
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Chapter 3

Tuneable, anomalous Mie
scattering using partial
coherence

This Chapter is based on

• Yangyundou Wang, Hugo F. Schouten, and Taco D. Visser, “Tun-
able, anomalous Mie scattering using spatial coherence,” Optics Let-
ters, vol. 40, pp. 4779-4782 (2015).

Abstract
We demonstrate that a J0 Bessel-correlated beam that is incident on a ho-
mogeneous sphere, produces a highly unusual distribution of the scattered
field, with the maximum no longer occurring in the forward direction.
Such a beam can be easily generated using a spatially incoherent, annular
source. Moreover, the direction of maximal scattering can be shifted by
changing the spatial coherence length. In this process the total power that
is scattered remains constant. This new tool to control scattering direc-
tionality may be used to steer the scattered field away from the forward
direction and selectively adress detectors situated at different angles.
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3.1 Introduction

Mie scattering, which is the scattering of an optical field by a spher-
ical object, has a long and venerable history [Mie, 1908; Born and
Wolf, 1995; van de Hulst, 1981]. In its classical form it deals with
the scattering of a fully coherent, monochromatic plane wave by a ho-
mogeneous, deterministic sphere. Its many applications in, e.g., spec-
troscopy, optical trapping, astronomy and atmospheric studies [Bohren
and Huffman, 2004; Hergert and Wriedt (eds.), 2012], have led
to a large literature, a substantial part of which can be divided into two
broad categories. The first one, inspired by the seminal work of Kerker
et al. [Kerker et al., 1983], consists of efforts to design objects with a
prescribed scattering profile, such as a suppressed scattering in the for-
ward or backward directions [Nieto-Vesperina et al., 2011; Garcia-
Camara et al., 2011; Geffrin et al., 2012; Person et al., 2013; X-
ie et al., 2015; Korotkova, 2015; Naraghi et al., 2015]. The second
category consists of studies in which scattering theory is extended to
incident fields that are not deterministic, but rather partially coheren-
t [Jannson et al., 1988; Gori et al., 1990; Carney et al., 1997; Gr-
effet et al., 2003; van Dijk et al., 2010; Fischer et al., 2012; Ding
et al., 2012; Liu et al., 2014]. These researches are motivated by the fact
that light that travels through atmospheric turbulence suffers a loss of
coherence.

In this Chapter we bridge both categories by reporting a novel coher-
ence technique that allows one to steer most of the scattered intensity away
from the forward direction. In contrast to previous works, this is done by
manipulating the incident beam rather than the scatterer. We show that
changing the spatial coherence of the beam allows one to dynamically con-
trol the scattering distribution. In this tuning of the scattering process,
the total power that is scattered remains unchanged.

A special class of partially coherent beams is formed by those with a
J0-Bessel correlation. Such beams are easily produced with the help of
uncorrelated, annular sources. Unlike, for example, Gaussian correlation
functions, Bessel functions can take on negative values, which leads to
qualitatively different physical effects. For example, when a Gaussian-
correlated field is focused, the diffraction pattern gets washed out, with
the maximum remaining at the focal point. In contrast, a Bessel-correlated
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Figure 3.1: A sphere with radius a is illuminated by a plane wave propa-
gating in the direction u. The scattering angle θ is the angle between the
positive z axis and a far-zone observation point rs.

field creates an minimum at focus [Gbur and Visser, 2003; van Dijk
et al., 2008; Raghunathan et al., 2010]. Likewise, when a Gaussian-
correlated beam is scattered, the scattering remains predominantly in the
forward direction [van Dijk et al., 2010]. Here we show that scalar Mie
scattering with J0-correlated fields leads to a radically different profile
in which the maximum occurs in a cone centered around the forward
direction. We examine the influence of the transverse coherence length
of the incident field, and find that by reducing this length the angle of
maximum scattering can be gradually moved from 0◦ to 29◦. We show
that the extinguished power is independent of the coherence length. That
means that changing this length results in a redistribution of the total
scattered field.

3.2 Mie scattering with partially coherent fields

Let us first consider a plane, monochromatic scalar wave, propagating in a
direction specified by a real unit vector u, which is incident on a spherical
scatterer. If the wave has an amplitude a(u, ω), it can be represented as

V (inc)(r, t) = U (inc)(r, ω) exp(−iωt), (3.1)

where
U (inc)(r, ω) = a(u, ω) exp(iku · r). (3.2)

Here r denotes a position in space, t a moment in time, and ω the angular
frequency. Also, k = ω/c = 2π/λ represents the wave number, c being
the speed of light in vacuum and λ the wavelength. The time-independent
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part of the total field that results from the scattering process is written as
the sum of the incident field and the scattered field, viz.,

U(r, ω) = U (inc)(r, ω) + U (sca)(r, ω). (3.3)

The scattered field in the far-zone of the scatterer, at an observation point
r = rs, where s is a unit vector, has the asymptotic form [Born and
Wolf, 1995, Ch. 13.1]

U (sca)(rs, ω) ∼ a(u⊥, ω) f(s,u, ω)
eikr

r
(kr → ∞), (3.4)

with f(s,u, ω) the scattering amplitude. To facilitate future notation, the
amplitude now has argument u⊥ rather than u. Here u⊥ is the projection,
considered as a two-dimensional vector, of u onto the xy plane. This is
allowed because u, being a real unit vector, has a z component that is
completely specified by its transverse components.

Next consider the situation where the incident field is not a plane wave
but is of a more general form. Its time-independent part of an incident
wave field at position r and frequency ω, can be represented in terms of an
angular spectrum of plane-waves propagating in directions u = (u⊥, uz)
into the half-space z > 0, viz. [Mandel and Wolf, 1995, Sec. 3.2]

U (inc)(r, ω) =

∫
|u⊥|2≤1

a(u⊥, ω) exp(iku · r) d2u⊥. (3.5)

Limiting the integration to directional vectors |u⊥|2 ≤ 1 implies that we
neglect evanescent waves. According to Eq. (3.4) the scattered field now
takes on the form

U (sca)(rs, ω) =
eikr

r

∫
|u⊥|2≤1

a(u⊥, ω)f(s,u, ω) d
2u⊥. (3.6)

In the space-frequency domain the coherence properties of a stochastic
field is characterized by its cross-spectral density function [Mandel and
Wolf, 1995, Sec. 4.3.2]

W (r1, r2, ω) = ⟨U∗(r1, ω)U(r2, ω)⟩, (3.7)
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where the angled brackets indicate the average taken over an ensemble
of field realizations. It follows from Eqs. (3.6) and Eq. (3.7) that the
cross-spectral density of the scattered field is given by the expression

W (sca)(r1s1, r2s2, ω) =
eik(r2−r1)

r1r2

∫
|u1⊥|2≤1

∫
|u2⊥|2≤1

A(u1⊥,u2⊥, ω)

× f∗(s1,u1, ω)f(s2,u2, ω) d
2u1⊥d

2u2⊥, (3.8)

where

A(u1⊥,u2⊥, ω) = ⟨a∗(u1⊥, ω)a(u2⊥, ω)⟩ (3.9)

is the angular correlation function of the incident field [Mandel and
Wolf, 1995, Sec. 5.6.3]. The spectral density of the far-zone scattered
field is obtained by setting the spatial arguments in Eq. (3.8) equal, i.e.,

S(sca)(rs, ω) = W (sca)(rs, rs, ω). (3.10)

This gives

S(sca)(rs, ω) =
1

r2

∫
|u1⊥|2≤1

∫
|u2⊥|2≤1

A(u1⊥,u2⊥, ω)

× f∗(s,u1)f(s,u2) d
2u1⊥d

2u2⊥. (3.11)

For the case of a homogeneous spherical scatterer, the scattering amplitude
depends on the cosine of the angle θ between the direction of incidence,
indicated by the vector u, and the direction of scattering s (see Fig. 4.1).
Thus we can write

f(s,u, ω) = f(s · u, ω). (3.12)

For a sphere of radius a and with refractive index n the scattering ampli-
tude can be expressed as (see [Joachain, 1987, Eq. (4.66)], with a trivial
change in notation)

f(s · u, ω) = 1

k

∞∑
l=0

(2l + 1) exp[iδl(ω)] sin[δl(ω)]Pl(s · u), (3.13)
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where Pl denotes a Legendre polynomial of order l, and the phase shifts
δl(ω) are given by the expressions [Joachain, 1987, Sec. 4.3.2 and 4.4.1 ]

tan[δl(ω)] =
k̄jl(ka)j

′
l(k̄a)− kjl(k̄a)j

′
l(ka)

k̄j′l(k̄a)nl(ka)− kjl(k̄a)n
′
l(ka)

. (3.14)

Here jl and nl are spherical Bessel functions and spherical Neumann func-
tions, respectively, of order l. Furthermore,

k̄ = nk (3.15)

is the wavenumber associated with the reduced wavelength within the
scatterer, and the primes denote differentiation with respect to the spatial
variable.

3.3 J0-correlated fields

Consider an incident field with a uniform spectral density S(0)(ω), that is
J0-correlated. This means that its cross-spectral density function in the
plane z = 0 (the plane which passes through the center of the sphere) is
of the form

W (inc)(ρ1,ρ2, ω) = S(0)(ω)J0(β|ρ2 − ρ1|), (3.16)

where J0 denotes the Bessel function of the first kind and zeroth order,
and ρ1 = (x1, y1) and ρ2 = (x2, y2) are two dimensional position points in
the z = 0 plane. The parameter β is, roughly speaking, the inverse of the
effective transverse coherence width of the incident field. The generation
of such a beam was reported in [Raghunathan et al., 2010].

In order to evaluate Eq. (3.11) for this case, we need to calculate the
angular correlation functionA(u1⊥,u2⊥, ω). This function is related to the
cross-spectral density through the expression [Mandel and Wolf, 1995,
Sec. 5.6.3]

A(u1⊥,u2⊥, ω) =

(
k

2π

)4 ∫∫ ∞

−∞
W (inc)(ρ1,ρ2, ω)

× exp[−ik(u2⊥ · ρ2 − u1⊥ · ρ1)] d
2ρ1d

2ρ2. (3.17)
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On substituting from Eq. (3.16) into Eq. (3.17), we find that

A(u1⊥,u2⊥, ω) =

(
k

2π

)4

S(0)(ω)

∫∫ ∞

−∞
J0(β|ρ2 − ρ1|)

× exp[−ik(u2⊥ · ρ2 − u1⊥ · ρ1)] d
2ρ1d

2ρ2. (3.18)

It is useful to change variables to

ρ+ = (ρ1 + ρ2)/2, (3.19)

ρ− = (ρ2 − ρ1). (3.20)

The Jacobian of this transformation being unity, this leads to

A(u1⊥,u2⊥, ω) =

(
k

2π

)4

S(0)(ω)

×
∫

J0(βρ−) exp[−ikρ− · (u1⊥ + u2⊥)/2] d
2ρ−

×
∫

exp[−ikρ+ · (u2⊥ − u1⊥)] d
2ρ+, (3.21)

=

(
k

2π

)4

S(0)(ω)

∫
exp[−ikρ+ · (u2⊥ − u1⊥)] d

2ρ+

×
∫ ∞

0

∫ 2π

0
J0(βρ−) exp(−ikρ−|u1⊥ + u2⊥| cosϕ/2)

× ρ− dρ−dϕ, (3.22)

=

(
k

2π

)4

S(0)(ω)

∫
exp[−ikρ+ · (u2⊥ − u1⊥)] d

2ρ+

× 2π

∫ ∞

0
J0(βρ−)J0(kρ−|u1⊥ + u2⊥|/2)ρ− dρ−. (3.23)

Making use of the two Dirac delta function representations [Olver et al.,
2010]

δ(x− a) =
1

2π

∫ ∞

−∞
ei(x−a)t dt, (3.24)

δ(x− a) = x

∫ ∞

0
tJ0(xt)J0(at) dt, (3.25)
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we finally obtain the expression

A(u1⊥,u2⊥, ω) =
k2

2πβ
S(0)(ω) δ2(u2⊥ − u1⊥) δ (β − k|u1⊥ + u2⊥|/2) .

(3.26)

On substituting from this result into Eq. (3.11), while making use of the
two-dimensional delta function of Eq. (3.26) we find for the spectral den-
sity of the scattered field the expression

S(sca)(rs, ω) =
S(0)(ω)k2

2πβr2

∫
|u1⊥|2≤1

δ(β − k|u1⊥|) |f(s · u1, ω)|2 d2u1⊥.

(3.27)

It is follows from the delta function in Eq. (3.27) that the incident Bessel-
correlated beam must satisfy the condition

0 < β < k (3.28)

in order to produce a scattered field. Since 1/β is a rough measure of
the transverse coherence length, this implies that this length must exceed
1/k = λ/2π. To illustrate that this condition is not restrictive, consider
the idealized case of a J0-correlated field that is generated by a complete-
ly incoherent, infinitely thin ring-shaped source. According to the far-
zone form of the van Cittert-Zernike theorem [Mandel and Wolf, 1995,
Sec. 4.4.4], the spectral degree of coherence now takes on the form [Wang
et al., 2015b], (Chapter 2 of this thesis)

µ(∞)(ρ2 − ρ1, ω) = J0

(
kc|ρ2 − ρ1|

∆z

)
, (3.29)

where c denotes the ring radius, and ∆z is the approximate distance from
the center of the ring to the two observation points (ρ1, z) and (ρ2, z).
Since these points are in the far zone, we can safely estimate that ∆z ≥
2c. Comparing this with Eq. (3.16) gives β ≤ 0.5k, in agreement with
Eq. (3.28). This translates into a transverse coherence length 1/β ≥ λ/π.
A shorter coherence length can be obtained by positioning the scatterer
in the near-zone of either a Lambertian source, for which the spectral
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degree of coherence in the source plane equals [Mandel and Wolf, 1995,
Eq. (5.3-53)]

µ(0)(ρ2 − ρ1, ω) =
sin(k|ρ2 − ρ1|)

k|ρ2 − ρ1|
, (3.30)

or a source of blackbody radiation [Carter and Wolf, 1975]. However,
we will not consider such sources here.

Having thus established that we may, without loss of generality, set
|u1⊥| = β/k, we next write the vector u1, indicating a direction of inci-
dence, and the vector s, indicating the direction of scattering, as

u1 = (βk−1 cosα, βk−1 sinα,
√

1− β2/k2), (3.31)

s = (sin θ cos γ, sin θ sin γ, cos θ). (3.32)

Their vector product equals

s · u1 = βk−1 cos(α− γ) sin θ + cos θ
√

1− β2/k2. (3.33)

Expressing u1⊥ in polar coordinates gives

S(sca)(rs, ω) =
S(0)(ω)k2

2πβr2

∫ 1

0

∫ 2π

0
δ(β − k|u1⊥|)

× |f(s · u1, ω)|2 |u1⊥| dα du1⊥, (3.34)

=
S(0)(ω)

2πr2k2

∫ 2π

0

∑
l

∑
m

(2l + 1)(2m+ 1) exp[i(δl − δm)]

× sin δl sin δmPl

[
βk−1 cos(α− γ) sin θ + cos θ

√
1− β2/k2

]
× Pm

[
βk−1 cos(α− γ) sin θ + cos θ

√
1− β2/k2

]
dα, (3.35)

where we have used that δ(β−k|u⊥|) = k−1δ(β/k−|u⊥|). On integration
over α the γ dependence drops out, so we can write

S(sca)(rs, ω) =
S(0)(ω)

2πr2k2

∫ 2π

0

∑
l

∑
m

(2l + 1)(2m+ 1) exp[i(δl − δm)]

× sin δl sin δmPl

[
βk−1 cosα sin θ + cos θ

√
1− β2/k2

]
× Pm

[
βk−1 cosα sin θ + cos θ

√
1− β2/k2

]
dα. (3.36)
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Figure 3.2: Angular distribution of the normalized intensity of the scat-
tered field for selected values of the normalized coherence parameter β/k,
namely: 0 (red), 0.15 (green), 0.30 (blue) and 0.50 (black). In this exam-
ple the wavelength λ = 632.8 nm, the refractive index n = 1.33, and the
sphere radius a = 2λ.

