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Chapter 1

Introduction

1.1 Historical introduction

The diffraction of light by an aperture in a screen is one of the classical subjects
in Physical Optics. For example, in the nineteenth century it was the main appli-
cation of both Fraunhofer and Fresnel diffraction. The diffraction by an aperture
was usually treated by approximating the field in the aperture by the incident
field and using the Huygens-Fresnel principle to calculate the diffracted field. This
approach was put on a more rigorous mathematical basis by Kirchhoff [Born and

Wolf, 1999, Chap. 8]. However, he still needed to approximate the field in the
aperture by the incident field, an approximation that is only valid for apertures
with dimensions much larger than the wavelength. For the experiments and ap-
plications of those days involving light this approximation was justified, because
the wavelength of visible light (∼ 500 nm) is much smaller than the aperture sizes
that were typically used.1

However, this was not always the case for the similar problem of the trans-
mission of sound through apertures. Rayleigh [1897] was the first to calculate the
diffraction of sound by apertures with dimensions much smaller than the wave-
length. In the early twentieth century, this kind of approach also became relevant
for Optics, because of the discovery of radio waves and microwaves. This became
especially relevant at the time of the World War II, because of the many appli-
cations of such waves that then emerged. There are several studies devoted to
this problem, the most famous one by Bethe [1944]. For a review of this early
work on transmission problems, see [Bouwkamp, 1954]. All these studies have in
common that they assume that the screen is perfectly conducting, an assumption
that is quite reasonable for metals at radio or microwave frequencies. Perfect con-

1However, experiments involving sub-wavelength slits were already performed by Fizeau
[1861].
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8 1.2. Outline of this thesis

duction means essentially that the electromagnetic waves cannot penetrate into
the metal plate. Usually, the assumption of perfect conduction is accompanied by
the assumption of an infinitely thin metal plate.

The first interest in the light transmission through sub-wavelength apertures
arose in the eighties, due to the invention of the near-field optical microscope
[Pohl et al., 1984; Betzig and Trautman, 1992]. In such a microscope a
sub-wavelength-sized tip is scanned very close (i.e., at distances smaller than the
wavelength) across a sample, to obtain sub-wavelength resolution. One of the
disadvantages was that the light throughput of the tip was very low. To obtain a
better insight into this problem, the similar configuration of an aperture in a metal
plate was studied again (see e.g. [Betzig et al., 1986; Leviatan, 1986; Roberts,
1987]). In these studies usually the assumption of perfect conductivity was still
applied, although at optical wavelengths it is questionable.

Quite recently, light transmission through sub-wavelength apertures has turned
out to be a hot topic in Optics. This is due to the observation by Ebbesen et al.

[1998] of extraordinarily large transmission through hole arrays in a metal plate.
This effect was attributed to the occurrence of surface plasmons, which are surface
waves on a metal-dieletric interface [Raether, 1988].2 However, this explanation
was questioned by some other authors (see e.g. [Cao and Lalanne, 2002]), which
resulted in an intense debate about this subject.

In this thesis, the light transmission through a single slit is studied. Contrary
to most studies, we will take into account both the finite thickness and finite con-
ductivity of the metal plate, by making use of a rigorous Green’s tensor method.
Another topic addressed in this thesis is the light transmission through two aper-
tures, with the aim of clarifying the role of surface plasmons in the interaction
between the two apertures.

1.2 Outline of this thesis

In the remainder of this Chapter we discuss the necessary background material to
understand the rest of the thesis. It consists of a brief summary of the Maxwell
equations, guided modes, surface plasmons and an introduction to Singular Optics.

The second Chapter describes the scattering model which is used in later Chap-
ters to calculate the field near sub-wavelength slits. In this scattering model, the
Maxwell equations are converted into an integral equation with a Green tensor as
a kernel. This Green tensor is derived for a multi-layered background medium.
Also the numerical procedure to solve the integral equation is described.

2See also [Barnes et al., 2003; Zayats and Smolyaninov, 2003] for reviews about the
recent surge of interest in surface plasmons.
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The third Chapter discusses the light transmission through a single sub-wave-
length slit. The influence of several parameters such as the slit width, the plate
thickness, the material properties of the plate and the polarization of the incident
field are discussed. For the explanation of the results the concepts of guided modes
inside the slit and phase singularities of the Poynting vector are used.

In the fourth Chapter the radiation pattern of a single narrow slit is inves-
tigated. The radiation pattern describes how the light is diffracted in different
directions. The results can, as in the preceding Chapter, be explained in terms of
waveguiding and phase singularities.

The light transmission through two sub-wavelength slits is the topic of the
fifth Chapter. The results are explained by a heuristic model involving the local
excitation of surface plasmons at the slits.

The sixth Chapter gives a description of the transmission of partially coherent

light through two apertures, i.e., in contrast to the other Chapters the electro-
magnetic field is not taken to be coherent and monochromatic. In the first part
of Chapter 6 the coherence properties of Young’s interference experiment are de-
scribed. In the second part of the Chapter the consequences of the presence of
surface plasmons on the coherence properties is described.

1.3 The Maxwell equations in matter

The Maxwell equations in matter are given by3

−∇× H(r, t) + J(ind)(r, t) + ∂tD(r, t) = −J(ext)(r, t), (1.1)

∇× E(r, t) + ∂tB(r, t) = 0, (1.2)

where ∇ = (∂x, ∂y, ∂z) denotes differentiation with respect to the spatial Cartesian
coordinates r = (x, y, z), and ∂t denotes differentiation with respect to the time of
observation t. Furthermore,
E = the electric field strength (V/m),
H = the magnetic field strength (A/m),
D = ε0E + P = the electric flux density (C/m2),
B = µ0(H + M) = the magnetic flux density (T),
J(ind) = the induced volume density of electric conduction current (A/m2),
P = the electric polarization (C/m2),
M = the magnetization (A/m),
J(ext) = the external volume density of electric current (A/m2),
ε0 = the permittivity in vacuum (F/m),
µ0 = the permeability in vacuum (H/m).

3Only SI units will be used in this thesis.
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J(ind), P and M describe the reaction of matter to the presence of electromag-
netic fields.

J(ext) describes the current sources that, together with the electric charges,
generate the fields.4

ε0 and µ0 are constants which are related by

ε0 =
1

µ0c0
2
, (1.3)

where c0 = 2.99792458× 108 m/s is the speed of light in vacuum. The value of µ0

is µ0 = 4π × 10−7 H/m. So one obtains ε0 = 8.8541878× 10−12 F/m.
The Maxwell equations are supplemented by the following compatibility rela-

tions,

∇ ·B(r, t) = 0, (1.4)

∇ · D(r, t) − ρ(ind)(r, t) = ρ(ext)(r, t), (1.5)

where the induced volume density of electric charge ρ(ind) and the external volume

density of electric charge ρ(ext) are introduced. They are related to the current
densities J(ind) and J(ext) by the continuity relations

∇ · J(ind)(r, t) + ∂tρ
(ind)(r, t) = 0, (1.6)

∇ · J(ext)(r, t) + ∂tρ
(ext)(r, t) = 0. (1.7)

J(ext) and ρ(ext) are called the sources, and are considered to be field-independent.

1.3.1 Constitutive relations

The Maxwell equations (1.1) and (1.2) constitute an incomplete system of equa-
tions since the number of equations is less than the number of unknown quan-
tities. Therefore supplementing equations, known as the constitutive relations,
are needed, which describe the reaction of matter to the electric and magnetic
fields. These relations express J(ind), D and B in terms of E and H. We assume
that the medium is linear, time invariant, locally reacting, isotropic and causal

[De Hoop, 1995, Chap. 19]. Furthermore, we assume that J(ind) and D are only
dependent on E, whereas B depends only on H. In that case the constitutive

4Some authors put on the right-hand side of (1.2) an external volume density of magnetic

current K
(ext) for reasons of symmetry. See, e.g., [Blok and Van den Berg, 1999].
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relations are given by

J(ind)(r, t) =

∫ ∞

0

κc(r, t
′)E(r, t − t′) dt′, (1.8)

D(r, t) =

∫ ∞

0

κe(r, t
′)E(r, t − t′) dt′, (1.9)

B(r, t) =

∫ ∞

0

κm(r, t′)H(r, t− t′) dt′, (1.10)

where κc, κe and κm are the conduction relaxation function, the dielectric relaxation

function and the magnetic relaxation function, respectively.

1.3.2 Boundary conditions

Consider an interface ∂D between two adjacent media, D(1) and D(2) with different
constitutive functions (see Eqs. (1.8–1.10)). Assume that this interface has at every
point an unique tangent plane and let n1→2 denote the unit normal vector of ∂D,
pointing from D(1) into D(2).

We now want to investigate the be- VC n1!2 D(1)
D(2) �D

Figure 1.1: Impression of the interface
between D(1) and D(2).

havior of the electromagnetic field at the
interface. First the electromagnetic field
is split in a normal part and a part that
is parallel to the interface. To derive the
behavior of the normal parts of the field,
Eqs. (1.4) and (1.5) are used. We take
an infinitesimal “pillbox” V , positioned
half in D(1) and half in D(2), as is drawn
in Fig. 1.1. Eqs. (1.4) and (1.5) are in-
tegrated over V and if Gauss’ theorem is
applied to the result, one obtains

∫

V

∇ ·B(r, t) d3r =

∫

∂V

n · B(r, t) d2r = 0, (1.11)
∫

V

∇ · D(r, t) d3r =

∫

∂V

n · D(r, t) d2r =

∫

V

ρ(ind)(r, t) + ρ(ext)(r, t) d3r. (1.12)

Here n denotes the outward normal to V and ∂V denotes the boundary of V .
In the limit of a very shallow pillbox the side surface does not contribute to the
integrals in (1.11) and (1.12). If the top and bottom of V are tangential to the
interface ∂D, then (1.11) and (1.12) become:

(B2 −B1) · n1→2 = 0, (1.13)

(D2 − D1) · n1→2 = Σ, (1.14)
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where Σ denotes the surface charge density at the interface and the subscripts 1
and 2 denote the field in D(1) and D(2), respectively.

In order to analyze the tangential components we use a rectangular closed
contour C that crosses the interface and has its plane perpendicular to it, such
that its normal t is tangential to the interface, see Fig. 1.1. The arms of the contour
are chosen such that the two long arms are tangential to ∂D and the other two
short arms are perpendicular to the interface. On integrating (1.1) and (1.2) over
C, one obtains with the help of Stokes’ theorem:

∮

C

H(r, t) · dl =

∫

S

[

J(ind)(r, t) + Jext(r, t) + ∂tD(r, t)
]

· t d2r, (1.15)
∮

C

E(r, t) · dl = −
∫

S

∂tB(r, t) · t d2r, (1.16)

where S denotes the surface inside C.
If the short arms of C are of negligible size, then (1.15) and (1.16) become:

(H1 − H2) × n1→2 = J(sur), (1.17)

(E1 − E2) × n1→2 = 0, (1.18)

where J(sur) is the surface current density.

1.4 The steady-state Maxwell equations

If f(r, t) denotes an electromagnetic quantity that is causally related to the action
of some source that is switched on at time t = 0, then its one-sided Laplace
transform with respect to time is given by

f̂(r, s) =

∫ ∞

0

e−stf(r, t) dt, (1.19)

where s is a complex number such that Re(s) > s0. Here is s0 chosen such that
for sufficiently large t, |e−s0tf(r, t)| ≤ M , where M is a positive constant. When
f̂(r, t) is evaluated, f(r, t) can be recovered by the Bromwich integral [Arfken

and Weber, 1995, p. 908]:

f(r, t) =
1

2πi

∫ s0+i∞

s0−i∞

estf̂(r, s) ds, (1.20)

where i is the imaginary unit.
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If the Maxwell equations (1.1) and (1.2) are subjected to a one-sided Laplace
transformation with respect to time, one obtains

−∇× Ĥ(r, s) + Ĵ(ind)(r, s) + sD̂(r, s) = −Ĵ(ext)(r, s), (1.21)

∇× Ê(r, s) + sB̂(r, s) = 0, (1.22)

where it was used that the Laplace transform of ∂tf(t) is given by sf̂(s)−f(0). In
this case f(0) = 0, because f is causally related to the source that was switched
on at t = 0.

The constitutive relations (1.8–1.10) simplify significantly if one takes the
Laplace transform:

Ĵ(ind)(r, s) = σ(r, s)Ê(r, s), (1.23)

D̂(r, s) = ε(r, s)Ê(r, s), (1.24)

B̂(r, s) = µ(r, s)Ĥ(r, s), (1.25)

where σ, ε and µ are the conductivity, the permittivity and the permeability of the
medium defined by

σ(r, s) =

∫ ∞

0

κc(r, t)e
−st dt, (1.26)

ε(r, s) =

∫ ∞

0

κe(r, t)e
−st dt, (1.27)

µ(r, s) =

∫ ∞

0

κm(r, t)e−st dt. (1.28)

In the derivation of Eqs. (1.23–1.25) the convolution theorem for Laplace trans-
forms was used [Arfken and Weber, 1995, Sec. 15.11].

The relative permittivity εr and the relative permeability µr are defined by
εr = ε/ε0 and µr = µ/µ0. If the constitutive relations hold and the medium is
homogeneous, then σ, ε and µ do not depend on r. When a medium has σ = 0, it
is called nonconducting. If a medium has µr = 1, it is called nonmagnetic.

If we assume that s0 = 0 and consider f̂ for imaginary values s = −iω, where
ω is the angular frequency, Eqs. (1.19) and (1.20) can be written as

f̂(r,−iω) =

∫ ∞

0

eiωtf(r, t) dt, (1.29)

f(r, t) =
1

2π

∫ ∞

−∞

e−iωtf̂(r,−iω) dω. (1.30)

In the case of steady-state fields, all electromagnetic field quantities are assumed
to be sinusoidally varying in time with a common angular frequency ω. Then each
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real quantity f(r, t) is related to the complex quantity f̂(r,−iω) via

f(r, t) = Re[f̂(r,−iω)e−iωt]. (1.31)

The steady-state analysis may be considered as the limiting case of the Laplace
transform where s → −iω via Re(s) > 0 [Blok and Van den Berg, 1999,
Sec. 2.7]. From Eqs. (1.21) and (1.22) it follows that the steady-state Maxwell
equations are given by

−∇× Ĥ(r) + σ(r)Ê(r) − iωε(r)Ê(r) = −Ĵ(ext)(r), (1.32)

∇× Ê(r) − iωµ(r)Ĥ(r) = 0, (1.33)

where the ω dependence of all quantities is omitted, because we now consider ω
only as a parameter.

To describe a lossy medium, we could use a non-zero σ. Instead of this we will
use a complex-valued ε and σ = 0. Eq. (1.32) shows that the effect is the same.
The relation between the two representations is Im(ε) = σ/ω. The motivation
behind this is as follows. Consider a homogeneous medium without sources. If we
take the curl of Eq. (1.33) and use Eqs. (1.32), (1.5) and (1.9), the result is:

∇2Ê(r) + (ω2εµ + iωσµ)Ê(r) = 0. (1.34)

We try plane wave solutions of the form E = E0e
i(k·r−ωt), where k is the wave

vector. When this Ansatz is inserted in Eq. (1.34), one obtains the relation k2 =
ω2εµ + iωσµ for the wave number k. Condition (1.5) gives that k · E0 = 0. If we
define the index of refraction as n := k/k0, where k0 = ω/c0, then

n =

√

εrµr + i
σµr

ωε0
, (1.35)

with the square root chosen such that Im(n) ≥ 0. In optics, it is common to
work with a complex-valued index of refraction rather than with a conductivity σ.
Therefore, only complex-valued permittivities or refractive indices are used in this
thesis, and the conductivity is set to zero.

The boundary conditions in the steady-state analysis are similar as before (see
Eqs. (1.13)–(1.14) and Eqs. (1.17)–(1.18)):

(B̂2 − B̂1) · n1→2 = 0, (1.36)

(D̂2 − D̂1) · n1→2 = 0, (1.37)

and

(Ĥ1 − Ĥ2) × n1→2 = 0, (1.38)

(Ê1 − Ê2) × n1→2 = 0. (1.39)
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Here the surface charge and surface current densities are assumed to be zero.
The surface current density is zero because we are considering media with finite
conductivity. The surface charge density is then found to be zero because of the
continuity relations (1.6) and (1.7) for the case of steady-state fields.

If follows from Eqs.(1.36–1.37) that the normal parts of B̂ and D̂ are continuous
across the interface. But if Eqs. (1.24) and (1.25) hold and D(1) and D(2) are
homogeneous media with different ε and µ, then the normal parts of E and H can
be discontinuous across the interface. Similarly it follows that the tangential parts
of E and H are continuous. For the same reason as for the normal parts of E and
H, the tangential parts of D and B do not have to be continuous.

1.5 The Poynting vector

The work done per second by the electromagnetic field in a volume D is given by

dW (t)

dt
=

∫

D

J(ind)(r, t) · E(r, t) d3r. (1.40)

If Eq. (1.1) is substituted into Eq. (1.40), one obtain

dW (t)

dt
= −

∫

D

J(ext)(r, t) · E(r, t) d3r

−
∫

D

∇ · [E(r, t) × H(r, t)] d3r

−
∫

D

[E(r, t) · ∂tD(r, t) + H(r, t) · ∂tB(r, t)] d3r,

(1.41)

where Eq. (1.2) and the vector identity ∇ · (E×H) = H · (∇×E)−E · (∇×H)
were used.

The first term in Eq. (1.41) represents the electromagnetic power generated
by the sources in the volume D. The second term can, with Gauss’ theorem, be
written as

∫

D

∇ · [E(r, t) × H(r, t)] d3r =

∫

∂D

n · S(r, t) d2r, (1.42)

where ∂D is the boundary of D, n is the outward normal of ∂D and S = E×H is the
Poynting vector, representing the energy per square meter per second flowing out
of the volume. The last term of Eq. (1.41) represents the change of electromagnetic
energy in the volume D.

Eq. (1.41) holds for an arbitrary volume D, so it can also be written in a
differential form, namely

−E(r, t) · J(ext)(r, t) = [E(r, t) · ∂tD(r, t) + H(r, t) · ∂tB(r, t)]

+ ∇ · S(r, t) + J(ind)(r, t) ·E(r, t),
(1.43)
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where Eq. (1.8) was used.
In the steady-state case one works with the time-averaged Poynting vector 〈S〉T ,

rather than with the Poynting vector S. We define 〈S〉T by

〈S(r)〉T =
1

T

∫ t′+T

t′
S(r, t) dt, (1.44)

where T = 2π/ω is the period of the field. If the definition of the Poynting vector
is substituted into Eq. (1.31), one obtain

〈S(r)〉T =
1

2
Re[Ê(r) × Ĥ∗(r)]. (1.45)

To obtain the steady-state variant of Eq. (1.43), we take the dot product of
the complex conjugate of Eq. (1.32) with Ê and add the dot product of Eq. (1.33)
with Ĥ∗ to obtain

∇ · 〈S(r)〉T +
1

2
ωIm[ε(r)]|Ê(r)|2 = −1

2
Re[Ê(r) · Ĵext∗(r)], (1.46)

where we used a complex-valued permittivity, which takes into account the con-
ductivity as described in the previous section.

1.6 Two-dimensional electromagnetic fields

Consider a configuration which is assumed to be independent of one variable,
say y. Then the solutions {Ê(r‖), Ĥ(r‖)} of the Maxwell equations will also be
independent of y. Here we have introduced the notation r‖ ≡ (x, 0, z). If this
assumption is inserted into the Maxwell equations (1.32) and (1.33), one finds
that they split into two independent sets:

∂zĤy(r‖) − iωε(r‖)Êx(r‖) = −Ĵ (ext)
x (r‖), (1.47)

−∂xĤy(r‖) − iωε(r‖)Êz(r‖) = −Ĵ (ext)
z (r‖), (1.48)

∂zÊx(r‖) − ∂xÊz(r‖) − iωµ(r‖)Ĥy(r‖) = 0, (1.49)

for Êx, Ĥy and Êz. For Ĥx, Êy and Ĥz, one obtains

−∂zĤx(r‖) + ∂xĤz(r‖) − iωε(r‖)Êy(r‖) = −Ĵ (ext)
y (r‖), (1.50)

−∂zÊy(r‖) − iωµ(r‖)Ĥx(r‖) = 0, (1.51)

∂xÊy(r‖) − iωµ(r‖)Ĥz(r‖) = 0. (1.52)



Chapter 1. Introduction 17

If Êx = Ĥy = Êz = 0 the field is called E-polarized and if Ĥx = Êy = Ĥz = 0 the
field is called H-polarized [Born and Wolf, 1999, p. 638].

An E-polarized field is completely determined by Êy. This can be seen by
substituting from Eqs. (1.51) and (1.52) into Eq. (1.51), which yields

∇2Êy(r‖) −
∇µ(r‖)

µ(r‖)
· ∇Êy(r‖) + k2

0n
2(r‖)Êy(r‖) = −iωµ(r‖)Ĵ

(ext)
y (r‖), (1.53)

where Eq. (1.35) was used. If Êy is known, the other field components follow
from Eqs. (1.51) and (1.52). The boundary conditions at an interface between
two different media (Eqs. (1.38) and (1.39)) reduce to the requirement that at the
interface

Ê1y = Ê2y, (1.54)

1

µ1

∂nÊ1y =
1

µ2

∂nÊ2y, (1.55)

where the subscripts 1 and 2 denote the two different media and ∂nÊy/µ = n ·
∇Êy/µ, where n is the normal of the interface.

In the same way an H-polarized field is determined by Ĥy:

∇2Ĥy(r‖)−
∇ε(r‖)

ε(r‖)
·∇Ĥy(r‖)+k2

0n
2(r‖)Ĥy(r‖) = ∂xĴ

(ext)
z (r‖)−∂z Ĵ

(ext)
x (r‖). (1.56)

The other field components now follow from Eqs. (1.48) and (1.49), when Ĥy is
known. The boundary conditions for an H-polarized field at a interface between
two different media (Eqs. (1.38) and (1.39)) reduce to the requirement that at the
interface

Ĥ1y = Ĥ2y, (1.57)

1

ε1
∂nĤ1y =

1

ε2
∂nĤ2y. (1.58)

The reduction of the Maxwell Equations for the case of a two-dimensional con-
figuration to two independent scalar equations (viz. (1.53) and (1.56)) is some-
times called the scalar nature of two-dimensional electromagnetic fields [Born

and Wolf, 1999, Sec. 11.4].
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1.7 Guided modes

Consider a configuration in which the constitutive parameters (ε and µ)5 are in-
dependent of z. A guided mode or waveguide mode is a field of the following form

Ê(r) = e(x, y)eikeffz, (1.59)

Ĥ(r) = h(x, y)eikeffz, (1.60)

with keff the effective wave number and e and h represent the profile of the guided
mode.6 Here e and h are functions such that |e|, |h| → 0 if |x|, |y| → ∞. An
exception are two-dimensional configurations, as discussed in the previous Section.
In that case e and h do not depend on y at all.

