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Chapter 1

Introduction

1.1 Historical introduction

Throughout history, people have been fascinated by the nature of light. A prime
illustration is the use of mirrors. The first known man-made mirror, found in
modern-day Turkey, dates from around 6200 BC. In the next three thousand years,
Egyptians and Sumerians created metal mirrors, first from copper, then bronze,
gold, and silver [Anderson, 2007]. The most famous account on their use in
antiquity deals with Archimedes, who allegedly set up huge mirrors to set fire to the
Roman fleet in the harbor of his native city Syracuse in 215–212 BC. However, it is
now widely accepted that this is a myth. It was not until the sixth century AD that
Anthemius described a specific arrangement of mirrors answering to Archimedes’
purpose. He gave a quantitative description of the geometry of burning-mirrors
which is based on the work of Diocles from the close of the third century BC
[Knorr, 1983]. Greek philosophers discussed several theories on the nature of
light. Euclid’s written account on the laws of reflection (ca. 300 BC) is a prominent
example.

Apart from mirrors, the use of lenses was also widespread in antiquity. Ro-
mans knew about the concept of magnification; for example Seneca mentions the
use of a glass sphere filled with water to aid in reading fine writing [Sines and
Sakellarakis, 1987]. Lenses made out of quartz and glass, dating as far back as
1400 BC, have been found in the Palace of Knossos.

The mentioned quantitative descriptions of reflection and the focusing of light
by mirrors and lenses all use a geometric picture of light, i.e., light is assumed to
consist of rays. This did not change until Huyghens proposed a different explana-
tion for refraction and reflection of light, by assuming that light behaves as a wave.
During his investigations, he explained the double refraction properties of calcite
and, subsequently discovered polarization [Huyghens, 1690]. It is widely believed
that such a calcite crystal was in fact the Sun stone mentioned in medieval sagas
of the Vikings (ca. 700), which they allegedly used to navigate over the clouded
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2 Chapter 1. Introduction

Atlantic ocean. This belief should however be taken with caution [Roslund and
Beckman, 1994].

With Newton as a great champion of the corpuscular nature of light, the de-
velopment of the wave theory was stifled for a long time. It was not until the
beginning of the nineteenth century that Thomas Young took the first step that
led to the acceptance of the wave character of light. He extended the existing
theory by adding a new concept, the so-called principle of interference [Young,
1802, 1807]. He was thus able to explain the colored fringes of thin films, which
were first described by Hooke [1665] and independently by Boyle [1738]. The
combination of the principle of interference together with Huyghens principle en-
abled Fresnel to account for diffraction patterns arising from various obstacles and
apertures [Fresnel, 1870]. Poisson however, objected that the theory predicted
a bright spot in the center of the shadow of a circular disk. Challenged by this
objection, Fresnel prompted Arago to perform the experiment and he indeed ob-
served what is nowadays called the Poisson or Arago spot. Since the bright spot
occurs in the geometrical shadow, only a wave theory can account for it. Fresnel
also showed that light consists of two orthogonal vibrations, transverse to the di-
rection of propagation. As a result almost the entire scientific community became
convinced of the wave nature of light.

In the meantime research in electricity and magnetism was undertaken almost
independently from optics. This effort culminated in the work of James Clerk
Maxwell who was able to account for all the empirical knowledge on the subject by
postulating a simple set of equations [Maxwell, 1873]. He established that light
waves can be considered as electromagnetic waves propagating with a finite veloc-
ity. Maxwell’s equations, together with the constitutive relations which describe
the reaction of matter to electric and magnetic fields, form a proper physics-based
model to describe all the phenomena connected with the propagation, diffraction
and scattering of light.

With the constitutive relations in place, Maxwell’s equations can be decoupled
to give wave equations for both the magnetic and electric fields. These can be
reduced to a set of Helmholtz equations if the fields are time-harmonic, i.e., the
oscillate at a single frequency ω. The Helmholtz equations define a local rela-
tionship between the field at a given point and the source terms. The method of
Green functions, which satisfy the relevant boundary conditions, can then be used
to calculate the fields generated by the sources for every point in space.

Monochromatic wave fields are idealizations. They do not exist in nature.
Every optical field has some randomness associated with it. These fluctuations
can be small, as in the output of a well-stabilized laser, or large, as in the output of
a thermal source. Statistical optics, or coherence theory, is the branch of physical
optics that deals with the properties of these kinds of nondeterministic optical
fields. Random fields can be characterized by correlation functions. Like the field
itself, the correlation functions too obey a set of precise propagation laws [Wolf,
1954, 1955].

Recently is has become clear that polarization and coherence are both mani-
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festations of field correlations. Whereas (scalar) coherence theory considers cor-
relations of the field at two points, polarization is concerned with the correlation
of two field components at a single point. This insight has lead to the recently
formulated unified theory of coherence and polarization of light [Wolf, 2003b].
Both these two topics, coherence and polarization, are studied in this thesis.

After more than 300 years of study devoted to the wave nature of light, it was
discovered in the mid-1970s that light fields have a fine structure smaller than the
wavelength. This has lead to a new branch of optics, called singular optics [Nye
and Berry, 1974; Nye, 1999]. It is concerned with the presence of singularities
in a wavefield, as well as with the topology of the wavefield around the singular
structures. For complex scalar fields the phase is singular at points were the field
vanishes. In general, these zero-amplitude points lie on a line in space. The phase
swirls around the line, creating a vortex structure. Such singularities can also
occur in correlation functions, these so-called coherence vortices are discussed in
later Chapters.

In the remainder of this introduction we describe the formalism that is used
in this thesis. It consists of a brief summary of the mathematics of random pro-
cesses, which we then apply to optical fields. We analyze Thomas Young’s famous
experiment [Young, 1802, 1807] within the context of coherence theory. We then
study the role of correlation functions in the propagation of light. Next we broaden
our scope to describe polarization. The state of polarization can be characterized
by four numbers, the Stokes parameters [Stokes, 1852]. This representation is
only valid if the field is confined to a two-dimensional plane, i.e., when the field is
beam-like. In a more general setting, when the propagation direction is variable,
the treatment is more involved [Hannay, 1998]. Here we restrict ourselves to the
study of electromagnetic beams. After that some basic concepts in singular optics
are introduced. The occurence of singular features in wave fields, polarization
fields and coherence functions is discussed.

1.2 Elementary concepts

Before we turn our attention to coherence theory, i.e., a statistical description of
optics, we briefly review the properties of random processes. Consider a random
process x(t), with t denoting the time. Every measurements of x(t) will yield a
different outcome, say: (1)x(t), (2)x(t), (3)x(t), · · · . The collection of all possible
outcomes, or realizations, is known as the ensemble of x(t). One can then define
the ensemble average, or the expectation value, of a set of N realizations as,

〈x(t)〉e = lim
N→∞

1

N

N∑
r=1

(r)x(t), (1.1)

where the angular brackets with the subscript e denotes the ensemble average.
Equivalently, one may define the expectation of x(t) by using the probability den-
sity p1(x, t). The quantity p1(x, t)dx represents the probability that x(t) will take
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on a value in the range (x, x+ dx) at time t. The ensemble average is then given
by the expression

〈x(t)〉e =
∫
xp1(x, t) dx, (1.2)

where the integration extends over all possible values of x. A random process
is not fully described by the probability density p1(x, t). One also has to con-
sider possible correlations between x(t1) and x(t2). Such correlations are char-
acterized by the joint probability density p2(x1, x2, t1, t2). Clearly, the quantity
p2(x1, x2, t1, t2)dx1dx2 represents the probability that the variable x will take on
a value in the range x1, x1 +dx1 at time t1, and a value in the range x2, x2 +dx2
at time t2. In a similar way one can define higher-order correlations that describe
joint probabilities at three or more points in time, i.e., one can define an infinite
number of probability densities

p1(x, t), p2(x1, x2, t1, t2), p3(x1, x2, x3, t1, t2, t3), . . . (1.3)

The foregoing treatment is also applicable to a complex random process of t,
say z(t) = x(t) + iy(t). The statistical properties of a complex process z(t) are
characterized by the sequence

p1(z, t), p2(z1, z2, t1, t2), p3(z1, z2, z3, t1, t2, t3), . . . (1.4)

Where p1(z, t)d
2z represents the probability that z(t) will take on a value within

the element (x, x+dx; y, y+dy) at time t. Higher-order probability densities have
similar meanings as explained in the case for real random processes. The average
can be generalized to

〈z(t)〉e =
∫
zp1(z, t) d

2z, (1.5)

where the integration extends over all possible values of z. The joint probability,
p2 allows us to define the ensemble average of the product z(t1)z(t2), which is
called the autocorrelation function Γ(t1, t2)

Γ(t1, t2) = 〈z∗(t1)z(t2)〉e =
∫∫

z∗1z2p2(z1, z2, t1, t2) d
2z1d

2z2, (1.6)

where the asterisks denotes the complex conjugate.
The statistical behavior of a random process often does not change with time.

Such a process is called statistically stationary. Mathematically this means that
the probability densities p1, p2, p3, . . . are time-shift invariant,
i.e., 〈z∗(t1)z(t2)〉e = 〈z∗(t1+T )z(t2+T )〉e, for any value of T . Processes of which
the statistics is only time-shift invariant up to second order are called wide-sense
stationary. It is easy to show that the mean 〈z(t)〉e is then independent of t and
that the autocorrelation is a function only of the time difference τ = t2 − t1, that
is

Γ(τ) = 〈z∗(t)z(t+ τ)〉e. (1.7)
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If the process is also ergodic, the ensemble average can be replaced by a time aver-
age [Mandel and Wolf, 1995]. From now on we will assume that all ensembles
are both wide-sense stationary and ergodic. Consequently, the subscript e on the
angular brackets can be omitted.

An important property of a stationary random process is its spectral density
S(ω). This attribute provides a measure of the strength of the fluctuations for ev-
ery specific Fourier component of z(t). The Wiener-Khintchine-Einstein theorem
[Wiener, 1930; Khintchine, 1934; Einstein, 1914] states that the autocorrela-
tion function Γ(τ) forms a Fourier-transform pair with the spectral density S(ω)
of that process, i.e.,

S(ω) =
1

2π

∫ ∞

−∞
Γ(τ)eiωτ dτ. (1.8)

This theorem can be generalized from a single random process z(t) to a pair of
random processes z1(t) and z2(t) which are jointly stationary, at least in the wide
sense. That is, the cross-correlation between the two processes only depends on
the time difference τ = t2 − t1, i.e. Γ12(τ) = 〈z∗1(t)z2(t + τ)〉. According to
the generalized Wiener-Khintchine-Einstein theorem, the cross-spectral density
W12(ω) for the pair of processes is given by the formula

W12(ω) =
1

2π

∫ ∞

−∞
Γ12(τ)e

iωτ dτ. (1.9)

1.3 Coherence theory

In optics the random processes z1(t) and z2(t) are typically optical fields. Let
V (r, t) be a member of an ensemble {V (r, t)} representing a component of the
fluctuating electric field, where r is the position vector of a point in space. Because
the analytic signal representation is used, the field is complex-valued [Mandel
and Wolf, 1995]. The cross-correlation function of the field is known as the
mutual coherence function, which is defined as [Mandel and Wolf, 1995]

Γ(r1, r2, τ) = 〈V ∗(r1, t)V (r2, t+ τ)〉. (1.10)

It is convenient to normalize the mutual coherence function by defining the complex
degree of coherence as [Zernike, 1938]

γ(r1, r2, τ) =
Γ(r1, r2, τ)√
I(r1)I(r2)

, (1.11)

where
I(r) = Γ(r, r, 0) (1.12)

is the averaged intensity at position r. The complex degree of coherence γ(r1, r2, τ)
is a precise measure of the statistical similarity of the light vibrations at the po-
sitions r1 and r2 and can be shown to have a magnitude between zero and one.
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R 1
r11P (    )

r2P (    )2

R 2

P (  )r

z

BA

Figure 1.1: Young’s interference experiment.

The extreme value one represents complete similarity of the light vibrations, i.e.,
the fields vibrate in unison. The other extreme value of zero represents the com-
plete lack of correlation of the vibrations. The meaning of the complex degree of
coherence can be elucidated by considering Young’s double-slit experiment, illus-
trated in Fig. 1.1. The setup consists of an opaque screen A, with two identical
pinholes located at positions r1 and r2 which are illuminated by quasi monochro-
matic light. The ensuing interference pattern is observed on a second screen B.
Let V (r1, t) and V (r2, t) represent the light vibrations at the pinholes at time t
and let R1 and R2 be the distance from the pinholes to the point of observation
P (r), Ri = |ri − r|with i = 1, 2. It can be shown that the averaged intensity at
the observation point P (r) equals

I(r) = I(1)(r) + I(2)(r) + 2Re

{√
I(1)(r)

√
I(2)(r)γ [r1, r2, (R2 −R1)/c]

}
, (1.13)

where I(1)(r) is the averaged intensity at the point of observation when only the
pinhole at position r1 is open. Similarly, if only the pinhole at r2 is open, the
intensity at r equals I(2)(r). Looking at Eq. (1.13) we see that the average intensity
at the observation point is not simply the sum of the two averaged intensities of
the light from the two pinholes. It differs from it by a term dependent on the
complex degree of coherence. If Re[γ(r1, r2, τ)] 6= 0 the light emanating from the
pinholes will interfere. A measure of the quality of the pattern, or contrast of the
fringes is provided by the so-called visibility V(r), defined as

V(r) ≡ Imax(r)− Imin(r)

Imax(r) + Imin(r)
, (1.14)

where Imax and Imin are the maximum and the minimum values of the averaged
intensity in the immediate neighborhood of r. For the case that the intensity of
the light at the two pinholes is equal, it is readily shown that

V(r) = |γ(r1, r2, τ)|. (1.15)
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When |γ(r1, r2, τ)| = 1 the light at the two pinholes is called fully coherent, result-
ing in a fringe pattern with maximal (i.e. unity) sharpness. When |γ(r1, r2, τ)| = 0
the field at the two positions in completely incoherent and there will be no visible
interference pattern. For intermediate values of |γ(r1, r2, τ)| the light is called
partially coherent. Hence we conclude that the degree of statistical similarity of
the light at the two pinholes is directly related to the, easily measurable, visibility
of the interference pattern.

For many applications it is more convenient to work in the space-frequency
domain. To do so we formally represent V (r, t) as a Fourier integral

V (r, t) =

∫ ∞

0

Ṽ (r, ω)e−iωt dω. (1.16)

This is more complicated than it might seem because V (r, t) is a random function
and does not tend zero as t→ ±∞. The cross-spectral density function of the light
fluctuations at two points r1 and r2 is then heuristically described by

〈Ṽ ∗(r1, ω)Ṽ (r2, ω
′)〉 =W (r1, r2, ω)δ(ω − ω′). (1.17)

According to the generalized Wiener-Khintchine-Einstein theorem Eq. (1.9), the
mutual coherence function and the cross-spectral density function form a Fourier
transform pair. It is possible to consider the cross-spectral density function to
be the ensemble average of a collection of strictly monochromatic wave functions
{U(r, ω)e−iωt}, i.e. W (r1, r2, ω) = 〈U∗(r1, ω)U(r2, ω)〉. It is emphasized that the
ensemble of temporal fields {V (r, t)} and the collection of frequency-domain fields
are not related by a Fourier transform. A normalized version of W (r1, r2, ω), the
spectral degree of coherence, is given by the expression

µ(r1, r2, ω) =
W (r1, r2, ω)√
S(r1, ω)S(r2, ω)

, (1.18)

where
S(r, ω) =W (r, r, ω) (1.19)

is the spectral density at position r. It can be shown that the spectral degree
of coherence is bounded in absolute value by zero and unity, i.e., [Mandel and
Wolf, 1995]

0 ≤ |µ(r1, r2, ω)| ≤ 1. (1.20)

Let us again consider Young’s double slit experiment, but now in the space-
frequency domain. This time the light does not have to be quasi-monochromatic,
and instead of considering the averaged intensity in the observation plane we will
consider the spectral density of the light. We may represent the field at the pinholes
by ensembles of frequency-dependent realizations {U(r1, ω)} and {U(r2, ω)}. The
resulting spectral density in the plane of observation is

S(r, ω) = S(1)(r, ω) + S(2)(r, ω)

+ 2
√
S(1)(r, ω)

√
S(2)(r, ω)Re

[
µ(r1, r2, ω)e

−iω(R1−R2)/c
]
.

(1.21)
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The first term, S(1)(r, ω), is the spectral density of the light that reaches the point
of observation when only the pinhole at r1 is open. Similarly the second term on
the right-hand side of Eq. (1.21) represents the spectral density of the light that
reaches the point of observation from the second pinhole at r2 alone. This so-
called spectral interference law shows that in general the resulting spectral density
is not just the sum of the spectral densities S(1)(r, ω) and S(2)(r, ω), but differs
from it by a term that depend on the spectral degree of coherence µ(r1, r2, ω) of
the light at the two pinholes. That is, it depends on the statistical similarity of
the vibrations at frequency ω. This is an example of correlation-induced spectral
changes [Wolf and James, 1996]. Eq. (1.13) shows that the averaged intensity
may be modulated when two quasi-monochromatic light beams are superimposed,
the spectral interference law shows that the spectrum may change appreciably
when two broad-band beams are superimposed.