This expression shows how the angular distribution of the scattered field
arises from an intricate interplay of the sphere radius a, its refractive index
n, and the inverse coherence length β. Formidable as Eq. (3.36) may look,
it can easily be solved numerically.

3.4 Changing the coherence length

The dependence of the scattered radiant intensity on the normalized co-
herence parameter β/k is shown in Fig. 3.2 for scattering angles up to
90◦. The left most curve (red) is for β/k = 0, which corresponds to the
case of a fully coherent incident field. We indeed retrieve the classical
Mie result with strong forward scattering. However, when the coherence
length is decreased to β/k = 0.15 (green curve), the forward scattering
is somewhat suppressed and the maximum scattering occurs at an angle
of θ = 7◦. For the cases β/k = 0.30 (blue) and β/k = 0.50 (black) the
angle of maximum scattering moves to 17◦ and 29◦, respectively. Also,
the minima are raised from their near-zero value. We note that as long as
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Figure 3.3: Angular distribution of the logarithmic intensity of the scat-
tered field for selected values of the normalized coherence parameter β/k:
0 (red), 0.15 (green), 0.30 (blue) and 0.50 (black). The parameters are
the same as in Fig. 3.2.

β/k < 0.12 the maximum occurs in the forward direction. This maximum
only shifts to larger angles when the correlation function Eq. (4.7) takes
on negative values for pairs of points in the sphere, i.e. when J0(β2a) < 0.

The unnormalized scattered field for all scattering angles is shown on a
logarithmic scale in Fig. 3.3. For the fully coherent case we obtain the well-
known Mie resonances (red curve). These become much less pronounced
for the partially coherent cases (green, blue and black curves). In these
last three cases the backscattering is strongly decreased compared with
the fully coherent case.

3.5 Total scattered power

The optical theorem in its classical form [Born and Wolf, 1995; van de
Hulst, 1981] relates the total extinguished power (due to scattering and
absorption) to the scattering amplitude in the forward direction. Since
this theorem assumes the incident field to be a monochromatic plane wave,
rather than a partially coherent field, it does not apply to the present case.
However, the theorem has been generalized to deal with stochastic fields
by Carney et al. [Carney et al., 1997]. They derived that the ensemble-
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averaged extinguished power ⟨Pe(ω)⟩ is then given by the expression

⟨Pe(ω)⟩ =
4π

k
Im

[∫
|u1⊥|≤1

∫
|u2⊥|≤1

A(u1,u2, ω)

× f(u1 · u2) d
2u1⊥d

2u2⊥
]
. (3.37)

Since we are assuming a non-absorbing scatterer, the extinction is entire-
ly due to scattering, i.e., the extinguished power is equal to the radiant
intensity of the scattered field integrated over a 4π solid angle:

⟨Pe(ω)⟩ =
∫ 2π

0

∫ π

0
J (sca)(s, ω) sin θ dθdϕ. (3.38)

On substituting from Eq. (3.26) for the angular correlation function into
Eq. (3.37), we obtain the formula

⟨Pe(ω)⟩ =
2kS(0)(ω)

β

× Im

[∫
|u1⊥|≤1

δ(β − k|u1⊥|)f(u1 · u1) d
2u1⊥

]
. (3.39)

Evaluating this in polar coordinates gives

⟨Pe(ω)⟩ =
4πS(0)(ω)

k
Im [f(u · u)] . (3.40)

In Eq. (3.40) the two arguments of the scattering amplitude f are equal,
i.e., f(u · u) represents the forward scattering amplitude. It is seen from
this expression that the total scattered power does not depend on the
coherence parameter β. This implies that varying β, as was illustrated
in Figs. 3.2 and 3.3, results in a redistribution of the scattered intensity
with the total scattered power being unaffected. Also, it was verified
numerically that Eqs. (3.40) and (3.38) yield the same result.

Some related results were reported in [Wang et al., 2015b] (Chapter 2
of this thesis) where it was suggested that Bessel-correlated fields can give
rise to strongly suppressed scattering in the forward direction. In con-
trast to the present study, this result was obtained for a random spherical
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scatterer while making use of the first-order Born approximation. How-
ever, it is well known that this approximation is incompatible with the
optical theorem [Gottfried and Yan, 2003], i.e., it violates energy con-
servation. In contrast, using Mie theory allows us to to make use of the
optical theorem. We thus find that the extinguished power is independent
of the coherence length. That means that changing the coherence length
of the incident field results in a redistribution of the total scattered field.
Also, our analysis pertains to the important class of scatterers that are
deterministic, rather than random. Furthermore the angular shifts of the
direction of maximum scattering that we find while using Mie theory, are
significantly larger than those obtained using the Born approximation.

3.6 Conclusions

In summary, we have demonstrated that the angular distribution of a field
that is scattered by a homogeneous sphere can be controlled. In contrast to
previous works, this is done by manipulating the incident beam rather than
the scatterer. In particular, an incident beam with a J0 Bessel-correlation
gives rise to an unusual scattering profile. This profile can be changed
by varying the spatial coherence length. The total power of the scattered
field remains constant when the transverse coherence length is varied. This
provides a new tool to steer the scattered field dynamically without losing
energy. This method may be used to selectively address detectors that are
not (or cannot be) located along the line of sight connecting the source
and the scatterer. Such detectors have the advantage that they are not
saturated by the illuminating beam.
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Strong suppression of
forward or backward Mie
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• Yangyundou Wang, Hugo F. Schouten, and Taco D. Visser, “Strong
suppression of forward or backward Mie scattering by using spatial
coherence,” Journal of the Optical Society of America A, vol. 33,
pp. 513–518 (2016).

Abstract
We derive analytic expressions relating Mie scattering with partially coher-
ent fields to scattering with fully coherent fields. These equations are then
used to demonstrate how the intensity of the forward- or the backward-
scattered field can be suppressed several orders of magnitude by tuning the
spatial coherence properties of the incident field. This method allows the
creation of cone-like scattered fields, with the angle of maximum intensity
given by a simple formula.
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4.1 Introduction

In 1908 Gustav Mie obtained, on the basis of Maxwell’s equations, a rig-
orous solution for the diffraction of a plane monochromatic wave by a
homogeneous sphere [Mie, 1908]. His seminal work has since been ap-
plied in a wide range of fields such as astronomy, climate studies, atomic
physics, optical trapping etc. Extending and generalizing the theory of
Mie scattering remains an important activity to this day [Mishchenko
et al., 2000; Hergert and Wriedt (eds.), 2012].

In recent years, a large number of studies have been devoted to the
question of how the angular distribution of scattered fields may be con-
trolled. This line of research was initiated by Kerker et al. in 1983 [Kerker
et al., 1983]. They derived conditions under which the forward or back-
ward scattering by magnetic spheres is strongly suppressed. Since then
both the influence of the particle’s composition [Nieto-Vesperina et al.,
2011; Garcia-Camara et al., 2011; Geffrin et al., 2012; Person et al.,
2013; Xie et al., 2015;Korotkova, 2015; Naraghi et al., 2015], and that
of the coherence properties of the incident field on the scattering process
have been examined [Jannson et al., 1988; Gori et al., 1990; Gref-
fet et al., 2003; Lindberg et al., 2006; van Dijk et al., 2010; Fischer
et al., 2012; Wang et al., 2015b].

We recently demonstrated that a J0 Bessel-correlated beam that is
incident on a homogeneous sphere, produces a highly unusual distribution
of the scattered field [Wang et al., 2015a], (Chapter 3 of this thesis).
In the present study we derive expressions that relate the scattered field
for this particular case to that of an incident field that is spatially fully
coherent. These expressions allow us to tailor the transverse coherence
length of the field to obtain strongly suppressed forward or backward
scattering. We also derive an approximate formula for the angle at which
the scattered intensity reaches its maximum value. This expression is
found to work surprisingly well.

In Section 4.2 we briefly review scalar Mie theory. Bessel-correlated
fields are discussed in Section 4.3. In Section 4.4 we derive an equation for
the intensity of the forward-scattered field. We show by example how this
expression can be used to reduce the forward scattering signal by several
orders of magnitude. An expression for the backward-scattered field is
derived in Section 4.5. This is then applied to design a partially coherent
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incident field that causes strongly suppressed backscattering. In the last
section we discuss possible ways to realize J0 Bessel-correlated fields, and
offer some conclusions.

4.2 Scalar Mie scattering

Let us begin by considering a plane, monochromatic scalar wave of frequen-
cy ω and with unit amplitude, that is propagating in a direction specified
by a real unit vector u. If this wave is incident on a deterministic, spher-
ical scatterer with radius a and refractive index n (see Fig. 4.1), then the
scattering amplitude in an observation direction s in the far-zone can be
expressed as (See [Joachain, 1987, Eq. (4.66)], with a trivial change in
notation)

f(s · u, ω) = 1

k

∞∑
l=0

(2l + 1) exp[iδl(ω)] sin[δl(ω)]Pl(s · u), (4.1)

where k is the free-space wavenumber, Pl denotes a Legendre polynomial of
order l, and the phase shifts δl(ω) are given by the expressions [Joachain,
1987, Sec. 4.3.2 and 4.4.1]

tan[δl(ω)] =
k̄jl(ka)j

′
l(k̄a)− kjl(k̄a)j

′
l(ka)

k̄j′l(k̄a)nl(ka)− kjl(k̄a)n
′
l(ka)

. (4.2)

Here jl and nl are spherical Bessel functions and spherical Neumann func-
tions, respectively, of order l. Furthermore,

k̄ = nk (4.3)

is the wavenumber associated with the reduced wavelength within the scat-
terer, and the primes denote differentiation. The intensity of the scattered
field equals

S
(sca)
fc (θ, ω) =

1

r2
|f(cos θ, ω)|2, (4.4)

where r is the distance between the scattering sphere and the point of
observation, and the subscript “fc” indicates an incident field that is fully
coherent.
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r s

θ

a

O
u

z

Figure 4.1: A sphere with radius a is illuminated by a plane wave propa-
gating in the direction u, which is taken to be the z axis. The scattering
angle θ is the angle between the direction of the incident field and a far-
zone observation point rs.

An example of the angular distribution of the field for fully coherent
Mie scattering is shown in Fig. 4.2. Many deep minima can be seen,

with the first one occuring at θ = 0.69◦, where S
(sca)
fc = 3.15 × 10−6. We

will show that such a minimum can be “moved” to the forward direction
(θ = 0◦) by using an incident field that is not fully coherent, but rather is
J0-correlated. This then results in a strongly suppressed forward-scattered
field.
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Figure 4.2: Angular distribution, on a logarithmic scale, of the normalized

intensity of the scattered field S
(sca)
fc (θ, ω) for a fully coherent incident field.

In this example the sphere radius a = 50λ, the refractive index n = 1.33,
and the wavelength λ = 632.8 nm. The inset shows the first few scattering
minima up to θ = 2.5◦.

Note that, just like the vast majority of previous studies that deal with
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scattering of partially coherent fields, we use a scalar theory rather than a
vector approach. The partial wave expansion (4.1) is quite similar to what
is obtained in an electromagnetic theory. In the latter the scattered field
is written as the sum of two infinite series, one electric the other magnetic.
However, when the field is either unpolarized or linearly polarized, it is to
be expected that a scalar approach will give an accurate description.

4.3 Mie scattering with J0 Bessel-correlated
fields

In the space-frequency domain the second-order coherence properties of
a stochastic field U(r, ω) are characterized by its cross-spectral density
function at two positions r1 and r2 [Mandel and Wolf, 1995, Sec. 4.3.2],
namely

W (r1, r2, ω) = ⟨U∗(r1, ω)U(r2, ω)⟩, (4.5)

where the angular brackets denote an average taken over an ensemble of
field realizations. The spectral density (the intensity at frequency ω) at a
point r is defined as

S(r, ω) = ⟨U∗(r, ω)U(r, ω)⟩ = W (r, r, ω). (4.6)

We will consider an incident field with a uniform spectral density S(0)(ω),
that is J0-correlated. This means that its cross-spectral density function
in the plane z = 0 (the plane that passes through the center of the sphere)
is of the form

W (inc)(ρ1,ρ2, ω) = S(0)(ω)J0(β|ρ2 − ρ1|). (4.7)

Here J0 denotes the Bessel function of the first kind and zeroth order, and
ρ1 = (x1, y1) and ρ2 = (x2, y2) are two-dimensional position vectors in
the z = 0 plane. The inverse of the parameter β is a rough measure of the
effective transverse coherence length of the incident field. The generation
of such a beam was reported in [Raghunathan et al., 2010].

In a previous publication [Wang et al., 2015a] (Chapter 3 of this
thesis) we derived that in the case of a J0-correlated field, the angular
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distribution of the intensity of the scattered field is given by the expression

S(sca)
pc (θ, ω) =

S(0)(ω)

2πr2k2

∫ 2π

0

∑
l

∑
m

(2l + 1)(2m+ 1)

× exp[i(δl − δm)] sin δl sin δm

× Pl

[
βk−1 cosα sin θ + cos θ

√
1− β2/k2

]
× Pm

[
βk−1 cosα sin θ + cos θ

√
1− β2/k2

]
dα, (4.8)

where the subscript “pc” indicates partial coherence. We note that β/k
cannot exceed 1. On comparing Eq. (4.8), which pertains to a partially
coherent field, with Eq. (4.1), which is for a fully coherent field, we see
that this result can be written in the form

S(sca)
pc (θ, ω) =

S(0)(ω)

2πr2

×
∫ 2π

0

∣∣∣f(βk−1 cosα sin θ + cos θ
√

1− β2/k2)
∣∣∣2 dα. (4.9)

This expression, which relates the scattering of a J0-correlated field with
that by a plane wave, will be used in the next sections. To simplify the
notation we will set the spectral density of the incident field equal to unity
(S(0)(ω) = 1), and from now on we no longer display the ω dependence.

4.4 Suppression of forward scattering

The intensity of the scattered field, as given by Eq. (4.9), greatly simplifies
when we consider the forward direction (θ = 0◦). We then have that

S(sca)
pc (θ = 0◦) =

1

r2

∣∣∣f (√1− β2/k2
)∣∣∣2 . (4.10)

This expression has a clear physical meaning. Since both s and u are unit
vectors, the argument s ·u of the scattering amplitude f(s ·u) in Eq. (4.1)
can be interpreted as the cosine of an angle, ϕ say, such that cosϕ = s ·u.
It follows from Eq. (4.10) that for the case of a J0-correlated field this
angle is such that

cosϕ =
√

1− β2/k2, (4.11)
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as is illustrated in Fig. 4.3. This result implies that, for an incident J0-
correlated field with coherence parameter β/k, the forward scattered inten-
sity (θ = 0◦) is equal to the intensity that is scattered in the fully coherent
case in the direction ϕ, which is given by Eq. (4.11). This observation can
be expressed as

S(sca)
pc (θ = 0◦) = S

(sca)
fc (ϕ). (4.12)

φ

β  / k

1

 (1-β 2/k2)1/2

Figure 4.3: Illustrating the connection between the scattering angle ϕ and
the coherence parameter β/k.