1.7.1 Guided modes inside a slit in a metal plate

An example encountered in this thesis is the case of guided modes inside a slit of
width 2a in a metal plate. The configuration is non-magnetic (i.e., µ = µ0) and
has a permittivity specified by

ε(x) =

{

ǫm, if |x| > a,

ǫ0, if |x| ≤ a,
(1.61)

where εm is the complex-valued permittivity of the metal. The configuration is
two-dimensional, and so the field splits into an E-polarized part and an H-polarized
part, as described in the previous Section.

For an E-polarized mode, substitution of Eq. (1.59) into Eq. (1.53) yields

(∂2
x + k2

0x)Êy(r‖) = 0, if |x| < a, (1.62)

(∂2
x + k2

mx)Êy(r‖) = 0, if |x| > a, (1.63)

with

k0x =
√

k2
0 − k2

eff =
√

ω2ε0µ0 − k2
eff , (1.64)

kmx =
√

k2
m − k2

eff =
√

ω2εmµ0 − k2
eff , (1.65)

where the square roots are taken such that Im(
√

k0x) ≥ 0 and Im(
√

kmx) ≥ 0.
Eqs. (1.62–1.63) have solutions which are symmetric with respect to x given by

Êy(r‖) =

{

A cos(k0xx)eikeffz if |x| < a,

Beikmx|x|eikeffz if |x| > a,
(1.66)

5Note that ε may be complex-valued to take into account losses in the medium.
6For an overview of guided modes, see [Snyder and Love, 1983].
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and they have antisymmetric solutions given by

Êy(r‖) =

{

C sin(k0xx)eikeffz if |x| < a,

sign(x)Deikmx|x|eikeffz if |x| > a.
(1.67)

At |x| = a, Êy and ∂xÊy have to be continuous (see Eqs. (1.54–1.55). This implies
that keff has to satisfy

−k0x tan(k0xa) = ikmx, (1.68)

for symmetric modes, whereas for antisymmetric modes it has to satisfy

k0x cot(k0xa) = ikmx, (1.69)

These two equations are only satisfied by certain discrete values of keff , which corre-
spond with different guided modes. These values can be computed by numerically
solving Eq. (1.68) or (1.69).

For an H-polarized mode, one obtains the equations

(∂2
x + k2

0x)Ĥy(r‖) = 0, if |x| < a, (1.70)

(∂2
x + k2

mx)Ĥy(r‖) = 0, if |x| > a, (1.71)

but now Ĥy and ∂xĤy/ε have to be continuous at |x| = a (see Eqs. (1.57–1.58).
Eqs. (1.70–1.71) have solutions which are symmetric with respect to x given by

Ĥy(r‖) =

{

A cos(k0xx)eikeffz if |x| < a,

Beikmx|x|eikeffz if |x| > a,
(1.72)

and they have antisymmetric solutions given by

Ĥy(r‖) =

{

C sin(k0xx)eikeffz if |x| < a,

sign(x)Deikmx|x|eikeffz if |x| > a.
(1.73)

The continuity of Ĥy and ∂xĤy at |x| = a implies for symmetric modes that keff

has to satisfy
−εmk0x tan(k0xa) = ε0ikmx, (1.74)

whereas for antisymmetric modes it has to satisfy

εmk0x cot(k0xa) = ε0ikmx. (1.75)

In the case of a slit in a perfectly conducting metal plate, one finds that
modes have cut-off frequencies [Jackson, 1999, Sec. 8.3]. This cut-off frequency
is a critical frequency ωc below which the mode is evanescent (Re(keff) = 0 and
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Im(keff) > 0), whereas for larger frequencies the mode is propagating (Re(keff) > 0
and Im(keff) = 0).7 In later Chapters, we will not change the frequency, but in-
stead change the width of the slit. Therefore, we rather work with a cut-off width

wc. In the case that the metal has a finite conductivity, a mode always has a
hybrid character, i.e., both Re(keff) > 0 and Im(keff) > 0. However, the concept
of a cut-off width is still meaningful because for w > wc one has Re(keff) > 0 and
Im(keff) ≈ 0, whereas for w < wc one has Re(keff) ≈ 0 and Im(keff) > 0.8

1.7.2 Surface plasmons

An important special case of a guided mode is a surface plasmon (see [Raether,
1988]), which is a guided mode of a configuration consisting of a half-space (x >
0) consisting of a metal with permittivity εm, such that Re(εm) < 0, and the
other half-space (x < 0) consisting of a dielectric with permittivity εd, such that
Re(εd) > 0. The configuration is again assumed to be invariant in the y-direction,
and therefore the E-polarized and H-polarized parts can be treated separately. It
is found that an E-polarized surface plasmon is impossible due to the boundary
conditions at x = 0, as we show later. Therefore a surface plasmon is always
H-polarized. Its magnetic field is given by

Ĥy =

{

Aei(kspz+kmxx), if x > 0,

Aei(kspz−kdxx), if x < 0,
(1.76)

where A is some arbitrary amplitude and we have used the notation ksp instead of
keff . Furthermore

kdx =
√

ω2εdµ0 − k2
sp, (1.77)

kmx =
√

ω2εmµ0 − k2
sp, (1.78)

where the square roots are chosen such that Im(kdx) > 0 and Im(kmx) > 0. This
implies that the field decays exponentially if one moves away from the interface.
The boundary conditions at x = 0, i.e., the requirement that both Ĥy and ∂xĤy/ε
are continuous (see Eqs. (1.57–1.58) yield the expression

ksp = ω

√

εmεd

εm + εd

µ0. (1.79)

7However, there is one H-polarized guided mode possible which is propagating for all frequen-
cies and so does not have a cut-off frequency. This is a so-called TEM-mode [Jackson, 1999,
p. 358], and is only possible for the H-polarization case.

8This behavior can be observed in Fig. 3.3.
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The field for a hypothetical E-polarized surface plasmon is given by

Êy =

{

Aei(kspz+kmxx), if x > 0,

Aei(kspz−kdxx), if x < 0.
(1.80)

This field already satisfies the continuity requirement of Êy. The requirement that

Êy/µ is continuous at x = 0 yields the condition

kmx/µ0 = −kdx/µ0. (1.81)

The imaginary part of the right hand side of this equation is positive, whereas the
imaginary part of the left-hand side of the same equation is negative. It follows
that Eq. (1.81) can never be satisfied, and that an E-polarized surface plasmon
cannot exist.9

1.8 Phase singularities

Consider a smooth vector field V (x, y) : R2 → R2, where V = (Vx, Vy). We change
to polar coordinates by writing Vx = ρ cos(φ) and Vy = ρ sin(φ), where ρ = ρ(x, y)
is the amplitude and φ = φ(x, y) denotes the phase. A point (x, y) ∈ R2 is called a
phase singularity if φ is not continuous in (x, y). In this section some properties of
these phase singularities are discussed. Phase singularities can be observed in, e.g.,
the tides [Berry, 1981] or the quantum mechanical wave function [Hirschfelder

et al., 1974a; Hirschfelder et al., 1974b]. In Optics they are found, e.g., near
the edge of a perfectly conducting half-plane [Braunbek and Laukien, 1952]
and near the focus of a convergent beam [Boivin et al., 1967]. However, the
systematic study of phase singularities did not start until the classic paper of
Nye and Berry [1974]. These endeavors resulted in a new branch of optics called
Singular Optics [Nye, 1999; Soskin and Vasnetsov, 2001; Allen et al., 2003].

The discontinuity of φ in (x, y) together with the smoothness of V , implies
that V (x, y) = 0. Therefore, we first give some examples of points where a smooth
vector field V is zero. In the second subsection we discuss some important indices
that can be assigned to phase singularities.

In the third subsection the phase singularities in two-dimensional electromag-
netic fields are treated. These can be either phase singularities in the time-averaged
Poynting vector, or phase singularities in a field component of the electric or mag-
netic field. In the latter case we have instead of a real vector field, a complex

9However, at an interface between two media with different signs of Re(µ), as is the case if one
medium is a so-called “left-handed” material, an E-polarized surface plasmon is indeed possible
[Ruppin, 2000].
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field from R2 into C. The phase φ can then be defined by changing to the polar
representation ρeiφ. A real vector field V (x, y) : R2 → R2 and a complex field
Ψ(x, y) : R2 → C can be identified by the relations Re(Ψ) = Vx and Im(Ψ) = Vy.
So our discussion of phase singularities in real vector fields is also valid for complex
fields.

1.8.1 Singular and stationary points

A singular point of a smooth vector field V (x, y) : R2 → R2 is defined as a point
(x, y) where V (x, y) = 0. As already mentioned, a necessary condition for a point
(x, y) to be a phase singularity is that it is singular point, i.e., the amplitude is
zero. In Fig. 1.2 a few examples of vector fields with a singular point are given.
All vectors are scaled to one. The first vector field (a) in Fig. 1.2 is an example of
a singular point which is not a phase singularity. The other five vector fields are
the most commonly met singular points.

It becomes clearer whether or not a point is a phase singularity by looking
at the equiphase-lines. Whenever the phase φ(x, y) equals some constant c, with
c ∈ [0, 2π], and ∇φ(x, y) 6= 0, the set

W = {(x′, y′) ∈ R
2 : φ(x′, y′) = c}, (1.82)

is locally at (x, y) a line.10 We can therefore plot the equiphase-lines. Near a phase
singularity the equiphase-lines will (in general) look like as in Fig. 1.3 (a) or (b).

A point (x, y) with (in contrast to the above case) ∇φ(x, y) = 0 is called a
stationary point. Around a stationary point (x, y), with φ(x, y) = c, the set W
will in general not be a line at (x, y). Note that the Hessian H of a function
f : R2 → R in a point (x, y) is given by

H(x, y) =

∣

∣

∣

∣

∂2
xf(x, y) ∂x∂yf(x, y)

∂x∂yf(x, y) ∂2
yf(x, y)

∣

∣

∣

∣

. (1.83)

If we assume that the Hessian of φ is not equal to zero at (x, y), then Morse’s
lemma can be applied [Marsden and Hoffman, 1993, p. 412]. This lemma
states that at a stationary point where the Hessian is unequal to zero, φ(x, y)
locally equals, after a change of coordinates, one of the following functions

f1(x
′, y′) = c + x′2 + y′2, (1.84)

f2(x
′, y′) = c − x′2 − y′2, (1.85)

f3(x
′, y′) = c + x′2 − y′2. (1.86)

10By the implicit function theorem, see p. 397 of [Marsden and Hoffman, 1993].
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(a) no phase singularity (b) 
lo
kwise 
enter
(
) 
ounter-
lo
kwise 
enter (d) inverted fo
us

(e) fo
us (f) saddle point
Figure 1.2: Vector fields with singular points. The centers and foci have topological
charge 1 (see section 1.8.2), whereas the saddle point (f) has topological charge
−1. The singular point which is not a phase singularity (a) has topological charge
zero.
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(a) phase singularity with s > 0 (b) phase singularity with s < 0
(
) maximum (s = 0) (d) minimum (s = 0)

(e) phase saddle (s = 0) (f) phase singularity with s = 0
Figure 1.3: Equiphase-lines around phase singularities and stationary points. The
arrows point in the direction of increasing phase. s is the topological charge,
defined in subsection 1.8.2
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Hence we obtain that the point (x, y) is a minimum of the phase (corresponding
to equation (1.84)) or a maximum (corresponding to (1.85)) and so the set W
contains locally only the point (x, y), as is depicted in Fig. 1.3 (c) and (d). The
third possibility is that the point (x, y) is a saddle point for the phase, and then
the set W is locally given by two crossing lines (corresponding to Eq. (1.86), see
Fig. 1.3) (e). We call a saddle point of the phase a phase saddle.

1.8.2 Topological charge and index

It is seen from Fig. 1.3 that the equiphase-lines in some cases displays a vortex-like
behavior around the phase singularity. With the concept of topological charge the
change of phase when we go around the phase singularity is measured [Nye and

Berry, 1974]. More formally, let C be a closed curve with winding number11

1 around a phase singularity (x, y) of a vector field V with phase φ, such that
(x, y) is the only phase singularity inside C and there are no phase singularities
on C. Then the topological charge s of the phase singularity (x, y) is given by
[Nye, 1999, p. 104]

s :=
1

2π

∮

C

dφ =
1

2π

∮

C

∇φ · dr. (1.87)

Because the phase is continuous on C, s has an integer value, i.e.,

s = 0,±1,±2, . . . . (1.88)

The topological charge of a point (x, y) is independent of the choice of the
curve C, as long as it fulfills the conditions mentioned above. This can be seen
by realizing that with Stokes’ theorem the integral (1.87) gives zero for a curve
C which contains no phase singularities in its interior, and using a proof as in
Cauchy’s theorem. This also implies that only phase singularities have topological
charge. Now consider a closed curve C with winding number 1, with no phase
singularities on C. Assume that there are n phase singularities (x1, z1), . . . , (xn, zn)
with topological charges s1, . . . , sn inside C, then the integral in Eq. (1.87) is given
by

stot =
1

2π

∮

C

dφ =

n
∑

i=1

si, (1.89)

i.e., the sum of the topological charges of the phase singularities lying inside C is
obtained.

An important property of topological charge is that it is conserved under
smooth changes of the vector field [Nye and Berry, 1974]. This is very im-
portant because in many problems the vector field (or complex field) smoothly

11The winding number is the number of times that the curve wraps around (x, y), measured
counter-clockwise [Fulton, 1995, Chap. 3].
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depends on the relevant parameters. Then the only way that a phase singular-
ity, with charge unequal to zero, can disappear, is for it to annihilate with other
phase singularities such that the total topological charge is zero. Likewise, the
only way that a phase singularity, with charge unequal to zero, can be created
is together with other phase singularities such that the sum of their topological
charges is zero. The most common birth (or annihilation) of phase singularities
is when a phase singularity with charge 1 is created together with (or annihilated
by) a phase singularity with charge −1. However, as we shall demonstrate, more
complex processes are possible as well.

In Fig. 1.2 the topological charges of some singular points of vector fields are
given. An example of a complex field with topological charge ±s is Ψ(r, φ) =
re±isφ, so phase singularities with an arbitrary topological charge exist. However,
phase singularities with charges unequal to ±1 are seldom seen because in most
problems they decay in phase singularities with charges equal to ±1, if some pa-
rameter is changed. In other words, phase singularities with charges unequal to
±1 are very unstable. An important example of a phase singularity with charge
0 occurs at the creation of two singularities with charges ±1. The equiphase-lines
of this kind of phase singularity are given in Fig. 1.3 (f).12 The monkey saddle

[Hsiung, 1981, p. 266] is a phase singularity with topological charge −2. A mon-
key saddle is similar to a saddle point, but possesses three attracting and three
repulsing directions, rather than two of each.

To the phase singularities and the stationary points we can assign a topological

index 13 t [Nye et al., 1988], which is defined as the topological charge of the phase
singularities of the vector field ∇φ. Around a phase singularity with a positive or
negative topological charge, the field ∇φ looks like a counter-clockwise or clockwise
center, respectively, see Fig. 1.4 (a) and (b), so the topological index of both a
positive and a negative vortex is +1. Note that this statement, remains true14

even for phase singularities with charges unequal to ±1, as long as the equiphase-
lines have the star-like structure as is shown in Fig. 1.4 (a). For a maximum or
minimum for the phase, ∇φ looks like a focus (also called “sink”) or an inverted
focus, respectively, and therefore both have a topological index t = 1 (see Fig. 1.4
(c) and (d)). The field ∇φ around a phase saddle forms a saddle point, so the index
t = −1 (see Fig. 1.4 (e) and (f)). Because ∇φ is again a vector field, it is possible
to define higher order indices [Freund, 1995], but these are of less importance.

Because the topological index is the topological charge of the vector field ∇φ,
it too is conserved under smooth variations of the vector field. The conserva-
tion of topological index poses an additional constraint on the creation of phase

12This plot is after [Nye, 1998].
13Also called the Poincaré-Hopf index.
14However there are exotic phase singularities possible for which this is not true, see [Freund,

2001].



Chapter 1. Introduction 27

(a) phase singularity with s > 0 (b) r� aroundphase singularity with s > 0

(
) maximum of phase (d) r� around maximum
(e) phase saddle (f) r� around phase saddle

Figure 1.4: Equiphase-lines (left-handed column) and the corresponding vector
field ∇φ (right-handed column) around a phase singularity (a), a maximum of
the phase (c) and a phase saddle (e). The arrows in (a), (c) and (e) indicate the
direction of increasing phase φ.
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+ + 2 0

+ 0

2

a.

b.

c.

s = 1  s = 1  s = -1

 s = 1   s = -1

  s = -1   s = -2

Figure 1.5: Illustrating some of the possible reactions between phase singularities of
a vector field: (a) The annihilation (creation) of two vortices of opposite direction
and two saddle points; (b) The annihilation (creation) of a saddle point and a sink;
(c) The creation (decay) of a monkey saddle out of two saddle points.

singularities: e.g. the birth of a phase singularity with charge 1 (and index 1)
and a phase singularity with charge −1 (and index 1), has to be combined with
the creation of two phase saddles (each with index −1), because otherwise the
conservation of topological index would be violated (see Fig. 1.5 (a)). Another
possible reaction is the creation of a phase saddle (s = 0, t = −1), together
with a maximum or minimum of the phase (s = 0, t = 1), as is depicted in
Fig. 1.5 (b). These are the simplest reactions, there are of course more compli-
cated ones possible. An example is the reaction of a phase singularity with charge
1 (s = 1, t = 1) with a phase saddle (s = 0, t = −1), which results in two phase
singularities with charge 1 (each with s = 1, t = 1), one phase singularities with
charge −1 (s = −1, t = 1) and three phase saddles (each with s = 0, t = −1)
[Beijersbergen, 1996; Berry, 1998; Nye, 1998]. This reaction has been exper-
imentally observed in the focal region of a lens [Karman et al., 1997; Karman

et al., 1998]. Finally, we mention the creation of a monkey saddle out of two saddle
points, as is depicted in Fig. 1.5 (c).
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1.8.3 Phase singularities in two-dimensional

electromagnetic waves

In the previous two subsections the mathematics of phase singularities was in-
troduced. Next we discuss phase singularities in two-dimensional electromagnetic
waves. The coordinates in this subsection will be indicated as r‖ instead of (x, y),
as used in the remaining chapters. It is assumed that the configuration is non-
magnetic and homogeneous.

The time-averaged Poynting vector for an E-polarized field is given by

〈S(r‖)〉T =
1

2
Re





Êy(r‖)Ĥ
∗
z (r‖)

0

−Êy(r‖)Ĥ
∗
x(r‖)



 , (1.90)

where Eq. (1.45) was used. For an H-polarized field, the time-averaged Poynting
vector is given by

〈S(r‖)〉T =
1

2
Re





−Êz(r‖)Ĥ
∗
y (r‖)

0

Êx(r‖)Ĥ
∗
y (r‖)



 . (1.91)

If Eqs. (1.51), (1.52), (1.47) and (1.48) are used, one obtains for an E-polarized
field,

〈S(r‖)〉T = − 1

2ωµ0

Im(Êy(r‖)∇Ê∗
y(r‖)), (1.92)

whereas for an H-polarized field one obtains

〈S〉T = − 1

2ω|ǫ|2 Im(εĤy(r‖)∇Ĥy(r‖)
∗). (1.93)

So we see that the energy flow is determined by the scalar field Êy(r‖) for an

E-polarized field and by the scalar field Ĥy(r‖) for an H-polarized field.

By writing Êy = |Êy|eiφE , it is found for an E-polarized field that

〈S(r‖)〉T =
1

2ωµ0
|Êy(r‖)|2∇φE(r‖), (1.94)

and for an H-polarized field in a medium with a real-valued permittivity one ob-
tains that

〈S〉T =
1

2ωε
|Ĥy(r‖)|2∇φH(r‖), (1.95)

where it was used that Ĥy = |Ĥy|eiφH . Note that the relation between Ĥy and
〈S〉T is not this simple in the case that ε is a complex number.
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(a) phase singularity with 
harge s > 0 (b) hSiT around thisphase singularity
Figure 1.6: Equiphase-lines of Ĥy (a) and 〈S〉T (b) around a phase singularity in
a medium with a complex-valued permittivity with a positive real part.

Now consider a phase singularity in 〈S〉T for an E-polarized field. Eq. (1.94)
shows that this will either be a phase singularity in Êy or a point where ∇φE =
0. The same equation also shows that the topological charge of 〈S〉T equals the
topological index of Êy. This can be seen as follows: the direction of 〈S〉T is

along ∇φE and the topological index of Êy is defined as the topological charge

of ∇φE (see the discussion in subsection 1.8.2). Therefore a phase singularity
of the field Êy with positive topological charge corresponds to a counter-clockwise

center in 〈S〉T , whereas a phase singularity in Êy with a negative topological charge
corresponds to a clockwise center in 〈S〉T ,15 see Fig. 1.4 (a) and (b). A maximum
or a minimum of the phase of Êy corresponds to a focus or an inverted focus in

〈S〉T , respectively, see Fig. 1.4 (c) and (d). A phase saddle in the phase of Êy,
finally, corresponds to a saddle point in 〈S〉T , see Fig. 1.4 (e) and (f).

As can be seen from equation (1.93) a phase singularity in Ĥy, even when ε is
complex, still corresponds to a phase singularity in 〈S〉T . Note that this will not
be exactly a center, but will in general be more spiral-like, i.e., something between
a center and a focus, see Fig. 1.6. This can be shown by a direct computation
of equation (1.93), when for Ĥy the field x ± iz is taken, which describes a phase
singularity with charge ±1 at the origin.16 If Re(ε) > 0 the spirals are, like the

15See also [Totzeck and Tiziani, 1997b]
16The reader might argue that this field component does not satisfy the Helmholtz equation.

However, because it is only the linearized form (around the zero) of a solution of the Helmholtz
equation, it does not have to satisfy the Helmholtz equation. The following example illustrates
this: take f(x, z) = eikz + 2 cos(kx), which is simply the sum of three plane waves. It is easy
to check that this scalar field is a solution of the Helmholtz equation. The singular points of
f are solutions of the equations sin(kz) = 0 and cos(kz) + 2 cos(kx) = 0. Take e.g. the point
(0, arccos(−0.5)/k)). The linearized form of f around this point is ikz−

√
3kx, which shows that
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centers, counter-clockwise if the topological charge of Ĥy is 1, and clockwise if

the topological charge of Ĥy is −1. If Re(ε) < 0, the spirals are clockwise if the

topological charge of Ĥy is 1, and counter-clockwise if the topological charge of Ĥy

is −1. The spirals will look more like a center, the more Im(ε) is smaller compared
to Re(ε). If Im(ε) is large compared to Re(ε) the spiral will look more like a focus.

Eq. (1.86) shows that the field ei(x2−z2) can be taken as the local approximation
for a phase saddle in Ĥy at origin.17 By using Eq. (1.95) it is easy to show that
the field of power flow exhibits then a saddle point. In the same way, one can
locally approximate Ĥy by e±i(x2+z2) in the case that its phase has a maximum or
a minimum at the origin. Eq.(1.95) shows then that this corresponds with a focus
or an inverted focus, depending on the sign Re(ε).