1.4 Propagation of correlation functions

In free space each member V (r, t) of the ensemble of wavefields satisfies the wave
equation (

∇2 − 1

c2
∂2

∂t2
,

)
V (r, t) = 0 (1.22)

where c is the speed of light in vacuum. From this it follows that the mutual
coherence function in free space also satisfies the two wave equations, namely
[Wolf, 1955] (

∇2
1 −

1

c2
∂2

∂τ2

)
Γ(r1, r2, τ) = 0,(

∇2
2 −

1

c2
∂2

∂τ2

)
Γ(r1, r2, τ) = 0, (1.23)

where ∇2
1 and ∇2

2 denote the Laplace operator acting on r1 and r2, respectively.
We see that not only the field but also the mutual coherence function obeys pre-
cise propagation laws, that is, it has a wave-like character. From the Wiener-
Khintchine-Einstein theorem it immediately follows that the cross-spectral density
satisfies the two Helmholtz equations(

∇2
1 + k2

)
W (r1, r2, ω) = 0,(

∇2
2 + k2

)
W (r1, r2, ω) = 0, (1.24)

so this correlation function too behaves as a wave. As a consequence these correla-
tion functions may in general change on propagation, even on propagation through
free space. Hence all the properties of the wavefield, that is the degree of coher-
ence or the spectrum of the field, that are derived from the correlation function
may also chance. As an example, consider a planar secondary stochastic source
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located in the plane z = 0, that radiates into the half-space z > 0, as illustrated in
Fig. 1.2. Such a source may be an opening in an opaque screen for example. The
cross-spectral density function of the field at a pair of points in the source plane
can be expressed in the form

W (0)(r′1, r
′
2, ω) = 〈U (∗)(x′1, y

′
1, 0, ω)U(x′2, y

′
2, 0, ω)〉, (1.25)

where the superscript 0 indicates that we are dealing with properties of the field
in the source plane. By applying the first Rayleigh diffraction formula [Mandel
and Wolf, 1995] we obtain the cross-spectral density function of the light at any
pairs of points r1 and r2 in terms of the cross-spectral density function in the plane
z = 0, namely

W (r1, r2, ω) =
1

(2π)2

∫∫
z=0

W (0)(r′1, r
′
2, ω)

[
∂

∂z1

(
e−ikR1

R1

)]
×
[
∂

∂z2

(
eikR2

R2

)]
d2r′1d

2r′2, (1.26)

where R1 = |r1 − r′1|, R2 = |r2 − r′2| and ∂/∂z1, ∂/∂z2 indicate differentiation
along the positive z-direction. For pairs of points that are many wavelengths away
from the source plane Eq. (1.26) reduces to [Mandel and Wolf, 1995]

W (r1, r2, ω) ≈
(
k

2π

)∫∫
(z=0)

W (0)(r′1, r
′
2, ω)

eik(R2−R1)

R1R2
cos θ1 cos θ2 d

2r′1d
2r′2,

(1.27)
where θ1 and θ2 are the angles the lines R1 and R2 make with the positive z-axis
(Fig. 1.2). According to Eq. (1.26) the cross-spectral density function generally
changes on propagation, even through free space. As the cross-spectral density
changes, the spectral density, given by Eq. (1.19) will also change, just like the
coherence properties, that is to the ability of the light to produce interference
fringes. This is the reason why an incoherent source like the Sun emits light that
is able to produce interference fringes when observed on Earth [Verdet, 1865].

1.5 Electromagnetic beams

Thus far we have treated optical fields as scalar fields, i.e. we have ignored their
polarization properties which arise from their vector nature. The concept of coher-
ence can be generalized to describe stochastic electromagnetic beams. We assume
that the beam propagates from the plane z = 0 into the half-space z > 0 close to
the z-axis. If the beam width is larger than the wavelength of the optical field, it
is justified to use the paraxial limit in which the z-components of the fields can
be ignored [Carter, 1974]. As before we will assume that the fluctuation of the
electric and the magnetic field vectors are characterized by ensembles which are
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Figure 1.2: Illustrating the notation for propagation of the cross-spectral density from
the source plane into the half space z > 0.

statistically stationary, at least in the wide sense. The coherence and the polariza-
tion properties of the beam, up to second order, can be described by the electric
cross-spectral density matrix, which is given by the expression

W(r1, r2, ω) =

(
Wxx(r1, r2, ω) Wxy(r1, r2, ω)
Wyx(r1, r2, ω) Wyy(r1, r2, ω)

)
, (1.28)

where
Wij(r1, r2, ω) = 〈E∗

i (r1, ω)Ej(r2, ω)〉, (i, y = x, y). (1.29)

Here Ex and Ey are the components of the electric field of a typical member of
the ensemble that represents the field. Analogous to the scalar case we examine
the coherence properties of this beam by studying Young’s double-slit experiment.
Consider then a stochastic electromagnetic beam, propagating along the z-axis,
which is incident on an opaque screen with the two pinholes located symmetrically
around the z-axis (see Fig. 1.1). The spectral density S(r, ω) of the field at a point
r in the observation plane, i.e., the averaged electric density is defined as

S(r, ω) = 〈E∗(r, ω) ·E(r, ω)〉 = TrW(r, r, ω), (1.30)

where Tr denotes the trace. For the spectral density at a point in the observation
plane an expression of the same form as the spectral interference law for scalar
wavefields (Eq. 1.21) is found to read

S(r, ω) = S(1)(r, ω) + S(2)(r, ω)+

+ 2
√
S(1)(r, ω)

√
S(2)(r, ω)Re

[
µ(r1, r2, ω)e

−ω(R1−R2)/c
]
.

(1.31)
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The only difference with the scalar interference law is that the spectral degree of
coherence µ(r1, r2, ω) is now defined as

µ(r1, r2, ω) =
TrW(r1, r2, ω)√
S(r1, ω)

√
S(r2, ω)

. (1.32)

The electric cross-spectral density matrix of a beam in the source plane (see
Fig. 1.2) is defined as

W(0)(ρ1,ρ2, ω) =

(
W

(0)
xx (ρ1,ρ2, ω) W

(0)
xy (ρ1,ρ2, ω)

W
(0)
yx (ρ1,ρ2, ω) W

(0)
yy (ρ1,ρ2, ω)

)
, (1.33)

where

W
(0)
ij (ρ1,ρ2, ω) = 〈E∗(0)

i (ρ1, ω)E
(0)
j (ρ2, ω)〉, (i, y = x, y). (1.34)

Because the field is beam-like, we may use the paraxial approximation to describe
its propagation. Consequently, the electric field components in any transverse
plane z > 0 are given by the equation

Ei(r, ω) =

∫
z′=0

E
(0)
i (ρ′, 0, ω)G(ρ− ρ′, z, ω) d2ρ′, i = x, y, (1.35)

where G denotes the Green’s function for paraxial propagation from the point
(ρ′, 0) in the source plane to the field point (ρ, z), viz.,

G(ρ− ρ′, z, ω) = − ik

2πz
exp(ikz) exp

[
ik|ρ− ρ′|2/2z

]
. (1.36)

On substituting from Eq. (1.35) into Eq. (1.29) it is found the that the electric
cross-spectral density matrix of the beam at a pair of points in a transverse plane
z > 0 is given by the formula [Wolf, 2003a]

W(r1, r2, ω) =

∫∫
(z=0)

W(0)(ρ′
1,ρ

′
2, ω)

×K(ρ1 − ρ′
1,ρ2 − ρ′

2, z, ω) d
2ρ′1d

2ρ′2, (1.37)

where

K(ρ1 − ρ′
1,ρ2 − ρ′

2, z, ω) = G∗(ρ1 − ρ′
1, z, ω)G(ρ2 − ρ′

2, z, ω). (1.38)

Expression (1.37) shows that from knowledge of the cross-spectral density matrix
across the plane z = 0, one can determine this matrix everywhere in the half-
space z > 0. Just as in the scalar case, all the fundamental properties of the field
such as the spectrum, spectral degree of coherence and as we shall see shortly, all
polarization properties, can be determined from the (propagated) electric cross-
spectral density matrix.
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Whereas scalar coherence theory considers correlations of the field at two
points, polarization is concerned with the correlation of two field components at
a single point. A beam is said to be completely polarized if the the electric field
components, Ex and Ey, are fully correlated. If they are completely uncorrelated
the beam is unpolarized. In the completely polarized case the end point of the
electric field vector moves on an ellipse with time, and the field is said to be el-
liptically polarized. The ellipse may be traversed in two possible senses. Looking
into the direction from the source, we call the polarization right-handed if the
electric vector traverses the ellipse in clockwise manner. In the opposite case we
call the polarization left-handed. Two special degenerate cases of an ellipse are a
circle and a straight line, in which case the light is circularly or linearly polarized,
respectively.

The polarization properties of the beam at a point r can be deduced from the
cross-spectral density matrix evaluated at identical points in space r1 = r2 = r,
i.e. from W(r, r, ω). It is possible to decompose the beam into two parts, one
which is completely polarized and the other completely unpolarized. The ratio of
the intensity of the polarized part of the beam and its total intensity is called the
spectral degree of polarization and is given by the formula

P(r, ω) =

√
1− 4DetW(r, r, ω)

[TrW(r, r, ω)]
2 , (1.39)

where Det denotes the determinant. It can be shown that the spectral degree
of polarization is a non-negative number bounded by zero and unity, i.e. 0 ≤
P(r, ω) ≤ 1. If the light is completely polarized P equals unity. The light is
said to be unpolarized when P = 0. For intermediate values the light is said
to be partially polarized. It is to be noted that the decomposition of a beam in
a polarized and an unpolarized part is a local operation. That is, although the
field at a single point can be written as the sum of completely polarized and a
unpolarized part, this does not hold true for the beam as a whole [Korotkova
and Wolf, 2005]. The polarization properties of the beam consist of the degree
of polarization of the beam and the state of polarization of its polarized part. To
specify the latter it is convenient to use the spectral Stokes parameters. These can
be expressed in terms of the elements of the cross-spectral density matrix, viz.,

S0(r, ω) =Wxx(r, r, ω) +Wyy(r, r, ω),

S1(r, ω) =Wxx(r, r, ω)−Wyy(r, r, ω),

S2(r, ω) =Wxy(r, r, ω) +Wyx(r, r, ω),

S3(r, ω) = i [Wyx(r, r, ω)−Wxy(r, r, ω)] .

(1.40)

It is seen from Eq. (1.40) that, in general, the Stokes parameters depend on posi-
tion, a fact that is not always recognized in the literature. The Stokes parameters
are not independent but are related by the inequality

S2
0(r, ω) ≥ S2

1(r, ω) + S2
2(r, ω) + S2

3(r, ω). (1.41)
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For a fully polarized beam the equality sign in Eq. (1.41) holds, whereas for a
completely unpolarized beam S1(r, ω) = S2(r, ω) = S3(r, ω) = 0. Let us now
decompose a given beam into an unpolarized and a polarized portion using the
Stokes representation. If we denote the set of four Stokes parameters by s(r, ω),
then the required decomposition is [Born and Wolf, 1999]

s(r, ω) = s(u)(r, ω) + s(p)(r, ω), (1.42)

where

s(u)(r, ω) = S0(r, ω)−
√
S2
1(r, ω) + S2

2(r, ω) + S2
3(r, ω), 0, 0, 0,

s(p)(r, ω) =
√
S2
1(r, ω) + S2

2(r, ω) + S2
3(r, ω), S1(r, ω), S2(r, ω), S3(r, ω).

(1.43)

Here s(u)(r, ω) represents the unpolarized part and s(p)(r, ω) the polarized part
of the beam. Hence, in terms of the spectral Stokes parameters, the degree of
polarization reads

P(r, ω) =

√
S2
1(r, ω) + S2

2(r, ω) + S2
3(r, ω)

S0(r, ω)
. (1.44)

The state of polarization of the fully polarized part of the beam can be repre-
sented geometrically. We normalize the Stokes parameters of the fully polarized
part of the beam by dividing them by the intensity of the polarized part, i.e., by
Ipol(r, ω) = [S2

1(r, ω) + S2
2(r, ω) + S2

3(r, ω)]
1/2. These normalized Stokes param-

eters s1(r, ω) = S1(r, ω)/Ipol(r, ω), s2(r, ω) = S2(r, ω)/Ipol(r, ω) and s3(r, ω) =
S3(r, ω)/Ipol(r, ω) may be represented as a point on the Poincaré sphere (see
Fig. 1.3). Every possible state of a fully polarized beam corresponds to a point
on the Poincaré sphere. On the north pole [s1(r, ω) = s2(r, ω) = 0, s3(r, ω) = 1]
the polarization is right-handed circular. The polarization for all points on the
northern hemisphere is right-handed, and left-handed for all points on the south-
ern hemisphere. At the south pole the polarization is circular and left-handed.
For points on the equator [s3(r, ω) = 0], the polarization is linear. For all other
points the polarization is elliptical.

From Eq. (1.37) it is seen that the cross-spectral density matrix generally
changes on propagation, even if the beam propagates through free space. Since the
cross-spectral density matrix changes, all the quantities that are determined by it,
that is, the spectral density, the spectral degree of coherence, the spectral degree of
polarization, and the Stokes parameters also change on propagation. Such changes
of the polarization properties have been reported in several publications [James,
1994; Wolf, 2003a; Korotkova and Wolf, 2005; Korotkova et al., 2008].

The coherence properties of a beam are described only by the diagonal elements
of the electric cross-spectral density matrix (1.28) whereas the state of polarization
depends also on the off-diagonal elements. The fact that a beam is completely
spatially coherent does not impose any conditions on the state of polarization. A
field that is spatially fully coherent can be completely unpolarized at the same
time [Ponomarenko and Wolf, 2003].
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Figure 1.3: The Poincaré sphere with Cartesian axes (s1, s2, s3).

1.6 Singular optics

Every monochromatic wavefield can be characterized by a phase and an amplitude.
At points where the amplitude vanishes the phase is undefined or singular. Such a
phase singularity can be observed in many physical systems. In optics it was shown
that they occur in the energy flow of a convergent beam in the focal plane [Boivin
et al., 1967] or at the edge of a perfectly reflecting half-plane screen [Braunbek
and Laukien, 1952]. The systematic study of optical phase singularities initiated
by Nye and Berry [1974] resulted in a new branch of optics called Singular
Optics [Nye, 1999; Soskin and Vasnetsov, 2001]. We now briefly mention the
main concepts of this sub-discipline.

Consider a complex scalar field U(r) and write it as

U(r) = A(r)eiφ(r). (1.45)

A phase singularity arises at points where the field amplitude A(r) is zero and
hence the phase φ(r) is undefined, where

Re[U(r)] = 0, (1.46)

Im[U(r)] = 0. (1.47)

In three dimensions these two conditions generically have solutions in the form of
lines. In a plane they will be isolated points. Around these points the phase of the
field will typically have a vortex structure. Another topological feature of a field
are its stationary points. Here the phase is well defined but the gradient of the
field, ∇φ(r) vanishes. These points correspond to a minimum, a maximum or a
saddle point of the phase. The topological charge s of the singular and stationary
points, is defined by the relation

s =
1

2π

∮
C

∇φ(r) · dr, (1.48)
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where C is a closed path that encircles the feature once in a anticlockwise manner.
Because the phase of the field at a fixed position is defined modulo 2π, s has an
integer value, i.e., s = 0,±1,±2, . . .. These vortices are referred to as positive
or negative depending on the sign of the topological charge. In principle phase
singularities can have a arbitrary topological charge. However most phase singu-
larities with charges unequal to ±1 are unstable with respect to pertubations and
will decay in phase singularities with charges equal to ±1. The charge of a given
singularity is independent of the choice of the enclosing path C. The topological
charge of a phase saddle, maximum or minimum is always zero.

It is also possible to define the topological charge of the phase singularities of
the vector field ∇φ(r), this quantity is called the topological index t [Nye et al.,
1988]. It can be shown that both for a positive and a negative vortex t = 1, this
also true for phase singularities with a larger topological charge. For a saddlepoint
t = −1 and for a phase maximum or minimum t = 1.

Both the topological charge and index are conserved quantities of the field.
Therefore they can not simply disappear under smooth variation of relevant sys-
tem parameters [Nye and Berry, 1974]. The only way a phase singularity can
disappear is if it annihilates with another phase singularity such that the total
topological charge and index are conserved. Likewise, a phase singularity can only
be created together with an other singularity such that the sum of their topological
charge and index is zero. For example, the creation of a phase singularity with
s = 1 and t = 1, a positive vortex, typically occurs with the creation of a negative
vortex with s = −1 and t = 1 and two phase saddles each with s = 0, and t = −1.

In this section we have thus far regarded light as a scalar disturbance. To
account for polarization consider again an electromagnetic beam. At every point
in space the end point of the electric vector of a fully polarized beam traces out an
ellipse over time. This polarization ellipse is characterized by three parameters de-
scribing its eccentricity, orientation and handedness. So-called C points, where the
orientation of the ellipse is undefined hence the polarization is purely circular and
L lines, where the polarization is linear and therefore the handedness is undefined
are singulatities of this field. It can be shown that a perfect interference fringe
in a polarized beam is unstable and will always split up in C and L lines [Nye
and Berry, 1974; Visser and Schoonover, 2008]. So any phase singularity
predicted in a scalar theory has a finer polarization structure associated with it.

Until now we have discussed phase singularities of fields that depend on one
spatial coordinate. However the spectral degree of coherence, which is a function
of two spatial variables r1 and r2, can also exhibit zeros. At pairs of points where
the spectral degree of coherence vanishes, the phase is undefined and exhibits a
singular behavior [Gbur and Visser, 2003b]. If this happens the field is said to
have a coherence singularity. If the light at the two points r1 and r2 were to be
combined in a Young double-slit experiment it would yield an interference pattern
with no spatial modulation.
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1.7 Outline of this thesis

The influence of the state of coherence on the focal intensity distribution of a
converging partially coherent field is investigated in Chapter 2. The commonly
held belief is that reducing the coherence length of a partially coherent beam will
smear out the intensity distribution. It is shown however that, on changing the
coherence length, far more drastic changes can be obtained. Specifically when a
Bessel-correlated beam is focused it is shown that it is possible to continuously
change from a maximum of intensity at focus to a minimum by altering the coher-
ence length. The predicted coherence shaping of the intensity may be a promising
novel technique for optical manipulation.

In Chapter 3 it is shown that on propagation of a partially coherent vortex
beam a coherence singularity gradually develops. It is found that this coherence
singularity in the far zone can unfold into a doublet of singularities.