The connection between fully coherent scattering and scattering with
a J0-correlated fields that is expressed by Eq. (4.12) allows us to suppress
the forward scattered intensity by “moving” a minimum of the scattering
distribution to θ = 0◦ by altering the coherence parameter β/k. To il-
lustrate this, we return to the example of a sphere with radius a = 50λ
and refractive index n = 1.33 illuminated by a fully coherent field with
wavelength λ = 632.8 nm, which was presented in Fig. 4.2. The first
scattering minimum occurs at θ = 0.69◦, where the normalized scattered
intensity is 3.15× 10−6. Using Eq. (4.11) with cosϕ = cos(0.69◦) = 0.999,
gives β/k = 0.0121. This implies that a J0 Bessel-correlated field with
this particular value of β/k will have a forward scattered intensity that
is almost six orders of magnitude less than its fully coherent counterpart.
The intensity of the forward scattered field as a function of the coherence
parameter β/k is plotted in Fig. 4.4. We notice that the value β/k = 0
corresponds to the fully coherent case. It is seen that near β/k = 0.0121
the forward scattered field is indeed strongly suppressed. In fact, the for-
ward scattered intensity is reduced by more than five orders of magnitude
compared with the case of an incident field that is spatially fully coherent.
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Figure 4.4: Logarithmic plot of the forward scattered intensity as function
of the coherence parameter β/k. In this example the wavelength λ =
632.8 nm, the sphere radius a = 50λ and the refractive index n = 1.33.

It was shown in [Wang et al., 2015a] (Chapter 2 of this thesis) that the
total scattered power remains constant when the coherence parameter β/k
is varied. This means that the scattered intensity is merely redistributed.
The precise form of the scattered field for the case β/k = 0.0121 is shown in

Fig. 4.5 (blue curve). The intensity of the forward scattered field S
(sca)
pc (θ =

0◦) is about 5 × 10−5 times smaller than the maximum that occurs at
θ ≈ 0.65◦ (see inset). Notice that the deep minima of Fig. 4.2 are no
longer present.

If we plot the scattered intensity for another value of the refractive
index, namely n = 1.50, we see that the angular distribution becomes
quite different (red curve), but the maximum occurs at precisely the same
position, in fact the two curves in the region shown in the inset are indis-
tinguishable. Apparently, the angle θmax at which the scattered intensity
reaches its highest value, is quite insensitive to the precise value of the
refractive index. It is possible to explain this behavior by analyzing the
relation between the coherence parameter β/k and θmax in a simpler but
related situation, namely the scattering of J0-correlated light by a Gaus-
sian random scatterer while using the first-order Born approximation. As
explained in Appendix A, one then finds that

sin θmax ≈ β/k. (4.13)

This equation implies that, to first order, the angle θmax at which the
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Figure 4.5: Logarithmic plot of the angular distribution of the scattered
intensity for a J0 Bessel-correlated field with coherence parameter β/k =
0.0121, for two values of the refractive index: n = 1.33 (blue curve) and
n = 1.50 (red curve). The inset shows the same, but for scattering angles
up to 2◦ (non-logarithmic, with both curves normalized by their respective
values for the fully coherent case). The other parameters in this example
are the same as for Fig. 4.2.

scattered intensity reaches its peak, does not depend on the refractive
index n, or on the sphere radius a, but only on the coherence parameter.
In Fig. 4.6 the value of θmax is plotted as a function of β/k for several
values of the sphere radius a. It is seen that the agreement between the
result of the Born approximation given by Eq. (4.13) (red curve) and a
numerical evaluation of Eq. (4.8) for a = 50λ (blue curve) is surprisingly
good. It is only for small values of β/k that a discrepancy is seen. This is
can be understood as follows. Because the first zero of J0(x) is at x = 2.4,
Eq. (4.7) implies that as long as β2a < 2.4 the function J0 will be positive,
and the cross-spectral density function between all possible pairs of points
within the scatterer will be qualitatively similar to a Gaussian. It is known
from earlier studies [van Dijk et al., 2010] that for such a correlation
function the scattering remains predominantly in the forward direction,
i.e., θmax = 0◦. Only when β2a > 2.4 will there be pairs of points that are
negatively correlated, which gives rise to a qualitatively different scattering
profile. For a sphere radius of 50λ this means that β/k must exceed 0.004
in order for any significant suppression of the forward-scattered intensity
to occur. It is indeed seen that only for values somewhat larger than this
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threshold, the angle θmax is very well approximated by Eq. (4.13). For
the three smaller spheres (corresponding to the orange, green and purple
curves) a similar result holds.

Born approximation
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Figure 4.6: The angle θmax, the angle at which the scattered field has
its maximum intensity, as a function of the coherence parameter β/k for
selected values of the sphere radius a. The result of the first-order Born
approximation, Eq. (4.13), is given by the straight red curve. The other
curves are obtained by numerical evaluation of Eq. (4.8). In all cases the
refractive index n = 1.33.

4.5 Suppression of backward scattering

Just as for the forward scattered field, we find that the expression for
the back-scattered intensity (θ = 180◦), as given by Eq. (4.9), takes on a
simpler form, namely

S(sca)
pc (θ = 180◦) =

1

r2

∣∣∣f (−√1− β2/k2
)∣∣∣2 . (4.14)

This formula implies that, for an incident J0-correlated field with coherence
parameter β/k, the backward-scattered intensity is equal to the intensity
that is scattered in the fully coherent case in a direction 180◦−ϕ, with the
angle ϕ defined by Eq. (4.11). Thus we find that

S(sca)
pc (θ = 180◦) = S

(sca)
fc (180◦ − ϕ). (4.15)
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Let us again return to the example of a sphere with radius a = 50λ and
refractive index n = 1.33, as shown in Fig. 4.2. From this plot we find that
the scattered field for the fully coherent case has an intensity minimum
near θ = 179.62◦ with a normalized value of 9.4 × 10−7, whereas the
backward-scattered intensity equals 1.7× 10−5. According to Eqs. (4.15)
and (4.11) this minimum can be “moved” 0.38◦ to θ = 180◦ by making the
field partially coherent with β/k = 6.5×10−3. A plot of the backscattered
intensity as a function of β/k is given in Fig. 4.7. It is indeed seen that

S
(sca)
pc (θ = 180◦) is strongly suppressed when β/k reaches this prescribed

value. The back-scattered intensity is now reduced to a mere 5.5% of that
of the fully coherent case. This result is in exact agreement with the two
intensities that were mentioned above.
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Figure 4.7: The backward scattered intensity as a function of the nor-
malized coherence parameter β/k. Notice that β/k = 0 corresponds to
an incident field that is fully coherent. In this example the wavelength
λ = 632.8 nm, the sphere radius a = 50λ and the refractive index n = 1.33.

4.6 Conclusions

The practical generation of a J0 Bessel-correlated beam has been reported
in [Raghunathan et al., 2010]. In that study an optical diffuser was used
to first obtain a spatially incoherent field that was passed through a thin
annular aperture. Imaging this aperture with a lens then produces (ac-
cording to the van Cittert-Zernike theorem [Mandel and Wolf, 1995]) a
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field with the desired correlation function. An alternative approach would
be to use a spatial light modulator (SLM) to dynamically impart a J0
Bessel correlation on the field.

In [Raghunathan et al., 2010] the focusing of a J0-correlated beam
was found to produce, instead of a maximum, an intensity minumum at
the geometrical focus. Because of the similarity between focusing and scat-
tering by a dielectric sphere, one can say with hindsight that suppression
of the forward-scattered field is to be expected.

It is to be noted that a change in the scattering pattern implies a
change in the force that is exerted on the sphere [Nieto-Vesperina
et al., 2011]. That means that control of the scattering direction can
be used to dynamically vary the properties of an optical trap as reported
in [Raghunathan et al., 2010].

We also remark that the near-zero scattering in the forward direction
that we obtain does not violate the optical theorem. This issue was ad-
dressed in [Wang et al., 2015a] (Chapter 3 of this thesis).

In summary, we have investigated the scattering of a J0 Bessel-correlated
field by a dielectric sphere. Equations were derived that connect this sit-
uation with the scattering of a fully coherent field. These formulas were
applied to design fields for which the forward- or the backward-scattered
intensity is significantly reduced. Examples were presented that show a
forward scattering suppression of five orders of magnitude, and a suppres-
sion of the back-scattered intensity by almost two orders of magnitude. An
approximate expression for the angle at which the scattered field reaches
its hightest intensity was derived.

In contrast to earlier researches that aim at modifying Mie scattering,
our approach is not based on changing the properties of the scattering
object, but rather those of the illuminating beam. Our results show that
the use of spatial coherence offers a new tool to actively steer the scattered
field.

Appendix A - Derivation of Eq. (4.13)

In [Wang et al., 2015b] (Chapter 2 of this thesis) the scattering of a
J0 Bessel-correlated field by a random sphere was examined within the
accuracy of the first-order Born approximation. The correlation of the
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scattering potential is taken to be Gaussian, i.e.,

CF (r
′
1, r

′
2, ω) = C0 exp

[
−(r′2 − r′1)

2/2σ2
F

]
, (A-1)

where C0 is a positive constant, and σF denotes the coherence length of
the scattering potential. It was then derived that

S(sca)(rs, ω) =
C0

r2

∫∫
V
W (inc)(r′1, r

′
2, ω)

× exp
[
−(r′2 − r′1)

2/2σ2
F

]
× exp[−iks · (r′2 − r′1)] d

3r′1d
3r′2, (A-2)

where V is the volume of the scatterer, and r′i = (ρ′
i, z

′
i) with i = 1, 2.

If we assume the the field to be longitudinally coherent [Mandel and
Wolf, 1995, Sec. 5.2.1], then

W (inc)(r′1, r
′
2, ω) = eik(z

′
2−z′1)J0(β|ρ′

2 − ρ′
1|), (A-3)

where the transverse part of the cross-spectral density of the incident field
is taken from Eq. (4.7) with S(0)(ω) = 1. We next change to the sum and
difference variables

ρ+ = (ρ′
1 + ρ′

2)/2, (A-4)

ρ− = ρ′
2 − ρ′

1, (A-5)

z+ = (z′1 + z′2)/2, (A-6)

z− = z′2 − z′1. (A-7)

The Jacobian of this transformation is unity, and we find that

S(sca)(rs, ω) =
C0

r2

∫
dz+

∫∫
d2ρ+

×
∫

eikz−(1−sz)e−z2−/2σ2
F dz−

×
∫∫

J0(βρ−)e
−ρ2−/2σ2

F eiks⊥·ρ− d2ρ−. (A-8)

The product of the first two integrals yields the scattering volume V . If
we assume that σF is small compared to the size of the scatterer, then the
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integration over z− can be extended to the entire real axis, and we obtain
the result ∫ ∞

−∞
eikz−(1−sz)e−z2−/2σ2

F dz−

=
√
2πσF e

−k2σ2
F (1−sz)2/2. (A-9)

The remaining integral over ρ− is seen to be a Fourier-Bessel transform,
i.e., ∫∫

J0(βρ−)e
−ρ2−/2σ2

F eiks⊥·ρ− d2ρ− (A-10)

= 2π

∫ ∞

0
J0(βρ−)J0(k|s⊥|ρ−)e−ρ2−/2σ2

F ρ− dρ−. (A-11)

The right-hand side of Eq. (A-11) contains the product of two oscillating
Bessel functions that in general will tend to cancel each other on inte-
gration. Therefore we expect the integral, and hence the total scattered
field, to reach its maximum value when the arguments of the two Bessel
functions are identical, i.e., when

β = k|s⊥|, (A-12)

and such a cancellation does not occur. On using that |s⊥| = sin θ, we
thus find for θmax, the angle at which the scattered intensity is maximal,
that

sin θmax = β/k, (A-13)

which is Eq. (4.13).
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• Yangyundou Wang, David Kuebel, Taco D. Visser and Emil Wolf,
“Creating new von Laue patterns in crystal scattering with partially
coherent sources,” Physical Review A, vol. 94, 033812 (2016).

Abstract
When spatially coherent radiation is diffracted by a crystalline object, the
field is scattered in specific directions, giving rise to so-called von Laue
patterns. We examine the role of spatial coherence in this process. Using
the first-order Born approximation, a general analytic expression for the
far-zone spectral density of the scattered field is obtained. This equation
relates the coherence properties of the source to the angular distribution
of the scattered intensity. We apply this result to two types of sources.
Quasihomogeneous Gaussian Schell-model sources are found to produce
von Laue spots whose size is governed by the effective source width. Delta-
correlated ring sources produce von Laue rings and ellipses instead of
point-like spots. In forward scattering polychromatic ellipses are created,
whereas in backscattering striking, overlapping ring patterns are formed.
We show that both the directionality and the wavelength-selectivity of
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the scattering process can be controlled by the state of coherence of the
illuminating source.
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5.1 Introduction

The diffraction of radiation by a three-dimensional, periodic potential,
i.e., from a crystalline object, is a subject whose origins were developed
a century ago by von Laue, Friedrich, Knipping and the Bragg father-son
team [James, 1950]. Specifically, in the von Laue method, broad spectrum
radiation, which is assumed to be spatially coherent, is diffracted by a
monocrystal with a fixed orientation [Ashcroft and Mermin, 1976,
Ch. 6]. The resulting diffraction peaks are separated both spatially and
spectrally. The location of these von Laue spots is determined by the
crystal’s structure [Born and Wolf, 1995, Sec. 13.1.3]. Here we report
how the state of spatial coherence of the incident field can drastically affect
their size, shape and spectral composition.

The influence of the state of coherence of the incident field on the
scattering process has been investigated in several publications, see, for
example, [Jannson et al., 1988; Gori et al., 1990; Greffet et al.,
2003; Lindberg et al., 2006; Mie, 1908; Fischer et al., 2012; Wang
et al., 2015b; Wang et al., 2015a; Hyde IV, 2015]. These studies were
all concerned with either spherical particles, cylinders, or planar scatter-
ers. In contrast, scattering of partially coherent fields by a medium with
a periodic potential has remained largely unexplored. Notable exceptions
are a study by Dušek [Dušek, 1995], who described dispersion effects in
crystal scattering with completely incoherent radiation, and a paper by
Hoenders and Bertolotti [Hoenders and Bertolotti, 2005] in which
the van Cittert-Zernike theorem was generalized to two-dimensional pe-
riodic media. Recently, a more general approach to this problem was
suggested in [Wolf, 2013], although there the analysis was limited to
one-dimensional scatterers.