An important example that we will study in Chapter 3 is the following. Due to
the conservation of topological charge of Êy and Ĥy, the birth of a phase singularity

with charge 1, a phase singularity with charge −1 and two phase saddles in Êy

or Ĥy, corresponds to the birth of a clockwise and a counter-clockwise center (or
spiral) with two saddle points in the time-averaged Poynting vector (see Fig.1.5
(a)).

A minimum in the phase of Êy or Ĥy corresponds to an inverted focus (or
“source”) in 〈S〉T . Due to energy conservation this is not possible outside the
region where there are electromagnetic sources (see equation (1.46)). So, wherever
such sources are absent, neither Êy or Ĥy can have a minimum in the phase.
Likewise, if there are no losses, i.e., Im(ε) = 0, then there are also no maxima in
the phase of Êy or Ĥy, because these correspond to foci in 〈S〉T .

In a medium with Im(ε) > 0, i.e., a medium with absorption, it is possible that
a focus in 〈S〉T occurs, so also maxima in the phase of Êy or Ĥy are possible. In
Chapter 3 we will present examples of this. In this case a reaction that can occur
is the annihilation of a phase saddle with a maximum of the phase of Êy or Ĥy.
For the time-averaged Poynting vector this corresponds to the annihilation of a
focus with a saddle point (see Fig. 1.5 (b)). An example of this reaction will also
be given in Chapter 3.

the singular point is indeed a phase singularity with charge −1. Note that the linearized form
does not satisfy the Helmholtz equation.

17This is only valid if ∇Ĥy = 0, because in the case of a complex permittivity it is no longer

true that ∇φ = 0 implies that ∇Ĥy = 0.
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Chapter 2

The Green’s Tensor Formalism

This Chapter is based on the following publication:

• H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra and H. Blok, “An efficient
numerical method for solving electromagnetic domain integral equations”,
to be submitted.

Abstract

We present an efficient numerical technique to obtain the (time-harmonic) electro-
magnetic field in configurations in which a two-dimensional scattering structure is
embedded in a stratified, non-magnetic medium. This is accomplished by numeri-
cally solving the domain integral equation for the electric field inside the scatterer.
The kernel of this integral equation is a Green’s tensor with respect to the strati-
fied embedding medium. By exploiting the symmetry properties of this tensor we
are able to significantly improve the efficiency of this method.
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2.1 Introduction

Green’s tensor techniques are commonly used to compute the electromagnetic field
for a wide variety of problems. Examples are the modeling of near-field optical
microscopes [Dereux et al., 1991; Girard and Dereux, 1996], the analysis
of channel and ridge waveguides in stratified media [Kolk et al., 1990; Baken

et al., 1990], the scattering of light by non-spherical interstellar particles [Purcell

and Pennypacker, 1973; Draine, 1988], the transmission of light through a sub-
wavelength slit [Schouten et al., 2003a; Schouten et al., 2003b], the scattering
of surface plasmons by rough surfaces [Maradudin and Mills, 1975; Mills and

Maradudin, 1975], the modeling of optical lithography [Martin et al., 1998;
Paulus et al., 2001] and the analysis of semiconductor laser amplifiers [Visser

et al., 1999]. Although there are different variants of the Green’s tensor technique,
they all have in common that only the scattering body has to be discretized, and no
computation window is needed. Other advantages of this method are that complex-
valued and anisotropic dielectric constants are allowed, and even gain media can
be modelled with it. Quite often one deals with scatterers that are embedded in a
stratified medium. The Green’s tensor technique can then still be used, but now
with a Green’s tensor with respect to the stratified configuration. Such a tensor
can be derived analytically in an angular spectrum representation [Mills and

Maradudin, 1975; Tsang et al., 1975; Reed et al., 1987; Tomaš, 1995; Visser

et al., 1999; Paulus et al., 2000].
A commonly used variant of the Green’s tensor technique converts the Maxwell

equations into an integral equation over the scattering domain. This integral
equation is sometimes called the domain integral equation. In this Chapter we
present a numerical technique for solving the domain integral equation for the
case of a stratified configuration. The integral equation is converted into a linear
system of equations by using the collocation method. This system is then solved
with a variant of the conjugate gradient method. In this way we are able to use
the symmetry properties of the stratified embedding configuration to significantly
reduce the requirements for data storage and computation time.

In Section 2.2 the scattering configuration is described, and the domain integral
equations are derived. In Section 2.3 the derivation of the Green’s tensor with re-
spect to a layered configuration is presented. Section 2.4 deals with the collocation
method. The conjugate gradient method for solving the resulting linear system
is explained in Section 2.5. The exploitation of the symmetries of the embedding
structure, together with the use of the fast Fourier transform (FFT), are shown to
significantly improve the numerical performance. In Appendix 2.A the field due
to a plane wave incident on a stratified medium is calculated.
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2.2 The scattering model

The configuration at hand is a stratified “background” medium in which a scat-
terer, which occupies a bounded volume D, is embedded (see Fig. 2.1). The
structure is invariant in the y-direction and the materials that make up the con-
figuration are assumed to be nonmagnetic. The background structure is defined as
the embedding structure without the scatterer. It is stratified in the z-direction
and invariant in the x- and y-directions, and is characterized by its permittivity
εb(z) which is given by

εb(z) = εi if zi−1 ≤ z < zi, (2.1)

with i = 1, . . . , N , see Fig. 2.2. Here εi is the permittivity of the ith layer, N is
the number of layers, and z = zi indicates the position of the interface between
layer i and layer i + 1. Therefore, zi−1 < zi for all i, z0 = −∞ and zN = ∞. The
actual configuration consists of this background configuration with a scattering
volume D characterized by its permittivity ε(r‖), where r‖ = (x, 0, z) (see Sec. 1.6.
This scattering volume is assumed to be bounded in the x and z-directions), and
invariant in the y-direction. Later, in Sections 2.4 and 2.5, we make use of the
assumption that the scatterer consist of m homogeneous “blocks”, i.e.,

D =

m
⋃

j=1

Dj =

m
⋃

j=1

(x−
j , x+

j ) × (z−j , z+
j ), (2.2)

where x−
j and x+

j are the lower and upper bound in the x-direction of block j, z−j
and z+

j are the lower and upper bound in the z-direction of block j. Furthermore,

ε(r‖) = ε(j) if r‖ ∈ Dj. Also, we assume that each block Dj lies in only one layer,
i.e., for all j = 1, . . .m, there is an integer i, which will depend on j, such that
zi−1 ≤ z−j < z+

j ≤ zi.
The configuration is illuminated by a monochromatic plane wave with time-

dependence exp(−iωt), where ω denotes the angular frequency. The total electric
field Ê(r‖) and the total magnetic field Ĥ(r‖) are written as the sum of the incident
field and a scattered field, i.e.,

Ê(r‖) = Ê(inc)(r‖) + Ê(sca)(r‖), (2.3)

Ĥ(r‖) = Ĥ(inc)(r‖) + Ĥ(sca)(r‖). (2.4)

The incident field is defined as the solution of the steady-state Maxwell equations
for the background configuration, i.e.,

−∇× Ĥ(inc)(r‖) − iωεb(z)Ê(inc)(r‖) = 0, (2.5)

∇× Ê(inc)(r‖) − iωµ0Ĥ
(inc)(r‖) = 0. (2.6)
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ẑ x̂

Figure 2.1: The actual configuration: a scattering volume D, consisting of m blocks
D1, . . . ,Dm, embedded in a stratified medium. Only three blocks are drawn.
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Figure 2.2: The background configuration: a stratified medium.

The incident field is produced by sources far away from the structure, which implies
that these sources do not have to be taken into account explicitly. It can be
calculated analytically by a recursive procedure, as is explained in Appendix 2.A.

Maxwell’s equations for the total field (with respect to the actual configuration)
can be written as

−∇× Ĥ(r‖) − iωεb(z)Ê(r‖) = −Ĵ(con)(r‖), (2.7)

∇× Ê(r‖) − iωµ0Ĥ(r‖) = 0, (2.8)

where the contrast (or polarization) current density Ĵ(con)(r‖) is defined by

Ĵ(con)(r‖) = −iω∆ε(r‖)Ê(r‖), (2.9)

with ∆ε(r‖) = ε(r‖) − εb(z) for points r‖ ∈ D and ∆ε(r‖) = 0 otherwise. Sub-
tracting Eqs. (2.5) and (2.6) from Eqs. (2.7) and (2.8) yields

−∇× Ĥ(sca)(r‖) − iωεb(z)Ê(sca)(r‖) = −Ĵ(con)(r‖), (2.10)

∇× Ê(sca)(r‖) − iωµ0Ĥ
(sca)(r‖) = 0. (2.11)
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The electric Green’s tensor GE and the magnetic Green’s tensor GH are defined
by the expressions

−∇× GH(r‖, r
′
‖) − iωεb(z)GE(r‖, r

′
‖) = −Iδ(r‖ − r′‖), (2.12)

∇× GE(r‖, r
′
‖) − iωµ0G

H(r‖, r
′
‖) = 0. (2.13)

Here I is the 3 × 3 unit tensor and δ(r‖ − r′‖) is the two-dimensional Dirac delta

function. Note that GE
ij(r‖, r

′
‖) [GH

ij (r‖, r
′
‖)] is the i-th component of the electric

(magnetic) field in the background configuration at r‖ due to a point current source
located at r′‖ and pointing in the j-direction, with i, j = x, y, z.

Using the definition of the electric and magnetic Green’s tensors, the solution
of Eqs. (2.10) and (2.11) can be written as

Ê(sca)(r‖) =

∫

D

GE(r‖, r
′
‖) · Ĵ(con)(r′‖) d2r′‖, (2.14)

Ĥ(sca)(r‖) =

∫

D

GH(r‖, r
′
‖) · Ĵ(con)(r′‖) d2r′‖. (2.15)

For points r‖ /∈ D, these equations can be verified by inserting them into Eqs. (2.10)
and (2.11), and using Eqs. (2.12) and (2.13). However, for r‖ ∈ D, Eq. (2.14),
contrary to Eq. (2.15), is not valid in the classical function sense [Yaghjian,
1980; Chew, 1989]. The reason is that the integral, which is singular at r′‖ = r‖, is
not convergent. However, if one excludes from the integration domain a “principal
volume” around the point r′‖ = r‖, the resulting integral is found to converge. To
correct for the exclusion of the principal volume, one has to add a source tensor to
the right-hand side of Eq. (2.14), which depends on the geometry of the exclusion
volume [Yaghjian, 1980]. However, Eq. (2.14) is valid in a distributional function
sense, which is clearly observed if one derives the electric Green’s tensor in an
angular spectrum representation (as is done in the next Section). In that case no
source tensor term needs to be added, because it is already included in the spectral
representation of the electric Green’s tensor [Chew, 1989].1

If Eqs. (2.14) and (2.15) are substituted in Eqs. (2.3–2.4), one obtains

Ê(r‖) = Ê(inc)(r‖) − iω

∫

D

∆ε(r′‖)G
E(r‖, r

′
‖) · Ê(r′‖) d2r′‖, (2.16)

Ĥ(r‖) = Ĥ(inc)(r‖) − iω

∫

D

∆ε(r′‖)G
H(r‖, r

′
‖) · Ê(r′‖) d2r′‖, (2.17)

where Eq. (2.9) was used. These equations are sometimes called the domain inte-

gral equations. For points r‖ ∈ D, Eq. (2.16) is a Fredholm equation of the second

1For a more detailed discussion about the singular behavior of the Green’s tensor, see Chapter
7 of [Chew, 1995] or Chapter 3 of [Van Bladel, 2000].
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kind for the electric field. If the solution of this integral equation is found, one can
use Eqs. (2.16) and (2.17) to obtain both the electric and the magnetic field at an
arbitrary point in space.

2.3 The derivation of the Green’s tensors

In this Section the Green’s tensors for a stratified medium are derived. The electric
Green’s tensor is subject to the equation

−∇× [∇× GE(r‖, r
′
‖)] + ω2µ0εb(z)GE(r‖, r

′
‖) = −iωµ0Iδ(r‖ − r′‖), (2.18)

which can be derived by substituting from Eq. (2.13) into Eq. (2.12). The mag-
netic Green’s tensor can be obtained from the electric Green’s tensor, by using
Eq. (2.13). In subsection 2.3.1 the Green’s tensors with respect to a homogeneous
background are derived.2 In subsection 2.3.2 these tensors are used to obtain the
Green’s tensors pertaining to a stratified medium.

2.3.1 The Green’s tensors for a homogeneous medium

Consider a homogeneous background with permittivity εb(z) = ε and permeability
µ0. The Fourier transform of the electric Green’s tensor with respect to r‖ is defined
as

G̃E(k‖, r
′
‖) =

∫ ∞

−∞

GE(r‖, r
′
‖)e

ik‖·r‖ d2r‖, (2.19)

where k‖ = (kx, 0, kz) and with the inverse transform given by

GE(r‖, r
′
‖) =

(

1

2π

)2 ∫ ∞

−∞

G̃E(k‖, r
′
‖)e

−ik‖·r‖ d2k‖. (2.20)

On taking the Fourier transform, Eq. (2.18) reduces to

k‖ × [k‖ × G̃E(k‖, r
′
‖)] + ω2µ0εG̃

E(k‖, r
′
‖) = −iωµ0Ie

ik‖·r
′
‖. (2.21)

Using the identity k‖ × [k‖ × G̃E(k‖, r
′
‖)] = k‖k‖ · G̃E(k‖, r

′
‖) − k2

‖G̃
E(k‖, r

′
‖), this

equation can be converted into

[

(k2
‖ − k2)I − k‖k‖

]

G̃E(k‖, r
′
‖) = iωµ0Ie

ik‖·r
′
‖ , (2.22)

with k2 = ω2εµ0 and k‖ = |k‖|. Note that a tensor C = ab has components
given by Cij = aibj . To solve this matrix equation, we make use of the following

2This derivation is based on [Chew, 1989].
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identity, which can be verified by direct substitution: if A is a n × n matrix such
that A2 = βA, then

(αI − A)−1 =
1

α
(I +

1

α − β
A), (2.23)

with α such that β 6= α 6= 0. Now (k‖k‖)
2 = k2

‖k‖k‖, so if Eq. (2.23) is applied to

Eq. (2.22) with A = k‖k‖, α = k2
‖ − k2 and β = k2

‖, one obtains

G̃E(k‖, r
′
‖) = iωµ0

Ik2 − k‖k‖

k2(k2
‖ − k2)

eik‖·r
′
‖ . (2.24)

If Eq. (2.24) is substituted into Eq. (2.20), one finds

GE(r‖, r
′
‖) =

iωµ0

(2π)2

∫ ∞

−∞

Ik2 − k‖k‖

k2(k2
‖ − k2)

eik‖·(r‖−r
′
‖
) d2k‖, (2.25)

where the transformation k‖ → −k‖ has been made.
The magnetic Green’s tensor can easily be derived by taking the Fourier trans-

form of Eq. (2.13), which leads to

ik‖ × G̃E(k‖, r
′
‖) − iωµ0G̃

H(k‖, r
′
‖) = 0. (2.26)

It follows that

GH(r‖, r
′
‖) =

i

(2π)2

∫ ∞

−∞

k‖ × I

k2
‖ − k2

eik‖·(r‖−r′
‖
) d2k‖. (2.27)

In the following section we will need these Green’s tensors in an angular spec-

trum representation [Mandel and Wolf, 1995]. Therefore the integration over
kz in Eq. (2.25) is explicitly performed. First note that one component of the
integrand does not tend to zero in the limit kz → ∞, i.e.,

lim
kz→∞

Ik2 − k‖k‖

k2(k2
‖ − k2)

= − ẑẑ

k2
, (2.28)

with ẑ the unit vector in the z-direction. Therefore the integral in Eq. (2.25) is
split into two parts, viz.

GE(r‖, r
′
‖) =

iωµ0

(2π)2

∫ ∞

−∞

[

Ik2 − k‖k‖

k2(k2
‖ − k2)

+
ẑẑ

k2

]

eik‖·(r‖−r′
‖
) d2k‖

+
ẑẑ

iωε(2π)2

∫ ∞

−∞

eik‖·(r‖−r
′
‖
) d2k‖.

(2.29)
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The second integral in the equation above is just the Fourier representation of
the two-dimensional Dirac delta function. The first integral can be evaluated by
use of Jordan’s lemma and Cauchy’s theorem. Therefore one obtains the residue
contributions of the poles kz = ±

√

k2 − k2
x in the complex kz plane, where the

plus sign applies for z − z′ > 0, and the minus sign for z − z′ < 0. Finally, this
yields

GE(r‖, r
′
‖) =

−ωµ0

4π

∫ ∞

−∞

(

Ik2 − kSkS

k2kz

)

eikx(x−x′)+ikz |z−z′| dkx

+
ẑẑ

iωε
δ(r‖ − r′‖),

(2.30)

where kz =
√

k2 − k2
x, chosen such that Im(kz) ≥ 0 and kS = (kx, 0, Skz), with

S = sign(z − z′). If we introduce the notation êS = kS × ŷ/k, the identity tensor
I can be written as

I = kSkS/k2 + ŷŷ + êS êS, (2.31)

where it was used that a tensor ââ is a projection operator if â is a unit vector
and that kS, ŷ and êS are three mutually orthogonal vectors. By substitution of
the identity (2.31), Eq. (2.30) can be rewritten as

GE(r‖, r
′
‖) =

−ωµ0

4π

∫ ∞

−∞

1

kz

(

ŷŷ + êS êS
)

eikS ·(x‖−x
′
‖
) dkx

+ G(sin)(r‖, r
′
‖),

(2.32)

with êS = kS × ŷ/k and the singular part of the tensor is given by

G(sin)(r‖, r
′
‖) =

ẑẑ

iωε
δ(r‖ − r′‖). (2.33)

The first term within the brackets of Eq. (2.32) represents the E-polarized part of
the Green’s tensors, whereas the second term within the brackets represents the
H-polarized part.

The angular spectrum representation for the magnetic Green’s tensor follows
similarly as

GH(r‖, r
′
‖) =

−k

4π

∫ ∞

−∞

1

kz

(

êSŷ − ŷêS
)

eikS ·(x‖−x′
‖
) dkx. (2.34)

The same splitting into an E-polarized and an H-polarized part can be observed
as in the electric Green’s tensor given by Eq. (2.32). Note that in contrast to the
electric Green’ tensor, the magnetic Green’s tensor does not have a singular part.
This is related to the different kind of singular behavior of these tensors at r = r′

(see the discussion below Eq. (2.15)).
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2.3.2 The Green’s tensor for a layered medium

In the preceding subsection the Green’s tensors for a homogeneous background
were derived in the form of an angular spectrum of plane waves. In the case of a
layered medium, the Green’s tensors consist of this source term plus a term that
describes the reflections and transmissions of the field at the interfaces between
the layers. This extra term can be written as an angular spectrum representation
too, i.e., we write the Green’s tensor as a sum of plane waves with different,
unknown, coefficients. Therefore, if the source point r′‖ is located in layer s and
the observation point r′‖ is located in layer i, then the electric Green’s tensor can
be written as

GE(r‖, r
′
‖) =

−ωµ0

4π

∫ ∞

−∞

1

ksz

[

(ŷAE
i + ê+

i AH
i )eikiz(z−zi−1)eikxx +

(ŷBE
i + ê−

i BH
i )eikiz(zi−z)eikxx +

δis(ŷŷ + êS
s ê

S
s )e

ikS
s ·(x‖−x′

‖
)
]

dkx

+ G(sin)(r‖, r
′
‖).

(2.35)

Here we have introduced coefficient vectors AE
i , AH

i , BE
i and BH

i for i = 1, . . . , N ,
which represent the amplitudes of the upgoing or downgoing, E-polarized or H-
polarized, plane waves in the different layers. These coefficients are yet undeter-
mined. The magnetic Green’s tensor is then given by

GH(r‖, r
′
‖) =

−ki

4π

∫ ∞

−∞

1

ksz

[

(ê+
i AE

i − ŷAH
i )eikiz(z−zi−1)eikxx +

(ê−
i BE

i − ŷBH
i )eikiz(zi−z)eikxx +

δis(ê
S
i ŷ − ŷêS

i )eikS ·(x‖−x′
‖
)
]

dkx.