In Chapter 4 the topology of coherence singularities in the far zone, of a broad
class of partially coherent sources is analyzed. It is found that the coherence
singularities form a two-dimensional surface. Specifically, for a partially coherent
vortex beam, the geometry of its coherence singularities can be associated with
different kinds of conic sections.

The subject of Chapter 5 is an experiment, where it is shown that polariza-
tion changes in a monochromatic light beam are accompanied by a phase change,
a Pancharatnam-Berry phase. The origin of the phase is geometric (i.e. not
dynamic) and it can have a linear, nonlinear or singular dependence on the ori-
entation angle of polarization elements. A novel setup is presented together with
experimental results that confirm these three types of behavior.

The Pancharatnam-Berry phase is also the subject of Chapter 6. It is known
that for a cyclic change of the state of polarization of a monochromatic beam,
the beam acquires a geometric phase. This Pancharatnam-Berry phase has a
geometric interpretation that is connected to the Poincaré sphere. In this Chapter
it is shown that such a geometric interpretation also exist for the Pancharatnam
connection, i.e., the criterion according to which two beams with different states
of polarization are said to be in phase.

The seventh Chapter gives a description of partially coherent light scattering
on a homogeneous sphere, so-called Mie-scattering. In the usual description of
Mie-scattering it is assumed that the incident field is spatially fully coherent. In
practice, the field will often be partially coherent. In this Chapter the partial waves
expansion method is generalized to this situation. The influence of the degree of
coherence of the incident field on the scattered field is examined. It is found that
the angular distribution of the scattered energy depends strongly on the coherence
length.



Chapter 2

Shaping the focal intensity
distribution using spatial
coherence

This Chapter is based on the following publication:

• T. van Dijk, G. Gbur and T.D. Visser “Shaping the focal intensity distribu-
tion using spatial coherence”,
J. Opt. Soc. Am. A, vol. 25, pp. 575–581 (2008).

Abstract
The intensity and the state of coherence are examined in the focal region of a
converging, partially coherent wave field. In particular, Bessel-correlated fields are
studied in detail. It is found that it is possible to change the intensity distribution
and even to produce a local minimum of intensity at the geometrical focus by
altering the coherence length. It is also shown that, even though the original
field is partially coherent, in the focal region there are pairs of points at which
the field is fully correlated, and pairs of points at which the field is completely
incoherent. The relevance of this work to applications such as optical trapping
and beam shaping is discussed1.

1The behavior predicted in this paper has recently been observed experimentally
[Raghunathan et al., 2011].
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2.1 Introduction

Although light encountered under many practical circumstances is partially co-
herent, the intensity near focus of such wavefields has been studied in relatively
few cases [Lu et al., 1995; Wang et al., 1997; Friberg et al., 2001; Visser
et al., 2002; Wang and Lu, 2006]. The correlation properties of focused par-
tially coherent fields have been examined by Fischer and Visser [2004]; Rao
and Pu [2007], where it was shown that the correlation function exhibits phase
singularities. In a recent study [Gbur and Visser, 2003a] it was suggested that
the state of coherence of a field may be used to tailor the shape of the intensity
distribution in the focal region. More specifically, it was shown that a minimum
of intensity may occur at the geometrical focus.

In the present paper we explore converging, Bessel-correlated fields in more
detail. Three-dimensional plots of the intensity distribution, in which the transi-
tion from a maximum of intensity to a minimum of intensity at the focal point
can be seen, are presented. Also, the state of coherence of the field near focus is
examined. It is found that there exist pairs of points at which the field is fully
coherent and pairs at which the field is completely uncorrelated.

2.2 Focusing of partially coherent light

Consider first a converging, monochromatic field of frequency ω that emanates
from a circular aperture with radius a in a plane screen (see Fig. 2.1). The origin
O of the coordinate system is taken at the geometrical focus. The field at a point
Q(r′) on the wavefront A which fills the aperture is denoted by U (0)(r′, ω). The
field at an observation point P (r) in the focal region is, according to the Huygens-
Fresnel principle and within the paraxial approximation, given by the expression
[Born and Wolf, 1999, Chap. 8.8]

U(r, ω) = − i

λ

∫
A

U (0)(r′, ω)
eiks

s
d2r′, (2.1)

where s = |r − r′| denotes the distance QP , λ is the wavelength of the field, and
we have suppressed a time-dependent factor exp(−iωt).

For a partially coherent wave, instead of just the field, one also has to consider
the cross-spectral density function of the field at two points Q(r′1) and Q(r′2),
namely,

W (0)(r′1, r
′
2, ω) = 〈U∗(r′1, ω)U(r′2, ω)〉, (2.2)

where the angular brackets denote an ensemble average, and the superscript “(0)”
indicates fields in the aperture. This definition, and others related to coherence
theory in the space-frequency domain, are discussed in Mandel and Wolf [1995,
Chapters 4 and 5]. On substituting from Eq. (2.1) into Eq. (2.2) we obtain for the
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cross-spectral density function in the focal region the formula

W (r1, r2, ω) =
1

λ2

∫∫
A

W (0)(r′1, r
′
2, ω)

eik(s2−s1)

s1s2
d2r′1d

2r′2. (2.3)

The distances s1 and s2 are given by the expressions

s1 = |r1 − r′1|, (2.4)

s2 = |r2 − r′2|. (2.5)

If the Fresnel-number of the focusing geometry is large compared to unity, i.e. if
N ≡ a2/λf � 1, with f the radius of curvature of the field, then the distances s1
and s2 may be approximated by the expressions

s1 ≈ f − q′
1 · r1, (2.6)

s2 ≈ f − q′
2 · r2, (2.7)

where q′
1 and q′

2 are unit vectors in the directions Or′1 and Or′2, respectively. The
factors s1 and s2 in the denominator of Eq. (2.3) may be approximated by f , hence
we obtain the expression

W (r1, r2, ω) =
1

(λf)2

∫∫
A

W (0)(r′1, r
′
2, ω)e

ik(q′
1·r1−q′

2·r2) d2r′1d
2r′2. (2.8)

The spectral density of the focused field at a point of observation P (r) in the focal
region is given by the ’diagonal elements’ of the cross-spectral density function,
i.e.

S(r, ω) =W (r, r, ω). (2.9)

From Eqs. (2.9) and (2.8) it follows that

S(r, ω) =
1

(λf)2

∫∫
A

W (0)(r′1, r
′
2, ω)e

ik(q′
1−q′

2)·r d2r′1d
2r′2. (2.10)

A normalized measure of the field correlations is given by the spectral degree of
coherence, which is defined as

µ(r1, r2, ω) ≡
W (r1, r2, ω)

[S(r1, ω)S(r2, ω)]
1/2

. (2.11)

It may be shown that 0 ≤ |µ(r1, r2, ω)| ≤ 1. The upper bound represents complete
coherence of the field fluctuations at r1 and r2, whereas the lower bound represents
complete incoherence. For all intermediate values the field is said to be partially
coherent.
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Figure 2.1: Illustrating the notation.

2.3 Gaussian Schell-model fields

We now briefly review the focusing of a Gaussian Schell-model field with a uniform
spectral density. Such a field is characterized by a cross-spectral density function
of the form

W (0)(ρ1,ρ2, ω) = S(0)(ω)e−(ρ2 − ρ1)
2/2σ2

g , (2.12)

where S(0)(ω) is the spectral density and σg a measure of the coherence length of
the field in the aperture. Furthermore, ρ = (x, y) is the two-dimensional transverse
vector that specifies the position of a point in the aperture plane. It was shown
in Visser et al. [2002] that the maximum of intensity always occurs at the
geometrical focus, irrespective of the value of σg. Furthermore, the spectral density
distribution was found to be symmetric about the focal plane and about the axis
of propagation. On decreasing σg, the maximum spectral density decreases, and
the secondary maxima and minima gradually disappear. In the coherent limit
(i.e., σg → ∞) the classical result [Linfoot and Wolf, 1956] is retrieved.

The coherence properties of a focused Gaussian Schell-model field were exam-
ined in [Fischer and Visser, 2004]. It was shown that the coherence length can
be either larger or smaller than the width of the spectral density distribution. In
addition, the spectral degree of coherence was found to possess phase singularities.

2.4 J0-correlated fields

J0-correlated fields with a constant spectral density are characterized by a cross-
spectral density function of the form

W (0)(r′1, r
′
2, ω) = S(0)(ω)J0(β|r′2 − r′1|), (2.13)

where J0 denotes the Bessel function of the first kind of zeroth order. The cor-
relation length is roughly given by β−1. In [Gbur and Visser, 2003a] it was
shown that the occurrence of a maximum of intensity at the geometrical focus is
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related to the positive definiteness of the cross-spectral density. Since the cross-
spectral density function of Eq. (2.13) takes on negative values, another kind of
behavior may now be possible. In this Section we analyze the effect of the state of
coherence on the three-dimensional spectral density distribution near focus. The
cross-spectral density of the focused field is, according to Eq. (2.8), given by

W (r1, r2, ω) =
1

(λf)2

∫∫
A

S(0)(ω)J0(β|r′2 − r′1|)eik(q
′
1·r1−q′

2·r2) d2r′1d
2r′2. (2.14)

We use scaled polar coordinates to write

r′i = (aρi cosφi, aρi sinφi, zi) (i = 1, 2). (2.15)

The spectral density is normalized to its value at the geometrical focus for a
spatially fully coherent wave, i.e.

Scoh = lim
β→0

W (r1 = r2 = 0, ω) =
a4π2S(0)(ω)

λ2f2
. (2.16)

To specify the position of an observation point we use the dimensionless Lommel
variables which are defined as

u = k

(
a

f

)2

z, (2.17)

v = k

(
a

f

)
ρ = k

(
a

f

)√
x2 + y2. (2.18)

The expression for the normalized spectral density distribution is thus given by

Snorm(u, v, ω) =
S(u, v, ω)

Scoh

=
1

π2

∫ 2π

0

∫ 1

0

∫ 2π

0

∫ 1

0

J0

{
βa
[
ρ21 + ρ22 − 2ρ1ρ2 cos(φ1 − φ2)

]1/2}
× cos[v(ρ1 cosφ1 − ρ2 cosφ2) + u(ρ21 − ρ22)/2]

×ρ1ρ2 dρ1dφ1dρ2dφ2. (2.19)

It can be shown that this distribution is symmetric about the plane u = 0 and the
line v = 0. To reduce this four-dimensional integral to a sum of two-dimensional
integrals we use a coherent mode expansion, as described in Appendix A.

The contours and three-dimensional images of the spectral density of a converg-
ing J0-correlated Schell-model field are shown for several values of the coherence
length β−1 in Figs. 2.2–2.4. When this length is significantly larger than the aper-
ture size a, the intensity pattern of the field in the focal region approaches that
of the coherent case of Linfoot and Wolf [1956]. This is illustrated in Fig. 2.2
where (βa)−1 = 2. This quantity is a measure of the effective coherence of the
field in the aperture.



22 Chapter 2. Focusing of partially coherent light

When the correlation length is decreased, a local minimum appears at the
geometrical focus. This is shown in Fig. 2.3 for which (βa)−1 = 0.35. An intensity
minimum can be seen at u = v = 0. Also, the overall intensity has decreased.

Fig. 2.4 shows the intensity pattern for the case when (βa)−1 = 0.25. The
minimum at the geometrical focus is now deeper, the focal spot is broadened, and
the overall intensity has decreased even further.

The behavior of the cross-spectral density function of the field in the aperture
for the cases mentioned above is shown in Fig. 2.5. The spectral degree of coherence
is plotted as a function of ρ = |r2 − r1|. It is to be noted that for the two cases
in which the spectral density has a local minimum at the geometrical focus, the
spectral degree of coherence also takes on negative values.

2.5 Spatial correlation properties

We next turn our attention to the spectral degree of coherence in the focal region
of a J0-correlated Schell model field. We first look at pairs of points on the z-axis,
i.e.,

r1 = (0, 0, z1), (2.20)

r2 = (0, 0, z2). (2.21)

On using cylindrical coordinates ρ and φ and the expressions in [Fischer and
Visser, 2004] we obtain

q′
1 · r1 ≈ −z1(1− ρ21/2f

2), (2.22)

q′
2 · r2 ≈ −z2(1− ρ22/2f

2). (2.23)

Substituting these approximations in Eq. (2.14), we obtain for the cross-spectral
density the expression

W (0, 0, z1; 0, 0, z2;ω) =
1

(λf)2

∫ 2π

0

∫ a

0

∫ 2π

0

∫ a

0

S(0)(ω)

×J0
{
β
[
ρ21 + ρ22 − 2ρ1ρ2 cos(φ1 − φ2)

]1/2}
×eik[−z1(1−ρ2

1/2f
2)+z2(1−ρ2

2/2f
2)]ρ1ρ2

×dφ1dρ1dφ2dρ2. (2.24)

As shown in Appendix A, the coherent mode expansion for J0 reads

J0

{
β
[
ρ21 + ρ22 − 2ρ1ρ2 cos(φ1 − φ2)

]1/2}
= J0(βρ1)J0(βρ2)

+

∞∑
n=1

2 [Jn(βρ1)Jn(βρ2) cos[n(φ1 − φ2)]] . (2.25)
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Figure 2.2: The three-dimensional normalized spectral density distribution (a) and its
contours (b) for the case β−1 = 0.02 m, a = 0.01 m and hence (βa)−1 = 2.00. In this
example λ = 500 nm, and f = 2 m.
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Figure 2.3: The three-dimensional normalized spectral density distribution (a) and its
contours (b) for the case β−1 = 3.5× 10−3 m, a = 0.01 m and hence (βa)−1 = 0.35. The
other parameters are the same as those of Fig. 2.2.
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other parameters are the same as those of Fig. 2.2.
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Figure 2.5: The spectral degree of coherence of the field in the aperture µ(0)(ρ, ω) for
three different values of (βa)−1, as discussed in the text. In this example λ = 500 nm,
a = 0.01 m, and f = 2 m.

It is to be noted that in the expression for the cross-spectral density, Eq. (2.24),
the angular dependence resides exclusively in the correlation function, hence after
integration over φ1 and φ2 only the zeroth-order term of Eq. (2.25) remains. We
therefore find that

W (0, 0, z1; 0, 0, z2;ω) = f∗(0, 0, z1;ω)f(0, 0, z2;ω), (2.26)

with

f(0, 0, z;ω) =
k

f

∫ a

0

J0(βρ)e
ikz(1−ρ2/2f2)ρdρ. (2.27)

From this result and Eq. (2.11) it readily follows that

|µ(0, 0, z1; 0, 0, z2;ω)| = 1. (2.28)

This implies that the field is fully coherent for all pairs of points along the z-axis,
even though the field in the aperture is partially coherent. This surprising effect
can be understood by noticing that only a single coherent mode comes into play.

Next we examine pairs of points that lie in the focal plane. One point is taken
to be at the geometrical focus O. Due to the rotational invariance of the system
we may assume, without loss of generality, that the second point lies on the x-axis.
Hence we consider pairs of points for which

r1 = (0, 0, 0), (2.29)

r2 = (x, 0, 0). (2.30)
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The cross-spectral density, Eq. (2.14), then yields

W (0, 0, 0;x, 0, 0;ω) =
1

(λf)2

∫ 2π

0

∫ a

0

∫ 2π

0

∫ a

0

S(0)(ω)

×J0
{
β
[
ρ21 + ρ22 − 2ρ1ρ2 cos(φ1 − φ2)

]1/2}
×e−ik(ρ2x cosφ2)/fρ1ρ2 dφ1dρ1dφ2dρ2. (2.31)

on using the coherent mode expansion of J0 and integrating over φ1, again a single
term remains, i.e.,

W (0, 0, 0;x, 0, 0;ω) =
2π

(λf)2

∫ a

0

∫ 2π

0

∫ a

0

S(0)(ω)J0(βρ1)J0(βρ2)

× cos

(
k
ρ2x

f
cosφ2

)
ρ1ρ2 dρ1dφ2dρ2. (2.32)

It is to be noted that this expression is real-valued.
In order to obtain the spectral degree of coherence we use the facts that

S(0, 0, 0;ω) =

(
k

f

)2 ∫ a

0

∫ a

0

J0(βρ1)J0(βρ2)ρ1ρ2 dρ1dρ2, (2.33)

and

S(x, 0, 0;ω) =
1

(λf)2

∫ 2π

0

∫ a

0

∫ 2π

0

∫ a

0

S(0)(ω)

×J0
{
β
[
ρ21 + ρ22 − 2ρ1ρ2 cos(φ1 − φ2)

]1/2}
× cos[kx(ρ1 cosφ1 − ρ2 cosφ2)/f ]ρ1ρ2

×dφ1dρ1dφ2dρ2. (2.34)

Examples of the spectral degree of coherence µ(0, 0, 0;x, 0, 0;ω) are depicted in
Figs. 2.6 and 2.7 for selected values of the coherence parameter (βa)−1. For com-
parison’s sake the normalized spectral density is also shown. In Fig. 6(a) two
regions can be distinguished, regions where the fields are approximately co-phasal
[i.e., µ(0, 0, 0;x, 0, 0;ω) ≈ 1] and regions where the fields have opposite phases
[i.e., µ(0, 0, 0;x, 0, 0;ω) ≈ −1]. In between these two regions the spectral degree
of coherence exhibits phase singularities [i.e., µ(0, 0, 0;x, 0, 0;ω) = 0]. The latter
points coincide with approximate zeros of the field.

When the coherence parameter is decreased, the overall intensity gets lower.
This is shown in Fig. 2.6(b) for which (βa)−1 = 0.35. An intensity minimum now
occurs at the geometrical focus. The spectral degree of coherence still possesses a
phase singularity, however its position no longer coincides with a zero of the field.