In the present paper we study the scattering properties of media with
a periodic, three-dimensional scattering potential. We begin by analyzing
the scattering of an incident field, generated by a source with an arbi-
trary state of spatial coherence, by a general mono-crystalline structure
of identical point scatterers. We then examine the special case of large,
three-dimensional arrays of scatterers whose unit cells are rectangular par-
allelepipeds. Such cells form orthorhombic crystals [Kittel, 1986]. The
incident field is taken to be generated by a planar, partially coherent source
that is located far away from the crystal. The use of the first-order Born
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approximation allows us to derive an analytic expression for the spectral
density of the far-zone scattered field in terms of a correlation function of
the source, namely its cross-spectral density [Mandel and Wolf, 1995,
Sec. 4.3.2]. We then apply this result to two types of sources. Gaussian
Schell-model (GSM) sources [Mandel and Wolf, 1995, Sec. 5.2.2] gen-
erate an incident field that is Gaussian correlated. Such fields are found
to give rise to larger von Laue diffraction spots than those produced by
their spatially fully coherent counterparts. When the GSM source is also
quasihomogeneous [Mandel and Wolf, 1995, Sec. 5.2.2], the spot size is
directly related to the source width. For the case of a δ-correlated annular
source, the incident field is J0-correlated. This can produce multicolored,
elliptical von Laue patterns in the forward direction and an overlapping,
multiple ring pattern in the backward direction. Our results show that
both the directionality and the wavelength-selectivity of the scattering
process can be controlled by altering the state of coherence of the illumi-
nating source or the distance between the annular source and the crystal.

5.2 Scattering from crystalline structures

The incident field at position r and at frequency ω, U (in)(r, ω), is taken
to be partially coherent. In the space-frequency domain formulation of
coherence theory, its correlation properties are characterized by the cross-
spectral density function [Wolf, 2007]

W (in)(r1, r2, ω) = ⟨U (in)∗(r1, ω)U
(in)(r2, ω)⟩, (5.1)

where the angular brackets denote an average taken over an ensemble of
realizations of the field, and the asterisk indicates complex conjugation.
The normalized version of this correlation function is the spectral degree
of coherence

µ(in)(r1, r2, ω) =
⟨U (in)∗(r1, ω)U

(in)(r2, ω)⟩
[S(in)(r1, ω)S(in)(r2, ω)]1/2

, (5.2)

where the incident spectral density is defined as

S(in)(r, ω) ≡ W (in)(r, r, ω). (5.3)
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We consider a general, three-dimensional crystalline array of identical
point scatterers. In that case the scattering potential F (r, ω) can be writ-
ten as

F (r, ω) = F0(ω)
∑
R

δ3(r−R), (5.4)

with F0(ω) ∈ R, δ3 denoting the three-dimensional Dirac delta function,
and with the position vectors of the scatterers given by

R = N1a1 +N2a2 +N3a3. (5.5)

Here a1, a2, and a3 denote the direct lattice vectors that span the crystal,
with Ni any integer, and i = 1, 2, 3. The periodicity of F (r, ω) allows us
to express it as a Fourier series, i.e.,

F (r, ω) =
∑
G

f(G, ω) eiG·r, (5.6)

with f(G, ω) the structure factor, andG a reciprocal lattice vector [Kittel,
1986]. The structure factor is given by the expression

f(G, ω) = V −1

∫
V
F (r, ω) e−iG·r d3r, (5.7)

where V denotes the volume of a unit cell, over which the integration
extends. From this it follows that in our case

f(G, ω) = F0(ω), (5.8)

for all vectors G.
Within the validity of the first-order Born approximation [Born and

Wolf, 1995, Sec. 13.1], the scattered field in a direction indicated by the
unit vector s = (sx, sy, sz), is given by the formula

U (sca)(rs, ω) =

∫
R3

U (in)(r′, ω)G(rs, r′, ω)F (r′, ω) d3r′, (5.9)

where r = rs is a point of observation, and G(rs, r′, ω) is the outgoing
free-space Green’s function pertaining to the Helmholtz equation. Be-
cause the scattering potential is identically zero outside the domain of the
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scatterer, we have extended the integration in Eq. (5.9) to the entire three-
dimensional space, i.e., to R3. Far away from the scatterer the Green’s
function takes on the asymptotic form

G(rs, r′, ω) =
eik|r−r′|

|r− r′|
∼ eikr

r
e−iks·r′ , (5.10)

where k denotes the wavenumber associated with frequency ω. The spec-
tral density of the scattered field is, in strict analogy with Eq. (5.3), given
by the expression

S(sca)(rs, ω) = ⟨U (sca)∗(rs, ω)U (sca)(rs, ω)⟩. (5.11)

On substituting from Eqs. (5.6), (5.8), (5.9), and (5.10) into Eq. (5.11),
and interchanging the order of ensemble averaging and integration, we
obtain

S(sca)(rs, ω) =
F 2
0 (ω)

r2

∫
R6

W (in)(r′, r′′, ω)e−iks·(r′′−r′)

×
∑
G

e−iG·r′
∑
H

eiH·r′′ d3r′d3r′′, (5.12)

with the cross-spectral density functionW (in)(r′, r′′, ω) of the incident field
given by Eq. (5.1), and G and H denoting a reciprocal lattice vectors.
Interchanging integration and summation, and re-arranging terms yields

S(sca)(rs, ω) =
F 2
0 (ω)

r2

∑
G

∑
H

∫
R6

W (in)(r′, r′′, ω)

× eir
′·(ks−G)eir

′′·(H−ks) d3r′d3r′′. (5.13)

We note that this expression relates the scattered field to the six-dimensional
spatial Fourier transform of the cross-spectral density of the incident field.
To simplify the notation we omit the ω-dependence from now on.

Next we make use of the fact that, far away from the source, the
cross-spectral density function itself is also a Fourier transform, namely

W (in)(r′, r′′) =

(
k

2π∆z

)2

eik(z
′′−z′)

∫∫
z=0

W (0)(ρ1,ρ2)

× e−ik(ρ′′·ρ2−ρ′·ρ1)/∆z d2ρ1d
2ρ2, (5.14)
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Figure 5.1: Illustrating the notation. The origin O of the first coordinate
system is taken in the source plane z = 0. The origin O′ of the primed
coordinates is taken at (x, y, z) = (0, 0,∆z).

where the superscript (0) indicates the source plane z = 0, and with
r′ = (ρ′, z′) and r′′ = (ρ′′, z′′). The distance ∆z between the source and
the scatterer is illustrated in Fig. 5.1. On making use of this expression
in Eq. (5.13) we get the formula

S(sca)(rs) =

(
F0k

2πr∆z

)2∑
G

∑
H

∫
R6

∫∫
z=0

eik(z
′′−z′)W (0)(ρ1,ρ2)

× e−ik(ρ′′·ρ2−ρ′·ρ1)/∆zeir
′·(ks−G)eir

′′·(H−ks) d2ρ1d
2ρ2d

3r′d3r′′.
(5.15)

Writing this out in Cartesian components gives

S(sca)(rs) =

(
F0k

2πr∆z

)2∑
G

∑
H

∫
R
e−ikz′eiz

′(ksz−Gz) dz′

×
∫
R
eikz

′′
eiz

′′(Hz−ksz) dz′′
∫
R8

W (0)(x1, y1, x2, y2)

× e−ik(x′′x2+y′′y2−x′x1−y′y1)/∆zeix
′(ksx−Gx)eiy

′(ksy−Gy)

× eix
′′(Hx−ksx)eiy

′′(Hy−ksy) dx1dy1dx2dy2dx
′dy′dx′′dy′′. (5.16)

The integrals over z′ and z′′ are readily evaluated to give∫
R
eiz

′(ksz−Gz−k) dz′ = 2πδ(ksz −Gz − k), (5.17)

and ∫
R
eiz

′′(Hz−ksz+k) dz′′ = 2πδ(Hz − ksz + k), (5.18)
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respectively. In order to have a scattered field that is non-zero, Eqs. (5.17)
and (5.18) have to be satisfied simultaneously. This implies that

Gz = Hz = k(sz − 1). (5.19)

Similarly, the integrals over the remaining four primed variables also yield
δ-functions, for example∫

R
eix

′(kx1/∆z+ksx−Gx) dx′ = 2πδ(kx1/∆z + ksx −Gx). (5.20)

Thus we find the four relations

x1 = ∆z(Gx/k − sx), (5.21)

y1 = ∆z(Gy/k − sy), (5.22)

x2 = ∆z(Hx/k − sx), (5.23)

y2 = ∆z(Hy/k − sy). (5.24)

Substitution in Eq. (5.16) gives the final result

S(sca)(rs) =

(
F04π

2∆z

kr

)2 ∑
G,H

W (0)(x1, y1, x2, y2), (5.25)

with the arguments (x1, y1, x2, y2) of the cross-spectral density function
W (0) given by Eqs. (5.21)–(5.24), and the double summation over the re-
ciprical lattice vectors such that Gz = Hz. Eq. (5.25) is a general expres-
sion for the far-zone scattered field in terms of the cross-spectral density
function of the source and the reciprocal lattice of the crystal.

5.3 Orthorhombic crystals

From here on we assume the scattering structure to be an orthorhombic
crystal [Kittel, 1986], consisting of unit cells with sides a, b, c, as sketched
in Fig. 5.2. We note that this choice of coordinate axes means that we
consider a field that is normally incident along the z direction.
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a
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c
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y

Figure 5.2: A rectangular parallelepiped unit cell of eight identical point
scatterers. The direct lattice vectors are a1 = ax̂, a2 = bŷ and a3 = cẑ.
The orthorhombic scatterer is assumed to consist of many of these unit
cells.

For an orthorhombic crystal the Cartesian components of its reciprocal
lattice vectors are given by the formulas

Gx = 2π
n1

a
, (5.26)

Gy = 2π
n2

b
, (5.27)

Gz = 2π
n3

c
, (5.28)

and

Hx = 2π
m1

a
, (5.29)

Hy = 2π
m2

b
, (5.30)

Hz = 2π
m3

c
, (5.31)

with the indices ni andmi any integer, and i = 1, 2, 3. Eq. (5.19) yields the
restriction n3 = m3. The above expressions will be used in Eqs. (5.21)–
(5.24).
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5.4 Gaussian Schell-model sources

For a planar source of the Gaussian Schell model type [Mandel and
Wolf, 1995], the cross-spectral density function in the source plane reads

W (0)(ρ1,ρ2) =
√

S(0)(ρ1)S(0)(ρ2)µ
(0)(ρ2 − ρ1), (5.32)

with the spectral density and the spectral degree of coherence both having
a Gaussian form, i.e.,

S(0)(ρ) = A2e−ρ2/2σ2
S , (5.33)

µ(0)(ρ2 − ρ1) = e−(ρ2−ρ1)2/2σ2
µ . (5.34)

Here A2 denotes the maximum spectral density, σS the effective source
width, and σµ the effective transverse coherence length.

Let us next make the additional assumption that the source is quasi-
homogeneous. For such sources the spectral density S(0)(ρ) changes much
more slowly with ρ than the spectral degree of coherence µ(0)(ρ2 − ρ1)
changes with |ρ2−ρ1|. That implies that σ2

µ ≪ σ2
S . The far-zone spectral

degree of coherence of the field that is generated by such a source satisfies
the reciprocity relation [Mandel and Wolf, 1995, Sec. 5.3.2],

µ(∞)(r1s1, r2s2) =
S̃(0)[k(s2⊥ − s1⊥)]

S̃(0)(0)
eik(r2−r1), (5.35)

where the superscript (∞) indicates points in the far zone, and si⊥ =
(six, siy), with i = 1, 2, are the transverse parts of the directional unit
vector si. If we apply the spectral density distribution (5.33) to this ex-
pression, we find for the spectral degree of coherence of the field that is
incident on the crystal the equation

µ(in)(r1s1, r2s2) = e−k2σ2
S(s2⊥−s1⊥)2/2eik(r2−r1). (5.36)

Eq. (5.36) shows that we can change the state of coherence of the inci-
dent field, or more precisely, its effective transverse coherence length, by
changing the width σS of the source.

If we substitute from Eq. (5.32) into Eq. (5.25) for the case of an
orthorhombic crystal, as was described in the previous section, we obtain
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the formula

S(sca)(rs) = β
∑
ni,mj
n3=m3

exp

{
−(∆z)2

4σ2
S

[(
2πn1

ka
− sx

)2

+

(
2πn2

kb
− sy

)2

+

(
2πm1

ka
− sx

)2

+

(
2πm2

kb
− sy

)2
]}

× exp

(
−(∆z)2

2σ2
µ

{[
2π

ka
(m1 − n1)

]2
+

[
2π

kb
(m2 − n2)

]2})
,

(5.37)

with i, j = 1, 2, 3, and where for brevity we have introduced the parameter
β, where

β =

(
AF04π

2∆z

kr

)2

. (5.38)

The maximum term in the summation occurs when the arguments of both
exponentials are zero, i.e., whenm1 = n1 andm2 = n2, and for a scattering
direction s such that

sx =
λn1

a
, (5.39)

sy =
λn2

b
, (5.40)

with the wavelength λ = 2π/k. For the longitudinal component of s we
have from Eqs. (5.19) and (5.28) that

sz = 1 +
λn3

c
. (5.41)

These three formulas are the well-known von Laue equations [Born and
Wolf, 1995, Sec. 13.1.3]. They indicate the directions s of maximum
scattering for an incident field that is spatially fully coherent.

On making use in Eq. (5.37) of the assumption that σ2
µ ≪ σ2

S , it follows
that we may safely neglect all terms for which m1 ̸= n1 and m2 ̸= n2. This
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then gives

S(sca)(rs) = β
∑
ni

exp

{
−(∆z)2

2σ2
S

[(
2πn1

ka
− sx

)2

+

(
2πn2

kb
− sy

)2
]}

.

(5.42)

Eq. (5.42) describes the scattered field as a sum of terms. Each term is
characterized by the integer triplet (n1, n2, n3). The value of these integers
determines a specific wavelength λ and a direction s at which the scattering
reaches a maximum, a so-called von Laue spot. It is worth noting that
Eq. (5.42) does not depend on the coherence length σµ of the source,
however it does depend on the state of coherence of the incident field.
This is because for a distant quasi-homogeneous Gaussian Schell-model
source, the reciprocity relation Eq. (5.36) implies that the coherence of
the incident field is governed by the effective source size σS , rather than
σµ. When this source size is decreased, the spectral degree of coherence
of the field that is incident on the crystal, is increased.

We illustrate our results by considering the example of an orthorhombic
crystal with unit cells with sides

a = 1.0× 10−9 m, (5.43)

b = 1.2× 10−9 m, (5.44)

c = 1.5× 10−9 m. (5.45)

We study a single scattering direction by choosing a triplet (n1, n2, n3).
The three von Laue equations, together with the requirement that s is a
unit vector, i.e.,

s2x + s2y + s2z = 1, (5.46)

form an overdetermined system that will only be satisfied for a specific
wavelength. For example, for the choice

n1 = 1, (5.47)

n2 = 3, (5.48)

n3 = −2, (5.49)
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Figure 5.3: Distribution of the normalized scattered intensity around the
direction indicated by the von Laue equations for different values of the
effective source width, and hence a different transverse coherence length
of the incident field. Panel a): σS = 5.0 × 10−3 m; panel b): σS =
2.5 × 10−3 m; panel c): σS = 1.0 × 10−3 m. In these examples n1 = 1,
n2 = 3, n3 = −2, and ∆z = 1 m.

it is found that λ = 2.95× 10−10 m, and hence that sx = 0.29, sy = 0.73,
and sz = 0.60.

We note that, apart from this particular value of the wavelength, there
exists, for every choice of (n1, n2, n3), the trivial solution λ = 0, and hence
sz = 1. This corresponds to a forward propagating field with an infinite
frequency. Since this is non-physical, we exclude this solution. We will
return to the issue of spurious solutions in the next section.