(2.36)

Due to the mode decomposition, the Green’s tensors already satisfy the Maxwell
equations. The only thing that has to be done is that the coefficient vectors AE

i ,
AH

i , BE
i and BH

i have to be chosen is such a way that the boundary conditions at
zi for i = 1, . . . , N − 1 are satisfied. Also note that AE

1 , AH
1 , BE

N and BH
N are all

zero, because the field cannot generate waves coming in from infinity.
To obtain the coefficient vectors, we note that the plane waves with different

values of kx generated by the source, can be treated independently. We now
introduce two complementary configurations. First, consider the configuration
consisting of the layers 1 until s, and assume that the source layer is now filling
the half-space z > zs−1, i.e., it is a medium consisting of s layers. If a plane wave is
incident from above, all the coefficients of the plane waves within this medium can
be determined with the aid of the method described in the Appendix 2.A. These
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fields are denoted by {ÊE
−(r‖), Ĥ

E
−(r‖)} and {ÊH

− (r‖), Ĥ
H
− (r‖)}, where the first is

for the E-polarized case, and the second for the H-polarized case. The electric
fields are given by

ÊE
−(r‖) =











(ŷeiksz(zs−1−z) + αE
s ŷeiksz(z−zs−1))eikxx, z > zs−1,

(αE
i ŷeikiz(z−zi−1) + βE

i ŷeikiz(zi−z))eikxx, zi−1 < z < zi,

βE
1 ŷeik1z(z1−z)eikxx, z1 > z,

(2.37)

and

ÊH
−(r‖) =











(ê−
s eiksz(zs−1−z) + αH

s ê+
s eiksz(z−zs−1))eikxx, z > zs−1,

(αH
i ê+

i eikiz(z−zi−1) + βH
i ê−

i eikiz(zi−z))eikxx, zi−1 < z < zi,

βH
1 ê−

1 eik1z(z1−z)eikxx, z1 > z,

(2.38)

with i = 3, . . . , s − 1. Similarly, we introduce a configuration consisting of the
layers s until N , but now with the source layer filling the half-space z < zs. So,
this configuration consists of N − s + 1 layers. Again, the fields {ÊE

+(r‖), Ĥ
E
+(r‖)}

and {ÊH
+ (r‖), Ĥ

H
+ (r‖)} consisting of E-polarized or H-polarized plane waves inci-

dent from below on this medium can be computed by the method given in the
Appendix 2.A, and are given by

ÊE
+(r‖) =











(ŷeiksz(z−zs) + ηE
s ŷeiksz(zs−z))eikxx, z < zs,

(ζE
i ŷeikiz(z−zi−1) + ηE

i ŷeikiz(zi−z))eikxx, zi−1 < z < zi,

ζE
N ŷeikNz(z−zN−1), zN−1 < z,

(2.39)

and

ÊH
+ (r‖) =











(ê+
s eiksz(z−zs) + ηH

s ê−
s eiksz(zs−z))eikxx, z < zs,

(ζH
i ê+

i eikiz(z−zi−1) + ηH
i ê−

i eikiz(zi−z))eikxx, zi−1 < z < zi,

ζE
N ê+

NeikNz(z−zN−1), zN−1 < z,

(2.40)

with i = s + 1, . . . , N − 1.
The fields introduced above do satisfy all the boundary conditions at the in-

terfaces z = zi. Therefore, the Green’s tensors can also be written as

GE(r, r‖) =
−ωµ0

4π















∫ ∞

−∞

1

ksz

[

ÊE
−(r‖)C

E
−(r′‖) + ÊH

− (r‖)C
H
− (r′‖)

]

dkx, z < z′,
∫ ∞

−∞

1

ksz

[

ÊE
+(r‖)C

E
+(r′‖) + ÊH

+ (r‖)C
H
+ (r′‖)

]

dkx, z > z′,

(2.41)
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and

GH(r, r‖) =
−ki

4π















∫ ∞

−∞

1

ksz

[

ĤE
−(r‖)C

E
−(r′‖) + ĤH

− (r‖)C
H
− (r′‖)

]

dkx, z < z′,
∫ ∞

−∞

1

ksz

[

ĤE
+(r‖)C

E
+(r′‖) + ĤH

+ (r‖)C
H
+ (r′‖)

]

dkx, z > z′,

(2.42)
where CE

±(r‖) and CH
± (r‖) are vectors yet to be determined. These Green’s tensors

satisfy the Maxwell’s equations for z 6= z′ and satisfy all the boundary conditions
at z = zi. Furthermore, it is consistent with Eq. (2.35) in all layers, except for
layer s which requires a separate treatment, if the coefficients are chosen as

AE
i (r′‖) =

{

αE
i CE

−(r′‖), i < s,

ζE
i CE

+(r′‖), i > s,
(2.43)

and

BE
i (r′‖) =

{

βE
i CE

−(r′‖), i < s,

ηE
i CE

+(r′‖), i > s.
(2.44)

To have consistency between Eq.(2.41) and Eq. (2.35) in the source layer, one
obtains for the E-polarized components the conditions

AE
s (r′‖)e

iksz(z−zs−1) + ŷeiksz(z−z′)e−ikxx′

= CE
+(r′‖)e

iksz(z−zs), (2.45)

BE
s (r′‖)e

iksz(zs−z) = CE
+(r′‖)α

E
s eiksz(zs−z), (2.46)

AE
s (r′‖)e

iksz(z−zs−1) = CE
−(r′‖)η

E
s eiksz(z−zs−1), (2.47)

BE
s (r′‖)e

iksz(zs−z) + ŷeiksz(z′−z)e−ikxx′

= CE
−(r′‖)e

iksz(zs−1−z). (2.48)

These equations have the solution

CE
+(r′‖) = ŷe−ikxx′ eiksz(zs−z′) + ηE

s γse
iksz(z′−zs−1)

1 − ηE
s αE

s γ2
s

, (2.49)

CE
−(r′‖) = ŷe−ikxx′ αE

s γse
iksz(zs−z′) + eiksz(z′−zs−1)

1 − ηE
s αE

s γ2
s

, (2.50)

with γs = exp(2ikszds) and

AE
s (r′‖) = ηE

s ŷe−ikxx′ αE
s γse

iksz(zs−z′) + eiksz(z′−zs−1)

1 − ηE
s αE

s γ2
s

, (2.51)

BE
s (r′‖) = αE

s ŷe−ikxx′ eiksz(zs−z′) + ηE
s γse

iksz(z′−zs−1)

1 − ηE
s αE

s γ2
s

. (2.52)
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For the H-polarized components, the following conditions are obtained

AH
s (r′‖)e

iksz(z−zs−1) + ê+
s eiksz(z−z′)e−ikxx′

= CH
+ (r′‖)e

iksz(z−zs), (2.53)

BH
s (r′‖)e

iksz(zs−z) = CH
+ (r′‖)α

H
s eiksz(zs−z), (2.54)

AH
s (r′‖)e

iksz(z−zs−1) = CH
− (r′‖)η

H
s eiksz(z−zs−1), (2.55)

BH
s (r′‖)e

iksz(zs−z) + ê−
s eiksz(z′−z)e−ikxx′

= CH
− (r′‖)e

iksz(zs−1−z), (2.56)

with as the solution

CH
+ (r′‖) = e−ikxx′ ê+

s eiksz(zs−z′) + ηE
s γsê

−
s eiksz(z′−zs−1)

1 − ηE
s αE

s γ2
s

, (2.57)

CH
− (r′‖) = e−ikxx′ αE

s γsê
+
s eiksz(zs−z′) + ê−

s eiksz(z′−zs−1)

1 − ηE
s αE

s γ2
s

, (2.58)

and

AH
s (r′‖) = ηH

s e−ikxx′ αE
s γsê

+
s eiksz(zs−z′) + ê−

s eiksz(z′−zs−1)

1 − ηE
s αE

s γ2
s

, (2.59)

BH
s (r′‖) = αH

s e−ikxx′ ê+
s eiksz(zs−z′) + ηE

s γsê
−
s eiksz(z′−zs−1)

1 − ηE
s αE

s γ2
s

. (2.60)

This completely determines the Green’s tensor.
In the following Sections it is convenient to have the electric Green’s tensor

rewritten in the following form, which expresses the spatial dependence more ex-
plicitly,

GE(r, r‖) =

∫ ∞

−∞

[

u1(kx)e
i(kizz−kszz′) + u2(kx)e

i(kizz+kszz′)

+ d1(kx)e
−i(kizz−kszz′) + d2(kx)e

−i(kizz+kszz′)

+δiss(kx)e
iksz|z−z′|

]

eikx(x−x′) dkx

+ δisG
(sin)(r‖, r

′
‖),

(2.61)

where the tensors u1, u2, d1, d2 and s are defined by

u1 =











− ωµ0

4πksz

(

ŷŷζE
i eikszzs/DE + ê+

i ê+
s ζH

i eikszzs/DH

)

, i > s,

− ωµ0

4πksz

(

ŷŷαE
i αE

s γse
ikszzs/DE + ê+

i ê+
s αH

i αH
s γse

ikszzs/DH

)

, i < s,

− ωµ0

4πksz

(

ŷŷηE
s αE

s γse
ikszzs/DE + ê+

s ê+
s ηH

s αH
s γse

ikszzs/DH

)

, i = s,

(2.62)

u2 =











− ωµ0

4πksz

(

ŷŷζE
i ηE

s γse
−ikszzs−1/DE + ê+

i ê−
s ζH

i ηH
s γse

−ikszzs−1/DH

)

, i > s,

− ωµ0

4πksz

(

ŷŷαE
i e−ikszzs−1/DE + ê+

i ê−
s αH

i e−ikszzs−1/DH

)

, i < s,

− ωµ0

4πksz

(

ŷŷηE
s e−ikszzs−1/DE + ê+

s ê−
s ηH

s e−ikszzs−1/DH

)

, i = s,

(2.63)
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d1 =











− ωµ0

4πksz

(

ŷŷηE
i ηE

s γse
−ikszzs−1/DE + ê−

i ê−
s ηH

i ηH
s γse

−ikszzs−1/DH

)

, i > s,

− ωµ0

4πksz

(

ŷŷβE
i e−ikszzs−1/DE + ê−

i ê−
s βH

i e−ikszzs−1/DH

)

, i < s,

− ωµ0

4πksz

(

ŷŷαE
s ηE

s γse
−ikszzs−1/DE + ê−

s ê−
s αH

s ηH
s γse

−ikszzs−1/DH

)

, i = s,

(2.64)

d2 =











− ωµ0

4πksz

(

ŷŷηE
i eikszzs/DE + ê−

i ê+
s ηH

i eikszzs/DH

)

, i > s,

− ωµ0

4πksz

(

ŷŷβE
i αE

s γse
ikszzs/DE + ê−

i ê+
s βH

i αH
s γse

ikszzs/DH

)

, i < s,

− ωµ0

4πksz

(

ŷŷαE
s eikszzs/DE + ê−

s ê+
s αH

s eikszzs/DH

)

, i = s,

(2.65)

and
s = − ωµ0

4πksz

(

ŷŷ + êS
s ê

S
s

)

. (2.66)

2.4 The collocation method for solving the

domain integral equation

In the collocation method3 the solution Ê(r‖) of the integral equation (2.16), with
r‖ ∈ D, is approximated by a function of the form

Ě(r‖) =

p
∑

i=1

aiui(r‖), (2.67)

where u1, . . . , up are linear independent functions and a1, . . . , ap are complex co-
efficients vectors. To obtain conditions for the coefficients, a residual R is defined
as follows

R(r‖) :=Ě(r‖) − Ê(inc)(r‖)

+ iω

∫

D

∆ε(r′‖)G
E(r‖, r

′
‖)Ě(r′‖) d2r′‖.

(2.68)

This residual will be unequal to zero, unless Ě ≡ Ê, i.e., the approximation equals
exactly the actual solution (see Eq. (2.16)). In the collocation method the residual

R is required to be zero at p points, r
(1)
‖ , . . . , r

(p)
‖ , which have to be chosen in such

a way that the linear system {ui(r
(j)
‖ )} has full rank. From this one obtains the

following 3p linear equations for the 3p coefficients a1x, . . . , apz,

p
∑

i=1

[

ui(r
(j)
‖ )I + iωCij

]

· ai = Ê(inc)(r
(j)
‖ ), (2.69)

3See p. 54 of [Atkinson, 1976]. This method is sometimes presented as a special form of the
Method of Moments, see p. 9 of [Harrington, 1999].
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with j = 1, . . . , p and

Cij =

∫

D

∆ε(r′‖)G
E(r

(j)
‖ , r′‖)ui(r

′
‖) d2r′‖. (2.70)

The simplest choice for the basis u1, . . . , up are piecewise-constant functions.4

That is, for every block Di (with i = 1, . . . , m), we choose a suitable partition, D1
i ,

. . ., Dpi

i , with pi positive numbers such that

p =

m
∑

i=1

pi. (2.71)

It is convenient to introduce a double index for denoting the basis function: we
define for every i = 1, . . . , p, two unique integers i1 and i2 such that

i = i2 +

i1−1
∑

j=1

pj , (2.72)

with i1 = 1, . . . , m numbering the blocks, and i2 = 1, . . . pi1 numbering the par-
ticular basis function within that block. The partition is chosen in such a way
that Di is divided into nix × niz (with pi = nixniz) rectangular pieces with sizes
∆ix = (x+

i − x−
i )/nix and ∆iz = (z+

i − z−i )/niz.. The numbering of the elements
Di is showed in Fig. 2.3 Now we define

ui(r‖) =

{

1 if r‖ ∈ Di2
i1
,

0 otherwise.
(2.73)

In this case the integral in Eq. (2.70) is given by

Cij =

∫

D
i2
i1

(ε(i1) − εil))G
E(r

(j)
‖ , r′‖) d2r′‖, (2.74)

where r
(j)
‖ is chosen at the baricenter of Dj2

j1
and il denotes the layer in which Di1

is embedded.
Now the matrix elements Cij have to be computed. Therefore Eq. (2.61) is

substituted into Eq. (2.74) and, with the help of Fubini’s theorem, the order of
integration is interchanged to get

Cij =

∫ ∞

−∞

(ε(i1) − εil))Tij(kx)e
ikx(x(j)−x(i)) dkx + δij

ẑẑ

iωεil

, (2.75)

4This method has been applied in the context of the Green’s tensor method in, e.g., [Visser

et al., 1999].
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PSfrag repla
ements Di

z = zil�1

z = zil

D1i D2i DnixiDnix+1i Dnix+2i D2nixi
Dpii

x = x�i x = x+iz = z�i

z = z+i

Figure 2.3: Illustration of the discretization of the block Di.

where

Tij(kx) =
4

kxkilz
sin(kx∆i1x/2) sin(kilz∆i1z/2)

[

u1(kx)e
i(kjlzz(j)−kilz

z(i)) + u2(kx)e
i(kjlzz(j)+kilz

z(i))

+d1(kx)e
−i(kjlzz(j)−kilz

z(i)) + d2(kx)e
−i(kjlzz(j)+kilz

z(i))
]

,

+δiljl
Iij(kx)] ,

(2.76)

with (see Eq. 2.66)

Iij = − 1

4πωεil





Iskilz 0 −Iakx

0 Isk
2
il
/kilz 0

−Iakx 0 Isk
2
x/kilz



 , (2.77)

where

Is =

{

2
kilz

sin(kilz∆i1z/2)eikilz
|z(j)−z(i)|, if |z(j) − z(i)| > ∆i1z/2,

2
ikilz

{

cos[kilz(z
(j) − z(i))]eikilz

∆i1z/2 − 1
}

, if |z(j) − z(i)| < ∆i1z/2,
(2.78)
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and

Ia =















2
kilz

sin(kilz∆i1z/2)eikilz
|z(j)−z(i)|, if (z(j) − z(i)) > ∆i1z/2,

− 2
kilz

sin(kilz∆i1z/2)eikilz
|z(j)−z(i)|, if (z(j) − z(i)) < −∆i1z/2,

2
kilz

sin[kilz(z
(j) − z(i))]eikilz

∆i1z/2, if |z(j) − z(i)| < ∆i1z/2.

(2.79)

The coefficients Cij can now be determined by numerically performing the
Fourier transformation of Eq. (2.75) by use of the Fast Fourier Transform. How-
ever, one encounters here two problems: first some of the coefficients Tij(kx) tend
to converge rather slowly to zero if kx → ∞, this is due to the constant term oc-
curring in the terms involving Is. Furthermore the integrand Tij(kx) can contain
singularities for some values of kx. In the case that the media are lossy, the sin-
gularities only occur for complex-values, but this can still give rise to numerically
poor behavior.

The first problem, i.e., the slow convergence of Tij(kx), is solved by subtracting
this slowly converging part, and integrate it analytically. Therefore Eq. (2.75) is
rewritten as

Cij =

∫ ∞

−∞

(ε(i1) − εil)) [Tij(kx) − δiljl
Jij(kx)] e

ikx(x(j)−x(i)) dkx + δiljl
Aij , (2.80)

with

Aij =

∫ ∞

−∞

(ε(i1) − εil))Jij(kx)e
ikx(x(j)−x(i)) dkx + δij

ẑẑ

iωεil

, (2.81)

and

Jij = − i sin(kx∆i1x)

2πωεilkx





1 0 0
0 k2

il
/k2

ilz
0

0 0 k2
x/k

2
ilz



 , (2.82)

if |z(j) − z(i)| < ∆i1z/2 and Jij = 0 otherwise. The integrals in Eq. (2.81) can be
evaluated analytically with the aid of Cauchy’s theorem. This yields

Aijxx = −δij
ε(i1) − εil

ωεil

, (2.83)

and

Aijyy =

{

1
ωεil

eikil
|x(i)−x(j)| sin(kil∆i1x/2), if |x(j) − x(i)| > ∆i1x/2,

i
ωεil

{

cos[kil(x
(j) − x(i))]eikil

∆i1x/2 − 1
}

, if |x(j) − x(i)| < ∆i1x/2,

(2.84)
and Aijzz = Aijyy.

The second problem with the numerical evaluation of Eq. (2.75), has to with
the occurrence of singularities in the integrand. These singularities are actually
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PSfrag repla
ements Re(kx)
Im(kx)

k
�k

Figure 2.4: Illustration of the change of integration path in the complex kx plane.

singularities in the electric Green’s tensor and are related with the occurrence of
guided modes in the stratified medium (see Chap. 2 of [Chew, 1995]), i.e., there is
a singularity in the integrand of Eq. (2.75) at k0

x if there is a guided mode possible
with effective wavenumber k0

x that travels in the x-direction with respect to the
background configuration. In the case that the background configuration supports
surface plasmons, as will be often the case in the later chapters, this singularity
lies close to the real kx-axis. To avoid this singular behavior a contour deformation
in the complex kx plane is made to a path consisting of four parts (see Fig. 2.4):
two “end parts” of the form (−∞,−kc) and (kc,∞) and two elliptic parts [Paulus

et al., 2000] to avoid the singularities. The elliptic parts are calculated numerically
with Gauss-Kronrod quadrature, whereas the end parts are calculated with a Fast
Fourier Transform. The position of kc depends on the particular configuration. In
the configurations of Chapters 3, 4 and 5, i.e., a three layered background with the
sub- and superstrate consisting of air, the guided modes lying close to the Re(kx)
axis are the surface plasmons (see Sec. 1.7.2). Therefore, for the H-polarization the
choice kc = 2k is made to avoid these guided modes. For the the E-polarization
case, there are no surface plasmons, and the contour deformation can be omitted.

In the case of an E-polarized field, the only non-zero component of Ê is Êy.
Therefore only the following p × p system of equations

p
∑

i=1

[

ui(r
(j)
‖ ) + iωCijyy

]

· aiy = Ê(inc)
y (r

(j)
‖ ), (2.85)

has to be solved for the coefficients a1y, . . . a1y. To obtain the coefficients Cijyy
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explicitly, the Fourier transform of Tyylk in Eq. (2.75)have to be performed. In
general, the number of Fourier transform that have to be performed equals n2

z,
where nz is the number of possible values of z(i) given by

nz =
m

∑

i=1

niz. (2.86)

However, this number can be significantly reduced by realizing that Tij only de-
pends on z(i) and z(j) through the combinations kjlzz

(j) − kilzz
(i) and kjlzz

(j) +
kilzz

(i), see Eq. (2.76). Therefore, if kilz = kjlz, i.e., if εil = εjl
, the number of dif-

ferent Fourier transforms that have to be performed can be reduced to 4nz. The
Fourier transforms are computed numerically by using the fast Fourier transform.

For an H-polarized field, a 2p × 2p system of equations is obtained:

p
∑

i=1

∑

q=x,z

[

ui(r
(j)
‖ )δqr + iωCijqr

]

· aiy = Ê(inc)
r (r

(j)
‖ ), (2.87)

for j = 1, . . . , p and r = x, z. The same argument about the number of Fourier
transforms as used in the case of E-polarized fields, applies to H-polarized fields.

When the matrix equations (2.85) or (2.85) are constructed, they can be solved
with Gaussian elimination or, for some special cases, with the method discussed in
Sec. 2.5. To obtain the field outside D, the calculated field in D is substituted into
equations (2.16) or (2.17) to obtain the electric or magnetic field, respectively. The
number of discretization points needed for the collocation method to converge is
in each direction (x and z) approximately 10 to 20 points per wavelength5 for the
E-polarization case and at least 20 points per wavelength for the H-polarization
case. This difference in convergence is also found by other authors [Totzeck and

Tiziani, 1997a].

2.5 The conjugate gradient method for solving

the linear system

The collocation method, discussed in Sec. 2.4, converts the domain integral equa-
tion into a linear system of equations. This system could of course be solved with
Gaussian elimination, but because the data storage grows quadratically and the
time to required grows cubically as function of p, the size of the matrix, this is not
possible for very large systems of equations. Therefore we will employ an variant of
the conjugate gradient method (see Sec. 10.2 of [Golub and Van Loan, 1990]),

5This is taken as the maximum of all the wavelength in the materials involved.
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which can be used in a special case, which includes the configurations treated in
the following Chapters. This method can be used when the scatterer D consists
of equally sized blocks with the same permittivity, all embedded in layers with
the same background permittivity. Furthermore, the sizes of all the discretization
elements ∆i1x or ∆i2z should all be same. For an optimal use of this method, it
is necessary to use the symmetries of the matrix. Therefore we will first discuss
them.

Let A = [aij ]i,j=1,...,p be a complex matrix resulting from the collocation method
for an E-polarized field, see Eq. 2.85. Now A can be written as a block matrix
build from m2 blocks:

A =











A11 A12 . . . A1m

A21 A22 . . . A2m
...

...
. . .

...
Am1 Am2 . . . Amm











, (2.88)

where Aij consists of p2
i elements, because pi = pj. Moreover, Aij = Aji. Each

element Ai1j1 can be written as the sum of two parts, one which is a function of
z(i) − z(j), whereas the second is a function of z(i) + z(j). This implies that Ai1j1

can be written as
Ai1j1 = Ti1j1 + Hi1j1, (2.89)

where

Ti1j1 =











T 0
i1j1 T 1

i1j1 . . . T niz−1
i1j1

T−1
i1j1

T 0
i1j1

. . . T niz−2
i1j1

...
...

. . .
...

T 1−niz

i1j1
T 2−niz

i1j1
. . . T 0

i1j1











, (2.90)

and

Hi1j1 =











H1−niz

i1j1
H2−niz

i1j1
. . . H0

i1j1

H2−niz

i1j1
H3−niz

i1j1
. . . H1

i1j1
...

...
. . .

...
H0

i1j1 H1
i1j1 . . . Hniz−1

i1j1











, (2.91)

i.e., T is a Toeplitz matrix (the matrix-elements are constant along the usual
northwest-southeast diagonals) and H is a Hankel matrix (the matrix-elements are
constant along the northeast-southwest diagonals), both with as elements nix ×
nix matrices. Due to the x-dependence of the electric Green’s tensor and the
rectangular mesh that is used (see Eq. 2.75), it follows that each element T q

i1j1
and

Hq
i1j1

, with q = 1 − niz, . . . , niz − 1 is a Toeplitz matrix.
For an H-polarized field, the matrix corresponding with Eq. (2.87) consists of

four parts:

A =

[

A1 A2

A3 A4

]

, (2.92)



Chapter 2. The Green’s Tensor Formalism 53

where each of the p × p sub-matrices has the same structure as the matrix A in
Eq. (2.88) for the E-polarization case.

The conjugate gradient method is an iterative method with converges in, at
most, p steps for a p × p matrix. In each step a matrix-vector product has to be
computed, besides some inner products. However, the convergence is only guar-
anteed for Hermitian matrices, i.e., x†Ax = (Ax)†x. Now the matrix A obtained
from the collocation method is a symmetric complex matrix, so it is certainly not
self-adjoint and the conjugate gradient method does not have to converge. To still
use a conjugate method like method, the following trick is employed: the inner
product x†y is replaced by the product xT y. It can be shown that in that case
the conjugate gradient does converge, see p. 57 of [Barrett et al., 1994]. This
can be proven by closely following the proof of the convergence of the conjugate
gradient method.

As told, in each iteration the matrix A is multiplied with some vector. Now by
using the block-Toeplitz structure of the matrix A the time required for doing this
can be brought back from O(p2) to O(p log(p)), whereas the data storage of the
matrix is reduced to O(p), instead of O(p2). For this, the concept of a circulant

matrix is needed: a n × n matrix C is circulant if it has the following form

C =











c0 c1 . . . cn−1

cn−1 c0 . . . cn−2
...

...
. . .

...
c1 c2 . . . c0











, (2.93)

that is, C is a Toeplitz matrix where each row is identical to the previous row,
but shifted one to the right and wrapped around. An useful property of circulant
matrices is that they can be diagonalized with a Fourier transform (see [Davis,
1979]). that is C = F †ΛF , where Fst = e2πjst/n and Λ is a diagonal matrix.
This diagonal matrix can be obtained by taking the Fourier transform of the first
column of C.