On further decreasing the coherence, the spectral density at focus almost gets
zero. This is shown in Fig. 2.7(a) for which (βa)−1 = 0.25. The spectral density
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Figure 2.6: Spectral degree of coherence µ(0, 0, 0;x, 0, 0;ω) (solid line) and the spectral
density S(x, 0, 0, ω) normalized to its maximum value (dashed line), for the case (a):
(βa)−1 = 2 and (b): (βa)−1 = 0.35. In this example λ = 0.6328 µm, a = 0.01 m, and
f = 0.02 m.

rises again if the correlation parameter is decreased further, as can been seen in
Fig. 2.7(b). In all cases the spectral degree of coherence exhibits phase singulari-
ties.

2.6 Other correlation functions

In this Section we examine the spectral density in the focal plane for other Bessel-
correlated fields. In particular we consider a cross-spectral density function of the
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(βa)−1 = 0.25 and (b): (βa)−1 = 0.2. In this example λ = 0.6328 µm, a = 0.01 m, and
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form (see Section 5.3 of [Mandel and Wolf, 1995])

W (0)
n (ρ1,ρ2, ω) = S(0)(ω)2n/2Γ

(
1 +

n

2

) Jn/2(β|ρ2 − ρ1|)
(β|ρ2 − ρ1|)n/2

, (2.35)

where Jn/2 is a Bessel function of the first kind and Γ is the gamma function. The
case n = 0 was discussed in the previous Sections.

Let us denote a position in the focal plane with the vector (ρ, 0). The spectral
density is then given by the expression

Sn(ρ, 0, ω) =
1

(λf)2

∫
A

∫
A

W (0)
n (ρ1,ρ2, ω)e

−ik(ρ2−ρ1)·ρ/f d2ρ1d
2ρ2. (2.36)

This can be simplified to [Foley, 1991]

Sn(ρ, 0, ω) = 2

(
ka2

f

)2 ∫ 1

0

C(b)W (0)
n (2aβb)J0

(
2kaρb

f

)
b db, (2.37)

where
C(b) = (2/π)

[
arccos(b)− b(1− b2)1/2

]
. (2.38)

As before the spectral density is normalized to its value for a fully coherent field
at the geometrical focus. The normalized spectral density is thus given by the
formula

Sn(ρ, 0, ω)

Scoh
=

8

S(0)(ω)

∫ 1

0

C(b)W (0)
n (2aβb)J0

(
2kaρb

f

)
bdb, (2.39)

An example is shown Fig. 2.8 for the case n = 2 and (βa)−1 = 0.13. It is seen
that the spectral density now has a flat-topped profile. Fields with such a J1(x)/x
correlation can be synthesized by placing a circular incoherent source in the first
focal plane of a converging lens [Wolf and James, 1996].

2.7 Conclusions

We have investigated the behavior of selected Bessel-correlated, focused fields. It
is observed that J0-correlated fields produce a tunable, local minimum of intensity
within a high-intensity shell of light. This observation suggests that such beams
might be useful in a number of optical manipulation applications. In particular,
it is well-appreciated that optical trapping of high-index particles requires high
intensity at focus, while the trapping of low index particles requires low intensity
at focus. The J0 focusing configuration allows one to construct a system which
can continuously switch between these two trapping conditions [Gahagan and
Swartzlander, 1999].

It is also observed that J1(x)/x correlated fields result in a flat-top intensity
distribution at. Such an intensity distribution could be useful in applications where
a uniform intensity spot is required, such as lithography.
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Figure 2.8: Normalized spectral density, Eq. (2.39), in the focal plane for the case
(βa)−1 = 0.13. In this example λ = 500 nm, a = 0.01 m, n = 2, and f = 2 m.

These intensity distributions, and others, can be roughly predicted using straight-
forward Fourier optics. The image which appears in the focal plane is essentially
the Fourier transform of the aperture-truncated correlation function in the lens
plane. This correlation function can in turn be generated by an incoherent source
whose aperture is given by the Fourier transform of the correlation function. One
such example is using an annular incoherent source to produce a J0-correlated field
at the lens. The detailed three-dimensional structure of the light field in the focal
region, however, requires a numerical solution of the diffraction problem.

It is important to note that this method of generating the necessary correla-
tions is by no means unique. Any technique which produces the desired Bessel-
correlation in the lens plane will result in the same intensity distribution at focus.
For instance, one could use a coherent laser field transmitted through a rotating
ground-glass plate with the desired correlations.

This coherence shaping of the intensity distribution at focus holds promise as
a new technique for optical manipulation (c.f. Ref. [Arlt and Padgett, 2000]).

Appendix A: Coherent-mode expansion of a J0-
correlated field

Following Gori et al. [1987], we use the coherent mode expansion for the cross-
spectral density function given by Eq. (2.13) to evaluate expression (2.19). Since
it belongs to the Hilbert-Schmidt class, it can be expressed in the form [Wolf,
1982]

W (0)(ρ1,ρ2, ω) =
∑
n

λn(ω)ψ
∗
n(ρ1, ω)ψn(ρ2, ω). (A.1)
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Here ψn(ρ, ω) are the orthonormal eigenfunctions and λn(ω) the eigenvalues of
the integral equation∫

D

W (0)(ρ1,ρ2, ω)ψn(r1, ω) d
2ρ1 = λn(ω)ψn(ρ2, ω), (A.2)

where the integral extends over the aperture plane D. We rewrite the expansion
(A.1) as

W (0)(ρ1,ρ2, ω) =
∑
n

λn(ω)Wn(ρ1,ρ2, ω), (A.3)

where Wn(ρ1,ρ2, ω) = ψ∗
n(ρ1, ω)ψn(ρ2, ω). The spectral degree of coherence cor-

responding to a single term Wn, is clearly uni-modular. Hence the expansion in
Eq. (A.3) represents the cross-spectral density as a superposition of fully coherent
modes.

In the case of a J0-correlated field the expression for the eigenfunctions ψn(ρ, ω)
reads [Gori et al., 1987]

ψn(ρ, φ) = Cn

√
S(0)(ω)

[
anJn(βρ)e

−inφ + bnJ−n(βρ)e
inφ
]
, (A.4)

where Cn is a suitable normalization factor and the ratio an/bn is arbitrary. On
substituting from Eq. (A.4) into Eq. (A.2) and using Neumann’s addition theorem

J0

{
β
[
ρ21 + ρ22 − 2ρ1ρ2 cos(φ1 − φ2)

]1/2}
=

∞∑
k=−∞

Jk(βρ1)Jk(βρ2)e
ik(φ1−φ2),

(A.5)
we find that the eigenvalues λn are given by the formulas

λn = πa2S(0)(ω)[J2
n(βa)− Jn−1(βa)Jn+1(βa)], (n = 0, 1, 2, . . .). (A.6)

To ensure that all the functions ψn(ρ, ω) are orthonormal, we may choose

Cn =
1√
λn
, (n = 0, 1, 2, . . .). (A.7)

This choice implies that

(a0 + b0)
2 = 1 (A.8)

a2n + b2n = 1, (n = 1, 2, 3, . . .). (A.9)

Hence we find a twofold degeneracy for the eigenfunctions ψn, except for the case
that n = 0. We thus obtain the expansion

J0

{
β
[
ρ21 + ρ22 − 2ρ1ρ2 cos(φ1 − φ2)

]1/2}
=

J0(βρ1)J0(βρ2) +
∞∑

n=1

2 {Jn(βρ1)Jn(βρ2) cos[n(φ1 − φ2)]} , (A.10)
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Figure 2.9: Eigenvalues λn versus n for a J0-correlated field with a uniform spectral
density across the plane of the aperture. Only the points corresponding to integer values
of n are meaningful, the connecting lines are drawn to aid the eye.

where we have used the fact that the functions Jn and J−n are related by [Arfken
and Weber, 2001]

J−n(x) = (−1)nJn(x) (n ∈ N). (A.11)

The behavior of the eigenvalues λn versus n is shown in Fig. 2.9. Although the
decreasing behavior of the eigenvalues is not strictly monotone it can be seen that
as soon n exceeds βa the eigenvalues become very small. In other words only those
modes whose index n is smaller than βa contribute effectively to the cross-spectral
density.



34



Chapter 3

The evolution of
singularities in a partially
coherent vortex beam

This Chapter is based on the following publication:

• T. van Dijk and T.D. Visser “Evolution of singularities in a partially coherent
beam”,
J. Opt. Soc. Am. A, vol. 26, pp. 741–744 (2009).

Abstract
We study the evolution of phase singularities and coherence singularities in a
Laguerre-Gauss beam that is rendered partially coherent by letting it pass through
a spatial light modulator. The original beam has an on-axis minimum of intensity–
a phase singularity–that transforms into a maximum of the far-field intensity. In
contrast, although the original beam has no coherence singularities, such singular-
ities are found to develop as the beam propagates. This disappearance of one kind
of singularity and the gradual appearance of another is illustrated with numerical
examples.

35
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3.1 Introduction

Singular optics [Nye, 1999; Soskin and Vasnetsov, 2001], the study of topo-
logical features of optical fields, has expanded in scope from phase singularities
and polarization singularities [Berry and Dennis, 2001; Freund et al., 2002;
Schoonover and Visser, 2006] to coherence singularities. The latter kind oc-
curs when the field at a certain frequency at one point is completely uncorrelated
with the field at another point, at the same frequency [Schouten et al., 2003a;
Fischer and Visser, 2004;Gbur and Visser, 2006;Visser and Schoonover,
2008]. Coherence singularities affect one of the most basic properties of a wave
field, namely its ability to produce interference patterns.

Vortex beams (sometimes called ‘dark core beams’ or ‘doughnut beams’) have
an on-axis zero of intensity, i.e., a phase singularity [Yin et al., 2003]. They are
widely used for the guiding of atomic beams [Wang et al., 2005], the trapping
of cold atomic clouds [Kuga et al., 1997], and as optical tweezers for low-index
particles [Gahagan and Swartzlander, 1999]. In addition, their relative in-
sensitivity to atmospheric turbulence makes them candidates for optical commu-
nication [Gbur and Tyson, 2008]. The coherence properties of certain types of
vortex beams have been studied by Ponomarenko [2001]; Bogatyryova et al.
[2003]. Theoretical and experimental studies of correlations in the time-domain
were reported by Palacios et al. [2004]; Swartzlander and Schmit [2004];
Maleev and Swartzlander [2008].

It is the aim of this paper to deepen the understanding of the not yet com-
pletely clarified interplay between intensity zeros (phase singularities) and coher-
ence singularities. We study a new type of beam, namely a partially coherent
Laguerre-Gauss beam (LG). Such a beam may be produced by letting a monochro-
matic, and hence fully coherent, single mode of frequency ω pass through a phase
screen [Andrews and Phillips, 2005; Goodman, 2000], leaving its amplitude
unchanged. In the case of a LG0

1 mode propagating along the z-axis, the field
incident on the phase screen is given by the expression [Siegman, 1986, Sec. 16.4]

U (inc)(ρ, ω) = A exp(iφ)ρ exp(−ρ2/4σ2
S), (3.1)

with A a constant, σS the effective source width, and ρ = ρ(cosφ, sinφ) a two-
dimensional vector that represents a position in the plane perpendicular to the
z-axis. The action of the phase screen is twofold: it imprints a deterministic
phase −φ onto the beam, and in addition it randomizes the phase with a Gaussian
correlation function. This can be achieved by means of a Spatial Light Modula-
tor (SLM). By averaging over different realizations of the SLM a beam with the
prescribed statistical behavior is obtained [Dayton et al., 1998].
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3.2 Partially coherent sources

In the space-frequency domain, the statistical properties of a source may be char-
acterized by its cross-spectral density function [Mandel and Wolf, 1995]

W (0)(ρ1,ρ2, ω) = 〈U (0)∗(ρ1, ω)U
(0)(ρ2, ω)〉, (3.2)

where the asterisk denotes complex conjugation and the angular brackets indicate
an ensemble average. The superscript (0) indicates positions in the secondary
source plane (z = 0) immediately behind the SLM (see Fig. 3.1). The spectral
degree of coherence is the normalized version of the cross-spectral density, viz.

µ(0)(ρ1,ρ2, ω) =
W (0)(ρ1,ρ2, ω)√

S(0)(ρ1, ω)S(0)(ρ2, ω)
, (3.3)

with

S(0)(ρ, ω) =W (0)(ρ,ρ, ω) = A2ρ2 exp(−ρ2/2σ2
S) (3.4)

the spectral density (or ‘intensity at frequency ω’). The spectral degree of coher-
ence caused by the SLM is homogeneous and Gaussian, i.e.

µ(0)(ρ1,ρ2, ω) = µ(0)(ρ2 − ρ1, ω) = exp[−(ρ2 − ρ1)
2/2σ2

µ], (3.5)

with σµ the effective coherence length of the secondary source. On substituting
from Eqs. (3.4) and (3.5) into Eq. (3.3) we find that the cross-spectral density
takes the form

W (0)(ρ1,ρ2, ω) = A2ρ1ρ2 exp[−(ρ21 + ρ22)/4σ
2
S ] exp[−(ρ2 − ρ1)

2/2σ2
µ]. (3.6)

We notice that Eq. (3.4) indicates the presence of an on-axis phase singularity in
the source plane, i.e. S(0)(ρ = 0, ω) = 0. Coherence singularities occur when the
phase of the spectral degree of coherence is undefined, i.e., when µ(0)(ρ1,ρ2, ω) =
0. In that case, the combination of the fields at ρ1 and ρ2 in a Young’s type
experiment yields an interference pattern without spatial modulation. Eq. (3.5)
implies that no such singularities exist in the source plane.
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3.3 Quasi-homogeneous sources

A source is said to be quasi-homogeneous if its spectral degree of coherence
µ(0)(ρ′, ω) varies much more rapidly with ρ′ than its spectral density S(0)(ρ, ω)
varies with ρ. In that case the radiant intensity (defined as r2 times the far-
field spectral density) and the spectral degree of coherence of the field in the far
zone are related to the same properties in the source plane by the reciprocity
relations [Mandel and Wolf, 1995, Sec. 5.3.2]

J(s, ω) = (2πk)2S̃(0)(0, ω)µ̃(0)(ks⊥, ω) cos
2 θ, (3.7)

µ(∞)(r1s1, r2s2, ω) = S̃(0) [k(s2⊥ − s1⊥), ω] exp[ik(r2 − r1)]/S̃
(0)(0, ω), (3.8)

with the two-dimensional Fourier transforms given by the expressions

S̃(0)(f , ω) =
1

(2π)2

∫
S(0)(ρ, ω) e−if ·ρ d2ρ, (3.9)

µ̃(0)(f , ω) =
1

(2π)2

∫
µ(0)(ρ, ω) e−if ·ρ d2ρ. (3.10)

Here k = 2π/λ is the wavenumber associated frequency ω, s⊥ is the projection
of the unit direction vector s onto the xy-plane, and θ is the angle which the
s-direction makes with the z-axis (see Fig. 3.1). The superscript (∞) indicates
points in the far zone.

3.4 A partially coherent Laguerre-Gauss source

To analyse a partially coherent source that generates a Laguerre-Gauss beam we
substitute from Eqs. (3.4) and (3.5) into Eqs. (3.9) and (3.10) while using the
theorem for Fourier transforms of derivatives, and find that

S̃(0)(f , ω) =
(
2− f2σ2

S

)
σ4
SA

2 exp
(
−f2σ2

S/2
)
/2π, (3.11)

µ̃(0)(f , ω) = σ2
µ exp(−f2σ2

µ/2)/2π. (3.12)

On choosing the two observation points to be symmetrically positioned with re-
spect to the z-axis, i.e., r1 = r2 = r, and s2⊥ = −s1⊥ = (sin θ, 0), we obtain the
formulas

J(s, ω) = 2k2σ4
Sσ

2
µA

2 cos2 θ exp(−k2σ2
µ sin

2 θ/2), (3.13)

µ(∞)(rs1, rs2, ω) =
[
1− 2k2σ2

S sin2 θ
]
exp(−2k2σ2

S sin2 θ). (3.14)

These last two results indicate that the character of the field singularities changes
as the beam propagates: Eq. (3.13) shows that the on-axis intensity, a phase sin-
gularity in the source plane, transforms into a maximum of the far zone radiant
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intensity; and Eq. (3.14) implies that, in contrast to the source plane, there are
pairs of points in the far zone at which the field is completely uncorrelated. Co-
herence singularities, i.e. µ(∞)(rs1, rs2, ω) = 0, occur at observation points for
which the term between square brackets in Eq. (3.14) vanishes. This happens for
observation angles θCS such that

sin θCS =
(
2k2σ2

S

)−1/2
. (3.15)

It is to be noted that this behavior is quite different from that of the class of par-
tially coherent vortex beams described earlier [Ponomarenko, 2001; Bogatyry-
ova et al., 2003]. Those beams, being an incoherent superposition of Laguerre-
Gauss modes, retain their on-axis phase singularity on propagation. We mention
in passing that Eq. (3.13) implies that in order for the field to be beam-like the
source has to satisfy the condition

k2σ2
µ/2 � 1. (3.16)

The reciprocity relations (3.7) and (3.8) describe the connection between the
field in the source plane and that in the far-zone. However, they do not describe
how the initial on-axis phase singularity changes on propagation, or how the co-
herence singularity comes into existence. In order to investigate this, we study
the propagation of the cross-spectral density function to an arbitrary transverse
plane. We have [Mandel and Wolf, 1995, Sec. 5.6.3]

W (ρ1,ρ2, z, ω) =

∫∫
(z=0)

W (0)(ρ′
1,ρ

′
2, ω) (3.17)

× G∗(ρ1,ρ
′
1, z, ω)G(ρ2,ρ

′
2, z, ω) d

2ρ′1d
2ρ′2,

with the paraxial Green’s function given by the expression

G(ρ,ρ′, z, ω) = − ik

2πz
exp(ikz) exp[ik(ρ− ρ′)2/2z]. (3.18)

On substituting from Eqs. (3.6) into Eq. (3.18) we obtain after some calculations
for the on-axis spectral density the formula

S(ρ = 0, z, ω) = W (ρ1 = 0,ρ2 = 0, z, ω) (3.19)

=

(
kA

z

)2
∞∫
0

∞∫
0

ρ′21 ρ
′2
2 exp(−ρ′21 /2σ2

+) exp(−ρ′22 /2σ2
−)

×I0(ρ′1ρ′2/σ2
µ) dρ

′
1dρ

′
2, (3.20)

with I0(x) the modified Bessel function of the first kind of order zero, and

1

2σ2
±

=
1

4σ2
S

+
1

2σ2
µ

± ik

2z
. (3.21)
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Figure 3.2: The scaled on-axis spectral density z2S(ρ = 0, z, ω), calculated from
Eq. (3.20), normalized by the radiant intensity in the forward direction J [s = (0, 0, 1), ω].
In this example σS = 15λ and σµ = 4λ.