The influence of the state of coherence of the incident field on the
distribution of the scattered field around the direction specified by the von
Laue equations, is evaluated by calculating a single term of the summation
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in Eq. (5.42):

S(sca)(n1, n2, n3) = β exp

{
−(∆z)2

2σ2
S

[(
2πn1

ka
− sx

)2

+

(
2πn2

kb
− sy

)2
]}

,

(5.50)

where we have changed the arguments of S(sca) from (rs) to the triplet
(n1, n2, n3).

An example is presented in Fig. 5.3. The source width σS decreases
in going from panel a) to panel c). This means that the spectral degree
of coherence of the incident field increases. It is seen that the circular,
Gaussian intensity distribution, which is centered around the von Laue
direction, gets narrower when the spatial coherence of the incident field
increases, and becomes more and more point-like.

S
x

S
y

Figure 5.4: Distribution of the normalized scattered intensity around two
von Laue spots. The left-hand peak corresponds to (n1, n2, n3) = (1, 3,−2)
and hence λ = 2.95 × 10−10 m. The right-hand peak is for (n1, n2, n3) =
(2, 3,−2), and thus λ = 2.21 × 10−10 m. In these two examples σS =
1.0× 10−3 m, and ∆z = 1 m.

Let us next choose a second scattering direction by setting

n1 = 2, (5.51)

n2 = 3, (5.52)

n3 = −2. (5.53)
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We now find that λ = 2.21×10−10 m, and hence that sx = 0.44, sy = 0.55,
and sz = 0.70. It is clear from Fig. 5.4 that these two diffraction peaks
are well separated, both directionally and spectrally.

5.5 Uncorrelated, infinitely thin annular sources

We next consider the idealized case of a completely incoherent, infinitely
thin “delta-ring” source. If this ring has a uniform spectral density A2,
and is of radius R, then the cross-spectral density of the field in the source
plane is given by the expression

W (0)(ρ1,ρ2) = A2δ(ρ1 −R)δ2(ρ2 − ρ1), (5.54)

where δ and δ2 represent the one- and two-dimensional Dirac δ function,
respectively. Such a source produces a J0 Bessel-correlated field in its
far zone. The approximate experimental realization of such a field was
reported in [Raghunathan et al., 2010].

If we substitute from Eq. (5.54) into Eq. (5.25) for the case of an
orthorhombic crystal as described in Sec. 5.3, we get the expression

S(sca)(rs) = β
∑
ni,mj
n3=m3

δ

∆z

[(
2πn1

ka
− sx

)2

+

(
2πn2

kb
− sy

)2
]1/2

−R


× δ

[
2π

ka
(n1 −m1)

]
δ

[
2π

kb
(n2 −m2)

]
, (5.55)

= β
∑
ni

δ

∆z

[(
2πn1

ka
− sx

)2

+

(
2πn2

kb
− sy

)2
]1/2

−R

 .

(5.56)

In order to determine the components of the directional vector s and
the wavelength λ, we recall Eq. (5.41):

sz = 1 + u, (5.57)

where we defined the scaled wavelength u as

u ≡ λn3

c
. (5.58)
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Figure 5.5: (a) An oblique, elliptic cylinder and a unit sphere in (sx, sy, u)-
space. The sphere is centered on (0, 0,−1), and the cylinder has a radius
R/∆z in the horizontal plane. The intersections of the cylinder and the
sphere are indicated by the two blue curves. (b) The projection of the
lower intersection onto the sx, sy-plane. (c) The projection of the lower
intersection onto the sx, u-plane. In these examples a = 1 × 10−9 m,
b = 1.2 × 10−9 m, c = 1.5 × 10−9 m, n1 = −1, n2 = −2, n3 = −2,
R = 0.1 m and ∆z = 1 m.

The first requirement, that |s| = 1, defines a unit sphere in (sx, sy, u)-
space that is centered around the point (0, 0,−1), as is shown in Fig. 5.5.
The second condition, which is derived from Eqs. (6.11) and (5.58), reads(

u
cn1

n3a
− sx

)2

+

(
u
cn2

n3b
− sy

)2

=
R2

(∆z)2
. (5.59)

This defines an oblique, elliptic cylinder, whose intersection with any hori-
zontal plane u = constant, is a circle with center (sx, sy) = (ucn1/n3a, ucn2/n3b),
and with radius R/∆z. From this expression it follows readily that the
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central axis of the cylinder is the line given by the formula

(sx, sy, u) = (ucn1/n3a, ucn2/n3b, u). (5.60)

For any choice of the triplet (n1, n2, n3), the directions of non-zero scat-
tering and the wavelength are given by the intersections of the cylinder
and the unit sphere. These will be two closed curves, as indicated in blue
in the example shown in Fig. 5.5(a). The upper curve, near u = 0, is the
partially coherent analog of the spurious solution that we discussed below
Eq. (5.49), and we will therefore not consider it.

The assumption that the scatterer is in the far zone of the source
means that R is much smaller than ∆z. This implies that the cylinder
is quite narrow. According to Eq. (5.57), an intersection of the cylinder
in the upper half of the sphere (u > −1), corresponds to forward scatter-
ing (sz > 0), whereas an intersection in the lower portion of the sphere
represents backscattering (sz < 0). Instead of a single von Laue direc-
tion, we now have a range of scattering directions, each represented by a
point on the intersectional curve. Since these points each have a distinct
u coordinate, Eq. (5.58) implies that they all represent scattering at a
distinct wavelength, i.e., the von Laue curves show dispersion. It is worth
remarking that this spread in u values, and hence the dispersion, will be
more pronounced for oblique scattering than for scattering in the forward
direction.

The projection of the sphere-cylinder intersection onto the the sx, sy-
plane is obtained by substituting u = −1± (1−s2x−s2y)

1/2 into Eq. (5.59),
with the plus (minus) sign taken for intersections in the upper (lower) half
of the sphere. This gives the formula

R2

(∆z)2
=

[(
−1±

√
1− s2x − s2y

) cn1

n3a
− sx

]2
+

[(
−1±

√
1− s2x − s2y

) cn2

n3b
− sy

]2
. (5.61)

The projection of the lower curve of Fig. 5.5(a) is plotted in panel (b).
This curve represents scattering along a range of directions s, each with a
specific value of u, and hence with a different wavelength. The variation
of the wavelength with the direction s can be studied by projecting the
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intersection onto the sx, u-plane. This is done by substituting sy = ±[1−
s2x − (1 + u)2]1/2 into Eq. (5.59), with the plus (minus) sign taken when
sy is positive (negative). The result is

R2

(∆z)2
=

[
u
cn1

n3a
− sx

]2
+

[
u
cn2

n3b
∓
√

1− s2x − (1 + u)2
]2

. (5.62)

The projection of the lower curve is shown in Fig. 5.5(c). It is seen that the
value of u varies between −0.54 and −0.73. According to Eq. (5.58), this
corresponds to a wavelength range of 4.05×10−10m ≤ λ ≤ 5.47×10−10m.

The distinction between forward and backward scattering can be made
by considering the angle, γ say, between the axis of the cylinder and the
positive u axis. It follows from Eq. (5.60) that

tan γ =

√(
cn1

n3a

)2

+

(
cn2

n3b

)2

. (5.63)

Ignoring the finite radius of the cylinder for simplicity, the lowest inter-
section of the cylinder with the sphere will be above the equator (u = −1)
when this angle exceeds 45◦. Hence, we conclude that forward scattering
occurs when (

cn1

n3a

)2

+

(
cn2

n3b

)2

> 1. (5.64)

When this quantity is less than unity, the scattering is in the backward
direction.

Colorful von Laue patterns in the visible spectrum can be produced
by crystals with sides on the order of microns. Examples of three sym-
metrically located, forward-scattered patterns (sz > 0), are plotted in
Fig. 5.6(a). Their projection onto the sx, u plane is shown in panel (b).
Using Eq. (5.58), it is found that the wavelengths for these three ellipses
range from 405 to 660 nm, as is indicated in the color rendering. By in-
creasing the distance ∆z between the source and the crystal (see Fig. 5.1),
one gradually approaches the case of spatially coherent illumination. This
should lead to a decrease in dispersion. Indeed it found for example, that
when ∆z is increased from 1 to 5 m, the wavelength range is reduced to
465 to 600 nm.
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Figure 5.6: (a): Three different von Laue patterns scattered in the forward
direction (sz > 0) for, from left to right, n1 = −1, 0, 1, and n2 = n3 =
−2. (b): The projection of these curves onto the sx, u-plane, showing
their colors in the visible spectrum. In this example a = 1 × 10−6 m,
b = 1.2× 10−6 m, c = 1.5× 10−6 m, R = 0.1 m and z = 1 m.

Examples of scattering in the backward direction (sz < 0), are present-
ed in Fig. 5.7. Near-circular, overlapping intensity patterns are produced
with a wavelength interval from 444 to 480 nm. The directional radius of
these patterns, i.e., their spread in the sx, sy plane, can easily be tailored
by changing either the source radius R or the source-crystal distance ∆z.
Decreasing the ratio R/∆z decreases the directional radius.

5.6 Conclusions

We have analyzed the role of spatial coherence in scattering from a periodic
potential. This was done within the context of the so-called von Laue
method, in which a polychromatic field is diffracted by a crystal with
a fixed orientation. A general expression, Eq. (5.25), that relates the
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Figure 5.7: Showing five different backscattered von Laue rings for, from
left to right, n1 = −2,−1, 0, 1, 2, and n2 = 1 and n3 = −25. In this
example a = 4× 10−6 m, b = 4.8× 10−6 m, c = 6.0× 10−6 m, R = 0.1 m,
and ∆z = 1 m.

scattered field to the cross-spectral density of the source, was derived.
This result was applied to two different types of partially coherent sources
namely quasihomogeneous Gaussian Schell model sources (GSM) and δ-
correlated, thin annular sources. The sphere-cylinder construction that we
used for the latter type, can, at least in principle, also be applied to the
GSM source. However, we chose, for that case at least, to stay closer to the
traditional treatment. The GSM sources were seen to produce von Laue
spots whose size is directly related to the size of the source. The annular
sources were found to generate elliptical von Laue patterns rather than
spots. Both the dispersion and the angular spread of these patterns can
be tuned by changing the source radius or the distance between the source
and the crystal. In summary, we have shown how spatial coherence can
be used to tailor scattering by an object with a periodic potential. Our
work may be extended to sources with different shapes and correlation
functions, other crystals, and crystals with a different orientation.
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Chapter 6

The electromagnetic field
produced by a refractive
axicon
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and Taco D. Visser, “The electromagnetic field produced by a re-
fractive axicon,” to be submitted.

Abstract
We study the field that is produced by a refractive axicon. The results
from geometrical optics, scalar wave optics and electromagnetic diffraction
theory are compared. In particular, the axial intensity, the on-axis effective
wavelength, the transverse intensity, and the far-zone field are examined.
The state of polarization of the incident beam is found to strongly affect
the transverse intensity distribution, but not the intensity distribution in
the far zone.
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6.1 Introduction

Axicons [McLeod, 1954], sometimes called conical prisms, are optical el-
ements that have rotational symmetry. Whereas ordinary lenses produce
a focal spot, axicons produce a focal line, known as the axicon line im-
age, which, with increasing distance from the axicon, gradually evolves
into a ring-shaped pattern. This makes them useful for applications as
diverse as imaging with an extended depth of focus [Sochacki et al.,
1992], surface inspection [Brinkmann et al., 1996], stimulated Brillouin
scattering [Velchev and Ubachs, 2001], optical pumping [Schafer,
1986], laser drilling [Rioux et al., 1978], optical trapping [Shao et al.,
2006], frequency doubling [Wulle and Herminghaus, 1993], triangu-
lation [Bickel et al., 1985], optical coherence tomography [Ding et al.,
2002], and corneal surgery [Ren and Birngruber, 1990]. Moreover, they
can be used to create so-called non-diffracting Bessel beams [Hernandez-
Figueroa et al., 2014]. Useful reviews of axicon lenses are presented
in [Soroko, 1989] and [Jaroszewicz, 1997].

Three types of axicons can be distinguished: diffractive axicons [Edmonds,
1974;Durnin et al., 1987; Tervo and Turunen, 2001], reflective axicon-
s [Fujiwara, 1962; Turunen and Friberg, 1993a; Dutta et al., 2014;
Radwell et al., 2016] and refractive axicons [McLeod, 1960; Zapata-
Rodriguez and Sanchez-Losa, 2005]. In this study we consider the
latter variety. A vector analyisis for lenses that produce a converging
spherical wavefront has been presented in a well-known study by Richard-
s and Wolf [Richards and Wolf, 1959]. However, an electromagnetic
study of refractive axicons, as presented here, has to the best of our knowl-
edge not been undertaken yet.

We begin by briefly reviewing several axicon properties. In section 6.2
a geometrical optics approach is used. This is followed by a scalar wave
analysis in section 6.3, in which also the transition of the line image into
a ring-shaped intensity profile is examined. In section 6.4 we derive ex-
pressions for the electromagnetic field that is produced by incident beams
whose polarization state is either uniform, e.g., beams that are linear-
ly polarized, or whose polarization state is non-uniform [Brown, 2011],
namely beams with radial or azimuthal polarization. We apply these for-
mulas in Section 6.5 to study the on-axis intensity, the effective on-axis
wavelength, the tranverse field intensity, the state of polarization, and the



Chapter 6. The field produced by a refractive axicon 107

far-zone field. Throughout our analysis we make use of the paraxial ap-
proximation. This justifies neglecting the longitudinal field components.

α

α

z

L

β

γ
a

z = 0A

β − α
n

Figure 6.1: A refractive axicon with radius a, base angle α and refractive
index n. Rays are normally incident on the front face A. A marginal ray
crosses the z-axis at a distance L from the apex which is taken to be in
the plane z = 0.

6.2 Geometrical rays

A linear, plano-convex refractive axicon, as sketched in Fig. 6.1, is ro-
tationally symmetric about the z axis and has a cone-shaped form. For
holding the cone during manufacturing and use, a cylindrical section is
necessary. The axicon is characterized by three parameters: the refractive
index n, the base angle α, and the radius a. We consider an axicon that
is illuminated by a collection of rays that are all parallel to the z axis.
At the conical surface of the axicon these rays are refracted toward the
axis, all under the same angle β − α . It is seen that they are focussed
along a line which extends over a distance L from the apex of the cone, as
shown in Fig. 6.1. From Snell’s law we have that sinβ = n sinα. Hence
the length of the focal line equals

L = a tan γ − a tanα, (6.1)

with the angle γ given by the expression

γ = 90◦ − β + α. (6.2)
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The length of the focal line versus the base angle α is shown in Fig. 6.2. It
is seen that for applications in which a long focal line is needed, the base
angle must be quite small. We will from here on restrict ourselves to this
paraxial regime.

L [m]

α [deg.]

Figure 6.2: The length L of the focal line as a function of the base angle
α. In this example the refractive index n = 1.5, and the axicon radius
a = 2 cm.