The matrix-vector product Tx, where T is a n × n Toeplitz matrix can be
performed with O(n log(n)) operations by embedding T in a 2n × 2n circulant
matrix C, i.e.,

C =

[

T ∗
∗ T

]

, (2.94)

where the ∗ matrices are chosen such that C is circulant. By employing a fast
Fourier transform to C, the diagonal matrix Λ is obtained. If we now want to
multiply a vector x with T , the vector x has to be extended with zeros in a
vector with 2n elements, in which the elements of x are the first n elements.
Subsequently, a fast Fourier transform is applied to this extended vector, and the
result is multiplied by the diagonal matrix Λ. If now the (inverse) fast Fourier
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transform is taken, the resulting vector contains as its first n elements the vector
Tx (see [Chan and Ng, 1996]). The same trick can also be used for a Hankel
matrix by noting that H is a Toeplitz matrix times a permutation represented by
the matrix

J =















0 0 . . . 0 1
0 0 . . . 1 0
...

...
. . .

...
...

0 1 . . . 0 0
1 0 . . . 0 0















. (2.95)

By employing this methods for a matrix-vector multiplication to the matrices
(2.88) or (2.92), for the E-polarization case or H-polarization case, respectively,
the cost of the matrix-vector product reduces to O(pi log(pi)) for each sub-matrix,
while the data storage reduces to 8pi or 24pi elements, for the E-polarization or
H-polarization, respectively.

The convergence rate of the conjugate gradient method depends on the spectral
properties of the matrix A,6 therefore if A is in some way “approximated” by a
matrix M , the equation

M−1Ax = M−1b (2.96)

has the same solution x but the spectral properties of M−1A may be better, which
hopefully leads to a faster convergence, i.e., less iterations have to be performed
to achieve an acceptable solution. The matrix M is called the precondioner. In-
stead of actually performing the multiplication of M−1A, the conjugate gradient
method can be adapted such that only the matrix equation Ms = t have to be
solved in each iteration. The conjugate gradient method applied to this system
is called the preconditioned conjugate gradient method (see Sec. 10.3 of[Golub

and Van Loan, 1990]). We want to construct M such that it can be inverted in
O(n2

iznix log(nix)) operations. Because a n × n circulant matrix can be inverted
with O(n log(n)) operations, we would like to a use block-circulant-circulant-block
matrix as preconditioner, i.e., a n×n circulant matrix, with as elements m×m cir-
culant matrices (see [Chan and Ng, 1996]). This can be done by approximating
the nix × nix Toeplitz blocks

G =











g0 g1 . . . gnix−1

g−1 g0 . . . gnix−2
...

...
. . .

...
g1−nix

g2−nix
. . . g0











, (2.97)

6The spectrum of a matrix A consists of the complex numbers λ such that λ − A is not
invertible.
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which can be either T q
i1j1

or Hq
i1j1

, by the circulant matrix with elements given by
[Chan, 1988]

cj =

{

(m−j)gj+jgj−m

m
, 0 < j < m,

g0, j = 0
(2.98)

So, a circulant matrix M q
i1j1

is obtained. Now let

∆ =











FM q
11F

† FM q
12F

† . . . FM q
1niz

F †

FM q
21F

† FM q
22F

† . . . FM q
2niz

F †

...
...

. . .
...

FM q
niz1F

† FM q
niz2F

† . . . FM q
nizniz

F †











, (2.99)

where F is the nix ×nix Fourier transform, then each block FM q
ijF

† is diagonal so
∆ can be permuted such that the result is a block diagonal matrix:

P †∆qP =











M̃ q
1 0 . . . 0

0 M̃ q
2 . . . 0

...
...

. . .
...

0 0 . . . M̃ q
nix











, (2.100)

where each block M̃ q
i is the sum of a Toeplitz part and a Hankel part. If M̃ q

i is
given by

M q
i =











mq
11 mq

12 . . . mq
1niz

mq
21 mq

22 . . . mq
2niz

...
...

. . .
...

mq
niz1 mq

niz2 . . . mq
niz











, (2.101)

then a circulant matrix is constructed with elements given by the following for-
mula7

dq
l =

1

niz

∑

j−k=l(mod niz)

mq
jk, l = 0, . . . , niz − 1. (2.102)

Again Fourier transforms are applied to the resulting circulant matrices, to obtain
a diagonal matrix.

The initial cost of constructing this circulant matrix is O(mn log(mn)), while
in each iteration step the cost of solving Ms = t, with s and t vectors with
mn elements, is O(mn log(mn)). To store the condioner M , one only needs mn
elements.

7See [Chan and Ng, 1996].
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2.6 Conclusions

In this Chapter, a scattering model was described to calculate the field in a num-
ber of rectangular scatterers embedded in a layered background medium. Such
configurations include for example the single and double slit structures discussed
in the following Chapters. The Green’s tensor pertaining to such a stratified back-
ground medium was derived. A numerical method to solve the domain integral
equations, the Collocation method, was described. Furthermore, it was shown
that the symmetries of the Green’s tensor allowed for an improved solution of the
resulting linear system, by using the Conjugate Gradient method together with
the Fast Fourier transform.

2.A Plane wave incident on a stratified medium

Consider a medium stratified in the z-direction, as discussed in Sec. 2.2. In this
Appendix, the field induced by a plane wave incident from below is calculated. Due
to the two-dimensional character of the configuration, the E-polarized case and the
H-polarized case can be treated separately, see Sec. 1.6. For an incident E-polarized
plane wave with wave vector (kx, 0, k1z) and unit amplitude at r = (0, 0, z1), the
electric field can be written as

Ê(r‖) =











(ŷeik1z(z−z1) + dE
1 ŷe−ik1z(z−z1))eikxx, z < z1,

(uE
i ŷeikiz(z−zi−1) + dE

i ŷe−ikiz(z−zi))eikxx, zi−1 < z < zi,

uE
N ŷeikNz(z−zN−1)eikxx, zN−1 < z,

(2.103)

with 2 ≤ i ≤ N −1 and where we have introduced the amplitudes uE
i and dE

i . The
magnetic field is then given by

Ĥ(r‖) =
1

ωµ0











(ê+
1 eik1z(z−z1) + dE

1 ê−
1 e−ik1z(z−z1))eikxx, z < z1,

(uE
i ê+

i eikiz(z−zi−1) + dE
i ê−

i e−ikiz(z−zi))eikxx, zi−1 < z < zi,

uE
N ê+

NeikNz(z−zN−1)eikxx, zN−1 < z,

(2.104)

with k
(i)
± = (kx, 0,±kiz) and ê±

i = ki
± × ŷ/ki.

The field given by Eqs. (2.103) and (2.104) does satisfy the Maxwell’s equations
(2.5) and (2.6). However, the amplitudes uE

i and dE
i must be chosen in such a way

that the field satisfies the boundary conditions at the interfaces z = zi, which
in this case reduce to the continuity of Êy and Ĥx, see Eqs. (1.38) and (1.39).
Applying this to Eqs. (2.103) and (2.104), one obtain for i = 2, . . . , N − 1,

uE
i γi + dE

i = uE
i+1 + dE

i+1γi+1, (2.105)

kizu
E
i γi − kizd

E
i = k(i+1)zu

E
i+1 − k(i+1)zd

E
i+1γi+1, (2.106)
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with γi ≡ exp(ikizdi). For the special cases of z = z1 and z = zN−1, one obtains

1 + dE
1 = uE

2 + dE
2 γ2, (2.107)

k1z − k1zd
E
1 = k2zu

E
2 − k2zd

E
2 γ2, (2.108)

and

uE
N−1γN−1 + dE

N−1 = uE
N , (2.109)

k(N−1)zu
E
N−1γN−1 − k(N−1)zd

E
N−1 = kNzu

E
N . (2.110)

To calculate the amplitudes, a recursive procedure is used(see [Visser et al.,
1999]). We start by defining generalized reflection and transmission coefficients rE

i

and tEi through the expressions

uE
i+1 = tEi uE

i γi, (2.111)

dE
i = rE

i uE
i γi, (2.112)

with i = 1, . . . , N − 1. Furthermore, we define uE
1 = 1 and γ1 = 1 for consistency

in the substrate. Inserting these equations into the boundary conditions (2.105)
and (2.106) yields

(1 + rE
i ) = tEi (1 + rE

i+1γi+1), (2.113)

k(i)
z (1 − rE

i ) = k(i+1)
z tEi (1 − rE

i+1γi+1). (2.114)

These two equations enable us to obtain a recursive relation for rE
i :

rE
i =

kiz(1 + rE
i+1γi+1) − k(i+1)z(1 − rE

i+1γi+1)

kiz(1 + rE
i+1γi+1) + k(i+1)z(1 − rE

i+1γi+1)
. (2.115)

This recursive relation is initialized by defining rE
N = 0. If Eqs. (2.113) and (2.114)

are used, the transmission coefficients can be expressed in the terms of the reflection
coefficients:

tEi =
k(i+1)z + kiz

2k(i+1)z

+
k(i+1)z − kiz

2k(i+1)z

rE
i . (2.116)

For an incident H-polarized plane wave with wave vector (kx, 0, k1z) and unit
amplitude at r = (0, 0, z1), the procedure is similar. In this case the electric field
is given by

Ê(r‖) =











(ê+
1 eik1z(z−z1) + dH

1 ê−
1 e−ik1z(z−z1))eikxx, z < z1,

(uH
i ê+

i eikiz(z−zi−1) + dH
i ê−

i e−ikiz(z−zi))eikxx, zi−1 < z < zi,

uH
N ê+

NeikNz(z−zN−1)eikxx, zN−1 < z,

(2.117)
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where the amplitudes uH
i of the upward propagating plane waves and dH

i of the
downward propagating are introduced. The magnetic field is given by

Ĥ(r‖) = − 1

ωµ0











k(1)(ŷeik1z(z−z1) + dH
1 ŷe−ik1z(z−z1))eikxx, z < z1,

k(i)(uH
i ŷeikiz(z−zi−1) + dH

i ŷe−ikiz(z−zi))eikxx, zi−1 < z < zi,

k(N)uH
N ŷeikNz(z−zN−1)eikxx, zN−1 < z.

(2.118)
For H-polarized fields, one needs the continuity of Êx and Ĥy at the boundaries
z = zi, see Eqs. (1.38) and (1.39). If Eqs. (2.117) and (2.118) are used, one obtains
for i = 2, . . . , N − 1,

k(i)(uH
i γi + dH

i ) = k(i+1)(uH
i+1 + dH

i+1γi+1), (2.119)

(kizu
E
i eikizdi − kizd

E
i )/k(i) = (k(i+1)zu

E
i+1 − k(i+1)zd

E
i+1e

ik(i+1)zdi+1)/k(i+1). (2.120)

For the special cases of z = z1 and z = zN−1, one obtains

k(1)(1 + dH
1 ) = k(2)(uE

2 + dE
2 γ2), (2.121)

(k1z − k1zd
E
1 )/k(1) = (k(2)

z uE
2 − k(2)

z dE
2 γ2)/k

(2), (2.122)

and

k(N−1)(uE
N−1γN−1 + dE

N−1) = k(N)uE
N , (2.123)

(k(N−1)zu
E
N−1γN−1 − k(N−1)zd

E
N−1)/k

(N−1) = kNzu
E
N/k(N). (2.124)

As in the case of the E-polarization we define generalized reflection and transmis-
sion coefficients by

uH
i+1 = tHi uH

i γi, (2.125)

dH
i = rH

i uH
i γi, (2.126)

with i = 1, . . . , N − 1. If an approach strictly similar to the case of an E-polarized
plane wave is followed, one obtains the following recursive relation for the reflection
coefficients:

rH
i =

kizεi+1(1 + rH
i+1γi+1) − k(i+1)zεi(1 − rH

i+1γi+1)

kizεi+1(1 + rH
i+1γi+1) + k(i+1)zεi(1 − rH

i+1γi+1)
. (2.127)

This recursive relation is initialized by defining rH
N = 0. The transmission coeffi-

cients are expressed in the terms of the reflection coefficients by the relation

tHi =
k(i+1)zεi + kizεi+1

2k(i+1)z
√

εiεi+1
+

k(i+1)zεi − kizεi+1

2k(i+1)z
√

εiεi+1
rH
i . (2.128)
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Single Sub-wavelength Slit
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wavelength structures”,
Journal of Optics B: Quantum and Semiclassical Optics, vol. 6, pp. S404–
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Abstract

We analyze the diffraction of light incident on a sub-wavelength slit in a thin
plate. The anomalous (i.e., more than 100%) light transmission through the slit
is connected to both waveguiding and phase singularities of the field of power flow
near the slit. It is demonstrated that the enhanced transmission is accompanied
by the annihilation of these phase singularities. Furthermore, it is found that
plates with different material properties, such as conductivity and thickness, show
a fundamentally different behaviour of the field near the slit.
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3.1 Introduction

The analysis of light transmission through a slit with a sub-wavelength width in
a thin plate is a subject with a venerable history, dating back to Lord Rayleigh
[Rayleigh, 1897; Bouwkamp, 1954; Born and Wolf, 1999]. Because of its
importance for near-field optics and semiconductor technology, it continues to
attract attention. Ebbesen et al. demonstrated experimentally [Ebbesen et al.,
1998; Ghaemi et al., 1998] that certain arrays of cylindrical cavities in metal
plates allow much more light transmission than predicted by the standard theory
of aperture diffraction [Bethe, 1944]. These authors suggested that this enhanced
transmission was generated by the coupling of the light to surface plasmons on
the metal/air interface. More recently, it was demonstrated [Thio et al., 2001]
that enhanced transmission can be achieved even with the use of a single aperture.
Broadly speaking there are two mechanisms proposed to explain the extraordinary
light transmission: the coupling of light with surface plasmons [Ebbesen et al.,
1998; Ghaemi et al., 1998; Schröter and Heitmann, 1998; Porto et al.,
1999; Mart́ın-Moreno et al., 2001], and Fabry-Pérot-like resonances inside the
apertures [Astilean et al., 2000; Takakura, 2001; Yang and Sambles, 2002].
A good understanding of the causes and requirements for enhanced transmission
could lead to, among other things, novel near-field optical measurement devices
as well as optical storage devices with a density not restricted by the diffraction
limit.

Most theoretical studies that deal with the diffraction of light by a narrow slit
in a metal plate assume as simplifying conditions that the plate is vanishingly
thin and perfectly conducting (see, for example, [Stamnes, 1995; Nye, 2002] and
the references therein). In Chapter 2, we have developed a rigorous Green’s tensor
formalism that allows us to analyze the diffraction of light at slits in plates of finite
thickness and finite conductivity. In Section 3.3 the transmission of light through
a single sub-wavelength slit in a metal plate is analyzed. The slit is illuminated by
a normally incident plane wave, which can be either E-polarized or H-polarized.
E-polarization differs from H-polarization in that no surface plasmons are excited
(see Sec. 1.7.2). Furthermore, for E-polarization the first waveguide mode in a
perfect conductor has a cut-off width of wcut-off = λ/2, with λ the wavelength.
However, due to their finite conductivity, efficient energy transport may be possible
at smaller slit widths in realistic metal plates. A rigorous computation of the field
demonstrates that near these cut-off widths, there is an enhanced transmission
through the slit. Transmission efficiencies as high as 300% are found for special
configurations. We emphasize that these remarkable enhancement effects occur
even though there is no coupling to surface plasmons. To elucidate why the field
couples so effectively with the propagating waveguide modes, we have analyzed the
field of power flow (i.e., the time-averaged Poynting vector) near the slit. It is found
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that this field exhibits optical vortices and other kinds of phase singularities (see
Sec. 1.8) which are arranged in an array-like pattern. We find that the location and
the annihilation or creation of these phase singularities are intimately connected
with the phenomenon of enhanced transmission.

In Section 3.4 we examine the diffraction of light and its singular behavior near
a slit in a semiconductor plate. It is found that there is a significant difference in
the behavior of the field near metal plates and near those made out of semicon-
ductor material. In the latter case, frustrated transmission may occur—that is,
the transmission through a narrow slit in such a plate can be less than the trans-
mission through a semiconductor plate without a slit. It is shown by numerical
simulation that frustrated transmission is accompanied by a handedness of optical
vortices that is opposite to that which occurs in the case of metal plates for which
enhanced transmission takes place.

Furthermore, in Section 3.5 we study the dependence of the light transmission
on the thickness of the plate. The results found are qualitatively explained by
considering Fabry-Pérot resonances of waveguide modes.

3.2 The configuration

The configuration under consideration is illustrated in Fig. 3.1. An monochromatic
electromagnetic wave is normally incident upon a metal plate of thickness d and
permittivity εplate from the negative z-direction. A single slit of width w, infinitely
long in the y-direction, is present in the plate. Because the system is invariant
with respect to y-translations, we may treat the problem as two-dimensional, with
relevant coordinates x and z. For this reason, the field splits into two mutually
independent parts, namely, the E-polarized part and the H-polarized part (see
Sec. 1.6).

To calculate the field, the Green’s tensor method as discussed in Chapter 2 is
employed. The background medium consists in this case of three non-magnetic
layers with permittivities given by

εb(z) =











ε0, z < 0,

εplate 0 < z < d,

ε0, d < z.

(3.1)

The scatterer D consist of the slit with permittivity ε0 and has dimensions [−a, a]×
[0, d], where a = w/2. The methods described in Chapter 2 were applied to obtain
the field.

In order to study the transmission properties of a slit, we need to define its
transmission coefficient. The energy flow is given by the time-averaged Poynting
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Figure 3.1: Illustrating the notation relating to transmission through a slit.

vector (see Sec. 1.5). We would like to define the transmission by integrating the
flux of the time-averaged Poynting vector along the plane z = d, which represents
the total energy transmitted into the upper half-space. The transmission would
be given by

∫ ∞

−∞

〈Sz(x, d)〉T dx. (3.2)

The problem with this definition is that it not only gives the transmission of the
slit, but also takes also into account the transmission of light through the metal
plate which (for a very thin plate) would be also present in the absence of the slit.
As a consequence, this definition yields an infinite transmission. This is due to the
fact that

〈Sz(x, d)〉T → 〈S(inc)
z (x, d)〉T 6= 0 (as x → ±∞), (3.3)

i.e., in the z = d plane, far away from the slit, it converges to the constant value
of the Poynting vector S

(inc)
z in the absence of the slit. In order to remove this

singularity and only take into account the effect of the slit on the transmission, the
flux of the time-averaged Poynting vector of the incident field along the “dark side”
of the metal plate is subtracted from expression (3.2), i.e., the following function

f(x) :=

{

〈Sz(x, d)〉T |x| < a,

〈Sz(x, d)〉T − 〈S(inc)
z (x, d)〉T |x| ≥ a,

(3.4)

is subtracted from the integrand in the expression (3.2). Note that we do not
subtract the incident field at |x| < a. The transmission is then given by

∫ ∞

−∞

f(x) dx. (3.5)
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The reason for not subtracting the incident field when |x| < a in expression (3.4), is
that otherwise for very wide slits (a ≫ λ), the normalized transmission coefficient
(the normalization will be given in the next lines) would be less than one. Apart
from this, we like to make the transmission independent of the amplitude of the
incident field. Therefore we divide expression (3.5) by the following integral

∫ a

−a

〈S(0)
z (x, 0)〉T dx, (3.6)

where the entity 〈S(0)〉T represents the time-averaged Poynting vector of the field
that is emitted by the laser. Note that this entity does not equal the time-averaged
Poynting vector of the incident field because the incident field is partly reflected
by the metal plate. So finally, the transmission coefficient of the slit is given by
the following equation

T :=

∫

slit

〈Sz(x, d)〉T dx +

∫

plate

〈Sz(x, d)〉T − 〈S(inc)
z (x, d)〉T dx

∫

slit

〈S(0)
z (x, 0)〉T dx

. (3.7)

The normalization is such that for a very wide slit, the transmission equals one.
However, note that it is possible for the transmission to be larger than one. This
does not constitute a violation of energy conservation, because the normalization
(3.6) contains the flux of the emitted field, and not that of the actual field. A
comparable phenomenon occurs in the scattering of light by small particles, where
such a particle can under certain circumstances absorb more light than is incident
on it [Bohren, 1983; Bohren and Huffman, 1983].

3.3 Transmission through a slit in a thin metal

plate

In Fig. 3.2 (lower curve) the transmission coefficient is shown as a function of
the width of a slit in a thin silver plate. The upper curve is discussed later. We
observe a damped resonance behavior as a function of the width w, with maxima
at w ≈ 0.5λ, 1.5λ, . . ., where the transmission is enhanced, i.e., the transmission
coefficient is greater than one, with its largest value T = 1.33 at w = 0.5λ.

If the dispersion relation is computed for the first guided mode (see Sec. 1.7.1)
of a silver waveguide, it is found that, due to the finite conductivity, the cut-off
width is less than that for a perfectly conducting waveguide, viz. wcut-off = 0.4λ
(see Fig. 3.3). The position of the maxima in the transmission as a function of the
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Figure 3.2: The transmission coefficient T of a narrow slit in a thin plate as a
function of the slit width w, expressed in wavelengths. The lower curve is for a
slit in a 100 nm thick silver plate and λ = 500 nm. The upper curve is for a slit
in a 100 nm thick aluminium plate and λ = 91.8 nm. At these wavelengths the
refractive indices are taken as nsilver = 0.05+i 2.87 and naluminium = 0.041+i 0.517,
respectively. The slit is illuminated by a E-polarized, normally incident plane
wave.

slit width is found to be close to the cut-off width; see Fig. 3.2. This also holds
for the higher order modes.

If the conductivity of the metal decreases, the cut-off width shifts to lower
values. This is illustrated in Fig. 3.3 (left-hand curves), where the effective index
is plotted for aluminium at λ = 91.8 nm. It is seen that the cut-off width is shifted
to w ≈ 0.15λ. Because the normalization factor of the transmission coefficient (see
Eq. 3.7) will be smaller for smaller values of the width, it is to be expected that the
anomalous transmission will be greater for materials with a smaller cut-off width.
In Fig. 3.2 the transmission coefficient for a slit in aluminium is shown (upper
curve). Both the expected shift of the maximum to a lower value is observed,
as well as the enhancement in the transmission, with a maximum of T ≈ 3.2 at
w ≈ 0.25λ.

To understand this anomalous transmission, we have analyzed the field of power
flow near the slit. A typical example of these calculations is shown in Fig. 3.4
(for the thin silver plate discussed before), where the field is seen to exhibit phase
singularities, i.e., points were the amplitude of the time-averaged Poynting vector is
zero and as a consequence its direction, or equivalently its phase, is undetermined.
It is seen that the anomalous transmission (namely T = 1.11) coincides with
the presence of two optical vortices (a and b) within the plate, and a “funnel-
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Figure 3.3: Effective indices neff of the first E-polarized waveguide mode inside
a narrow slit as a function of the slit width w, expressed in wavelengths. The
full lines denote the real part of the effective index, the dashed lines denote the
imaginary part. The two curves for aluminium are for λ = 91.8 nm, the two
curves for silver are for λ = 500 nm, whereas the last two curves are for a perfectly
conducting material. The refractive indices were taken to be nsilver = 0.05 + i 2.87
and naluminium = 0.041 + i 0.517.

like” power flow into the slit. This funneling effect corresponds to a transmission
coefficient of more than one. In addition, four other phase singularities are visible
just below the slit (c,d,e and f; two saddle points and two vortices). In Fig. 3.5 the
location of the phase singularities is shown on a larger scale. It is seen that they
are arranged in an array-like pattern. It is to be noted that only part of the phase
singularities are shown—the pattern is continuous in a periodic way to the left and
right, and also downwards. It was found that at least 5000 phase singularities are
present for this particular example.