Equation (3.20) can be integrated numerically for z � λ. An illustration of the
behavior of the scaled on-axis spectral density z2S(ρ = 0, z, ω) is shown in Fig. 3.2,
with the limiting value given by Eq. (3.4) added. It is seen that on propagation the
phase singularity immediately evolves into a finite-valued intensity that gradually
rises towards its asymptotic value, namely that of the radiant intensity in the
forward direction J [s = (0, 0, 1), ω], as given by Eq. (3.13).

In Fig. 3.3 the spectral density S(ρ, z, ω) is shown for several cross-sections of
the beam. As can be seen, the on-axis spectral density (initially a phase singu-
larity) gradually rises and changes from being a minimum in the source plane to
being a maximum in the far field.

The evolution of the coherence singularity is depicted in Fig. 3.4. There the
behavior of |µ(ρ, z,−ρ, z, ω)| is shown shown for pairs of points on the lines of
observation arctan(ρ/z) = θCS , the angle defined by Eq. (3.15), i.e., the two
lines on which a correlation singularity occurs in the far zone. The modulus of
the spectral degree of coherence gradually decreases as the beam propagates and
eventually becomes zero, meaning that the two points form a coherence singularity.



3.5. The far-zone state of coherence 41

Figure 3.3: The normalized spectral density S(ρ, z, ω), calculated from Eq. (3.18), in
several cross-sections of the beam. In this example σS = 15λ and σµ = 4λ.

1000 2000 3000
0.0

0.2

0.4

0.6

0.8

1.0

z [λ] 

|   (   , z, −   , z,   )|µ ωρρ ρρ

Figure 3.4: Evolution of the modulus of the spectral degree of coherence, as calculated
from Eq. (3.18), along the two directions of observation at which a coherence singularity
occurs in the far field. In this example σS = 15λ and σµ = 4λ.

3.5 The far-zone state of coherence

The behavior of the far-zone state of coherence is further analyzed by considering
the spectral degree of coherence of two observation points that lie on a circle which
is centered around the z-axis [see Fig. 3.5(a)]. One point is kept fixed, whereas
the other point is moved around the circle, i.e., we choose

s1⊥ = (sin θ, 0), (3.22)

s2⊥ = (sin θ cosφ, sin θ sinφ), (3.23)
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Figure 3.5: (a): The position of two far-zone observation points (blue dots) on a circle
centered around the z-axis. (b) The spectral degree of coherence of the field at the two
points as a function of the angle φ for three values of θ. In this example σS = 15λ and
σµ = 4λ.

and study the dependence of the spectral degree of coherence as a function of the
angle φ. We now obtain from Eq. (3.8) the expression

µ(∞)(rs1, rs2, ω) =
[
1− 2k2σ2

S sin2 θ sin2(φ/2)
]

× exp
[
−2k2σ2

S sin2 θ sin2(φ/2)
]
. (3.24)

Eq. (3.24) shows that the spectral degree of coherence in this case is real-valued.
For small circles, for which the angle θ < θCS , µ

(∞)(rs1, rs2, ω) is always positive
and no coherence singularities occur (see Fig. 3.5(b)). If θ = θCS , there is precisely
one zero of the spectral degree of coherence, and the two points that lie diagonally
opposite each other on the circle (φ = π) form a correlation singularity. When θ
is further increased two zeros occur, i.e., the singularity unfolds into a doublet.
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3.6 Conclusions

We have analyzed the behavior a partially coherent Laguerre-Gauss beam and
found a new kind of behavior of its singularities. The initial on-axis phase singu-
larity evolves into a maximum of the radiant intensity. In contrast, a coherence
singularity gradually develops as the beam propagates. As the angle between two
far-field observation points is increased, this singularity unfolds into a doublet.
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Chapter 4

Coherence singularities in
the far field generated by
partially coherent sources

This Chapter is based on the following publication:

• T. van Dijk, H.F. Schouten and T.D. Visser “Coherence singularities in the
far field generated by partially coherent sources”,
Phys. Rev. A, vol. 79, 033805 (2009).

Abstract
We analyze the coherence singularities that occur in the far field that is generated
by a broad class of partially coherent sources. It is shown that for rotationally
symmetric, planar, quasi-homogeneous sources the coherence singularities form a
two-dimensional surface in a reduced three-dimensional space. We illustrate our
results by studying the topology of the coherence singularity of a partially coherent
vortex beam. We find that the geometry of the phase singularity can be associated
with conic sections such as ellipses, lines and hyperbolas.
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4.1 Introduction

There is a growing interest in the structure of wave fields in the vicinity of points
where certain field parameters are undefined, or ‘singular’. This has given rise to
the new sub-discipline of singular optics. [Nye, 1999; Soskin and Vasnetsov,
2001] In the past few years, many different types of singular behavior have been
identified. For example, phase singularities occur at positions where the field
amplitude vanishes, and hence the phase is undefined. [Nye and Berry, 1974]
Polarization singularities arise at locations where the field is circularly or lin-
early polarized. [Berry and Dennis, 2001; Dennis, 2002; Freund et al., 2002;
Mokhun et al., 2002; Freund, 2002; Soskin et al., 2003; Schoonover and
Visser, 2006] There either the orientation angle of the polarization ellipse or its
handedness is undefined. Also the Poynting vector can exhibit singular behavior
at points where its modulus is zero, and hence its orientation is undefined. [Boivin
et al., 1967] Topological reaction of such singularities were studied in [Schouten
et al., 2003b, 2004]

Optical coherence theory [Wolf, 2007] deals with the statistical properties of
light fields. In this theory, correlation functions play a central role. [Schouten
and Visser, 2008] A form of singular behavior that is slightly more abstract
than those mentioned above, occurs in two-point correlation functions. At pairs
of points at which the field (at a particular frequency) is completely uncorrelated,
the phase of the correlation function is singular. [Schouten et al., 2003a; Fis-
cher and Visser, 2004; Palacios et al., 2004; Swartzlander and Schmit,
2004; Wang et al., 2006; Maleev and Swartzlander, 2008] When the field
at two such points is combined in an interference experiment, no fringes are pro-
duced. These coherence singularities are points in six-dimensional space. Their
relationship to other types of singularities has only recently been clarified. [Gbur
et al., 2004; Flossmann et al., 2005, 2006; Gbur and Visser, 2006; Visser
and Schoonover, 2008]

Thusfar, only one study has been devoted to the description of the multi-
dimensional structure of a specific coherence singularity, namely that of a vortex
beam propagating through turbulence. [Gbur and Swartzlander, 2008] In the
present article, we analyze the more general case of coherence singularities in
the far zone of the field generated by a broad class of partially coherent sources.
These quasi-homogeneous sources are often encountered in practice. We analyze
the generic structure of the coherence singularities and also discuss the practical
case of a rotationally symmetric source. We illustrate our results by applying them
to a recently described, new type of ’dark core’ or vortex beam. For this beam
all different cross-sections of the singularity are shown to be conic sections in a
suitable coordinate system.
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Figure 4.1: Illustrating the notation.

4.2 Partially coherent sources

Consider a partially coherent, planar, secondary source, situated in the plane
z = 0, that emits radiation into the half-space z > 0 (see Fig. 4.1). In the
space-frequency domain, the source is characterized by its cross-spectral density
function [Wolf, 2007]

W (0)(ρ1,ρ2, ω) = 〈U (0)∗(ρ1, ω)U
(0)(ρ2, ω)〉. (4.1)

Here U (0)(ρ, ω) represents the source field at frequency ω at position ρ = (x, y),
the asterisk indicates complex conjugation, and the angled brackets denote an
ensemble average. The spectral degree of coherence is the normalized form of the
cross-spectral density, i.e.,

µ(0)(ρ1,ρ2, ω) =
W (0)(ρ1,ρ2, ω)√

S(0)(ρ1, ω)S(0)(ρ2, ω)
, (4.2)

with

S(0)(ρ, ω) =W (0)(ρ,ρ, ω), (4.3)

the spectral density (or ‘intensity at frequency ω’) of the source. For Schell-model
sources [Wolf, 2007] the spectral degree of coherence only depends on position
through the difference ρ1 − ρ2, i.e.,

µ(0)(ρ1,ρ2, ω) = µ(0)(ρ1 − ρ2, ω). (4.4)

The field in an arbitrary transverse plane z > 0 is given by the expression

U(ρ, z, ω) =

∫
(z=0)

U (0)(ρ′, ω)G(ρ− ρ′, z, ω) d2ρ′, (4.5)
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where G(ρ− ρ′, z, ω) is an appropriate free-space Green’s function [Wolf, 2007,
Sec. 5.2]. On substituting from Eq. (4.5) in Eq. (4.1), while interchanging the order
of integration and ensemble averaging, it follows that the cross-spectral density at
two arbitrary points (ρ1, z1) and (ρ2, z2) satisfies the equation

W (ρ1, z1,ρ2, z2, ω) =

∫∫
(z=0)

W (0)(ρ′
1,ρ

′
2, ω)G

∗(ρ1 − ρ′
1, z1, ω)

×G(ρ2 − ρ′
2, z2, ω) d

2ρ′1d
2ρ′2. (4.6)

The spectral density and the spectral degree of coherence at arbitrary points are
given by formulas that are quite similar to Eqs. (4.2) and (4.3), viz.,

µ(ρ1, z1,ρ2, z2, ω) =
W (ρ1, z1,ρ2, z2, ω)√
S(ρ1, z1, ω)S(ρ2, z2, ω)

, (4.7)

and

S(ρ, z, ω) = W (ρ, z,ρ, z, ω). (4.8)

Coherence singularities are phase singularities of the spectral degree of coherence,
they occur at pairs of points at which the field at frequency ω is completely un-
correlated, i.e.,

µ(ρ1, z1,ρ2, z2, ω) = 0. (4.9)

4.3 Quasi-homogeneous sources

An important sub-class of Schell-model sources is formed by so-called quasi-homo-
geneous sources. [Wolf, 2007] For such sources the spectral density S(0)(ρ, ω)
varies much more slowly with ρ than the spectral degree of coherence µ(0)(ρ′, ω)
varies with ρ′. This behavior, that often occurs in practice, is sketched in Fig. 4.2.

For quasi-homogeneous sources the field in the source plane and the field in
the far zone are related by two reciprocity relations, namely

S(∞)(s, ω) = (2πk)2S̃(0)(0, ω)µ̃(0)(ks⊥, ω) cos
2 θ/r2, (4.10)

µ(∞)(r1s1, r2s2, ω) =
S̃(0) [k(s2⊥ − s1⊥), ω]

S̃(0)(0, ω)
exp[ik(r2 − r1)], (4.11)

with the two-dimensional spatial Fourier transforms given by the expressions

S̃(0)(f , ω) =
1

(2π)2

∫
S(0)(ρ, ω) e−if ·ρ d2ρ, (4.12)

µ̃(0)(f , ω) =
1

(2π)2

∫
µ(0)(ρ, ω) e−if ·ρ d2ρ. (4.13)
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Figure 4.2: Illustrating the concept of quasi-homogeneity.

In these formulas k = ω/c is the wavenumber associated with frequency ω, c being
the speed of light in vacuum, s⊥ is the projection of the unit direction vector s onto
the xy-plane, and θ is the angle that the s-direction makes with the z-axis (see
Fig. 4.1). The superscript (∞) indicates points in the far zone. Equation (4.10)
states that the far-field spectral density of a planar, secondary, quasi-homogeneous
source is proportional to the Fourier transform of its spectral degree of coherence.
Equation (4.11) expresses that the far-field spectral degree of coherence of such a
source is, apart from a geometrical factor, given by the Fourier transform of its
spectral density.

Even though Eq. (4.11) is quite general, it allows us to draw several conclu-
sions. First, the far-field spectral degree of coherence depends on the spectral
density of the source, but is independent of its spectral degree of coherence. Sec-
ond, the dependence of the far-field spectral degree of coherence on the two dis-
tances r1 and r2 enters only through the factor exp[ik(r2 − r1)]. This means
that coherence singularities occur along certain pairs of observation directions
s1 = (sin θ1 cosφ1, sin θ1 sinφ1, cos θ1) and s2 = (sin θ2 cosφ2, sin θ2 sinφ2, cos θ2)
for which the prefactor in Eq. (4.11) vanishes. Since S̃(0)(0, ω) is both finite and
real, this yields the two constraints

<
{
S̃(0) [k(s2⊥ − s1⊥), ω]

}
= 0, (4.14)

=
{
S̃(0) [k(s2⊥ − s1⊥), ω]

}
= 0, (4.15)

where < and = denote the real and imaginary part, respectively. These two condi-
tions imply that generically (i.e., when they are independent and commensurate),
the coherence singularities form a two-dimensional surface in the four-dimensional
(θ1, φ1, θ2, φ2)-space.

Let us next consider the specialized case of a source whose spectral density
is mirror-symmetric with respect to both the x- and the y-axis. In that case the
factor S̃(0)[k(s2⊥ − s1⊥], ω) that appears in Eq. (4.11) is real-valued for all values
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of its spatial argument, [Bracewell, 1965, Ch. 2] and hence condition (4.15) is
lifted. This means that the coherence singularity is a three-dimensional volume in
(θ1, φ1, θ2, φ2)-space. Furthermore, if the spectral density of the source is rotation-
ally symmetric, the spectral degree of coherence in the far zone depends on the
observation angles φ1 and φ2 only through their difference φ2 − φ1. We therefore
conclude that for planar, secondary, rotationally symmetric, quasi-homogeneous
sources the coherence singularities are two-dimensional surfaces in the reduced
(θ1, θ2, φ2 − φ1)-space. An example of such a source is examined in the next Sec-
tion.

4.4 A partially coherent Laguerre-Gauss source

We illustrate our results thusfar with the analysis of a partially coherent source
that generates a Laguerre-Gauss beam. [van Dijk et al., 2008] For this source
we have

S(0)(ρ, ω) = A2ρ2 exp(−ρ2/2σ2
S), (4.16)

µ(0)(ρ2 − ρ1, ω) = exp[−(ρ2 − ρ1)
2/2σ2

µ], (4.17)

with A a real number, ρ = |ρ|, and σS and σµ the effective width of the spectral
density and of the spectral degree of coherence, respectively. If σµ � σS the source
is quasi-homogeneous. Since

S̃(0)(f , ω) =
(
2− f2σ2

S

)
σ4
SA

2 exp
(
−f2σ2

S/2
)
/2π, (4.18)

application of the reciprocity relation (4.11) yields

µ(∞)(r1s1, r2s2, ω) =
[
1− k2(s2⊥ − s1⊥)

2σ2
S/2
]
exp

[
−k2(s2⊥ − s1⊥)

2σ2
S/2
]

× exp [ik(r2 − r1)] . (4.19)

Because

(s2⊥ − s1⊥)
2 = sin2 θ1 + sin2 θ2 − 2 sin θ1 sin θ2 cos(φ1 − φ2), (4.20)

it follows from Eq. (4.19) that coherence singularities occur for those values of θ1,
φ1, θ2, and φ2 for which

sin2 θ1 + sin2 θ2 − 2 sin θ1 sin θ2 cos(φ1 − φ2) = 2/k2σ2
S . (4.21)

As remarked at the end of the previous Section, the dependence of the spectral
degree of coherence on the two angles φ1 and φ2 is through their difference φ1−φ2.
From now on we set, without loss of generality, φ2 = 0.

An example of the topology of the coherence singularity is shown in Fig. 4.3,
from which it can be seen that it forms a saddle-like surface. Let us consider the
θ1 = θ2 cross-section. For small values of these two angles, there is no value of φ1
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Figure 4.3: A two-dimensional co-
herence singularity in (θ1, θ2, φ1)-
space. In this example k2σ2
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Figure 4.4: A two-dimensional co-
herence singularity in (θ1, θ2, φ1)-
space. In this example k2σ2

S =
1000.

that corresponds with a point on the surface, i.e., there exist no pairs of points
at which the field is completely uncorrelated. When the angles are gradually
increased to a critical value θ1 = θ2 = θc a coherence singularity occurs at φ1 =
180◦. [van Dijk et al., 2008] For larger values (θ1 = θ2 > θc) a value of φ1 < 180◦

corresponds to a point on the surface. Since Eq. (4.21) shows a dependence of the
singularity on cosφ1, this means that the initial singularity has unfolded into two
pairs of singularities, one for φ1 and one for −φ1. It is to noted that in this example
k2σ2

S = 10 for illustrative purposes. In Fig. 4.4 the more realistic value of 1000
was used. It can be seen that the topological features of the coherence singularity
remain unchanged.