We assume that the incident field has a Gaussian intensity profile, i.e.,

I(in)(ρ) = I0 exp(−2ρ2/w2
0), (6.3)

with I0 and w0 positive constants, and ρ = |(x, y)| being the radial distance
from the z-axis. In order to calculate the axial intensity distribution, we
consider a thin ring on the front face A with inner radius ρ and outer
radius ρ+ δρ. The power flow through the ring is

P (ρ) = I0 exp(−2ρ2/w2
0)2πρ δρ. (6.4)

The transmitted portion of this power is projected onto the z axis between
the two positions

L1 = ρ(tan γ − tanα), (6.5)

L2 = (ρ+ δρ)(tan γ − tanα), (6.6)

where we have used Eq. (6.1) with the variable a replaced by the radial
distances ρ and ρ + δρ, respectively. The rays carrying this power make
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an angle β−α with the z axis. If we define the length δL = L2−L1, then
the axial intensity or “power per unit length” equals

P (ρ)

δL
T 2
1 (ω)T

2
2 (ω) cos(β − α) =

2πI0T
2
1 (ω)T

2
2 (ω) cos(β − α)

tan γ − tanα
ρ exp

(
−2ρ2/w2

0

)
. (6.7)

Here T1(ω) and T2(ω) are the amplitude transmission coefficients at fre-
quency ω of the air-glass interface for normal incidence, and of the glass-air
interface for incidence at an angle α, respectively. From Eq. (6.1) we find
that z = ρ(tan γ − tanα), and thus the axial intensity is given by the
formula

I(z) = D1z exp[−2z2/w2
0(tan γ − tanα)2], (6.8)

where we have introduced the abbreviation

D1 =
2πI0T

2
1 (ω)T

2
2 (ω) cos(β − α)

(tan γ − tanα)2
. (6.9)

This factor is independent of the position z. Note that this geometrical
model predicts a non-zero field on axis only when 0 ≤ z ≤ L. In the next
section we will compare the prediction of Eq. (6.8) with the result of a
scalar analysis.

6.3 Scalar fields

Let us next consider a plane, monochromatic scalar wave of frequency ω
with a Gaussian amplitude distribution, that is propagating in the positive
z direction. The wave is normally incident on the front face A of the
axicon. In the space-frequency domain this wave can be represented as

U (in)(ρ, ω) = U0(ω) exp(−ρ2/w2
0), (6.10)

where U0(ω) denotes the spectral amplitude, which we take to be unity,
and w0 is the beam width in the plane A (see Fig. 6.3) . The base angle α is
taken to be quite small, which justifies using the paraxial approximation.
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Figure 6.3: A paraxial refractive axicon with radius a, base angle α and
refractive index n. A plane wave with a Gaussian amplitude distribution
is normally incident on the front face A. The thickness of the cylindrical
base is denoted by t, and z = 0 indicates the output plane.

In order to calculate the field in the output plane z = 0, we notice that at
position Q′(ρ, 0) the field has travelled a length d through air, namely

d ≈ ρ tanα ≈ ρα. (6.11)

The phase difference ∆ between the field at Q′ and that on the z axis is
therefore

∆ = (1− n)kd = (1− n)kρα, (6.12)

where k denotes the free-space wavenumber associated with frequency ω.
We thus find that the output field in the plane z = 0 is related to the
incident field in the entrance plane A by the formula

U (out)(ρ, ω) = T (ρ, ω)U (in)(ρ, ω), (6.13)

with T (ρ, ω) given by the expression

T (ρ, ω) = C(ω) exp[ik(1− n)ρα], (6.14)

and with the factor C(ω) being independent of ρ, namely

C(ω) = T1(ω)T2(ω) exp(iknt). (6.15)
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Here T1(ω) and T2(ω) are the transmission coefficients defined below E-
q. (6.7), and t is the thickness of the cylindrical axicon base.

The field at a position P (r) behind the lens is, according to the
Huygens-Fresnel principle [Born and Wolf, 1995, Chap. 8], given by
the expression

U(r, ω) = − i

λ

∫∫
z=0

U (out)(ρ′, ω)
eikR

R
d2ρ′, (6.16)

where R = [z2 + (x− ξ)2 + (y − η)2]1/2 is the distance between P (x, y, z)
and Q′(ξ, η, 0), and λ is the free-space wavelength. Using the Fresnel
approximation, together with Eq. (6.13), this diffraction integral can be
expressed as

U(x, y, z) = − iC

λz
exp(ikz)

×
∫∫

z=0
exp

[
ik(1− n)

√
ξ2 + η2α

]
× exp[−(ξ2 + η2)/w2

0]

× exp

{
i
k

2z
[(x− ξ)2 + (y − η)2]

}
dξdη, (6.17)

where for brevity the ω-dependence has been omitted. In cylindrical co-
ordinates

ρ′ = (ξ, η) = ρ′(cosµ, sinµ), (6.18)

ρ = (x, y) = ρ(cos δ, sin δ), (6.19)

the field at P can be written as

U(ρ, z) = − iC

λz
exp(ikz) exp

(
i
k

2z
ρ2
)

×
∫ 2π

0

∫ a

0
exp

[
ik(1− n)ρ′α

]
exp(−ρ′2/w2

0)

× exp

(
i
k

2z
ρ′2
)

× exp

[
−i

kρρ′

z
cos(µ− δ)

]
ρ′dρ′dµ. (6.20)
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The integral over the angle µ is independent of δ, and hence we obtain the
formula

U(ρ, z) = − i2πC

λz
exp(ikz) exp

(
i
k

2z
ρ2
)

×
∫ a

0
exp

[
ik(1− n)ρ′α

]
exp

(
i
k

2z
ρ′2
)

× exp(−ρ′2/w2
0)J0

(
kρρ′

z

)
ρ′dρ′, (6.21)

with J0 a Bessel function of the first kind of order zero. The intensity
then follows from the definition

I(ρ, z) = |U(ρ, z)|2. (6.22)

The oscillatory integral in Eq. (6.21) can be evaluated numerically, but
it is instructive to find an approximate solution by using the method of
stationary phase [Mandel and Wolf, 1995, Sec. 3.3]. If we consider
only the contribution of the interior stationary point, which means that
the edge contribution is ignored, the result is (see Appendix A for details)

U(ρ, z) = −iC(2πkz)1/2(n− 1)α exp(iπ/4) exp(ikz)

× exp
(
ikρ2/2z

)
exp

[
−ikz(n− 1)2α2/2

]
× exp[−z2(1− n)2α2/w2

0]J0[(n− 1)kρα],

(for 0 < z < L). (6.23)

For the intensity we hence find that

I(ρ, z) = D2 z exp[−2z2(1− n)2α2/w2
0]

× {J0[(n− 1)kρα]}2 , (for 0 < z < L), (6.24)

where the constant D2 is independent of position and given by the expres-
sion

D2 = C22πk(n− 1)2α2. (6.25)

Before discussing the implications of the these diffraction integrals, it is
important to note that Eq. (6.21) is valid for all axial positions z, but that
Eq. (6.23) applies only for the interval 0 ≤ z ≤ L. When z is beyond the
focal line the method of stationary phase, just like the geometrical model,
predicts an axial field that is identically zero.
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Figure 6.4: The normalized intensity distribution along the z axis as given
by geometrical optics [Eq. (6.8)] (blue), wave optics using the full diffrac-
tion integral [Eq. (6.21)] (green), and wave optics using the method of sta-
tionary phase [Eq. (6.24)] (red). In panel (a) the beam waist w0 = 0.5 cm,
in panel (b) w0 = 1 cm. In both these examples the refractive index
n = 1.5, the base angle α = 1◦, the axicon radius a = 1 cm, and the
wavelength λ = 632.8 nm.
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6.3.1 The axial intensity

The axial intensity distribution produced by an axicon is shown in Fig. 6.4(a)
based on the three different models we have discussed so far: geometri-
cal optics [Eq. (6.8)], scalar wave optics using the full diffraction integral
[Eq. (6.21)], and scalar wave optics using the method of stationary phase
[Eq. (6.24)]. For our first choice of parameters the three curves are vir-
tualy indistinguishable. The intensity is seen to first rise, after which an
exponential decay sets in. The length of the focal line as calculated from
Eq. (6.1), L = 1.15 m in this case. The beam waist w0 was taken to
be less than the axicon radius. Neglecting the boundary contribution, as
is done in the stationary phase expression Eq. (6.24), is then justified.
However, when the waist size and the radius are set equal, as illustrated
in panel (b), the edge contribution becomes significant. The diffaction
integral Eq. (6.21), in which the edge contribution is not neglected, now
predicts an intensity with a modulation with increasing size and decreas-
ing periodicity, followed by a steep decline to zero. That the boundary
contribution leads to an oscillatory intensity has been discussed previous-
ly, e.g., in [Durnin et al., 1987] and [Horvath and Bor, 2001]. This
behavior is in stark contrast with Eqs. (6.8) and Eq. (6.24). These two
formulas both still predict a smooth intensity distribution, but now with
a discontinuous drop to zero at the end of the focal line (z = L).

6.3.2 The transverse intensity

The normalized transverse intensity distribution, as given by Eq. (6.24),
is seen to be

I(ρ) = {J0[(n− 1)kρα]}2 , (z < L), (6.26)

which is independent of z. It is this ability of axicons to produce “diffraction-
free,” or “propagation-invariant” Bessel beams that has attracted much
attention [Turunen et al., 1988; Vasara et al., 1989; Turunen and
Friberg, 1993b; Turunen and Friberg, 2009; Levy et al., 2016]. Be-
cause Eq. (6.26) is only valid when z < L, it cannot be used to investigate
the transition of the axicon line image to a ring-shaped profile. We there-
fore use Eq. (6.21), which, in contrast to Eq. (6.26), does not rely on the
stationary phase approximation. In Fig. 6.5 the transverse intensity is
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Figure 6.5: The normalized transverse intensity distribution according to
Eq. (6.21) in different planes. From left to right, z = 1 m, 2 m, 3 m and
4 m. In these examples λ = 632.8 nm; α = 1◦, w0 = 1 cm, a = 1 cm and
n = 1.5.

shown in different cross-sections. The left-most curve (z = 1 m), is prac-
tically identical with the J2

0 prediction of Eq. (6.26). For values larger
than the focal line length L = 1.14 m [see Eq. (6.1)], the distribution gets
progressively broader. We note that, for clarity, all curves in Fig. 6.5 are
normalized to 1 at ρ = 0. In reality, obviously, the axial intensity will
decrease when z gets larger.

The gradual broadening of the central peak is accompanied by the
onset of side lobes, which eventually leads to a ring-like intensity profile.
This is shown in Fig. 6.6 where the horizontal axis indicates the polar angle
θ, rather than the radial distance ρ. The side lobes, positioned between
θ = 0.002 and θ = 0.008, have a maximum intensity that increases with
increasing z. Gradually, this maximum begins to exceed the unit intensity
on the axis (θ = 0).

The influence of the beam waist parameter w0 can be examined by
increasing its value from 1 cm to 1 m. The result is shown in Figure 6.7,
in which it can be seen that the position of the maxima remains the same,
but the secondary sidelobes are now more suppressed.

For even larger distances, as plotted in Fig. 6.8, these side lobes get
narrower, and a ring-like field develops around the angle θ = β − α =
0.0087, which is precisely the geometrical angle of refraction shown in
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I (  ) [a.u.]θ

θ

Figure 6.6: The transverse intensity distribution according to Eq. (6.21),
normalized to unity at θ = 0, as a function of the polar angle, in different
cross-sections. From left to right, z = 1.4 m, 1.6 m, 1.8 m, 2.0 m and
2.2 m. All parameters are the same as in Fig. 6.5.

I (  ) [a.u.]θ

θ

Figure 6.7: The transverse intensity distribution according to Eq. (6.21),
normalized to unity at θ = 0, as a function of the polar angle, in different
cross-sections. From left to right, z = 1.4 m, 1.6 m, 1.8 m, 2.0 m and
2.2 m. The beam waist w0 is now increased to 1 m, from 1 cm in Figs. 6.5
and 6.6. All the other parameters are the same as in Fig. 6.5.
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θ

I (  )  [a.u.]θ

Figure 6.8: The transverse intensity distribution according to Eq. (6.21),
normalized to unity at θ = 0, as a function of the polar angle, in different
cross-sections. From left to right, z = 10 m, 15 m, and 20 m. The beam
waist w0 = 1 m. All other parameters are the same as in Fig. 6.5.

Fig. 6.1. Notice that in Figs. 6.5 to 6.8 the same normalization is used.
This means, for example, that for the right-most curve in Fig. 6.8, (z =
20 m), the intensity of the ring-like side lobe is about 16 times higher than
that of the field on axis.

6.4 Electromagnetic fields

In this section we analyze two types of incident electromagnetic beams,
namely beams with a uniform polarization, i.e., beams whose state of
polarization is the same at all points in a cross-section, and radially and
azimuthally polarized beams, which are non-uniformly polarized.

6.4.1 Linear polarization

We begin by assuming a monochromatic, normally incident field that is
linearly polarized along the x-direction, i.e.,

E(in)(r) = E0 x̂ eikz = E0(1, 0, 0)e
ikz, (6.27)

with E0 > 0. We note that this incident field has a constant amplitude, in
contrast to the Gaussian fields that were discussed in earlier sections. The
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Fresnel transmission coefficient T1 for normal incidence at the front face
A gives rise to an overall amplitude factor that is independent of position,
i.e. [Jackson, 1998, Sec. 7.3]

T1 =
2

n+ 1
. (6.28)

As can be seen from Fig. 6.3, the field travels a distance t+α(a− ρ) from
the entrance plane A to the inside of the conical surface. Hence the field
there, indicated by the superscript (−), equals

E(−)(r) = E0T1e
ikzeikn[t+α(a−ρ)](1, 0, 0). (6.29)

The inward normal vector of the cone is given by the expression

n̂ = −(sinα cosϕ, sinα sinϕ, cosα), (6.30)

where the caret symbol denotes a unit vector. We define the vector s,
which is normal to the plane of incidence at the conical surface, as

s = ẑ× n̂, (6.31)

= (sinα sinϕ,− sinα cosϕ, 0). (6.32)

The vector p̂, which lies in the plane of incidence and is also perpendicular
to the wave vector within the axicon, is defined as

p̂ = ẑ× ŝ, (6.33)

= (cosϕ, sinϕ, 0). (6.34)

The electric field vector can now be decomposed into an s and a p polarized
part by writing

E(−)(ρ, ϕ) = E(−)
s (ρ, ϕ) +E(−)

p (ρ, ϕ), (6.35)

with

E(−)
s (ρ, ϕ) = [E(−)(ρ, ϕ) · ŝ] ŝ, (6.36)

= Λ(ρ)(sin2 ϕ,− cosϕ sinϕ, 0). (6.37)

E(−)
p (ρ, ϕ) = [E(−)(ρ, ϕ) · p̂] p̂, (6.38)

= Λ(ρ)(cos2 ϕ, cosϕ sinϕ, 0), (6.39)
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and where we introduced the abbreviation

Λ(ρ) = E0T1e
ikzeikn[t+α(a−ρ)]. (6.40)

These two field components are transmitted with their respective Fres-
nel coefficients, Ts and Tp, for which we have [Born and Wolf, 1995,
Sec. 1.5.2]

Ts =
2n cosα

n cosα+
√

1− n2 sin2 α
, (6.41)

Tp =
2n cosα

cosα+ n
√

1− n2 sin2 α
. (6.42)

Whereas the s polarized part remains otherwise unchanged, the p polarized
part of the electric field is, according to Snell’s law, also rotated over an
angle β − α around the vector s (see Fig. 6.1), with

sinβ = n sinα. (6.43)

If we now introduce a vector q̂ by defining

q̂ = (cos(β − α) cosϕ, cos(β − α) sinϕ, sin(β − α)), (6.44)

it is readily verified that

q̂ · ŝ = 0, (6.45)

and that

q̂ · p̂ = cos(β − α). (6.46)

This demonstrates that this rotation indeed transforms the vector p̂ into
q̂. Hence the field a the right-hand side of the conical surface, indicated
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by the superscript (+), equals

E(+)(ρ, ϕ) = Ts[E
(−)(ρ, ϕ) · ŝ]ŝ

+ Tp[E
(−)(ρ, ϕ) · p̂]q̂, (6.47)

= TsΛ(ρ)

 sin2 ϕ
− cosϕ sinϕ

0


+ TpΛ(ρ)

 cos(β − α) cos2 ϕ
cos(β − α) cosϕ sinϕ

sin(β − α) cosϕ

 . (6.48)

The assumption of paraxiality allows us to neglect the relatively small z
component of the electric field in Eq. (6.48) that is introduced by refraction
of the p-polarized part. In addition, we note that the Fresnel coefficients
are related by the expression [Born and Wolf, 1995, Sec. 1.5.2]

Tp cos(β − α) = Ts. (6.49)

On making use of this in Eq. (6.48), it follows that the expression for the
x component simplifies, and that the y component vanishes, and hence we
find that

E(+)(ρ, ϕ) = TsΛ(ρ)(1, 0, 0). (6.50)

The field on the right-hand side of the axicon surface propagates to the
output plane z = 0. As indicated by Eq. (6.11), this involves a distance
d = ρα in air, giving rise to a phase factor of exp(ikρα). Hence the field
E(out)(ρ, ϕ) in the output plane is given by the expression

E(out)(ρ, ϕ) = exp(ikρα)E(+)(ρ, ϕ), (6.51)

= exp(ikρα)TsΛ(ρ)(1, 0, 0).