Changing the slit width in a continuous manner causes the phase singularities
to move through space. Near the cut-off width (at w ≈ 0.45λ) the array of phase
singularities along the symmetry-axis annihilate, each annihilation consisting of
two vortices (one left-handed and one right-handed) and two saddle points. In
Fig. 3.6 the resulting arrangement for w = 0.5λ is shown. Because the annihila-
tion of phase singularities leads to a smoother field of power flow, an increased
transmission is observed. Near the other cut-off widths at w ≈ 1.4λ, 2.4λ, . . . addi-
tional annihilations occur. In such processes the total topological charge is always
conserved, see Sec. 1.8.2.

If the field of power flow is analyzed for a slit in an aluminium plate (at λ = 91.8
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Figure 3.4: Behavior of the time-averaged Poynting vector near a 200 nm wide
slit in a 100 nm thick silver plate. The incident light (coming from below) has a
wavelength λ = 500 nm and is E-polarized. The left-handed (a and d) and right-
handed optical vortices (b and c) each have a topological charge of +1, whereas the
topological charge of the saddle points (e and f) is −1. The transmission coefficient
T = 1.11. The color coding indicates the modulus of the (normalized) Poynting
vector (see legend).

nm) the same pattern and behavior of the phase singularities as function of the
slit width is found as described above. Below the cut-off width, the same pattern
of phase singularities is found as in Figs. 3.4 and 3.5. At a width slightly larger
than the cut-off width (i.e., at w = 0.2λ) an array of phase singularities along the
symmetry axis annihilates. Again, at the cut-off widths of the higher modes similar
annihilations occur. The described behavior of the pattern of phase singularities
was also found for other materials with Re(n) ≪ Im(n) (i.e., good conductors, at
a frequency below a plasma resonance frequency).

In Fig. 3.7 the transmission coefficient as a function of the slit width is shown
for an H-polarized incident plane wave. Contrary to the E-polarized case, we
observe that even for widths much smaller than the wavelength there is significant
light transmission through the slit. However, note that for very small slit widths
(w < 0.1λ), the transmission coefficient does drop to almost zero. For higher
values of the width, the transmission coefficient rises as a function the width, with
a periodic pattern of maxima at w ≈ λ, 2λ, . . . (the latter maxima are not visible in
the plot). Note that in contrast tot the E-polarized case, the transmission remains
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Figure 3.5: Location of phase singularities in the field of power flow for the same
configuration as in Fig. 3.4, i.e., for a slit width of w = 0.4λ = 200 nm. The left-
and right-handed optical vortices are denoted by lv and rv, respectively; s denotes
a saddle point. Notice the larger scale as compared to Fig. 3.4.
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Figure 3.6: Location of phase singularities in the field of power flow for the same
configuration as in Fig. 3.5, but now for a slit width w = 0.5λ = 250 nm. Notice
that the central array of phase singularities which was visible below the slit in
Fig. 3.5 has now been annihilated.

less than one after the first peak.
The effective index as a function of the slit width is given in Fig. 3.8 for the

first two symmetric guided modes. The first mode, as in the case of a slit in a
perfectly conducting material, does not have a cut-off width. However, due to the
penetration of the field into the silver plate, the real part of the effective index
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Figure 3.7: The transmission coefficient T of a narrow slit in a thin plate as a
function of the slit width w, expressed in wavelengths. The plate is 100 nm thick
an consist of silver (nsilver = 0.05+i 2.87). The incident field is a normally incident,
H-polarized plane wave with a wavelength of λ = 500 nm.

rises to very high values if the slit width is decreased. This implies that the drop
of the transmission for decreasing slit widths at w ≈ 0.1λ is due to a less efficient
coupling to this guided mode. This drop of the transmission has recently been
observed at microwave frequencies [Suckling et al., 2004]. The position of the
cut-off width of the second symmetric mode seems to correspond to the position
of the maximum of the transmission, just as in the E-polarized case. This however
does not explain why the transmission remains smaller than one for larger slit
widths. A possible explanation of this effect could be that the surface plasmons
excited at the edges of the slits, which propagate at the air-silver interface away
from the slit in the ±x-directions, carry away some of the energy. This would
indeed explain why the transmission for the H-polarized case (where there are
surface plasmons possible) is smaller than for the E-polarized case (where there
are no surface plasmons possible).

3.4 Transmission through a slit in a thin

semiconductor plate

In Fig. 3.9 the transmission coefficient is shown as a function of the slit width for a
thin silver plate and for a thin silicon plate (the middle curve will be discussed in
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Figure 3.8: Effective indices neff of the first two symmetric H-polarized waveguide
modes inside a narrow slit in a silver plate as a function of the slit width w,
expressed in wavelengths. The full lines denote the real part of the effective index
of the first mode, the dashed line denotes its imaginary part. The dashed-dotted
line denotes the real part of the effective index of the second mode, whereas the
dotted line denotes the imaginary part of its effective index . The wavelength is
λ = 500 nm and the refractive index is taken as nsilver = 0.05 + i 2.87.

the next section). For the silver plate we observe a damped oscillating behavior of
the transmission coefficient. This is explained in detail in the preceding Section.
The behavior of the transmission coefficient of a slit in a silicon plate is seen from
Fig. 3.9 to be quite different: for small slit widths the transmission is frustrated
(i.e., T < 0). From Eq. (3.7) it follows that in this case the power flow through a
plate with a slit is less than that through a plate without a slit. Also, in contrast
to what we found for a slit in a silver plate, the transmission coefficient now never
exceeds unity.

To better understand the behavior of the transmission coefficient, we have
plotted in Fig. 3.10 the effective index of the first guided mode for both silicon
and silver waveguides as a function of the slit width. For the first guided mode in
silver (discussed in the preceding Section), it is found that there is a cut-off width
at w ≈ 0.4λ, i.e. for a width smaller than this critical width the mode is evanescent,
whereas for a width larger than the cut-off width the mode is propagating. The
silicon waveguide has a completely different behavior: for small slit widths (w <
0.15λ) the first guided mode is not present (i.e., only radiation modes [Snyder

and Love, 1983] exist), whereas for a somewhat larger slit width (i.e., w ≈ 0.15λ–
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Figure 3.9: The transmission coefficient T of a narrow slit as a function of the
slit width w, expressed in wavelengths. The lower curve is for a slit in a 100
nm thick silicon plate, the upper curve is for a slit in a 100 nm thick silver plate,
whereas the middle curve is for a slit in a 2.5µm thick silver plate. The wavelength
is λ = 500 nm, and the refractive indices are taken as nsilver = 0.05 + i 2.87 and
nsilicon = 4.3+i 0.74, respectively. The slit is illuminated by a E-polarized, normally
incident plane wave.

0.4λ) the first guided mode is more damped than a plane wave through the bulk
material. The extraordinarily high damping of this guided mode is caused by its
extension into the lossy cladding. It should be noted that at these widths the
transmission coefficient is smaller than that of a silicon plate without a slit (see
Fig. 3.9). For slit widths w > 0.4λ, the guided mode has a propagating character,
which corresponds with a positive transmission coefficient.

In Fig. 3.11, the time-averaged Poynting vector is plotted around a 100 nm
wide slit in a silicon plate. In the case of a silver plate (Fig. 3.12), two vortices
are visible, which correspond with a funnel-like power flow into the slit (see the
preceding Section). In contrast, the power flow near a slit in a silicon plate exhibits
two vortices and two saddle points located inside the slit, coinciding with a power
flow into the silicon plate rather than into the slit. It should be noted that this
coincides with a different handedness of the vortices: vortex b in Fig. 3.12 is left-
handed, whereas vortex b in Fig. 3.11 is right-handed. In Fig. 3.13 a detail of
Fig. 3.11 is shown. There it can be observed that in this region a sink and a saddle
point are present. Due to conservation of energy, a sink is only possible inside a
lossy material (see Sec. 1.8.3). If the width of the slit is decreased, the sink and
the saddle point annihilate each other, a process in which the topological charge
is conserved (see Sec. 1.8.2).
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Figure 3.10: Effective indices neff of the first E-polarized waveguide mode inside
a narrow slit as a function of the slit width w, expressed in wavelengths. The
full lines denote the real part of the effective index, the dashed lines denote the
imaginary part.

In Fig. 3.14 another detail of Fig. 3.11 is presented. If the width of the slit is
slightly increased, the saddle points (a and d) move together to form a monkey

saddle singularity [Hsiung, 1981, p. 266]. This is shown in Fig. 3.15. A monkey
saddle is similar to a saddle point, but possesses three attracting and three repuls-
ing directions, instead of two attracting and two repulsing directions. The monkey
saddle is unstable, as it exists for one value of the slit width only; for a larger
width it decays into two saddle points (see Fig. 3.16). With the aid of symmetry
considerations, one can show that the singularity in Fig. 3.15 is indeed a monkey
saddle, and not two closely spaced saddle points.

3.5 Transmission through a slit in a thick metal

plate

Next we discuss the influence of the plate thickness on the light transmission
process. In Fig. 3.9 the transmission coefficient is plotted as a function of the slit
width for a thick (i.e., 5λ) silver plate. Several differences with the thin silver
plate can be observed: below the cut-off width at w = 0.4λ there is hardly any
transmission through the thick plate. At the cut-off width a steep rise of the
transmission as a function of the width is seen. Furthermore we note that there
are some fast oscillations of the transmission near the cut-off widths.
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Figure 3.11: Behavior of the time-averaged Poynting vector near a 100 nm wide
slit in a 100 nm thick silicon plate. The incident light (coming from below) has a
wavelength λ = 500 nm. Two vortices (b and c) and two saddle points (a and d)
are present in the middle region. In the dashed regions on the right and the left a
saddle point and a sink are present (see Fig. 3.13). The dashed box in the middle
denotes the region depicted in Fig. 3.14.

The negligible transmission below w ≈ 0.4λ can be explained by noting that
all guided modes are evanescent in that region, i.e., the transmission will decrease
exponentially as a function of the thickness of the plate. The explanation for the
fast oscillations near the cut-off widths is more subtle: the guided mode travelling
in one direction can be reflected into a guided mode travelling into the opposite
direction at the end of the slit. Therefore a Fabry-Pérot type resonance exists,
i.e., the transmission as a function of the thickness has an oscillating behavior,
with a period determined by the real part of the effective index. Because the
effective index as a function of the width changes rapidly near the cut-off width
(see Fig. 3.10), the interference of the guided modes will change repeatedly from
constructive to destructive and back. This results in the fast oscillations observed
in Fig. 3.9.

In Fig. 3.17 the transmission coefficient of a thick silver plate is plotted a a
function of the slit width, for the case of an H-polarized incident plane wave.
Similar Fabry-Pérot-like resonances as for the E-polarized case can be observed
around the cut-off widths at w ≈ 0.9λ (see Fig. 3.8) and w ≈ 1.9λ. Furthermore
the same behaviour occurs at the decline of the real part of the effective index of
the first mode at w ≈ 0.1λ (see Fig. 3.8). However, note that the amplitude of
the oscillations is much larger than for the E-polarized case, which seems to imply
that the H-polarized modes have a larger reflection coefficient at the end of the
slit than the E-polarized modes.
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Figure 3.12: Behavior of the time-averaged Poynting vector near a 200 nm wide slit
in a 100 nm thick silver plate. The incident light (coming from below) has a wave-
length λ = 500 nm. The color coding indicates the modulus of the (normalized)
Poynting vector (see legend). Two vortices (a and b) can be observed.

3.6 Conclusions

In conclusion, we have shown that anomalous light transmission through a narrow
slit in a thin metal plate is connected to both waveguiding and phase singularities
of the field of power flow. The onset of guided modes yields the maxima of the
transmission curve, while a qualitative understanding of the light transmission is
obtained by charting the different phase singularities in the field of power flow.
More explicitly, it was demonstrated that the enhanced transmission is accompa-
nied by the annihilation of phase singularities In particular, it was found for certain
configurations that transmission efficiencies as high as 3 are possible. We notice
that in this particular configuration no surface plasmons are excited. Our study
demonstrates that anomalous light transmission can even occur in their absence.

Furthermore, we have shown that the process of light transmission through a
narrow slit in a plate strongly depends on the material properties of the plate. In
particular, a slit in a silver plate can give rise to enhanced transmission, whereas a
slit in a comparable silicon plate exhibits frustrated transmission. This was found
to coincide with a change in handedness of certain optical vortices. Our results
suggest that the material properties of the plate and its thickness are as important
as the width of the slit in the application of extraordinary light transmission in
any practical optical system.

Because of the ability of sub-wavelength slits to “focus” a large amount of the
power flow onto a small area, our findings are relevant for the design of novel sub-
wavelength light sources. Further study of the sub-wavelength features of optical
fields may lead to increased resolution in microscopy, or an ability to “write”
information on an optical disk with a higher density than is presently possible.
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Figure 3.13: Detail (from the right-hand side) of Fig. 3.11. A sink (f) and a saddle
point (g) are present.
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Figure 3.14: Detail of the time-averaged Poynting vector field near a 100 nm wide
slit in a 100 nm thick silicon plate. The depicted region is indicated in Fig. 3.11.
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Figure 3.15: The time-averaged Poynting vector near a 109.5 nm wide slit in a 100
nm thick silicon plate. A monkey saddle (e) with topological charge −2 can be
seen.
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Figure 3.16: The time-averaged Poynting vector near a 120 nm wide slit in a 100
nm thick silicon plate. The monkey saddle (visible in Fig. 3.15) has decayed into
two saddle points (a and d).
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Figure 3.17: The transmission coefficient T of a narrow slit in a 2 µm thick silver
plate as a function of the slit width w, expressed in wavelengths. The wavelength
is λ = 500 nm, and the refractive index is taken as nsilver = 0.05 + i 2.87. The slit
is illuminated by a H-polarized, normally incident plane wave.



Chapter 4

The Radiation Pattern of a Single

Slit in a Metal Plate

This Chapter is based on the following publication:

• H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra and H. Blok, “Connection
between phase singularities and the radiation pattern of a slit in a metal
plate”,
Physical Review Letters, vol. 93, 173901 (2004).

Abstract

We report a new fundamental relation between the minima of the far-zone radia-
tion pattern of a narrow slit in a metal plate and the location of phase singularities
in the intermediate field. If a system parameter such as the wavelength is changed,
a previously unappreciated singular optics phenomenon occurs, namely the tran-
sition of a near-zone phase singularity into a singularity of the radiation pattern.
Our results have significance for the design of novel nano-scale light sources and
antennas.
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4.1 Introduction

Surprising effects in the radiation pattern of sub-wavelength light sources have
recently been observed in several studies, for example the “beaming effect” due to
surface plasmons on grating structures around sub-wavelength apertures [Lezec

et al., 2002; Mart́ın-Moreno et al., 2003]. In this Chapter we report the predic-
tion of a new phenomenon, namely the relationship between phase singularities in
the near-field and intermediate field of the aperture, and the shape of the far-zone
radiation pattern. Furthermore, a new singular optics process is described: the
transition of a near-zone singularity into a singularity of the radiation pattern.

In previous articles [Schouten et al., 2003a; Schouten et al., 2003b; Schou-

ten et al., 2004] (see Chapter 3), a connection was made between the transmission
coefficient of a sub-wavelength slit and phase singularities of the time-averaged
Poynting vector field on the illuminated side of the metal plate. We now show
that the phase singularities of the electric or magnetic field on the “dark” side
of the metal plate are intimately connected with the radiation properties of the
slit. More specifically, we find phase singularities in the intermediate field whose
position is directly connected with the location of minima in the far-field radiation
pattern. Changing a system parameter, such as the thickness of the metal plate
or the wavelength of the incident field, can cause these phase singularities to move
further away from the metal plate, corresponding to a minimum in the radiation
pattern becoming more pronounced. Surprisingly, on further changing the para-
meter, these phase singularities can move all the way to the far-field and eventually
disappear at infinity. This disappearance of a phase singularity is directly related
to the occurrence of an exact zero of the radiation pattern, i.e., a phase singularity
at infinity.

4.2 The definition of the radiation pattern

The configuration under consideration is the same as the one discussed in the
preceding Chapter, and it is illustrated in Fig. 3.1: a plane monochromatic elec-
tromagnetic wave is incident upon a metal plate of thickness d and permittivity
εplate. A single slit of width w, infinitely long in the y-direction, is present in the
plate. Because the system is invariant with respect to y-translations, we may treat
the problem as two-dimensional, with relevant coordinates x and z. A rigorous
scattering approach, which takes into account the finite conductivity and the finite
thickness of the plate, is used to calculate the field in the vicinity of an infinitely
long slit in a metal plate. This method, commonly referred to as the Green’s tensor
method, is described in detail in Chapter 2.



Chapter 4. The Radiation Pattern of a Single Slit in a Metal Plate 79

The intensity radiation pattern is defined by the expression

I(θ) ≡
lim
ρ→∞

〈S(sca)(ρ, θ)〉 · ρ
∫

slit

〈S(0)
z 〉 dx

, (4.1)

with ρ = (x, 0, z) and cos θ = z/ρ. Furthermore, 〈S(sca)〉 is the time-averaged
Poynting vector associated with the scattered field (i.e, the field minus the in-

cident field) and 〈S(0)
z 〉 is the component of the time-averaged Poynting vector

associated with the illuminating field (i.e., the field emitted by the laser source)
that is perpendicular to the plate. For convenience we take the amplitude of the
illuminating electric field equal to unity.

The radiation pattern may be calculated using the angular spectrum represen-
tation of the field. Let U be a component of the scattered electric or magnetic
field. Because U satisfies the Helmholtz equation it can, for points in the half
space z > d (where z = d is taken to be the exit plane of the slit) be written in
the form of an angular spectrum [Mandel and Wolf, 1995, Sec. 3.2], i.e.,

U(x, z) =

∫ ∞

∞

Ũ(kx, z = d)eikxxeikz(z−d)) dkx, (4.2)

where Ũ is the (inverse) Fourier transform of U with respect to x, i.e.,

Ũ(kx, z) =
1

2π

∫ ∞

∞

U(x, z)e−ikxx dx, (4.3)

and kz =
√

k2 − k2
x, where k is the wavenumber. For points far away from the slit,

the method of stationary phase (see Sec. 3.3 of [Mandel and Wolf, 1995] or
Chap. 8 of [Stamnes, 1986]) may be applied to Eq. (4.2) to obtain the asymptotic
expression

U(x, z) ∼
√

2πk cos θ Ũ(k sin θ, d)
eikρ

√
ρ
e−iπ/4 (kρ → ∞). (4.4)

To calculate the intensity radiation pattern, we take for U in Eq. (4.4) the
components of the scattered electric and magnetic field, and apply the result to
Eq. (4.1). In this manner one obtains for the two polarizations the formulae

IE(θ) =
2πk

w
cos2 θ|Ẽy(k sin θ, d)|2. (4.5)

IH(θ) =
2πk

w

µ0

ε0
cos2 θ|H̃y(k sin θ, d)|2, (4.6)
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with µ0 the vacuum permeability, ε0 the vacuum permittivity and w the slit width.
We now demonstrate the consistency of our definition with the definition of

the transmission coefficient T prescribed in Eq. (3.7) of Chapter 3, i.e., it is to be
shown that

T =

∫ π/2

−π/2

IH(θ) + IE(θ) dθ. (4.7)

For a metal plate with a thickness significantly larger than the skin depth, the
transmission coefficient given by Eq. (3.7) can be approximated by

T =

∫ ∞

−∞

〈S(sca)
z 〉z=d dx

∫

slit

〈S(0)
z 〉z=0 dx

, (4.8)

where 〈S(sca)〉 is the time-averaged Poynting vector of the scattered field. If Par-
seval’s theorem is applied to Eq. (4.8), one obtains

T =
2π

cε0w

∫ ∞

−∞

Re
[

Ẽ(sca)
x (kx, d)H̃(sca)∗

y (kx, d) − Ẽ(sca)
y (kx, d)H̃(sca)∗

x (kx, d)
]

dkx,

(4.9)
where Eqs. (1.45) and (4.2) were used. Furthermore, it was used that

∫

slit

〈S(0)
z 〉 dx =

1

2
cε0w. (4.10)

From the Maxwell equations (1.47) and (1.51), together with Eq. (4.2), it follows
that

Ẽ(sca)
x (kx, d) =

kz

ωε0

H̃(sca)
y (kx, d), (4.11)

H̃(sca)
x (kx, d) = − kz

ωµ0

Ẽ(sca)
y (kx, d). (4.12)

Inserting these equations into (4.9) gives

T =
2π

cε0w

∫ k

−k

kz

ω

[

1

ε0
|H̃(sca)

y (kx, d)|2 +
1

µ0
|Ẽ(sca)

y (kx, d)|2
]

dkx, (4.13)

where the fact is used that kz =
√

k2 − k2
x is real for |kx| < k and purely imaginary

for |kx| > k. On making the change of variables kx = k sin θ one obtains

T =
2πk

w

∫ π/2

−π/2

cos2 θ(
µ0

ε0
|H̃(sca)

y (−kθ, d)|2 + |Ẽ(sca)
y (−kθ, d)|2) dθ, (4.14)

which corresponds with Eq. (4.7). This proves the consistency of the definition
of the intensity radiation pattern with our earlier definition of the transmission
coefficient.
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Figure 4.1: Polar plot of the (normalized) intensity radiation pattern of a 250 nm
wide slit in a 100 nm thick silver plate with refractive index n = 0.05 + i2.87.
The incident field has a wavelength λ = 500 nm and is E-polarized (solid line) or
H-polarized (dashed line).

4.3 The radiation pattern of a slit for normal

incidence

In Fig. 4.1 the radiation pattern of a sub-wavelength slit is plotted both for E-
polarized (i.e., with the electric field is parallel to the slit) and H-polarized fields.
The pattern is found to be rather uniform, i.e., the light is diffracted into every
direction, with no minima being present in the radiation pattern. This is typical
for sub-wavelength slits, for both polarization cases — for such slits there is only
one (propagating) guided mode possible.

The radiation pattern is drastically changed if the slit width is increased, be-
cause then more modes in the slit become propagating. In the configuration of
Fig. 4.1, the second symmetric mode is propagating for a slit width w > 1.4λ for
E-polarized fields, or w > 0.9λ for H-polarized fields [Schouten et al., 2003a].
(No anti-symmetric modes are excited because the illuminating field is symmetric.)
This implies that for such slit widths the intensity radiation pattern as a function
of the plate thickness d is approximately given by (see Eqs. (4.5) and (4.6))

I(θ) ∼ cos2 θ
∣

∣

∣
Ũ (1)(k sin θ) + Ũ (2)(k sin θ)ei(k2−k1)d

∣

∣

∣

2

, (4.15)

with Ũ (i) the Fourier transform with respect to x of a field component (Êy for

E-polarization, and Ĥy for H-polarization) at the exit plane of the slit of mode
i, and ki the effective wave number of mode i (i = 1, 2). The exponential of the
second term in Eq. (4.15) is periodic in k or d leading to alternate constructive and
destructive interference of the two terms, which results in the radiation pattern
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Figure 4.2: Polar plot of the intensity radiation pattern of a 600 nm wide slit in
a 750 nm thick silver plate (shaded region) with refractive index n = 0.05 + i2.87.
Also the positions of the phase singularities of Ĥy in the region behind the slit
are shown. L denotes a left-handed phase singularity, and R denotes a right-
handed phase singularity. The incident light (coming from below) has a wavelength
λ = 500 nm and is H-polarized.

periodically changing from having minima to having no minima. In the case that
there is a minimum, the radiation pattern is, of course, more directional.