4.5 Conic sections

In order to study the coherence singularity depicted in Fig. 4.3 in more detail, it
is instructive to re-write Eq. (4.21) in the form

x2 + y2 + 2xyz +G = 0, (4.22)
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where

x = sin θ1, (4.23)

y = sin θ2, (4.24)

z = − cosφ1, (4.25)

G = −2/k2σ2
S . (4.26)

Although Eq. (4.22) is not a quadratic surface in (x, y, z)-space, both the horizontal
and the vertical cross-sections of the coherence singularity are quadratic curves.
Horizontal cross-sections (i.e., fixing the value of z and hence of φ1) are conic
sections in (x, y)-space [Beyer, 1980]; since x and y are limited to the interval
[0, 1], only parts of these conic sections are realized. More specifically, if z = −1
the cross-section takes the form of two parallel lines. On increasing z it becomes
an ellipse (with a circle as a special case when z = 0), and finally, for z = 1, it
becomes two parallel lines again (only one of which lies in the physical domain of x
and y). Various cross-sections of the coherence singularity are shown in Fig. 4.5 for
selected values of z. Because of the interchangeable roles of x and y in Eq. (4.22),
the cross-sections are symmetric about the line x = y.

According to Eq. (4.22) vertical cross-sections of the coherence singularities
(e.g., fixing the value of y and hence of θ2) are conic sections in (x, z)-space; since
0 ≤ x ≤ 1 and −1 ≤ z ≤ 1, only parts of these conic sections are realized. More
specifically, if y = 0 the cross-section has the form of two parallel lines (only one of
which lies in the physical domain of x and z). On increasing y it becomes a branch
of a hyperbola, two intersecting lines and again a branch of a hyperbola. This is
illustrated in Fig. 4.6. This concludes our identification of various cross-section of
the coherence singularity with a variety of conic curves.

4.6 Conclusions

We have analyzed the topology of coherence singularities that occur in the far field
generated by quasi-homogeneous sources. As a specific example we examined the
coherence singularity of a partially coherent vortex beam. Its cross-sections were
found to be different kinds of conic sections in a modified coordinate system.
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54 Chapter 4. Coherence singularities

-1.0

-0.5

0

0.5

1.0

0 0.5 1.0

y = 0 y = 0.4

y = 0.445 y = 0.45

y = 0.5 y = 1

x x

x x

x x

(a) (b)

(c) (d)

(e) (f )

z z

z z

z z

-1.0

-0.5

0

0.5

1.0

-1.0

-0.5

0

0.5

1.0

-1.0

-0.5

0

0.5

1.0

-1.0

-0.5

0

0.5

1.0

-1.0

-0.5

0

0.5

1.0

0 0.5 1.0

0 0.5 1.00 0.5 1.0

0 0.5 1.00 0.5 1.0

Figure 4.6: Cross-sections of the coherence singularity in the x, z-plane for selected values
of y, viz. y = 0 (a), y = 0.4 (b), y = 0.445 (c), y = 0.45 (d), y = 0.5 (e), and y = 1 (f).
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The Pancharatnam-Berry
phase for non-cyclic
polarization changes

This Chapter is based on the following publication:

• T. van Dijk, H.F. Schouten, W. Ubachs and T.D. Visser “The Pancharatnam-
Berry phase for non-cyclic polarization changes”,
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Abstract
We present a novel setup that allows the observation of the geometric phase that ac-
companies polarization changes in monochromatic light beams for which the initial
and final states are different (so-called non-cyclic changes). This Pancharatnam-
Berry phase can depend in a linear or in a nonlinear fashion on the orientation
of the optical elements, and sometimes the dependence is singular. Experimental
results that confirm these three types of behavior are presented. The observed
singular behavior may be applied in the design of optical switches.
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5.1 Introduction

In a seminal paper Berry [Berry, 1984] showed that when the Hamiltonian of a
quantum mechanical system is adiabatically changed in a cyclic manner the system
acquires, in addition to the usual dynamic phase, a so-called geometric phase. It
was soon realized that such a phase is in fact quite general: it can also occur for
non-adiabatic state changes and even in classical systems [Berry, 1990; Samuel
and Bhandari, 1988; Jordan, 1988; Shapere and Wilczek, 1989]. One of its
manifestations is the Pancharatnam phase in classical optics [Pancharatnam,
1956; Berry, 1987]. The polarization properties of a monochromatic light beam
can be represented by a point on the Poincaré sphere [Born and Wolf, 1999].
When, with the help of optical elements such as polarizers and retarders, the state
of polarization is made to trace out a closed contour on the sphere, the beam
acquires a geometric phase. This Pancharatnam-Berry phase, as it is nowadays
called, is equal to half the solid angle of the contour subtended at the origin of the
sphere [Bhandari, 1997; Hariharan, 2005; Bhandari and Samuel, 1988]. The
various kinds of behavior of the geometric phase for cyclic polarization changes
have been studied extensively [Chyba et al., 1988; Schmitzer et al., 1993;
Bhandari, 1992a,b].

In this paper we study the geometric phase for non-cyclic polarization changes,
i.e. polarization changes for which the initial state and the final state are differ-
ent. Such changes correspond to non-closed paths on the Poincaré sphere. The
geometric phase can depend in a linear, a nonlinear or in a singular fashion on the
orientation of the optical elements. Experimental results that confirm these three
types of behavior are presented. The observed singular behavior may be applied
in the design of fast optical switches.

The states of polarization, A and B, of two monochromatic light beams can
be represented by the Jones vectors [Jones, 1941]

EA =

(
cosαA

sinαAe
iθA

)
, (0 ≤ αA ≤ π/2; −π ≤ θA ≤ π), (5.1)

EB = eiγ
(

cosαB

sinαBe
iθB

)
, (0 ≤ αB ≤ π/2; −π ≤ θB ≤ π). (5.2)

Since only relative phase differences are of concern, the overall phase of EA in
Eq. (5.1) is taken to be zero. According to Pancharatnam’s connection [Berry,
1987; van Dijk et al., 2010b] the two states are in phase when their superposition
yields a maximal intensity, i.e., when

|EA +EB |2 = |EA|2 + |EB |2 + 2Re(EA ·E∗
B) (5.3)

reaches its greatest value, and hence

Im (EA ·E∗
B) = 0, (5.4)

Re (EA ·E∗
B) > 0. (5.5)
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These two conditions uniquely determine the phase γ, except when A and B are
orthogonal.

A

B

C

D

E

Figure 5.1: Non-closed path ABCDE on the Poincaré sphere for a monochromatic light
beam that passes through a sequence of polarizers and compensators.

5.2 Non-cyclic polarization changes

We study a series of polarization changes for which the successive states are as-
sumed to be in phase. To illustrate the rich behavior of the geometric phase,
consider a beam in an arbitrary initial state A, that passes through a linear polar-
izer whose transmission axis is under an angle φ1 with the positive x-axis. This
results in a second state B that lies on the equator of the Poincaré sphere (see
Fig. 5.1). Next the beam passes through a suitably oriented compensator, which
produces a third, left-handed circularly polarized state C on the south pole. The
action of a second linear polarizer, with orientation angle φ2, creates state D on
the equator. Finally, a second compensator causes the polarization to become
right-handed circular, corresponding to the state E on the north pole. These suc-
cessive manipulations can be described with the help of Jones calculus [Jones,
1941; Brosseau, 1998]. The matrix for a linear polarizer whose transmission axis
is under an angle φ with the positive x-axis equals

P(φ) =

(
cos2 φ cosφ sinφ

cosφ sinφ sin2 φ

)
, (5.6)

whereas the matrix for a compensator (“retarder”) with a fast axis under an angle
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Figure 5.2: Sketch of the Mach-Zehnder setup. The light from a He-Ne laser (right-
hand top) is split into two beams. All polarizing elements are placed in the upper arm,
the lower arm only contains a gray filter. The compensators are depicted with striped
holders, the linear polarizers with non-striped holders. The last two pairs of elements are
mounted together. The interference pattern of the recombined beams is recorded with
either a photo diode or a CCD camera (left-hand bottom).

θ with the positive x-axis, which introduces a phase change δ between the two field
components is

C(δ, θ) =

(
cos(δ/2) + i sin(δ/2) cos(2θ) i sin(δ/2) sin(2θ)

i sin(δ/2) sin(2θ) cos(δ/2)− i sin(δ/2) cos(2θ)

)
. (5.7)

The (unnormalized) Jones vector for the final state E thus equals

EE = C(π/2, φ2 − π/4) ·P(φ2) ·C(−π/2, φ1 − π/4) ·P(φ1) ·EA. (5.8)

Hence we find for the normalized states the expressions

EB = P(φ1) ·EA = T (A,φ1)

(
cosφ1
sinφ1

)
, (5.9)

EC = C(−π/2, φ1 − π/4) ·EB = T (A, φ1)e
−iφ1

(
1/
√
2

i/
√
2

)
, (5.10)

ED = P(φ2) ·EC = T (A, φ1)e
i(φ2−φ1)

(
cosφ2
sinφ2

)
, (5.11)

EE = C(π/2, φ2 − π/4) ·ED = T (A, φ1)e
i(2φ2−φ1)

(
1/

√
2

−i/
√
2

)
, (5.12)

where

T (A,φ1) =
cosαA cosφ1 + sinαAe

iθA sinφ1
| cosαA cosφ1 + sinαAeiθA sinφ1|

(5.13)
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is the (normalized) projection of the initial state A onto the state (cosφ1, sinφ1)
T .

Although in general the output produced by a compensator is not in phase with the
input, it is easily verified with the help of Eqs. (5.4) and (5.5) that in this example
all consecutive states are indeed in phase. Hence it follows from Eq. (5.12), that
we can identify the quantity

Ψ = arg[T (A,φ1)e
i(2φ2−φ1)] (5.14)

as the geometric phase of the final state E. When a beam in this state is combined
with a beam in state A, the intensity equals [cf. Eq. (5.3)]

|EA|2 + |EE |2 + 2Re(EA ·E∗
E) = 1 + |T (A,φ1)|2

+ 2H(A,φ1) cos(2φ2 − φ1 + φH),
(5.15)

where

H(A,φ1)e
iφH = T ∗(A,φ1)EA ·

(
1/
√
2

i/
√
2

)
, (5.16)

and with H(A,φ1) ∈ R+. In the next section we investigate the dependence of
the geometric phase of the final state E on the initial state A, and as a function
of the two orientation angles φ1 and φ2, and experimentally test our predictions.

5.3 Experimental method

The above sequence of polarization changes can be realized with a Mach-Zehnder
interferometer (see Fig. 5.2). The output of a He-Ne laser operating at 632.8 nm
is divided into two beams. The beam in one arm passes through a linear polarizer
and a quarter-wave plate. This produces state A. By rotating the plate, this initial
polarization state can be varied. Next the field passes through a polarizer P (φ1)
that creates state B, and a compensator C1, resulting in state C. A polarizer
P (φ2) produces state D, and a compensator C2 creates the final state E. The
elements P (φ1), C1 and P (φ2), C2 are joined pairwise to ensure that their relative
orientation remains fixed when the angles φ1 and φ2 are varied, and the resulting
states are circularly polarized. The field in the other arm is attenuated by a gray
filter in order to increase the sharpness of the fringes. The fields in both arms
are combined, and the ensuing interference pattern is detected with the help of a
detector. Both a photodiode and a CCD camera are used.

On varying the angle φ2, the intensity in the upper arm of Fig. 5.2 remains
unchanged and the changes in the diffraction pattern can be recorded with a
photodiode. However, when the angle φ1 is varied, the intensity in that arm
changes. The shape of the interference pattern then changes as well, and the
geometric phase can only be observed by measuring a shift of the entire pattern
with a CCD camera [Wagh and Rakhecha, 1995].
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One has to make sure that rotating the optical elements does not affect the
optical path length and introduces an additional dynamic phase. This was achieved
by an alignment procedure in which the invariance of the interference pattern for
180◦ rotations of the linear polarizers was exploited. Mechanical vibrations were
minimized by remotely controlling the optical elements.
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Figure 5.3: Measured intensity as a function of the orientation angle φ2. The solid curve
is a fit of the measured data to the function C1 +C2 cos(2φ2 +C3). The vertical symbols
indicate error bars.

5.4 Experimental results

The dependence of the geometric phase of the final state E on the orientation
angles φ1 and φ2 of the two polarizers is markedly different. It is seen from
Eq. (5.14) that the phase is proportional to φ2. This linear behavior is illustrated
in Fig. 5.3 in which the intensity observed with a photodiode is plotted as a
function of the angle φ2. The solid curve is a fit of the data to the function
C1 + C2 cos(2φ2 + C3), with C1, C2 and C3 all constants [cf. Eq. (5.15)]. The
excellent agreement between the measurements and the fitted curve show that the
geometric phase Ψ indeed increases twice as fast as the angle φ2.

In order to investigate the change ∆Ψ when the angle φ1 is varied from 0◦ to
180◦ (after which the polarizer returns to its original state), let us first assume that
the initial state A coincides with the north pole (i.e., αA = π/4, θA = −π/2). In
that case the path on the Poincaré sphere is closed and we find from Eq. (5.14) that
Ψ = 2(φ2 −φ1). The solid angle of the traversed path is now 4(φ2 −φ1). Thus we
see that in that case we retrieve Pancharatnam’s result that the acquired geometric
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Figure 5.4: Geometric phase of the final state E when the initial state A coincides with
the north pole (solid curve), and when A lies between the equator and the north pole
(dashed curve), both as a function of the orientation angle φ1. The curves are theoretical
predictions [Eq. (5.14)], the dots and error bars represent measurements. In this example
φ2 = 0.
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Figure 5.5: Geometric phase of the final state E when the initial state A coincides with
the south pole (solid curve), and when A lies between the equator and the south pole
(dashed curve), both as a function of the orientation angle φ1. The curves are theoretical
predictions [Eq. (5.14)], the dots and error bars represent measurements. In this example
φ2 = 0.

phase for a closed circuit equals half the solid angle of the circuit subtended at the
sphere’s origin. Hence, on rotating φ1 over 180◦, the accrued geometric phase ∆Ψ
equals 360◦. This predicted behavior is indeed observed, see Fig. 5.4 (blue curve).
For an arbitrary initial state on the northern hemisphere [in this example, with
Stokes vector (0.99,−0.14, 0.07)] the behavior is nonlinear, but again we find that
∆Ψ = 360◦ after the first polarizer has been rotated over 180◦, see Fig. 5.4 (red
curve).

Let us next assume that the initial state A coincides with the south pole (αA =
π/4, θA = π/2). In that case, Eq. (5.14) yields Ψ = 2φ2. Since this is independent
of φ1, a rotation of φ1 over 180◦ results in ∆Ψ = 0◦. This corresponds to the
blue curve in Fig. 5.5. For an arbitrary initial state on the southern hemisphere
[in this example, with Stokes vector (0.93, 0.23,−0.28)] the geometric phase does
vary with φ1, but again ∆Ψ = 0◦ after a 180◦ rotation of the polarizer P (φ1), see
Fig. 5.5 (red curve). So, depending on the initial polarization state A, topologically
different types of behavior can occur, with either ∆Ψ = 0◦ or ∆Ψ = 360◦ after
half a rotation of the polarizer P (φ1). This implies that on moving the state
A across the Poincaré sphere a continuous change from one type of behavior to
another is not possible. A discontinuous change in behavior can only occur when
the geometric phase Ψ is singular. This happens when the first state A and the
second state B are directly opposite to each other on the Poincaré sphere (and
form a pair of “anti-podal points”). They are then orthogonal and the phase of the
final state E is singular [Nye, 1999]. Indeed, when the state A lies on the equator
(θA = 0) then Ψ = 2φ2 − φ1, or Ψ = 2φ2 − φ1 + π, except when A and B are
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Figure 5.6: Color-coded plot of the phase of the final state E as a function of the initial
state A as described by the two parameters αA and θA [cf. Eq. (5.1)]. In this example
φ1 = 3π/4, and φ2 = 1.8.

opposite. In that case Ψ is singular and undergoes a π phase jump. In Fig. 5.6 this
occurs for the point (αA = π/4, θA = 0) at which all the different phase contours
intersect. In other words, when A moves across the equator, the geometric phase
as a function of the angle φ1 is singular and a transition from one type of behavior
(with ∆Ψ = 360◦) to another type (with ∆Ψ = 0◦) occurs. This singular behavior,
resulting in a 180◦ discontinuity of the geometric phase was indeed observed, see
Fig. 5.7. Notice that although the depicted jump equals 180◦, in our experiment it
cannot be discerned from a −180◦ discontinuity. Whereas a positive jump results
in ∆Ψ = 360◦ after a 180◦ rotation of the first polarizer, a negative jump yields
∆Ψ = 0◦. In that sense the singular behavior forms an intermediate step between
the two dependencies shown in Figs. 5.4 and 5.5.

The ability to produce a 180◦ phase jump by means of a much smaller variation
in φ1 can be employed to cause a change from constructive interference to decon-
structive interference when the beam is combined with a reference beam. Clearly,
such a scheme can be used for fast optical switching [Papadimitriou et al.,
2007].
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Figure 5.7: Singular behavior of the geometric phase of the final state E when the initial
state A lies on the equator, as a function of the orientation angle φ1. The solid curve is
a theoretical prediction [Eq. (5.14)], the dots and error bars represent measurements. In
this example θA = 0.27, αA = 0.0 and φ2 = 0.

5.5 Conclusions

In summary, we have presented a new Mach-Zehnder type setup with which the
geometric phase that accompanies non-cyclic polarization changes can be observed.
The geometric phase can exhibit linear, nonlinear or singular behavior. Excellent
agreement between the predicted and observed behavior was obtained.
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Geometric interpretation of
the Pancharatnam
connection and non-cyclic
polarization changes

This Chapter is based on the following publication:

• T. van Dijk, H.F. Schouten and T.D. Visser “Geometric interpretation of
the Pancharatnam connection and non-cyclic polarization changes”,
J. Opt. Soc. Am. A vol. 27, 1972–1976 (2010).