(x-polarization) (6.52)

We note that this output field has no ϕ-dependence.
Having established the field in the output plane, the field in the half-

space z > 0 can be calculated by using the diffraction formula

E(r) =
1

2π
∇×

∫
z′=0

[
ẑ×E(out)(r′)

] eikR
R

d2r′, (6.53)
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where R = |r − r′|. We note that Eq. (6.53) is derived in [Jackson,
1998, Sec. 10.7] for apertures in a plane conducting screen. However, it is
valid for any planar surface, as is shown in [Toraldo di Francia, 1955,
pp. 218–221]. On substituting from Eq. (6.52) into Eq. (6.53) we find that

E(r) =
1

2π

∫
z′=0

 −E
(out)
x (r′)∂z

0

E
(out)
x (r′)∂x

 eikR

R
d2r′. (6.54)

Whereas in Eq. (6.48) the z component was introduced by refraction,
in Eq. (6.54) it arises as a result from diffraction. Differentiation with
respect to z of the factor exp(ikR)/R introduces a prefactor z, whereas
differentiation with respect to x leads to a factor x− x′. Therefore the z
component of the diffracted field drops off quickly with increasing z, and
may therefore be neglected. Hence we find that

E(r) =
−Ts

2π
x̂

∫
z′=0

eikρ
′αΛ(ρ′)∂z

eikR

R
d2r′.

(x-polarization) (6.55)

We will make use of this expression in Sec. 6.5.
We have thus far considered an incident beam that is linearly polar-

ized along the x direction. Let us now generalize this to beams with an
arbitrary, but uniform state of polarization, namely

E(in)(r) = E0 û eikz, (6.56)

where

û = Axx̂+Ayŷ, (6.57)

and with Ax and Ay complex-valued constants such that |Ax|2+|Ay|2 = 1.
For example, Ay = iAx represents a circularly polarized beam. Because
the axicon is a linear system with rotational symmetry, the resulting field
in the half-space z > 0 can be found by simply adding the contributions



122 6.4. Electromagnetic fields

of both field components of Eq. (6.57), i.e.,

E(r) =− 1

2π
AxTsx̂

∫
z′=0

eikρ
′αΛ(ρ′)∂z

eikR

R
d2r′

− 1

2π
AyTsŷ

∫
z′=0

eikρ
′αΛ(ρ′)∂z

eikR

R
d2r′.

(uniform polarization) (6.58)

This expression demonstrates that the x and y field components every-
where in the half-space z > 0 have the same amplitude and phase relation
as the two components of the incident field. We therefore conclude that
the state of polarization of the diffracted field is the same as that of the
uniformly polarized incident beam.

We next turn our attention to two types of beams with a non-uniform
state of polarization.

6.4.2 Radial Polarization

Consider a monochromatic, normally incident beam that is radially polar-
ized, i.e.,

E(in)(r) = E0 ρ̂ eikz, (6.59)

= E0 (cosϕ, sinϕ, 0) e
ikz. (6.60)

The field at the left-hand side of the axicon surface is

E(−)(r) = E0T1e
ikzeikn[t+α(a−ρ)]ρ̂, (6.61)

= Λ(ρ) (cosϕ, sinϕ, 0), (6.62)

with Λ(ρ) defined by Eq. (6.40). The s-polarized part is zero, i.e.,

E(−)(ρ, ϕ) · ŝ = 0, (6.63)

whereas the p-polarized part equals

E(−)(ρ, ϕ) · p̂ = Λ(ρ). (6.64)
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The field at the right-hand side of the axicon surface is then

E(+)(ρ, ϕ) = Tp[E
(−)(ρ, ϕ) · p̂] q̂, (6.65)

= Tp Λ(ρ)

 cos(β − α) cosϕ
cos(β − α) sinϕ

sin(β − α)

 . (6.66)

If we again neglect the weak z component and make use of Eq. (6.49) we
find that the output field in the plane z = 0 is given by the formula

E(out)(ρ, ϕ) = exp(ikρα)E(+)(ρ, ϕ), (6.67)

= Ts Λ(ρ) exp(ikρα)(cosϕ, sinϕ, 0).

(radial polarization) (6.68)

We will momentarily analyze the diffracted field produced by a radially
polarized beam by substituting from Eq. (6.68) into Eq. (6.53).

6.4.3 Azimuthal Polarization

Consider a monochromatic, normally incident beam that is azimuthally
polarized, i.e.,

E(in)(r) = E0 ϕ̂ eikz, (6.69)

= E0 (− sinϕ, cosϕ, 0) eikz. (6.70)

The field at the left-hand side of the axicon surface is

E(−)(r) = E0T1e
ikzeikn[t+α(a−ρ)]ϕ̂,

= Λ(ρ) (− sinϕ, cosϕ, 0), (6.71)

with Λ(ρ) defined by Eq. (6.40). The s-polarized part is

E(−)(ρ, ϕ) · ŝ = −Λ(ρ), (6.72)

whereas the p-polarized part now equals zero, i.e..

E(−)(ρ, ϕ) · p̂ = 0. (6.73)



124 6.5. The electromagnetic field of an axicon

The field at the right-hand side of the axicon surface is therefore

E(+)(ρ, ϕ) = Ts[E
(−)(ρ, ϕ) · ŝ] ŝ, (6.74)

= −Ts Λ(ρ)(sinϕ,− cosϕ, 0), (6.75)

and hence the output field in the plane z = 0 is given by the formula

E(out)(ρ, ϕ) = exp(ikρα)E(+)(ρ, ϕ), (6.76)

= −Ts Λ(ρ) exp(ikρα)(sinϕ,− cosϕ, 0).

(azimuthal polarization) (6.77)

We will analyze the field produced by an azimuthally polarized beam by
substituting from Eq. (6.77) into Eq. (6.53).

6.5 The electromagnetic field of an axicon

We are now in a position to compare the field on-axis, the transverse
intensity, and the intensity in the far zone for each of the three types of
polarization that we discussed in the previous section.

6.5.1 The axial intensity

For linear polarization we find, by applying Eq. (6.55) to points on the z
axis and using polar coordinates, for the only non-zero component of the
electric field the expression

Ex(0, 0, z) =
z

2π
Ts

∫ a

0

∫ 2π

0
exp[ikρ′α]Λ(ρ′)

× eikR

R2

[
1

R
− ik

]
ρ′ dϕ′dρ′, (6.78)

= zTsE0T1e
ikn(t+αa)

∫ a

0
eik(1−n)ρ′α

× eikR

R2

[
1

R
− ik

]
ρ′ dρ′, (6.79)

where R = (ρ′2 + z2)1/2.
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I (z) [a.u.]

z [m]

Figure 6.9: The axial intensity distribution I(z) = |Ex(0, 0, z)|2 for an
incident beam that x-polarized, as given by Eq. (6.79). In this example
n = 1.5, a = 1 cm, α = 1◦, and λ = 632.8 nm.

The axial intensity I(z) = |Ex(0, 0, z)|2 is plotted in Fig. 6.9. It is seen
that for increasing z the intensity oscillates more strongly and then drops
suddenly to zero. If we compare this with the scalar result [Eq. (6.21)],
for the case of an incident plane wave, i.e., for a beam waist w0 ≫ a,
the two results are virtually indistinguishable. This should not come as
a surprise; in the paraxial regime that we are dealing with, with a base
angle α = 1◦, we expect the scalar case to give results that are similar to
that for a linearly polarized field.

For an incident beam that is radially polarized, we find that applying
the diffraction integral of Eq. (6.53) to the output field given by Eq. (6.68),
yields that both Ex and Ey are zero. As before, we neglect the z compo-
nent of the electric field.

For an incident beam that is azimuthally polarized, substitution from
Eq. (6.77) into Eq. (6.53) yields that all three components of the elec-
tric are zero for points along the central axis. Hence we conclude that
the axial intensity is non-zero when the incident beam is uniformly po-
larized, whereas it is zero for an incident beam with radial or azimuthal
polarization.



126 6.5. The electromagnetic field of an axicon

6.5.2 The effective wavelength on axis

The rays that are refracted by the axicon all propagate under an angle
β−α with the central axis (see Fig. 6.1). We therefore expect the effective
axial wavelength λeff to be given by the expression

λeff =
λ

cos(β − α)
, (6.80)

with λ the free-space wavelength of the incident field. We can verify this
prediction by numerically determining the succesive zeros of the argument
(or phase) of Ex(0, 0, z), using Eq. (6.79). This was done for three different
values of the axicon base angle α, at a position halfway along the focal
line, i.e., at z = L/2, [see Eq. (6.1)]. The results are shown in Table 6.3.2,
and indicate an excellent agreement within the paraxial regime. This is
in contrast with findings reported earlier for systems with a much higher
angular aperture [Foley and Wolf, 2005; Visser and Foley, 2005].

base angle α Eq. (6.80) [nm] Eq. (6.79) [nm]

1.0◦ 632.82 632.83

2.5◦ 632.95 632.95

5.0◦ 633.41 633.37

Table 6.1: The effective wavelength on axis for an incident beam with
λ = 632.8 nm.

6.5.3 The transverse intensity

Scalar theory, using the method of stationary phase, predicts a normalized
transverse intensity profile that is given by Eq. (6.26)

I(ρ) = {J0[(n− 1)kρα]}2 , (z < L), (6.81)

which is independent of z. If one does not make use of the stationary
phase approximation, scalar theory predicts a more complex behavior,
as illustrated by Figs. 6.5–6.8. On the other hand, the electromagnetic
analysis for a linearly polarized beam leads to Eq. (6.55), from which we
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find for the only non-zero field component that

Ex(r) =
−1

2π

∫
z′=0

E(out)
x (r′)∂z

eikR

R
d2r′, (6.82)

= −z
TsE0T1

2π
eikn(t+αa)

×
∫ a

0

∫ 2π

0
eikρ

′α(1−n) e
ikR

R2
[ik − 1/R] ρ′ dϕ′dρ′,

(linear polarization) (6.83)

with

R =
√
(x− ρ′ cosϕ′)2 + (y − ρ′ sinϕ′)2 + z2. (6.84)

The results of a numerical evaluation of Eq. (6.83) are, just as for the axial
intensity, practically indistinguishable from the scalar results for a large
beam waist that were presented in Section 6.3.

The transverse field for the radially polarized case is obtained by sub-
stituting from Eq. (6.68) into Eq. (6.53). The resulting expressions are

Ex(r) =
−zTs

2π

∫ a

0

∫ 2π

0
Λ(ρ′) cosϕ′ eikρ

′α(ik − 1/R)

× eikR

R2
ρ′ dϕ′dρ′, (6.85)

Ey(r) =
−zTs

2π

∫ a

0

∫ 2π

0
Λ(ρ′) sinϕ′ eikρ

′α(ik − 1/R)

× eikR

R2
ρ′ dϕ′dρ′.

(radial polarization) (6.86)

The transverse field for the azimuthally polarized case is obtained by
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Figure 6.10: Comparison of the transverse intensity distribution for an
incident beam that x-polarized ([Eq. (6.83)] (purple and green curves), and
for a radially polarized [Eqs. (6.85) and (6.86)] or azimuthally polarized
beam [Eqs. (6.87) and (6.88)] (red and blue curves), for z = 0.5 m and
z = 1.5 m. The other parameters are n = 1.5, a = 1 cm, α = 1◦, and
λ = 632.8 nm.

substituting from Eq. (6.77) into Eq. (6.53). The resulting expressions are

Ex(r) =
zTs

2π

∫ a

0

∫ 2π

0
Λ(ρ′) sinϕ′ eikρ

′α(ik − 1/R)

× eikR

R2
ρ′ dϕ′dρ′, (6.87)

Ey(r) =
−zTs

2π

∫ a

0

∫ 2π

0
Λ(ρ′) cosϕ′ eikρ

′α(ik − 1/R)

× eikR

R2
ρ′ dϕ′dρ′.

(azimuthal polarization) (6.88)

On comparing Eqs. (6.87) and (6.88) with Eqs. (6.85) and (6.86), it
is seen that an azimuthally polarized beam and a radially polarized beam
produce exactly the same transverse intensity distribution. The trans-
verse intensity distributions for a radially or azimuthally polarized beam
and a linearly polarized beam are compared in Fig. 6.10. The radially
and azimuthally polarized beams produce identical fields with a dark core
that is surrounded by rings of decreasing intensity. When the plane of
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observation is changed from z = 0.5 m to z = 1.5 m, the central peak of
the linearly polarized field broadens (purple and green curves), whereas
the first peak of the radially or azimuthally polarized field is seen to move
outward (red and blue curves).

6.5.4 The far-zone intensity

Far away from the output plane (z = 0), Eq. (6.53) for the diffracted field
takes the asymptotic form [Jackson, 1998, Eq. 10.109]

E(rr̂) = ik
eikr

2πr
r̂×

∫
z′=0

ẑ×E(out)(r′)e−ikr̂·r′ d2r′. (6.89)

A derivation of Eq. (6.89) can be found in Appendix B. On defining the
integrals

Ei(rr̂) = ik
eikr

2πr

∫
z′=0

E
(out)
i (r′)e−ikr̂·r′ d2r′ (i = x, y, z), (6.90)

where the unit vector corresponding to the directon of observation is given
by

r̂ = (sin θ cosϕ, sin θ sinϕ, cos θ), (6.91)

we can derive that, with E(out)(r′) given by Eq. (6.52),

E(rr̂) =

 − cos θ Ex(rr̂)
0

sin θ cosϕ Ex(rr̂)

 .

(x-polarization) (6.92)

Because of the assumption of paraxiality, we have that sin θ ≪ cos θ, and
the z component of the field may again be neglected. On substituting
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from Eq. (6.52) into the definition (6.90), we obtain the expression

Ex(rr̂) = ik
eikr

2πr
Ts

∫ a

0
eikρ

′αΛ(ρ′)ρ′

×
{∫ 2π

0
e−ikρ′ sin θ cos(ϕ′−ϕ) dϕ′

}
dρ′. (6.93)

= ik
eikr

r
TsT1E0e

ikn(t+αa)

×
∫ a

0
eikρ

′α(1−n)ρ′J0(kρ
′ sin θ) dρ′.