If the field (Êy for E-polarization and Ĥy for H-polarization) behind the slit
is plotted for cases such that the radiation pattern has minima, one typically
finds a phase singularity in the direction of the radiation minimum, see Figs. 4.2
and 4.3.1 In both figures two phase singularities are present, one with charge +1
(left-handed) and one with charge −1 (right-handed). In Fig. 4.2 (H-polarization)
phase singularities in Ĥy are shown, whereas in Fig. 4.3 (E-polarization) phase

singularities in Êy are shown. For both cases, each of these phase singularities
gives rise to a vortex (circulation) in the field of power flow. The connection
between these two kinds of phase singularities is explained in detail in [Schouten

et al., 2003b]. The phase singularities in Figs. 4.2 and 4.3 are found by numerically
calculating the topological charge (see Eq. (1.87)). In this way, we can determine
if there actually is a phase singularity present, or just a minimum in the intensity.

In Figs. 4.3 and 4.4 the phase singularities near the slits as well as the radiation
pattern are plotted for two different values of the wavelength of the incident field.
It is seen that for λ = 510 nm (Fig. 4.3) the phase singularities are closer to
the plate and the minima are less pronounced than for λ = 500 nm (Fig. 4.4).

1For a detailed description of phase singularities see Sec. 1.8.
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Figure 4.3: The intensity radiation pattern of a 750 nm wide slit in a 860 nm thick
silver plate (n = 0.05 + i2.87). Also the positions of the phase singularities of Êy

behind the slit are shown. The incident light has a wavelength λ = 510 nm and is
E-polarized.
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This behavior was found to be typical for this kind of configuration (see, e.g.,
Fig. 4.2 for another case with pronounced minima and phase singularities behind
the slit). If the wavelength is decreased even more, a curious phenomenon is
observed: the phase singularities move away towards the far-zone, and at a certain
value of the wavelength it is no longer possible to track them numerically. The
minima in the intensity radiation pattern correspondingly become deeper with
decreasing wavelength until at a certain critical wavelength, the minima evidently
become true zeros. For wavelengths smaller than this critical wavelength, the value
of the intensity at the minima rises as a function of decreasing wavelength. To
investigate this behavior more closely, we quantify the phase behavior at infinity
by first introducing for Êy (or for Ĥy for H-polarized fields) the reduced field Êred

y

defined by the expression

Êy(θ, ρ) =
eikρ

√
ρ
Êred

y (θ, ρ). (4.16)

Next we take the limit for the phase φred(ρ, θ) of Êred
y ,

φinf(θ) ≡ lim
ρ→∞

φred(ρ, θ) = Arg
[

Ẽy(k sin θ)
]

− π/4, (4.17)

where we used Eq. (4.4). Near the wavelength where the intensity of the radiation
pattern for one particular angle of observation is almost zero, the phase at infinity
shows the behavior plotted in Fig. 4.5. It is seen that for a wavelength λ = 490
nm there is a rapid increase of the phase by π near the angle θ ≈ 36◦ where
a minimum of the radiation pattern occurs, whereas for λ = 489 nm the phase
rapidly decreases by an amount of π near the same angle. A similar behavior was
found for several configurations for the H-polarization case.

A physical interpretation of this surprising behavior is provided by noting that
in principle two cases can occur: either the phase singularities remain present
at a finite distance from the slit (apparently far from it); or the phase singu-
larities disappear at infinity. It is instructive to introduce the function (θ, ρ) →
(θ, arctan ρ), which maps the upper half-space behind the slit into the half-disk
{(θ′, ρ′) : −π/2 ≤ θ′ ≤ π/2, 0 ≤ ρ′ = arctan ρ ≤ π/2}. The phase of the reduced
field Êred

y is well defined on this space, even on the boundary ρ′ = π/2, where it is
given by the limit value φinf of Eq. (4.17).

The disappearance of a phase singularity at infinity can be observed in the
behavior of the phase at infinity φinf . This effect is illustrated in Fig. 4.6: if the
phase singularity is present at a large, but finite distance from the slit, the situation
(a) on the left-hand side of the figure applies: near the angle where the phase
singularity is present, the phase at infinity increases rapidly, but continuously, by
π when the angle of observation θ is increased (it increases by π if the topological
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Figure 4.4: The intensity radiation pattern of a 750 nm wide slit in a 860 nm thick
silver plate (n = 0.05 + i2.87). Also the position of the phase singularities of Êy

behind the slit are shown. The incident light has a wavelength of 500 nm and is
E-polarized.
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Figure 4.5: The intensity radiation pattern (dotted curve) and the far-field phase
behavior of a 750 nm wide slit in a 860 nm thick silver plate (n = 0.05 + i2.87).
The incident light is E-polarized and has a wavelength of λ = 490 nm (solid line)
or λ = 489 nm (dashed line).
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Figure 4.6: Illustration of the disappearance of a phase singularity at infinity
when the wavelength of the field is gradually decreased. A sketch of the equiphase
lines of φred(ρ′, θ) is drawn, which on the semi-circle ρ′ = π/2 takes on the value
φinf(θ). Three cases are depicted: in (a) the phase singularity is still present,
corresponding to a radiation minimum; in (b) the phase singularity is exactly at
infinity, corresponding to a radiation zero; in (c) the phase singularity is no longer
present, corresponding to a radiation minimum. In this example the singularity is
taken to have a topological charge s = −1.

charge is −1, whereas it decreases by π if the topological charge is +1). If the
wavelength is decreased, the phase singularity can be exactly at infinity, i.e., at
the boundary ρ′ = π/2, as is shown in the middle (case (b)) of Fig. 4.6. In this
case there is an exact zero in the radiation pattern, together with a π phase jump
at this point. If the wavelength is decreased even further, then the right-hand
side of Fig. 4.6 applies (case (c)): the phase singularity does not exist anymore.
However, a “residual effect” can still be observed in the phase behavior at infinity:
the phase rapidly changes by π. Note that if initially there was a π increase when
the angle θ is increased, now there is a π decrease.

It is to be further noted that this phase behavior at infinity is only possible if
some phase singularity “crosses” the boundary ρ′ = π/2, i.e., ρ = ∞. However,
it is impossible to distinguish between a phase singularity with charge s = −1
disappearing at infinity, or a phase singularity with charge s = +1 appearing

at infinity. Because in our results (see Fig. 4.5) there was a phase singularity
moving to the far-zone, this suggests that this phase singularity has disappeared
at infinity, as discussed above. Note that this implies that the topological charge is
not (locally) conserved. However, because of the mirror symmetry of the system,
the positive and negative charges at infinity disappear together — that is, the total
topological charge of the field is conserved, even though the singularities disappear
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Figure 4.7: The intensity radiation pattern (dotted curve) and the far-field phase
behavior of a 600 nm wide slit in a 600 nm (solid line) or 595 nm (dashed line)
thick silver plate (n = 0.05 + i2.87). The incident light is H-polarized and has a
wavelength of λ = 500 nm and an angle of incidence of 10◦.

at widely separated spatial locations. These results suggest a new singular optics
phenomenon, in which a singularity in the near- or intermediate-zone (a singularity
in two-dimensional (x, z)-space) converts into a singularity in the radiation pattern
(one-dimensional θ-space). It is to be noted that other researchers [Soskin et al.,
1997] have studied the motion of phase singularities as system parameters are
changed, in what is usually referred to as the theory of combined beams. However,
that work, unlike our study, does not discuss the effects of phase singularities on
the radiation pattern of the field.

4.4 Oblique angle of incidence

In the previous Section is was found that due to the symmetry in the x-direction,
phase singularities were always disappearing in pairs. In this Section the behavior
of the radiation pattern of a slit in a metal plate illuminated by an oblique incident
plane wave is studied. The mirror-symmetry in the x-direction is then broken, and
one can determine if the disappearance of a single phase singularity is possible.

In Fig. 4.7 the intensity radiation pattern is plotted for two, closely spaced,
values of the thickness of the metal plate for an H-polarized plane wave incident
under an angle of 10◦ with the normal of the plate. It can be seen that near θ = 29◦

there is indeed only one phase singularity appearing or disappearing.
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4.5 Conclusions

We have shown that there is a connection between minima in the far-zone radiation
pattern and phase singularities in the intermediate field. On changing a system
parameter, such as the wavelength of the incident field, these singularities can
move to infinity and become singularities of the radiation pattern. It was also
shown that a single phase singularity could disappear at infinity, thereby breaking
global topological charge conservation. A possible way to experimentally verify
the predicted relation between phase singularities and the radiation pattern is to
place a thin nano-wire at a phase singularity and align it parallel to the slit. The
presence of the wire should not affect the observed radiation pattern in the far zone
[Landstorfer et al., 1972]. These results provide a new insight into the behavior
of radiation patterns, and are therefore important for the design of nano-scale light
sources and antennas [Landstorfer et al., 1972; De la Fuente, 1975].



Chapter 5

Plasmon-assisted Light

Transmission through Two Slits

This Chapter is based on the following publication:

• H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F. Alkemade,
H. Blok, G.W. ’t Hooft, D. Lenstra and E.R. Eliel, “Plasmon-assisted two
slit transmission: Young’s experiment revisited”,
Physical Review Letters, vol. 94, 053901 (2005).

Abstract

We present a theoretical study of the optical transmission of a thin metal screen
perforated by two parallel sub-wavelength slits, separated by many optical wave-
lengths. The total intensity of the far-field double-slit pattern is shown to be
reduced or enhanced as a function of the wavelength of the incident light beam.
This modulation is attributed to an interference phenomenon at each of the slits,
instead of at the detector. The interference arises as a consequence of the exci-
tation of surface plasmons propagating from one slit to the other. Experimental
data which confirm our predictions are also presented.

89



90 5.1. Introduction

5.1 Introduction

Recently, there has been a surge of interest in the phenomenon of light transmis-
sion through sub-wavelength apertures in metal plates. This followed the obser-
vation by Ebbesen et al. [1998] that the transmission through a two-dimensional
hole array can be much larger than predicted by conventional diffraction theory
[Bethe, 1944]. This discovery has rekindled the interest in a similar but simpler
problem, viz., the transmission of a one-dimensional array of sub-wavelength slits
in a metal film, i.e., of a metal grating [Ebbesen et al., 1998; Schröter and

Heitmann, 1998; Sobnack et al., 1998; Porto et al., 1999; Went et al., 2000;
Astilean et al., 2000; Takakura, 2001; Treacy, 2002; Cao and Lalanne,
2002; Lalanne et al., 2003; Barbara et al., 2003; Suckling et al., 2004;
Garćıa-Vidal et al., 2003; Lezec and Thio, 2004]. In many cases the en-
hanced transmission of hole or slit arrays has been explained in terms of the ex-
citation of (coupled) surface plasmons on the metal film [Schröter and Heit-

mann, 1998; Sobnack et al., 1998; Porto et al., 1999; Went et al., 2000], an
explanation that has recently been challenged [Lezec and Thio, 2004]. It has
been shown that, for slit arrays, Fabry-Pérot-type waveguide resonances can also
give rise to a considerably enhanced transmission [Porto et al., 1999; Astilean

et al., 2000; Treacy, 2002; Cao and Lalanne, 2002; Barbara et al., 2003].
In the present Chapter we study an even more fundamental system than the

metallic grating, namely, a thin metal layer perforated by just two parallel sub-
wavelength slits. In contrast to the systems that have recently attracted so much
attention, our slits are separated by many optical wavelengths. Thus we study the
light transmission of a setup that lies at the heart of wave physics, namely, that
of Thomas Young [Young, 1802; Young, 1845]. We do, however, not focus on
the well-known interference pattern named after him, but on the angle-integrated
power transmission coefficient of the perforated screen, i.e., the transmission inte-
grated over many interference orders. We show that this transmission coefficient
is strongly modulated as a function of the wavelength of the incident light for the
case that that light is H-polarized, i.e., with the electric field aligned perpendicular
to the slits. In contrast, there is no such modulation when the incident light is
E-polarized, or when the “wrong” metal is chosen. All our observations can be
explained in terms of a model involving the coherent transport of electromagnetic
energy between the slits by surface plasmons.
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Figure 5.1: The transmission coefficient of a double slit in a 200 nm thick gold film
as a function of the wavelength of the incident light. The slits are 200 nm wide and
separated by 25 µm. The full line displays the results for H polarization, while the
dotted line (magnified 10 times) shows the results for the case of E polarization.

5.2 Plasmon-assisted transmission through two

slits

We calculate the transmission of the double-slit system using a rigorous scattering
model based on a Green’s function approach, described in Chapter 2. The illumi-
nating field is taken to be monochromatic and propagating perpendicular to the
plate. The polarization of the electric field is taken as either perpendicular to the
slits (H-polarization) or parallel to the slits (E-polarization). The H-polarization,
in contrast to the E-polarization, permits the excitation of surface plasmons on
the metal-air interfaces (see Sec. 1.7.2). The transmission coefficient is normalized
on the geometrical optical transmission through the two slits (see Eq. (3.7)).

In Fig. 5.1 the transmission-coefficient of the two-slit configuration is shown as
a function of the wavelength of the incident radiation. The wavelength dependence
of the dielectric constant of the gold film is fully taken into account [Johnson and

Christy, 1972]. When the incident field is E-polarized, the transmission of the
double slit is small and weakly modulated as a function of wavelength. In contrast,
for an H-polarized incident field, the transmission shows a strong modulation as
a function of wavelength. In Fig. 5.2 a similar effect can be observed for different
separation distances between the two slits.

The strong polarization anisotropy and the dependence on the screen material
( as will be discussed later in the Section) both suggest that surface plasmons
propagating along the gold-air interface lie at the heart of the phenomena. Expla-
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Figure 5.2: The transmission coefficient of a double slit in a 200 nm thick gold film
as a function of the wavelength of the H-polarized incident light. The slits are 200
nm wide. The full line displays the results for 5 µm separation between the slits,
the dashed line for 10 µm, the dotted line for 15 µm and the dashed-dotted line
for 20 µm.

nations in terms of waveguide modes within the slit [Porto et al., 1999; Astilean

et al., 2000; Treacy, 2002; Cao and Lalanne, 2002; Barbara et al., 2003]
or diffractive evanescent waves [Lezec and Thio, 2004] are excluded by the ob-
served dependence of the spectral modulation period and the independence of the
modulation depth on the slit separation.

The propagation constant ksp of a surface plasmon is given by (see Eq. (1.79))

ksp = k0

√

εmεd

εm + εd
, (5.1)

where εm and εd are the complex (relative) dielectric constants of the metal and
dielectric, respectively, and k0 = 2π/λ the free-space wavenumber. The surface-
plasmon wavelength is related to the real part of ksp by λsp = 2π/Re(ksp) = λ0/nsp

, while its (amplitude) decay length is given by 1/Im(ksp) . For the gold-air
interface at λ0 = 800 nm, nsp = 1.02 and 1/Im(ksp) = 80 µm, considerably larger
than the separation of any pair of slits used in the simulation. Consequently,
surface plasmons propagating along such an interface can easily cover the distance
between the slits.

The function of the slits is threefold. First, the slits transmit part of the incident
radiation, together giving rise to a conventional Young’s-type interference pattern.
Second, each slit scatters part of the incident radiation into a plasmonic channel,
bridging the momentum gap between the surface plasmon and free-space radiation.
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Figure 5.3: Schematic illustration of the heuristic model. For simplicity’s sake, the
plasmon generation and subsequent processes are only shown at one slit.

Third, each slit provides a mechanism for the back-conversion of a surface plasmon
into free-space radiation. In Fig. 5.3 an illustration of these effects is given.

When the incident light is H-polarized the surface plasmon that is excited at
one of the slits propagates towards its partner slit. There it is partially back-
converted into light (see Fig. 5.3). The plasmon-mediated amplitude at this slit
interferes with the amplitude of the light that is directly transmitted by that slit.
Because of the sub-wavelength nature of our slits these two contributions are of
comparable magnitude.

The field amplitude at the second slit’s unilluminated side can now be written
as

E
(2)
slit = E1(τ1 + cspe

ikspbτsp) = E0τ1(1 + Aeikspb), (5.2)

where b is the slit separation, csp is the coupling coefficient between the incident
light and the surface plasmon, τsp is the coupling coefficient between the surface
plasmon and the transmitted light, A = cspτsp/τ1 is the (complex-valued) relative
strength of the plasmon contribution, τ1 is the coupling between the incident field
and the transmitted field at the slit in the case that the other slit is not present
and E1 is a constant needed for the conversion between the dimensionless trans-
mission entities and the electric field. The normalization is such that the single
slit transmission coefficient Ts = |τ1|2. Note that a phase factor associated with
the propagating field to plasmon scattering and back-conversion processes is taken
into account by taking csp and τsp to be complex-valued. The field amplitude E

(2)
slit

behind the second slit is thus enhanced or suppressed, depending on the argument
of the complex phase factor in Eq. (5.2). Because the laser beam is normally in-
cident on the configuration and symmetrically illuminates the two slits, the field
amplitude behind the first slit is given by E

(1)
slit = E

(2)
slit.

In the present setup the far-field two-slit pattern arises as a consequence of the
interference of four paths, two of which are partially plasmonic, while the other
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two are photonic all the way. Although the number of interfering channels is four
in the present configuration, the far-field pattern that arises behind the plate is
simply that of Young’s experiment, i.e., a pattern of two interfering sources. The
novel aspect is that the strength of each of these sources is enhanced or reduced
due to the interference of a photonic and a plasmonic channel. The transmission
coefficient1 is equal to the power radiated by each slit separately, i.e.,

T = |τ1|2[1 + |A|2 + 2|A| cos(kspb + arg(A))], (5.3)

where we used Eq. (5.2) and the fact that the power transmitted by each slit is
proportional with the field strength at the slit. Note that this equation indeed
shows the oscillating dependence observed in Fig. 5.1.

Using the theoretical Green tensor model outlined above we have also calculated
the intensity distribution, i.e., the value of |E|2, on both sides of a freestanding
perforated gold film (see Fig. 5.4). For calculational convenience we have taken
values of the slit separation that are considerably smaller than those of the pre-
vious simulations, viz. 5λsp/2, where the transmission is maximum, and 4λsp/2 ,
where the transmission is minimum. In the first case (maximum transmission) one
can distinguish at the dark side of the metal film a well-developed standing-wave
pattern along the interface, having six antinodes, two of which coincide with the
slits themselves. In contrast, when the transmission is minimum the antinodes of
the standing-wave pattern do not coincide with the slits; at these locations one
rather finds a node of the standing-wave pattern. In both cases the intensity is
seen to rapidly decay away from the air-metal interface.

The prediction of plasmon-assisted transmission was experimentally tested by
Eliel et al. (Leiden University), see [Schouten et al., 2005]. The sample consists
of a 200 nm thick gold film, evaporated on top of a 0.5 mm thick fused quartz
substrate with a 10 nm thick titanium adhesion layer between the gold and the
glass. In the sample a two-slit pattern is written using a focused ion beam, each
slit being 50 µm long and 0.2 µm wide. The slits are separated by a distance,
as measured with a scanning electron microscope, of 4.9, 9.9, 14.8, 19.8, or 24.5
µm , respectively. Such a two-slit pattern, with the metallized side facing the
laser, is illuminated at normal incidence with the well-collimated output beam
(2mm diameter) of a narrow-band cw Ti:sapphire laser, tunable between 740 and
830 nm. Detection takes place in transmission, integrating the double-slit pattern
(shown at the top of Fig. 5.5) over a large number of interference orders. The
zeroth order peak is considerably stronger than the other orders because of non-
negligible leakage through the bulk metal, and is therefore blocked by an opaque

1Eq. (3.7) is used for the definition of the transmission coefficient. In this equation the
integrals over the “slit” are replaced with integrals over the “slits”, i.e., the normalization is such
that it equals one in the geometric-optical limit.
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Figure 5.4: Intensity distribution in the immediate vicinity of the double-slit sys-
tem for H-polarized incident radiation when the transmission is maximum (top
frame, slit separation equal to 5λsp/2), and minimum (bottom frame, slit separa-
tion equal to 4λsp/2). The field is incident from below. All lengths are in nm.
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b = 4.9 µm

b = 9.9 µm

b = 14.8 µm

b = 19.8 µm

b = 24.5 µm

Figure 5.5: Experimental results obtained by Eliel et al. (Leiden University).
The frame at the top shows the Young’s-type interference pattern behind the
screen, as recorded with a charge coupled device camera. The other frames display
experimental transmission spectra for an H-polarized input beam (polarization
perpendicular to the long axis of the 200 nm wide slits), recorded by integrating
over the interference pattern. The value of the slit separation b is indicated in each
of the frames. In the frame at the bottom (b = 24.5 µm) the results for E-polarized
incident light (open squares) are included; the scale at the right-hand side applies
to this choice of polarization.

screen. The polarization of the incident light is either parallel (E-polarization) or
perpendicular (H-polarization) to the long axis of the slits.

The experimental results for the case of the H-polarization are shown in Fig. 5.5.
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The transmission is seen to be approximately sinusoidally modulated as a function
of the wavenumber, the modulation period being inversely proportional to the slit
separation. The visibility V of the fringes is of order 0.2, roughly independent of
the slit separation. Note that the fringes are superposed on an offset that gradually
increases as a function of the wavenumber.

In contrast, for a E-polarized incident beam the detected signal shows no mod-
ulation whatsoever (see bottom frame of Fig. 5.5). Equally, no modulation is
observed when the experiment is performed using a 200 nm thick titanium layer
instead of gold, independent of the polarization of the incident radiation. On such
a plate the surface plasmons have a decay length of ≈ 7 µm on the air-titanium
interface [Johnson and Christy, 1974], which is considerably smaller than the
slit separation of 25 µm.

Overall, the agreement between the experiment and the results of the Green’s
function model is seen to be good, the theoretical data having a somewhat larger
visibility than the experimental ones (see Figs. 5.1 and 5.2). This difference can be
attributed to the different embedding of the gold film in the experiment and in the
calculation. While in the experiment the gold film is asymmetrically encapsulated,
in the calculation the materials at either side of the film are identical, greatly
enhancing the plasmonic effects.

5.3 A surface plasmon Fabry-Pérot effect

In the previous section, all results could be explained by a model which only contain
one free parameter, viz. the relative coupling strength A. In the case when one
considers slits with a smaller width, somewhat different effects occur. In Fig. 5.6
the transmission coefficient of the two-slit configuration is shown as a function
of the distance between the two slits. For the E-polarization case, there is no
significant modulation of the transmission beyond a slit separation distance larger
than half a wavelength. In contrast, for the H-polarization case, a slightly damped
oscillatory behavior can be observed. At the maxima the transmission is strongly
enhanced with respect to the single-slit transmission (T = 1.1), whereas at the
minima the transmission is frustrated with respect to the single-slit transmission.
The oscillation period is found to be approximately 0.93λ ≈ λsp. Note that the
dependence is not sine-like, which implies that the results can not be directly
explained by the model in the previous Section.