Abstract
If the state of polarization of a monochromatic light beam is changed in a cyclical
manner, the beam acquires–in addition to the usual dynamic phase–a geometric
phase. This geometric or Pancharatnam-Berry phase, equals half the solid angle
of the contour traced out on the Poincaré sphere. We show that such a geometric
interpretation also exists for the Pancharatnam connection, the criterion according
to which two beams with different polarization states are said to be in phase. This
interpretation offers a new and intuitive method to calculate the geometric phase
that accompanies non-cyclic polarization changes.
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In 1984 Berry pointed out that a quantum system whose parameters are cycli-
cally altered does not return to its original state but acquires, in addition to the
usual dynamic phase, a so-called geometric phase [Berry, 1984]. It was soon real-
ized that such a phase is not just restricted to quantum systems, but also occurs in
contexts such as Foucault’s pendulum [Berry, 1990]. Also the polarization phe-
nomena described by Pancharatnam [1956] represent one of its manifestations.
The polarization properties of a monochromatic light beam can be represented by
a point on the Poincaré sphere [Born and Wolf, 1999]. When, with the help
of optical elements such as polarizers and retarders, the state of polarization is
made to trace out a closed contour on the sphere, the beam acquires a geometric
phase. This Pancharatnam-Berry phase, as it is nowadays called, is equal to half
the solid angle of the contour subtended at the origin of the sphere [Berry, 1987;
Bhandari, 1997; Hariharan, 2005; Bhandari and Samuel, 1988; Bomzon
et al., 2002; Biener et al., 2006].

In this work we show that such a geometric relation also exists for the so-called
Pancharatnam connection, the criterion according to which two beams with differ-
ent polarization states are in phase, i.e., their superposition produces a maximal
intensity. This relation can be extended to arbitrary (e.g., non-closed) paths on
the Poincaré sphere, and allows us to study how the phase builds up for such
non-cyclic polarization changes. Our work offers an geometry-based alternative,
to the algebraic work presented in Refs. [Samuel and Bhandari, 1988; Jordan,
1988].

The state of polarization of a monochromatic beam can be represented as a
two-dimensional Jones vector [Jones, 1941] with respect to an orthonormal basis
{ê1, ê2}, as

E = cosα ê1 + sinα exp(iθ) ê2, (6.1)

with 0 ≤ α ≤ π/2; −π ≤ θ ≤ π, and êi · êj = δij , (i, j = 1, 2). The angle α is a
measure of the relative amplitudes of the two components of the electric vector E,
and the angle θ denotes their phase difference. Two different states of polarization,
A and B, can hence be written as

EA =
(
cosαA, sinαAe

iθA
)T
, (6.2)

EB = eiγAB
(
cosαB , sinαBe

iθB
)T
. (6.3)

Since only relative phase differences are of concern, the overall phase of EA in
Eq. (6.2) is taken to be zero. According to Pancharatnam’s connection [Berry,
1987] these two states are in phase when their superposition yields a maximal
intensity, i.e., when

|EA +EB |2 = |EA|2 + |EB |2 + 2Re(EA ·E∗
B) (6.4)

reaches its greatest value, implying that

Im (EA ·E∗
B) = 0, (6.5)

Re (EA ·E∗
B) > 0. (6.6)



67

These two conditions uniquely determine the phase γAB , except when the states
A and B are orthogonal.

Let us now consider a sequence of three polarization states with each succesive
state being in phase with its predecessor. As the initial state we take the basis-state
X with Jones vector EX = (1, 0)T . It follows immediately that any polarization
state A with Jones vector EA as defined by Eq. (6.2) is in phase with X. Consider
now a third state B. This state is in phase with A provided that the angle γAB

in Eq. (6.3) satifies the relations (6.5) and (6.6). Clearly, B is not in phase with
X, but rather with eiγABX. Apparently the total geometric phase that is accrued
by following the closed circuit XAB equals γAB . This observation allows us to
make use of Pancharatnam’s classic result which relates the accumulated geometric
phase to the solid angle of the geodesic triangle XAB [Pancharatnam, 1956].
According to this result then, the angle (phase) γAB between the states A and B
for which they are in phase is given by half the solid angle ΩXAB of the triangle
XAB subtended at the center of the Poincaré sphere, i.e.,

γAB = ΩXAB/2. (6.7)

The solid angle ΩXAB is taken to be positive (negative) when the the circuit
XAB is traversed in a counter-clockwise (clockwise) manner. Thus we have
−2π ≤ ΩXAB ≤ 2π, and hence −π ≤ γAB ≤ π. Hence we arrive at the fol-
lowing geometric interpretation of Pancharatnam’s connection: The phase γAB

for which the superposition of two beams with polarization states A and B yields a
maximum intensity, equals half the solid angle subtended by their respective Stokes
vectors and the Stokes vector corresponding to the basis-state X. We emphasize
that γAB is defined with respect to a certain basis. We return to this point later.

Several consequences follow from the geometric interpretation. First, consider
a state B that lies on the great circle through the points A and X. As illustrated in
Fig. 6.1, two cases can be distinguished. If B is not on the geodesic that connects
−A and −X, then the curves XA, AB and BX cancel each other [see panel (a)],
i.e., γAB = ΩXAB/2 = 0. If B does lie on the geodesic connecting −A and −X
[see panel (b)], then these three curves together constitute the entire great circle
and hence γAB = ΩXAB/2 = π. Consequently, we arrive at

Corollary 1 All polarization states that lie on the great circle that runs through
A and X and which are not part of the geodesic curve that connects −A and −X
are in phase with state A. All other states on the great circle are out of phase with
state A.

(We exlude the pathological case A = ±X.)
The great circle through A and X divides the Poincaré sphere into two hemi-

spheres. For all states B on one hemisphere, the path XAB runs clockwise. For
B on the other hemisphere, the path XAB runs counter-clockwise. Thus we find

Corollary 2 The great circle that runs through A and X divides the Poincaré
sphere into two halves, one on which all states have a positive phase with respect
to A, and one on which all states have a negative phase with respect to A.
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Figure 6.1: The great circle through A, B and basis state X. If state B does not lie on
the segment between −A and −X [panel (a)], then the sum of the three geodesics XA,
AB and BX is zero. If B lies on the segment between −A and −X [panel (b)], then the
sum of the three geodesics equals the great circle.
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Figure 6.2: Illustrating the intersection of the plane given by Eq. (6.10) and the Poincaré
sphere. This intersection is a circle (indicated by the dashed curve) that runs through
the points −A, −X and B. All points on the circle segment that runs from −A to B
to −X constitute the set {B′} of states that have the same phase difference γAB with
respect to A as the state B. The great circle through A and X is shown solid-dotted.
The point NP indicates the North Pole.

Thus far we not specified the basis vectors in which the Jones vectors are
expressed. The two most commonly used are the cartesian representation and the
helicity representation. The Stokes vector corresponding to the basis-state X is
(1, 0, 0) and (0, 0, 1) in these two bases, respectively. Our results so far are valid
for any choice of representation. For computational ease, however, we will from
now on make use of the cartesian basis.

Given two different polarization states A and B, we may enquire about the
set {B′} of all states which have the same phase difference γAB with respect
to A as B has. We begin by noticing that the solid angle ΩABC subtended at
the origin of the Poincaré sphere by three unit vectors A, B and C satisfies the
equation [Eriksson, 1990]

tan

(
ΩABC

2

)
=

A · (B×C)

1 +B ·C+A ·C+A ·B
. (6.8)

On taking A, B and C as the Stokes vectors corresponding to states A, B, and
X, i.e., C = (1, 0, 0), Eqs. (6.7) and (6.8) yield

tan γAB =
AyBz −AzBy

1 +Bx +Ax +AxBx +AyBy +AzBz
. (6.9)

For γAB and A fixed, we thus find that the three components of B must satisfy
the relation

cxBx + cyBy + czBz +D = 0, (6.10)
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with the coefficients cx, cy, cz and D given by

cx = tan γAB(1 +Ax), (6.11)

cy = tan γABAy +Az, (6.12)

cz = tan γABAz −Ay, (6.13)

D = cx. (6.14)

The solutions of Eq. (6.10) form a plane. In addition, the vector B must be of
unit length, ensuring that it lies on the Poincaré sphere. The intersection of the
plane and the sphere is a circle that runs through B. Finding two other point on
this circle defines it uniquely. It can be verified by substitution that the Stokes
vectors −A and −X both satisfy Eq. (6.10). Hence, for all states on the circle
that runs through B, −A and −X, the phase γAB has the same value, mod π.
Since the plane defined by Eq. (6.10) does, in general, not include the origin of
the Poincaré sphere, this circle is not a great circle. This is illustrated in Fig. 6.2,
where the circle through B is drawn dashed. The dashed circle intersects the great
circle through A and X at the points −A and −X. According to Corollary 2, γAB

changes sign at these points. Since Eq. (6.9) defines the phase modulo π, it follows
that γAB undergoes a π phase jump at these points. We thus arrive at

Corollary 3 Consider the circle through −A, −X and B. It consists of two
segments, both with endpoints −A and −X. The segment which includes B equals
the set {B′} of states such that γAB′ = γAB. The other segment represents states
for which γAB′ = γAB ± π.

It can be shown that the plane-sphere intersection is always a circle, and not just
a single point, if the pathological case A = ±X is excluded. If, for a fixed state
A, the state B is being varied, the plane given by Eq. (6.10) rotates along the line
connecting −A and −X.

We now demonstrate how our geometric interpretation implies that for a fixed
state A the phase γAB may vary in different ways when the state B is moved across
the Poincaré sphere. We specify the position of B by spherical coordinates (φ, θ),
where 0 ≤ φ ≤ 2π and 0 ≤ θ ≤ π represent the azimuthal angle and the angle of
inclination, respectively. If A is taken to be at the south pole and B = B(φ) lies
on the equator, then

γAB =
ΩXAB

2
=

1

2

∫ π

π/2

∫ φ

0

sin θ dφ′dθ =
1

2
φ. (6.15)

Clearly, the phase varies linearly with the angle φ in this case.
Let us now consider the contours of equal phase γAB as shown in Fig. 6.3. It

is seen that the intersections of the contours with the equator are not equidistant.
Hence in this case the phase depends in a non-linear way on the angle φ.

The singular behavior, finally, of the phase is a direct consequence of the fact
that two anti-podal states A and −A do not interfere with each other [see the
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Figure 6.3: Selected contours of the phase γAB for the case A = (0, 0.8, 0.6). The basis-
state X, the equator (Eq.) and the meridian through X are also shown.

Figure 6.4: Contours of equal phase of γAB for the case that the state A is taken to be
(0.6, 0, 0.8). Two singular points with opposite topological charge can be seen at −A and
−X.
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Figure 6.5: Contours of equal phase of γAB for the case that the state A is taken to be
(0, 0, 1). The singularity at −A is seen to have topological charge +1.

remark below Eq. (6.6)]. From Eq. (6.8) it follows that the phase is antisymmetric
under the interchange of the points C = X and A. Hence we expect two singu-
lar points, namely −A and −X, with opposite topological charge (±1). This is
illustrated in Figs. 6.4 and 6.5. We note that the existence of singular points is
in agreement with the “Hairy Ball Theorem” due to Brouwer [Brouwer, 1912],
according to which there is no nonvanishing continuous tangent vector field on a
sphere in R3. This implies that ∇γAB has at least one zero, in this case at the
two singularities.

Let us now apply our results for the Pancharatnam connection to study the
geometric phase for an arbitrary, i.e. non-closed, path ABC on the Poincaré
sphere. The successive states are assumed to be in phase. Therefore the geometric
phase accumulated on this path equals

γABC ≡ γAB + γBC = (ΩXAB +ΩXBC)/2,

= ΩXABC/2, (6.16)

where ΩXABC is the generalized solid angle of the path X → A → B → C → X.
ΩXABC can consist of two triangles (see Fig. 6.6), whose contribution is positive
or negative depending on their handedness.

Now we keep states A and C fixed, and study how the geometric phase γABC

changes when state B is varied. We will show that this change, in contrast to
γAB , is independent of the choice of basis vectors. Consider the phase γ′ABC in a
non-cartesian basis (for example, the helicity basis) whose first basis state we call
N . We then have, in analogy to Eq. (6.16),

γ′ABC ≡ γ′AB + γ′BC = (ΩNAB +ΩNBC)/2,

= ΩNABC/2. (6.17)
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A C

B

X

K

Figure 6.6: Illustrating the generalized solid angle ΩXABC . In going from state A to
state B, the beam acquires a geometric phase equal to half the solid angle ΩXAB , which
is positive. In going from B to C the acquired phase equals half the solid angle ΩXBC ,
which is negative. Since the triangle BKX does not contribute, this is equivalent to the
generalized solid angle ΩXABC , which equals half the solid angle of the triangle ABK
(positive), plus half the solid angle of the triangle XKC (negative).

N

X

A

B

C

Figure 6.7: Illustrating the equality ΩNABC + ΩCBAX = ΩNAXC . Such a construction
can be made for any choice of states.



74 Chapter 6. The Pancharatnam connection

Also,

ΩNABC − ΩXABC = ΩNABC +ΩCBAX = ΩNAXC . (6.18)

The justification of the last step of Eq. (6.18) is illustrated in Fig. 6.7. It follows
on using Eqs. (6.16)–(6.18) that

γ′ABC − γABC = ΩNAXC/2. (6.19)

The term ΩNAXC/2 is a constant, independent of B, i.e. the geometric phase
in both reprensentations differs by a constant only. Hence the variation of the
geometric phase with B is independent of the choice of the basis, as it should be
for an observable quantity. This is in contrast to γAB , which explicitly depends
on the choice of basis, as is evident from Eqs. (6.2–6.3).

The behavior of γABC on varying B can be linear [Chyba et al., 1988],
non-linear [Schmitzer et al., 1993] or singular [Bhandari, 1992a,b; van Dijk
et al., 2010a], as we have also shown for γAB . However γAB has singularities at
B = −A and B = −X. The first is due to the orthogonality of A and −A, while
the second is a consequence of the choice of representation. The phase γABC is
singular only at B = −A and B = −C, and not at B = −X.

In conclusion, we have shown how the Pancharatnam connection may be in-
terpreted geometrically. Our work offers an geometry-based approach to calculate
the Pancharatnam-Berry phase associated with non-cyclic polarization changes.
As such it is an alternative to the algebraic treatments presented in [Samuel and
Bhandari, 1988] and [Jordan, 1988]. Our approach can be extended to the
description of geometric phases in quantum mechanical systems.



Chapter 7

Effects of spatial coherence
on the angular distribution
of radiant intensity
generated by scattering on a
sphere

This Chapter is based on the following publication:

• T. van Dijk, D.G. Fischer, T.D. Visser and E. Wolf, “Effects of spatial coher-
ence on the angular distribution of radiant intensity generated by scattering
on a sphere”,
Phys. Rev. Lett. vol. 104, 173902 (2010).

Abstract
In the analysis of light scattering on a sphere it is implicitely assumed that the
incident field is spatially fully coherent. However, under usual circumstances the
field is partially coherent. We generalize the partial waves expansion method to
this situation and examine the influence of the degree of coherence of the incident
field on the the radiant intensity of the scattered field in the far zone. We show
that when the coherence length is comparable to or is smaller than the radius of
the sphere, the angular distribution of the radiant intensity depends strongly on
the degree of coherence. The results have implications for, for example, scattering
in the atmosphere and colloidal suspensions.
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00

u

θ
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O
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Figure 7.1: Illustrating the notation. The origin O is taken at the center of the sphere.

In the usual description of light scattering by a homogeneous sphere (the scalar
analogue of the well-known Mie scattering) it is generally assumed that the inci-
dent field is spatially fully coherent [Mie, 1908; van de Hulst, 1957; Born and
Wolf, 1999; Nussenzveig, 1992; Grandy Jr., 1992]. In practice, this assump-
tion is not always justified. Examples are fields generated by multi-mode lasers,
and fields that have passed through a random medium such as the turbulent atmo-
sphere. Hardly any studies have been devoted to this more general case (see, how-
ever [Wolf, 2007]). The extinguished power due to scattering of random fields on
a random medium has been analyzed in [Carney et al., 1997] and [Carney and
Wolf, 1998], and certain reciprocity relations for cases of this kind were derived
in [Visser et al., 2006]. The extinguished power from scattering a random field
on deterministic media was discussed in [Cabaret et al., 1998] and [Greffet
et al., 2003]. However, the influence of the state of coherence of the incident field
on the angular distribution of the scattered field seems to have been studied only
in two publications [Jannson et al., 1988; Gori et al., 1990].

In this Letter we analyze the scattering of a wide class of beams of any state of
coherence on a homogeneous spherical scatterer, namely beams of the well-known
Gaussian Schell-model class (see [Mandel and Wolf, 1995, Sec. 5.6.4]). We
present numerical examples that show how the effective spectral coherence length
(i.e., the coherence length at a fixed frequency) of the incident beam affects the
angular distribution of the radiant intensity of the scattered field.