(x-polarization) (6.94)

The far-zone intensity

I(θ) = |Ex(rr̂)|2 = cos2 θ|Ex(rr̂)|2, (6.95)

is plotted in Fig. 6.11 as a function of the angle θ. The intensity is seen to
be sharply-peaked, corresponding to a thin, ring-like distribution. In this
case the ring subtends an angle θ = 0.0087 at the origin. We note that
this is in exact agreement with the geometrical angle of refraction β − α,
as depicted in Fig. 6.1.

 I (   ) [a.u.]θ

θ

Figure 6.11: The far-zone intensity distribution I(θ) as given by Eq. (6.95)
for an incident beam that is x-polarized. In this example n = 1.5, a =
1 cm, α = 1◦, and λ = 632.8 nm.
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When the incident beam is radially polarized, substitution from E-
q. (6.68) into Eq. (6.89) yields

E(rr̂) =

 − cos θ Ex(rr̂)
− cos θ Ey(rr̂)

0

 , (6.96)

where

Ex(rr̂) = k
eikr

r
TsT1E0e

ikn(t+αa) cosϕ

×
∫ a

0
eikρ

′α(1−n)ρ′J1(kρ
′ sin θ) dρ′, (6.97)

Ey(rr̂) = k
eikr

r
TsT1E0e

ikn(t+αa) sinϕ

×
∫ a

0
eikρ

′α(1−n)ρ′J1(kρ
′ sin θ) dρ′.

(radial polarization) (6.98)

It is clear from the ϕ dependence in Eqs. (6.97) and (6.98) that the far-zone
field is radially polarized, as is to be expected.

In a similar fashion, we find from substituting from Eq. (6.77) into
Eq. (6.89) that for an azimuthally polarized beam

E(rr̂) =

 cos θ Ex(rr̂)
cos θ Ey(rr̂)

0

 , (6.99)

with

Ex(rr̂) = −k
eikr

r
TsT1E0e

ikn(t+αa) sinϕ

×
∫ a

0
eikρ

′α(1−n)ρ′J1(kρ
′ sin θ) dρ′, (6.100)

Ey(rr̂) = k
eikr

r
TsT1E0e

ikn(t+αa) cosϕ

×
∫ a

0
eikρ

′α(1−n)ρ′J1(kρ
′ sin θ) dρ′.

(azimuthal polarization) (6.101)
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It is seen from Eqs. (6.100) and (6.101) that this field is azimuthally po-
larized. A comparison of Eqs. (6.96) and (6.99) shows that the far zone
intensity produced by radially polarized and azimuthally polarized beams
are identical. Moreover, a numerical evaluation shows that the far-zone in-
tensity distribution for these two types of polarization is the same as that
for a linearly polarized beam shown in Fig. 6.11. This may seem some-
what counterintuitive because Eq. (6.94) involves a J0 function, whereas
the corresponding expressions for the radial and azimuthal cases contain
a J1 function. However, the respective integrands are all products of t-
wo rapidly oscillating functions, namely an exponent and a J0 or a J1
Bessel function. Loosely speaking, these oscillations will tend to cancel
each other, exept when they occur in unison. This happens when the
functional arguments are equal, i.e., when −kρ′α(1−n) = kρ′ sin θ, which
implies that these integrals will all be approximately zero except when
sin θ = β − α. This is precisely the geometrical angle of refraction that
was mentioned above in connection with Fig. 6.11.

6.6 Conclusions

We have analyzed the field of a paraxial refractive axicon within the frame-
works of geometrical optics, scalar optics and electromagnetic optics. The
field along the central axis, and the transition to a ring-like distribution
were examined. It was shown that the scalar theory and the electro-
magnetic theory are in very good agreement for the case of an incident
beam that is linearly polarized. However, scalar theory cannot describe
the field that is produced when the incident beam is radially polarized
or azimuthally polarized. In those two latter cases the axial intensity is
zero, and the transverse intensity is a field with a dark core surrounded
by rings of decreasing intensity. In the far-zone, the axicon produces a
ring-like field whose intensity distribution is independent of the state of
polarization of the incident field.
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Appendix A - Derivation of Eq. (6.23)

In this appendix the stationary-phase calculation of the axicon field is out-
lined, c.f. [Friberg, 1996]. We note that this method applies to systems
for which the Fresnel number N = a2/(λL) ≫ 1, see [Zapata-Rodriguez
and Sanchez-Losa, 2005] To this end, let us assume that f(ρ′) and g(ρ′)
are two well-behaved functions in an integral in the form of

F (k) =

∫ a

0
f(ρ′) exp[ikg(ρ′)] dρ′. (A-1)

If k tends to infinity, the general solution of this integral is [Mandel and
Wolf, 1995, Sec. 3.3]

F (k) ∼
(
2π

k

)1/2 exp(±iπ/4)

|g′′(ρ′c)|1/2
f(ρ′c) exp[ikg(ρ

′
c)],

(k → ∞), (A-2)

where ρ′c is known as the critical point, which is obtained when the deriva-
tive of g(ρ′) is zero, i.e., g′(ρ′) = 0. From comparing Eqs. (6.21) and (A-1),
it is clear that

f(ρ′) = exp(−ρ′2/w2
0)J0

(
kρρ′

z

)
ρ′, (A-3)

g(ρ′) = (1− n)ρ′α+
ρ′2

2z
. (A-4)

Thus, the derivatives of g(ρ′) are

g′(ρ′) = (1− n)α+
ρ′

z
, (A-5)

g′′(ρ′) =
1

z
. (A-6)

The fact that g′′(ρ′) > 0 implies that the plus sign must be chosen in
Wq. (A-2). It follows immediately from Eq. (A-5) that the critical point

ρ′c = z(n− 1)α. (A-7)
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Substitution from Eqs. (A-3), (A-4) and (A-6) into Eq. (A-2) yields E-
q. (6.23). Notice that the interior critical point is confined to the range of
integration, i.e.

0 ≤ ρ′c ≤ a. (A-8)

This means, according to Eq. (A-7), that the method of stationary phase
predicts a field that is identically zero when

z >
a

α(n− 1)
. (A-9)

As is well known, geometrical optics may be regarded as the asymptotic
limit of physical optics as the wavenumber k tends to infinity [Born and
Wolf, 1995, Sec. 3.1]. Therefore, Eq. (A-2) reproduces the geometrical
optics result that the field is zero when z exceeds the focal line length L.
It is easily verified numerically that L, as given by Eq. (6.1), is indeed
very well approximated by the right-hand side of Eq. (A-9).

Appendix B - Derivation of Eq. (6.89)

We begin by applying a product rule to Eq. (6.53), namely

∇× (A×B) = A(∇ ·B)− (A · ∇)B

+ (B · ∇)A−B(∇ ·A). (B-1)



Chapter 6. The field produced by a refractive axicon 135

Since A = ẑ is a constant vector, the third and fourth terms are both
zero. Furthermore,

∇ ·B = ∇ ·
(
E(out)(r′)

eikR

R

)
, (B-2)

= E(out)
x (r′)∂x

eikR

R
+ E(out)

y (r′)∂y
eikR

R

+ E(out)
z (r′)∂z

eikR

R
, (B-3)

=
E

(out)
x (r′)eikR [ik(x− x′)− (x− x′)/R]

R2

+
E

(out)
y (r′)eikR [ik(y − y′)− (y − y′)/R]

R2

+
E

(out)
z (r′)eikR [ikz − z/R]

R2
. (B-4)

Because in the far zone R ≫ λ, we may write

∇ ·B =
E

(out)
x (r′)ik(x− x′)eikR

R2

+
E

(out)
y (r′)ik(y − y′)eikR

R2

+
E

(out)
z (r′)ikzeikR

R2
. (B-5)

Thus, the first term on the right-hand side of Eq. (B-1) becomes

A(∇ ·B) = ẑ

[
E

(out)
x (r′)ik(x− x′)eikR

R2

+
E

(out)
y (r′)ik(y − y′)eikR

R2

+
E

(out)
z (r′)ikzeikR

R2

]
. (B-6)

For the second term of Eq. (B-1) we have that

−(A · ∇)B = −E(out)(r′)∂z
eikR

R
, (B-7)
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Making again use of the fact that R ≫ λ, we obtain the result

−(A · ∇)B = −E(out)(r′)ikz
eikR

R2
. (B-8)

Thus we can re-write Eq. (6.53) as

E(rr̂) =
ik

2π

∫
z′=0

{
ẑ
[
E(out)

x (r′)(x− x′)

+ E(out)
y (r′)(y − y′) + E(out)

z (r′)z
]

− E(out)(r′)(ẑ · r)
} eikR

R2
d2r′. (B-9)

Because x′ and y′ are bounded by the size of the axicon radius a, we may
neglect the terms in x′ and y′ as R → ∞. Also, we use that in that limit
kR ≈ kr − kr̂ · r′, and that 1/R2 ≈ 1/r2. This yields

E(rr̂) =
ikeikr

2πr2

∫
z′=0

{
ẑ
[
E(out)

x (r′)x+ E(out)
y (r′)y

+ E(out)
z (r′)z

]
−E(out)(r′) (ẑ · r)

}
e−ikr̂·r′d2r′, (B-10)

=
ikeikr

2πr

∫
z′=0

[
ẑ
(
E(out)(r′) · r̂

)
− E(out)(r′)(ẑ · r̂)

]
e−ikr̂·r′d2r′, (B-11)

Using the “BACCAB” rule

A× (B×C) = B(A ·C)−C(A ·B), (B-12)

we finally obtain the formula

E(rr̂) =
ikeikr

2πr
r̂×

∫
z′=0

ẑ×E(out)(r′)e−ikr̂·r′d2r′, (B-13)

which is Eq. (6.89).
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Summary in Dutch

De Nederlandstalige titel van dit proefschrift luidt “Bessel correlaties en
Bessel bundels.”

Het eerste hoofdstuk bevat een informele bespreking van twee funda-
mentele concepten die we veelvuldig gebruiken, namelijk coherentietheorie
en verstrooiingstheorie.

Hoofdstuk 2 handelt over hoe de verdeling van het verstrooide veld
kan worden gecontroleerd met behulp van een inkomend veld dat ruimtelijk
partieel coherent is. We nemen aan dat het medium Gaussisch gecorreleerd
is. Gebruik makend van de eerste-orde Born benadering wordt aange-
toond dat een Gaussisch gecorreleerd veld een diffuse intensiteitsverdeling
geeft, waarbij het maximum steeds in de voorwaartse richting is. Een J0
Bessel-gecorreleerd veld levert een situatie op die kwalitatief anders is. De
intensiteit in de voorwaartse richting kan nu sterk worden onderdrukt.

In het derde hoofdstuk bespreken we een klassiek probleem, namelijk
verstrooiing aan een homogene bol, de zogenaamde Mie verstrooiing. In
tegenstelling tot hoofdstuk 2 maken we nu geen gebruik van de Born be-
nadering en is het medium niet stochastisch maar deterministisch. Het
inkomende veld is wederom J0 Bessel-gecorreleerd. Het blijkt dat de hoek
van maximale verstrooiing ingesteld kan worden door de coherentielengte
van het inkomende veld te variëren. De totale intensiteit van het ver-
strooide veld blijft daarbij gelijk.

Hoofdstuk 4 beschrijft de relatie tussen voorwaartse Mie verstrooiing
en reflectie van een veld dat spatieel volledig coherent is, en voorwaartse
verstrooiing en reflectie van een Bessel-gecorreleerd veld. De afgeleide
vergelijkingen worden gebruikt om te laten zien dat óf het voorwaarts
verstrooide veld, óf het gereflecteerde veld meerdere ordes van grootte
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onderdrukt kan worden door instelling van de coherentielengte van het
inkomende veld.

In hoofdstuk 5 beschrijven we de verstrooiing van partieel coherent
licht aan een willekeurige kristalstructuur van identieke puntverstrooiers.
We beschouwen daarna het specifieke geval van een orthorhombisch kristal.
Het von Laue patroon blijkt sterk afhankelijk te zijn van de coherentie van
het invallende veld. Voor een Gaussische correlatie worden de diffractie
pieken breder dan in het coherente geval. Wederom blijkt dat een J0
Bessel-gecorreleerd veld een andere situatie oplevert. In de voorwaartse
richting ontstaan gekleurde ellipsvormige von Laue patronen. In reflectie
ontstaan quasi-monochromatische ringen die elkaar overlappen.

In hoofdstuk 6 tenslotte, verleggen we de aandacht van Bessel corre-
laties naar coherente bundels met een intensiteitsprofiel dat beschreven
wordt door een Bessel functie. Zulke bundels kunnen worden gegenereerd
met een zogenaamd axicon. Dat is een kegelvormige lens met rotatiesym-
metrie. We gebruiken drie verschillende formalismes om het veld te beschrij-
ven: geometrische optica, scalaire optica en elektromagnetische optica. In
het paraxiale regime blijken, zoals verwacht, de resultaten van een sca-
laire analyse en die van een elektrodynamische beschrijving van een lineair
gepolariseerd veld goed overeen te komen. We analyseren de overgang van
het Besselprofiel direct achter de lens, naar een ringvormig profiel in het
verre veld. Als het inkomende veld radieel of azimuthaal gepolariseerd
is, is een elektromagnetische behandeling noodzakelijk. Het blijkt dat de
transversale intensiteitsverdeling sterk afhankelijk is van de polarisatietoe-
stand van de inkomende bundel. Het ringvormige profiel in het verre veld
is echter hiervan onafhankelijk.

Dit proefschrift is gebaseerd op een vijftal artikelen. Vier ervan zijn
reeds gepubliceerd, het vijfde artikel wordt binnenkort ingediend.



Acknowledgments

First I would like to express my sincere gratitude to my advisor: Prof. Dr.
Taco D. Visser for the “tough” training during my PhD study and related
research, for his professionality, motivation and broad knowledge. He is
an excellent PhD advisor and mentor for my life.

Second I would like to thank my thesis reading committee: Prof. Dr.
W.M.G. Ubachs, Prof. Dr. B.J. Hoenders, Prof. Dr. G.J. Gbur, Prof. Dr.
P.S. Carney, and Dr. H.F. Schouten, for their insightful comments and
encouragements. And special thanks go to Dr. Greg Gbur, for your knowl-
edge and friendship.

Third my sincere thanks go to my co-authors Prof. Dr. Emil Wolf, Dr.
Dave Kuebel and Dr. Hugo F. Schouten. Thank you for your well-trained
physical thinking and enjoyable collaboration. My special thanks go to
the sweet old gentleman and great physicist: Prof. Dr. Emil Wolf.

Then I thank my fellow classmates in the 14103 − 2 PhD class of
the School of Marine Science and Technology, Northwestern Polytechnical
University, in Xi’an, China for the three years of wonderful company,
especially from Xinxin Guo and Jiaoyang Su.

Last but not least, I would like to thank my family: my parents and
my sister for generously supporting me spiritually throughout writing this
thesis and for understanding and caring. Thanks for all the people who
have influenced me and who encouraged me to be my best.

Yangyundou Wang
March 2017

149


	beanthesis
	beanthesis cigar version with acknowledgements