Let us first consider a plane, monochromatic scalar wave of unit amplitude,
propagating in a direction specified by a real unit vector u0, incident on a deter-
ministic, spherical scatterer occupying a volume V (see Fig. 7.1):

V (i)(r, t) = U (i)(r, ω) exp(−iωt), (7.1)

where

U (i)(r, ω) = exp(iku0 · r). (7.2)

Here r denotes the position vector of a point in space, t the time, and ω the
angular frequency. Also, k = ω/c = 2π/λ is the wavenumber, c being the speed
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of light in vacuum and λ denotes the wavelength. The time-independent part
U(r, ω) of the total field that results from scattering of the plane wave on a sphere
may be expressed as the sum of the incident field U (i)(r, ω) and the scattered field
U (s)(r, ω), viz.,

U(r, ω) = U (i)(r, ω) + U (s)(r, ω). (7.3)

The scattered field in the far-zone of the scatterer, at an observation point r = ru
(u2 = 1) is given by the asymptotic formula

U (s)(ru, ω) ∼ f(u,u0, ω)
eikr

r
, (kr → ∞, u fixed), (7.4)

where f(u,u0, ω) denotes the scattering amplitude.
Next consider the situation where the incident field is not a plane wave but is

of a more general form. Such a field may be represented as an angular spectrum
of plane waves propagating into the half-space z > 0, i.e. [Mandel and Wolf,
1995, Sec. 3.2]

U (i)(r, ω) =

∫
|u′

⊥|2≤1

a(u′
⊥, ω)e

iku′·r d2u′⊥, (7.5)

where u′
⊥ = (u′x, u

′
y) is a real two-dimensional vector, and evanescent waves have

been omitted. The scattered field in the far zone can then be expressed in the
form

U (s)(ru, ω) =
eikr

r

∫
|u′

⊥|2≤1

a(u′
⊥, ω)f(u,u

′, ω) d2u′⊥. (7.6)

Let us next consider the case where the incident field is not deterministic but is
stochastic. The radiant intensity of the scattered field in a direction specified by a
real unit vector u is given by the formula [Mandel and Wolf, 1995, Eq. (5.2–12)]

Js(u, ω) ≡ r2〈U (s)∗(ru, ω)U (s)(ru, ω)〉 (kr → ∞), (7.7)

which, on using Eq. (7.6) becomes

Js(u, ω) =

∫∫
A(u′,u′′, ω)f∗(u,u′, ω)f(u,u′′, ω) d2u′⊥d

2u′′⊥, (7.8)

where

A(u′,u′′, ω) = 〈a∗(u′
⊥, ω)a(u

′′
⊥, ω)〉 (7.9)

is the so-called angular correlation function [Mandel and Wolf, 1995, Eq. (5.6–
48)] of the stochastic field, and the angled brackets denote the ensemble average.

An important class of partially coherent beams (which includes the lowest-
order Hermite-Gaussian laser mode) are the so-called Gaussian Schell-model beams
(see [Mandel and Wolf, 1995, Sec. 5.6.4]). For such beams the cross-spectral
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density function in the plane z = 0 (the plane which passes through the center of
the sphere) has the form

W (0)(ρ1,ρ2, ω) =
[
S(0)(ρ1, ω)

]1/2 [
S(0)(ρ2, ω)

]1/2
µ(0)(ρ1,ρ2, ω), (7.10)

with

S(0)(ρ, ω) = 〈U (0)∗(ρ, ω)U (0)(ρ, ω)〉, (7.11)

representing the spectral density, and

µ(0)(ρ1,ρ2, ω) =
〈U (0)∗(ρ1, ω)U

(0)(ρ2, ω)〉[
S(0)(ρ1, ω)S(0)(ρ2, ω)

]1/2 , (7.12)

representing the spectral degree of coherence of the field in the plane z = 0. Each
of the functions on the right-hand side of Eq. (7.10) has a Gaussian form, i.e.

S(0)(ρ, ω) = A2
0 exp(−ρ2/2σ2

S), (7.13)

µ(0)(ρ1,ρ2, ω) = exp[−(ρ2 − ρ1)
2]/2σ2

µ. (7.14)

In these formulas ρ1 = (x1, y1) and ρ2 = (x2, y2) are two-dimensional position
vectors of points in the z = 0 plane, and A0, σS and σµ are positive constants that
are taken to be independent of position, but may depend on frequency.

The angular correlation function of such a beam may be expressed as a four-
dimensional Fourier transform of its cross-spectral density in the plane z = 0,
viz. [Mandel and Wolf, 1995, Eq. (5.6–49)]

A(u′,u′′, ω) =

(
k

2π

)4
+∞∫∫

−∞

W (0)(ρ1,ρ2, ω)

× exp[−ik(u′′
⊥ · ρ2 − u′

⊥ · ρ1)] d
2ρ1d

2ρ2. (7.15)

On substituting from Eqs. (7.13) and (7.14) into Eq. (7.15), one obtains for the
angular correlation function of a Gaussian Schell-model beam the expression

A(u′,u′′, ω) =

(
k2A0σSσeff

2π

)2

× exp

{
−k

2

2

[
(u′

⊥ − u′′
⊥)

2σ2
S + (u′

⊥ + u′′
⊥)

2σ
2
eff

4

]}
, (7.16)

where

1

σ2
eff

=
1

σ2
µ

+
1

4σ2
S

. (7.17)
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In order for the incident field to be beam-like, the parameters σS and σµ must
satisfy the so-called beam condition [Mandel and Wolf, 1995, Eq. 5.6–73]

1

σ2
µ

+
1

4σ2
S

� k2

2
. (7.18)

The scattering amplitude f(u′,u′′, ω) of the field arising from scattering on a
sphere centered on the axis of the beam has the form

f(u′,u′′, ω) = function (u′ · u′′, ω) = function (cos θ, ω), (7.19)

where θ denotes the angle between the directions of incidence and scattering (see
Fig. 7.1). For a homogeneous spherical scatterer of radius a and of refractive index
n, the scattering amplitude can be expressed as [Joachain, 1975, Eq. (4.66)]

f(cos θ, ω) =
1

k

∞∑
l=0

(2l + 1) exp[iδl(ω)] sin [δl(ω)]Pl(cos θ), (7.20)

where Pl is a Legendre polynomial, and the phase shifts δl(ω) are given by the
expressions (see Secs. 4.3.2 and 4.4.1 of Ref. [Joachain, 1975])

tan [δl(ω)] =
kjl(ka)j

′
l(ka)− kjl(ka)j

′
l(ka)

kj′l(ka)nl(ka)− kjl(ka)n′l(ka)
. (7.21)

Here jl and nl denote spherical Bessel functions and spherical Neumann functions,
respectively, of order l. Furthermore

k = nk, (7.22)

and

j′l(ka) =
djl(x)

dx

⌋
x=ka

, (7.23)

n′l(ka) =
dnl(x)

dx

⌋
x=ka

. (7.24)

On substituting from Eqs. (7.20) and (7.16) into Eq. (7.8) we obtain for the radiant
intensity of the scattered field the expression

Js(u, ω) =

(
kA0σSσeff

2π

)2 ∞∑
l=0

∞∑
m=0

(2l + 1)(2m+ 1)ei[δm(ω)−δl(ω)] sin[δl(ω)]

× sin[δm(ω)]

∫∫
exp

{
−k

2

2

[
(u′

⊥ − u′′
⊥)

2σ2
S + (u′

⊥ + u′′
⊥)

2σ
2
eff

4

]}
×Pl(u · u′)Pm(u · u′′) d2u′⊥d

2u′′⊥. (7.25)
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Let us restrict ourselves to the common situation where the beam width is much
greater than the transverse spectral coherence length of the beam, i.e., σS � σµ.
One may then use the asymptotic approximation kσS → ∞ in two of the four
integrations (those over u

′′

⊥), and apply Laplace’s method [Born and Wolf,
1999; Wong, 2001; Lopez and Pagola, 2008], which asserts that for two well-
behaved functions h(x, y) and g(x, y)∫∫

Ω

e−ph(x,y)g(x, y) dxdy ∼ πg(x0, y0)

p
√
Det{H[h(x0, y0)]}

e−ph(x0,y0),

as p→ ∞,

(7.26)

where (x0, y0) is the point at which h(x, y) attains its smallest value, and
H[h(x0, y0)] is the Hessian matrix of h(x, y), evaluated at the point (x0, y0), i.e.

H[h(x0, y0)] =


∂2h(x, y)

∂x2
∂2h(x, y)

∂x∂y
∂2h(x, y)

∂y∂x

∂2h(x, y)

∂y2


x=x0,y=y0

(7.27)

Let us make use of Eq. (7.26) with the choices

g(u,u′
⊥,u

′′
⊥) =

(
kA0σSσeff

2π

)2 ∞∑
l=0

∞∑
m=0

(2l + 1)(2m+ 1)ei[δm(ω)−δl(ω)]

× sin [δl(ω)] sin [δm(ω)] exp

{
−k

2σ2
eff

8
(u′

⊥ + u′′
⊥)

2

}
×Pl(u · u′)Pm(u · u′′), (7.28)

h(u′
⊥,u

′′
⊥) =

1

2
(u′

⊥ − u′′
⊥)

2, (7.29)

p = (kσs)
2. (7.30)

The minimum of h(u′
⊥,u

′′
⊥) as a function of u′′

⊥ occurs at u′′x = u′x and u′′y = u′y.
The determinant of the Hessian matrix evaluated at this point is readily found to
have the value unity. Expression (7.25) for the radiant intensity then reduces to

Js(u, ω) =
A2

0σ
2
eff

4π

∞∑
l=0

∞∑
m=0

(2l + 1)(2m+ 1)ei(δm−δl) sin δl sin δm

×
∫
Pl(u · u′)Pm(u · u′)e−k2σ2

effu
′2
⊥/2 d2u′⊥, (7.31)

where u · u′ = sin θ sin θ′ cosφ′ + cos θ cos θ′ in spherical coordinates, and we have
made use of the fact that the radiant intensity is rotationally symmetric about the
beam axis.

In Fig. 7.2 the radiant intensity (normalized to the radiant intensity in the for-
ward direction), calculated from Eq. (7.31), as a function of the angle of scattering
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Figure 7.2: (Color on-line) The angular distribution of the normalized radiant inten-
sity Js(θ, ω)/Js(0

◦, ω) of the scattered field for selected values of the transverse spectral
coherence length σµ of the incident beam, with the choices a = 4λ and n = 1.5.

θ is shown for selected values of the spectral coherence length σµ of the incident
field. (For a method to determine σµ, see Sec. 4.3.2 of [Mandel and Wolf,
1995]). It is seen that the scattered field becomes less diffuse as the parameter σµ
increases. If the coherence length of the incident beam is comparable to or is larger
than the radius of the sphere (i.e., when σµ > a), secondary maxima occur. For
σµ = 4a the radiant intensity can hardly be distinguished from that generated by
an almost spectrally fully coherent beam with σµ = 100a. The displayed scattering
angle θ is restricted to the range 0◦ ≤ θ ≤ 90◦, because for larger values the curves
essentially coincide with the horizontal axis. In Fig. 7.3 the results are shown on
a logarithmic scale, for the full range of the scattering angle, i.e., 0◦ ≤ θ ≤ 180◦.
It is seen that in all cases there is some backscattering, i.e., Js(θ = 180◦, ω) > 0,
with the largest amount occurring when σµ = a/4.

We can summarize our results by saying that we have studied the effects of
spatial coherence of the incident beam on the angular distribution of the field
scattered by a small homogeneous sphere; and we found that when the transverse
spectral coherence length of the incident beam is smaller than the radius of the
scatterer, the radiant intensity is rather diffuse and exhibits no secondary maxima.
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Figure 7.3: (Color on-line) The normalized radiant intensity J(θ, ω)/Js(0
◦, ω) of the

scattered field for selected values of the transverse spectral coherence length σµ, plotted
on a logarithmic scale. The sphere radius a has been taken to be 4λ, and the refractive
index n = 1.5.

Our results may find useful application in, for example, determining scattering
effects in the atmosphere and colloidal suspensions.
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Samenvatting

De Nederlandse titel van dit proefschrift luidt: “Experimentele en theoretische
studies in optische coherentie.” Optische coherentie theorie is de statistische
beschrijving van licht. Doordat de toestand van een lichtbron of die van een
medium nooit volledig bekend is moet het systeem beschreven worden met een
reeks van correlatiefuncties. Deze beschrijven in welke mate het licht op twee ver-
schillende punten statistisch gezien overeenkomt. Als het licht volledig coherent
is dan zijn de velden volledig ‘in harmonie’ met elkaar. Als de velden volledig
ongecorreleerd zijn, dan is er geen relatie tussen de velden. Het licht is dan in-
coherent. Tussen deze twee extremen in wordt licht partieel coherent genoemd.
Uit de correlatiefuncties volgen de eigenschappen van licht, zoals bijvoorbeeld het
spectrum, waarin we gëınteresseerd zijn. Net als lichtvelden zelf voldoen deze cor-
relaties aan precies gedefinieerde propagatiewetten. Belangrijk om op te merken is
dat de correlatiefuncties in het algemeen zullen veranderen tijdens propagatie, ook
bij propagatie door vacuüm. Hieruit volgt dat in principe ook alle eigenschappen
van licht, zoals het spectrum en zoals we straks zullen zien ook de polarisatie,
veranderen. Voor het beschrijven van polarisatie-eigenschappen is het nodig om
naar correlaties van verschillende componenten van het elektromagnetische veld te
kijken op één punt, in plaats van naar correlaties van het veld op twee punten. Alle
onderwerpen die worden besproken in dit proefschrift kunnen beschreven worden
met het formalisme van de optische coherentie theorie, de geünificeerde theorie
van coherentie en polarisatie.

In het tweede hoofdstuk wordt onderzocht wat de invloed is van de mate van
coherentie op het focuseren van licht. De intensiteitsverdeling in de buurt van het
brandpunt is in kaart gebracht als functie van de coherentielengte. In het bijzon-
der worden zogenaamde Bessel-gecorreleerde velden onderzocht. In voorafgaande
studies wordt vrijwel altijd aangenomen dat het verlagen van de coherentielengte
leidt tot het uitsmeren van de intensiteit. In dit hoofdstuk wordt theoretisch
aangetoond dat de effecten veel subtieler kunnen zijn. In het geval van een Bessel-
gecorreleerd veld is het mogelijk om een minimum te creëren op de plaats van het
brandpunt. Het is zelfs mogelijk om op een continue wijze de intensiteit te veran-
deren van een maximum naar een minimum door eenvoudig de coherentielengte
te veranderen. Deze voorspelling is ondertussen experimenteel bevestigd. De be-
haalde resultaten kunnen mogelijk toepassing krijgen in het optisch vastpakken en
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manipuleren van deeltjes.
Het onderwerp van het derde hoofdstuk is singuliere optica, in het bijzonder

wordt de relatie tussen coherentiesingulariteiten en fasesingulariteiten onderzocht.
Fasesingulariteiten zijn punten in de ruimte waar de amplitude van het veld nul is,
daardoor is de fase van het veld ongedefinieerd of ‘singulier’. Als twee punten in een
veld volledig ongecorreleerd zijn, dan is de fase van de correlatiefunctie singulier.
Als het licht van deze twee punten wordt gecombineerd in een zogenaamd twee
spleten experiment zal er geen interferentiepatroon zichtbaar zijn. Men spreekt
dan van een correlatiesingulariteit. Gekeken wordt hoe deze singuliere punten
zich ontwikkelen als een bundel propageert. De bundel die onderzocht wordt is
een partieel-coherente vortex bundel. Deze begint met een fasesingulariteit die
onmiddellijk verdwijnt als de bundel zich voortplant en tegelijkertijd ontstaat er
een correlatiesingulariteit. Als de observatiehoek in het verre veld wordt vergroot
ontvouwt deze singulariteit zich in een doublet, met andere woorden; er ontstaan
twee paren van singuliere punten.

Coherentiesingulariteiten zijn ook het onderwerp van het vierde hoofdstuk.
De topologie van een brede klasse partieel coherente velden wordt geanalyseerd.
Voor rotatie-symmetrische quasi-homogene bronnen vormen de coherentiesingular-
iteiten een twee-dimensionaal oppervlak. Dit wordt gëıllustreerd met een partieel-
coherente vortex bundel. In dit geval vormen de doorsnedes van het oppervlak
van de singulariteiten kegelsneden, namelijk ellipsen, rechte lijnen en hyperbolen.

In het vijfde hoofdstuk wordt een nieuwe opstelling beschreven om de ge-
ometrische fase te meten die gerelateerd is aan polarisatieveranderingen in een
monochromatische bundel. De polarisatietoestand wordt veranderd door het ver-
draaien van optische elementen zoals lineaire polarizatoren en kwart-golflengte
platen. Eerst wordt theoretisch beschreven wat de faseverandering is die een bun-
del uiteindelijk oploopt na de reis door een aantal optische elementen. Het gedrag
dat hieruit volgt blijkt op verschillende manieren van de experimentele parameters
te kunnen afhangen, namelijk op een lineaire, niet-lineaire en singuliere wijze. Deze
voorspelling zijn experimenteel geverifieerd, en de resultaten van het experiment
worden gepresenteerd in het laatste deel van hoofdstuk vijf.

Geometrische fases zijn ook het onderwerp van hoofdstuk zes. De polarisati-
etoestand van licht kan gevisualiseerd worden als een punt op de zogenaamde
Poincaré bol. Als een reeks opeenvolgende polarisatieveranderingen ervoor zorgen
dat de polarisatietoestand een gesloten pad beschrijft op deze bol, dan is de bi-
jbehorende geometrische fase gerelateerd aan het omsloten oppervlak. Dit is een
beroemd resultaat van Pancharatnam. Deze geometrische fase is naar hem ver-
noemd. Aangetoond wordt dat er voor een niet-gesloten pad ook een geometrische
interpretatie bestaat. Dit maakt het mogelijk om op een nieuwe en meer intüıtieve
manier de geometrische fase te bepalen die de bundel oploopt bij een niet-gesloten
pad.

Als licht op een deeltje botst kan het van richting veranderen. Zo wordt licht in
de atmosfeer bijvoorbeeld verstrooid aan luchtmoleculen. Hierdoor krijgt de lucht
zijn blauwe kleur. Dit proces is voor het eerst beschreven door Lord Rayleigh.
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Zijn beschrijving is alleen geldig als de deeltjes veel kleiner zijn dan de golflengte.
Voor grotere bolletjes is het nodig om een lastigere, maar exacte oplossing te
gebruiken. De zogenaamde Mie theorie is een analytische oplossing van de Maxwell
vergelijkingen voor het verstrooien van licht aan bolletjes met een willekeurige
grootte. Impliciet wordt in deze beschrijving aangenomen dat het inkomende
veld ruimtelijk volledig coherent is. Dit is echter in het algemeen niet het geval.
In hoofdstuk zeven wordt de Mie theorie gegeneraliseerd voor partieel coherente
velden. De invloed van de mate van coherentie op de intensiteitsverdeling van het
verstrooide licht wordt onderzocht. Het blijkt dat de correlatielengte van groot
belang is zo gauw deze vergelijkbaar is met of kleiner is dan de grootte van het
bolletje.
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