As an additional check that there are surface plasmons involved, we have cal-
culated the field in a cross-section through the metal plate, far away from the slits,
see Fig. 5.7. The exponential fall-off of Ez that is characteristic for surface plas-
mons is clearly seen on both sides of the metal plate. It was found that within the
numerical accuracy (∼ 1%) the field behaves as predicted by Eq. (1.76). Because
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Figure 5.6: The transmission coefficient T of a two-slit configuration in a 100 nm
thick silver plate as a function of the distance b, expressed in wavelengths, between
the slits. The widths of the slits w = 30 nm, the wavelength λ = 500 nm and
the refractive index is taken as nsilver = 0.05 + i 2.87. The full line denotes the H-
polarization case, the dotted line (magnified 100 times) denotes the E-polarization
case, and the dashed line the denotes the fit of the simple model to the results for
the H-polarization (cspτsp = 0.59 exp(i0.85π) and rsp = 0.38 exp(i0.94π)).

surface plasmons cannot be excited by a plane wave on a flat surface, they must
be excited by diffraction at one of the slits in the metal plate. In a single slit
configuration, these surface plasmons do not contribute to the transmission; they
travel away from the slit and eventually are absorbed. However in the two-slit
configuration, as was shown in the previous Section, the surface plasmons excited
by one slit, and traveling in the direction of the other slit, can contribute to the
transmission.

Therefore we propose the following simple model to explain our numerical data
(see Fig. 5.8): at each slit the incident field can directly couple to the transmitted
field with a coupling factor τ1, which is related to the single slit transmission
coefficient by Ts = |τ1|2. However, at each slit the incident field can also couple,
with a coefficient csp, to a surface plasmon, which travels in the direction of the
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Figure 5.7: The transverse field component |Ez|2 in a cross-section taken through
the plate at x = 1µm. The slits are separated by 450 nm. The other parameters
are as in Fig. 5.6. z is measured in nanometers.

other slit. If such a surface plasmon reaches the other slit, it can contribute to
the transmitted field, with a coefficient τsp, or it can be reflected with a coefficient
rsp as a surface plasmon travelling in the opposite direction. This reflected surface
plasmon can, on reaching the other slit, again be reflected or transmitted. The
same process, of course, also occurs at the other slit. In this way, one obtains for
the transmission coefficient

T =

∣

∣
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, (5.4)

with b the distance between the slits and n denotes the number of times that the
surface plasmon is reflected before it couples to the transmitted field.

This model has two free parameters, viz., the product cspτsp and rsp. If we
adjust these parameters to fit the model to the data, we obtain the curve displayed
in Fig. 5.6. It is seen that the model is in excellent agreement with the rigorous
calculation. Therefore, we conclude that the proposed heuristic model gives a good
description of the transmission process. This model enables us to interpret our
numerical results in the following manner: the transmission is due to two processes,
one is the single-slit transmission, i.e., the transmission as if no other slit is present,
the other is the contribution of the surface plasmons. These two contributions do
not just add up, but rather interfere. This is the cause of the calculated enhanced
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Figure 5.8: Schematic illustration of the heuristic model. For simplicity’s sake, the
plasmon generation and subsequent processes are only shown at one slit.

transmission (constructive interference) and frustrated transmission (destructive
interference). We conclude from the value of rsp that multiple plasmon scattering
plays a significant role in the transmission process.

In all the results discussed in this Chapter, the light was normally incident
on the two-slit system, which causes the transmission through the two slits to be
identical. In the case of an oblique angle of incidence this symmetry is broken.
Even for very small angles of incidence this can give notable results, as can be seen
in Fig. 5.9, were the transmission as a function of the distance between the two slits
is plotted for both a normally incident H-polarized plane wave, and an H-polarized
plane wave propagating in a direction making an angle of 2◦ with the symmetry
axis (the z-axis). Two effects can be observed: a kind of “beat” phenomenon
which causes the resonance decrease in amplitude until b ≈ 7λ, where it starts to
increase again. However, at these distance the resonance is out of phase with the
resonance visible at normal incidence. The second phenomenon is a doubling of
the resonance frequency around b ≈ 7λ, i.e., the distance where the amplitude of
the resonance is minimum.

The observed phenomena can be easily explained with the heuristic model
given above. First note that due to the very small angle of incidence, all the
coupling constants (i.e., csp, τsp, etc.) remain approximately the same compared
with normal incidence. The main difference with normal incidence is that the light
hitting the second slit, picks up an additional phase φ (see Fig. 5.10) given by

φ = 2π sin θ
b + w

λ
, (5.5)

where w is the slit width and θ is the angle of incidence. Therefore the transmission
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Figure 5.9: Transmission coefficient as a function of the distance between the two
slits. The slits are 48 nm wide and located in a 200 nm thick gold plate. The
incident plane wave is H-polarized and has a wavelength of 800 nm. The full line
is for a normal incident plane wave, whereas the dashed line is incident under an
angle of 2◦.

through the first slit is given by
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(5.6)

where the second term represents the surface plasmons that are both excited and
de-exited at the first slit. The third term represents the plasmons that are excited
at the second slit and de-excited at the first slit. The transmission through the
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Figure 5.10: Schematic illustration of the extra phase factor due to the oblique
angle of incidence in the heuristic model.

second slit is given by
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(5.7)

where the second term represents the surface plasmons that are both excited and
de-exited at the second slit. The third term represents the plasmons that are
both excited at the first slit and de-excited at the second slit. Therefore the total
transmission is given by

T = (T1 + T2)/2 =

∣

∣
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spe
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2

, (5.8)

as can be found after some manipulations. If this formula is compared with
Eq. (5.4) for the case of normal incidence, one can see that the plasmon term
in Eq. (5.4) is split into two terms, one of which depend on the angle of incidence
θ. Therefore in the case that cos φ ≈ 1 one finds that there are no differences
between oblique and normal incidence. However, if cos φ ≈ 0, the third term in
Eq. (5.8) can be ignored, and one obtains a modulation of the transmission as a
function of the distance between the slits with half of the surface plasmon wave-
length as its period. For the case that cosφ ≈ −1, one obtains a modulation of the
transmission which is out of phase with the modulation observed for normal inci-
dence. In general both the second and the third term of Eq. (5.8) are significant,
and modulation of T with two different frequencies will be observed. Note that
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both the “beat” phenomenon and the frequency doubling visible in the dashed
curve of Fig. 5.9 are in agreement with this explanation.

5.4 Conclusions

In this Chapter we have shown that Young’s double-slit experiment, often seen
as proof of the wave nature of light, can provide powerful evidence for the role
of propagating surface plasmons in the transmission of perforated metal screens.
The transport of electromagnetic energy by the surface plasmons over distances
of many optical wavelengths gives rise to an interference phenomenon in the slits
that enhances or reduces the intensity of the far-field pattern. Furthermore, we
have predicted that for some cases, the multiple reflections of the surface plas-
mons by the slit are significant, leading to a “surface plasmon Fabry-Pérot effect”.
Especially for an oblique angle of incidence, this leads to notable effects.
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Chapter 6

Young’s Interference Experiment

with Partially Coherent Light

This Chapter is based on the following publications:

• H.F. Schouten, T.D. Visser and E. Wolf, “New effects in Young’s interference
experiment with partially coherent light”,
Optics Letters, vol. 28, pp. 1182–1184 (2003).

• H.F. Schouten, G. Gbur, T.D. Visser and E. Wolf, “Phase singularities of
the coherence functions in Young’s interference pattern”,
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• N. Kuzmin, H.F. Schouten, G. Gbur, G.W. ’t Hooft, E.R. Eliel and T.D.
Visser, “Surface-plasmon-induced Coherence”,
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Abstract

We analyze the coherence properties of a partially coherent field emerging from
two pinholes in an opaque screen, i.e., we study Young’s interference experiment
for the case that the illuminating wavefield is partially coherent. We show that
at certain pairs of points in the region of superposition the light is fully coherent,
regardless of the state of coherence of the light at the pinholes. Furthermore, we
show that the spectral degree of coherence possesses phase singularities on certain
surfaces in the region of superposition. We predict that it is possible to obtain a
stationary interference pattern if one aperture is illuminated by a laser operating
at frequency ω1, while the other aperture is being illuminated by a second laser
operating at frequency ω2. Surface plasmons play a key role in this effect.

105
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6.1 Introduction

Two hundred years after Thomas Young [1802; 1845] discussed the interference of
light which passes through two pinholes, such experiments are still sources of new
insights. Recent research involving Young’s experiment with partially coherent
light has predicted that if two pinholes are illuminated with broad-band light and,
consequently, interference fringes are absent, strong spectral changes generally
occur in the region of superposition [James and Wolf, 1991]. Such spectral
changes may in turn be used to determine the spectral degree of coherence of
the light at the two pinholes [James and Wolf, 1998]. These predictions have
been verified experimentally [Kandpal et al., 1992a; Kandpal et al., 1992b;
Santarsiero and Gori, 1992; Kumar and Rao, 2001; Basano et al., 2002].
Somewhat analogous experiments with matter waves have been carried out using
neutrons beams [Rauch, 1993; Jacobson et al., 1994], see also [Agarwal, 1995].

In a recent investigation of Young’s interference experiment with partially co-
herent light [Ponomarenko and Wolf, 1999], expressions were derived for the
cross-spectral density and the spectral density of the field in the region of super-
position. In the present Chapter we derive somewhat more general expressions for
such a situation in Sec. 6.3, after first giving a brief introduction to partially coher-
ent fields in Sec. 6.2. In Sec. 6.4 it is shown that these relations imply remarkable
properties of the spectral degree of coherence. For example, at any pair of points in
certain planes of observation the light is found to be always completely coherent,
irrespective of the state of coherence of the light at the two pinholes; in particular,
the light could originate from independent lasers, each illuminating only one of the
two pinholes. In [Ponomarenko and Wolf, 1999], pairs of points were found
at which the spectral degree of coherence has zero value, implying the existence
of phase singularities of the coherence function. In Sec. 6.5, we present a detailed
analysis of the spectral degree of coherence and show that it possesses surfaces,
defined by pairs of points, on which the phase is singular. The behavior of the field
in the vicinity of these phase singularities is investigated. In Sec. 6.6, the effect
of the coupling of light with surface plasmons at the apertures (see the preceding
Chapter) on the coherence properties of the field is discussed. Note that this last
subject is somewhat different form the rest of the Chapter in the sense that it
takes into account the vectorial nature of the field, instead of assuming that the
field is scalar.

6.2 Partially coherent fields

In the theory of partially coherent light, the fields are no longer considered to
be deterministic, but may undergo random fluctuations. In this Section, we only
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briefly summarize the main concepts used in the remainder of this Chapter, for
more information about this subject, see Chapter 10 of [Born and Wolf, 1999]
or [Mandel and Wolf, 1995].

We consider a fluctuating field U(r, t), which is assumed to be statistically
stationary, at least in the wide sense [Mandel and Wolf, 1995, Sec. 2.2]. For
simplicity, the vector-character of the field is not taken into account. Spatial
and temporal correlations between pairs of points P1(r1) and P2(r2) may be char-
acterized by use of the mutual coherence function [Mandel and Wolf, 1995,
Sec. 4.3.1]

Γ(r1, r2, τ) = 〈U∗(r1, t)U(r2, t + τ)〉, (6.1)

where the angular brackets denote time or ensemble averaging.
It is often advantageous to work instead with the Fourier transform of the

mutual coherence function, the cross-spectral density [Mandel and Wolf, 1995,
Sec. 4.3.2], defined as

W (r1, r2, ω) =
1

2π

∫

Γ(r1, r2, τ)eiωτ dτ. (6.2)

The cross-spectral density characterizes the spatial correlations of the field at two
points at a single frequency ω.

It can be shown that if the field is represented by an ensemble of space-frequency
realizations {U(r, ω)}, then the cross-spectral density is given by [Mandel and

Wolf, 1995, Sec. 4.7]

W (r1, r2, ω) = 〈U∗(r1, ω)U(r2, ω)〉, (6.3)

where the angular brackets denote the ensemble average over all space-frequency
realizations {U(r, ω)}.

The spectral degree of coherence µ at frequency ω is defined as

µ(r1, r2, ω) =
W (r1, r2, ω)

√

S(r1, ω)
√

S(r2, ω)
, (6.4)

where the spectral density S at position r at frequency ω is defined by

S(r, ω) = W (r, r, ω). (6.5)

The modulus of the spectral degree of coherence satisfies the following inequalities
[Mandel and Wolf, 1995, Sec. 4.3.2]

0 ≤ |µ(r1, r2, ω)| ≤ 1, (6.6)

where µ = 0 corresponds with complete incoherence and |µ| = 1 corresponds with
complete coherence.
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Figure 6.1: Illustrating the notation relating to interference patterns formed with
partially coherent light in Young’s experiment.

6.3 Coherence properties of light in Young’s

interference experiment

Consider a partially coherent field propagating into the half-space z > 0. The
cross-spectral density W (0)(r′1, r

′
2, ω) of the field at frequency ω at any two points

r′1 and r′2 in the plane z = 0 may be expressed in terms of the spectral den-
sity S(0)(r′1, ω), S(0)(r′2, ω) at the two points and the spectral degree of coherence
µ(0)(r′1, r

′
2, ω) of the light at these points in the form (See Eq. (6.4))

W (0)(r′1, r
′
2, ω) =

√

S(0)(r′1, ω)S(0)(r′2, ω)µ(0)(r′1, r
′
2, ω). (6.7)

The cross-spectral density of the field at any pair of points P1(r1) and P2(r2)
in the half-space z > 0, is then given by the expression (Eqs. (4.4–15) and (4.4–16)
of [Mandel and Wolf, 1995])

W (r1, r2, ω) =

(

1

2π

)2 ∫∫

z=0

W (0)(r′1, r
′
2, ω)

(

ik +
1

R1

) (

−ik +
1

R2

)

× eik(R2−R1)

R1R2
cos θ1 cos θ2 d2r′1d

2r′2,

(6.8)

where k = ω/c is the wavenumber associated with frequency ω, c is the speed of
light in vacuo, Ri = |ri − r′i| and θi is the angle between the vector ri − r′i and the
positive z-direction.
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Suppose now, that the plane z = 0 is covered by an opaque screen A with
two small pinholes with area δA at points Q1(r1) and Q2(r2) (see Fig. 6.1). For
this case the formula (6.8) reduces to (cf. the derivation as given in Ch. 4.3.2 of
[Mandel and Wolf, 1995], but now with inclination factors)

W (r1, r2, ω) =

(

δA

2π

)2
{

S1(ω)K∗
11K12 + S2(ω)K∗

21K22

+
√

S1(ω)S2(ω)
[

µ12(ω)K∗
11K22

+ µ∗
12(ω)K12K

∗
21

]

}

.

(6.9)

where Si(ω) is the spectral density at pinhole Qi and µ12(ω) = µ(0)(r1, r2, ω) is the
spectral degree of coherence of the field at the two pinholes. Furthermore, we used
the fact that µ12(ω) = µ∗

21(ω), and the factors Kij are given by the expression

Kij =

(

−ik +
1

Rij

)

eikRij

Rij

cos θij , (i, j = 1, 2) (6.10)

where Rij is the distance from the pinhole at Qi(ri) to the field point Pj(rj) and
θij is the angle between the line QiPj and the positive z-direction.

The spectral density at frequency ω of the light at a point P0(r0) in the region
of superposition is given by the expression

S(r0, ω) ≡ W (r0, r0, ω)

=

(

δA

2π

)2
{

S1(ω)|K10|2 + S2(ω)|K20|2

+ 2
√

S1(ω)S2(ω)Re
[

µ12(ω)K∗
10K20

]

}

(6.11)

where R10 and R20 denote the distances from the pinholes Q1 and Q2, respectively,
to the point P0(r0).

6.4 Planes of full coherence

Let us choose the coordinate system with the origin O between the two pinholes,
and with the plane z = 0 coinciding with the plane containing the two pinholes.
Let the pinholes be located symmetrically along the x-axis at distance d from each
other, i.e., at points with position vectors

r1 = (d/2, 0, 0), r2 = (−d/2, 0, 0), (6.12)
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referred to the origin O. For any pair of points P1(r1), P2(r2) in the plane x = 0,
which we will refer to as the bisecting plane Π, i.e., for points

r1 = (0, y1, z1), r2 = (0, y2, z2), (6.13)

we have (see Fig. 6.1)
K11 = K21, K12 = K22. (6.14)

On substituting from Eqs. (6.14) into Eq. (6.9) we obtain for the cross-spectral
density the expression

W (r1, r2, ω) =

(

δA

2π

)2

K∗
11K12

{

S1(ω) + S2(ω)

+ 2
√

S1(ω)S2(ω)Re
[

µ12(ω)
]

}

.

(6.15)

Next we substitute from Eq. (6.15) into Eq. (6.5), and find that the spectral density
is given by

S(ri, ω) =

(

δA

2π

)2

|K1i|2
{

S1(ω) + S2(ω)

+ 2
√

S1(ω)S2(ω)Re
[

µ12(ω)
]

}

, (i = 1, 2).

(6.16)

It immediately follows on using definition (6.4) for the spectral degree of coherence
that

µ(r1, r2, ω) =
K∗

11K12

|K11| |K12|
,

= eik(R12−R11) (ik + 1/R11)(−ik + 1/R12)

|ik + 1/R11|| − ik + 1/R12|
,

= eik(R12−R11)ei(φ1−φ2),

(6.17)

where
cos φi = 1/R1iDi, sin φi = k/Di, (6.18)

and

Di =
√

k2 + 1/R2
1i. (6.19)

Thus, we arrive at the conclusion that for any pair of points P1(r1), P2(r2) which lie
in the bisecting plane Π, i.e., the plane bisecting the line joining the two pinholes
and perpendicular to that line, the spectral degree of coherence of the field is
unimodular, i.e.,

|µ(r1, r2, ω)| = 1, (6.20)
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Figure 6.2: Contour lines of |µ(r1, r2, ω)| with r1 being kept fixed at (0, 0, 1.5 m)
and r2 varying in the plane z2 = 1.5 m. In this example d = 1 mm, ω = 1015 s−1

and µ12(ω) = 0.2 + 0.2i.

implying that the light at these points is mutually spatially fully coherent, irre-
spective of the state of coherence of the field at the two pinholes.

This result is illustrated in Fig. 6.2 in which contours of |µ(r1, r2, ω)| are shown.
We note that the contours are not symmetric about the plane x = 0, even though
the geometry is. This asymmetry is due to the fact that in this particular example
µ12(ω) is complex-valued and µ12(ω) = µ∗

12(ω).
Next consider a pair of points r1 = (x, y, z), r2 = (x,−y, z). In this case (see

Fig. 6.1) we find that
K11 = K12, K21 = K22. (6.21)

On substituting from Eqs. (6.21) into Eq. (6.9) we obtain for the cross-spectral
density the expression

W (r1, r2, ω) =

(

δA

2π

)2
{

S1(ω) |K11|2 + S2(ω) |K21|2

+ 2
√

S1(ω)S2(ω)Re
[

K∗
11K22µ12(ω)

]

}

.

(6.22)

If we substitute from Eqs. (6.21) into Eq. (6.11) we see that the spectral densities
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are given by the expression

S(r1, ω) = S(r2, ω)

=

(

δA

2π

)2
{

S1(ω) |K11|2 + S2(ω) |K22|2

+ 2
√

S1(ω)S2(ω)Re
[

K∗
11K22µ12(ω)

]

}

,

(6.23)

On substituting from Eqs. (6.22)–(6.23) into the definition (6.4) for the spectral
degree of coherence we find that

µ(r1, r2, ω) = 1. (6.24)

The formula (6.24) shows that for any pair of points P1(r1), P2(r2) which are
mirror images of each other in the plane containing the two pinholes and which is
perpendicular to the screen, the spectral degree of coherence of the field is unity,
irrespective of the state of coherence of the field at the two pinholes; i.e., the light
is fully coherent and co-phasal at such a pair of points.

It is to be noted that the light incident on each of the two pinholes may originate
in two different sources. In particular each pinhole might be illuminated by a
different laser. Our results imply that even in such a case the light which two such
independent lasers generate in the bisecting plane Π will be spatially completely
coherent at every frequency contained in the spectra of both the lasers.

The analysis of the planes of full coherence was performed here under the
approximation that the fields are scalar. After this study appeared, this analysis
was extended by taking into account the vectorial character of the field [Agarwal

et al., 2005]. In this article is was shown that the conclusions of this Section
remain essentially unchanged, i.e., the same planes of full coherence were obtained,
regardless of the state of coherence and the state of polarization of the field at the
two pinholes.

6.5 Phase singularities of the coherence

functions

Suppose again that two pinholes located at Q1 and Q2 in a plane opaque screen
A (see Fig. 6.1) are illuminated by partially coherent light. Under practical cir-
cumstances one has S1(ω) = S2(ω). Furthermore, we assume that the angles of
incidence and diffraction are small, so that Eq. (6.9) reduces to

W (r1, r2, ω) =

(

δA

2π

)2

S(ω)
[

K∗
11K12 + K∗

21K22

+ K∗
11K22 µ12(ω) + K12K

∗
21 µ∗

12(ω)
]

.

(6.25)
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Here S(ω) is the spectral density at Q1 and Q2 and Kij ≈ −ik exp(ikRij)/Rij (see
Eq. (6.10)). In most cases of practical interest the separation between the two
pinholes d ≪ Rij , and then R1i ≈ R2i and the spectral density takes on the simple
form

S(ri, ω) =

(

δA

2π

)2
2S(ω)

R2
1i

{

1 + |µ12(ω)| cos[β + k(R2i − R1i)]
}

, (6.26)

where β is the phase of the spectral degree of coherence, and i = 1, 2.
We now consider pairs of points in the far zone for which the phase of the

spectral degree of coherence µ(r1, r2, ω) becomes singular; this happens at pairs of
points for which µ(r1, r2, ω) = 0. It is to be noted from Eq. (6.4) that µ(r1, r2, ω)
exhibits an additional singular behavior when S(ri, ω) = 0. We exclude such cases
from our consideration because the approximate form of the spectrum given by
Eq. (6.26) suggests that it will not have zero value provided the light is not spatially
fully coherent at the pinholes, i.e. provided that |µ12(ω)| < 1.1 We assume that
the use of a far-zone approximation for the factors Kij does not significantly alter
the behavior of the singular points, an assumption that will later be supported by
numerical calculations. In the far zone, the factors Kij take on the approximate
form

Kij ≈ −ik
exp[ik(Rj − r̂j · di)]

Rj

. (6.27)

In this equation, Rj is the distance from the origin to the observation point Pj,
r̂j is the unit vector pointing in the direction OPj, and di = ±(d/2)x̂, where the
positive or negative sign is taken accordingly as i = 1 or 2, respectively, and x̂

is the unit vector in the positive x-direction (see Fig. 6.1). On substituting from
Eq. (6.27) into Eq. (6.25), it readily follows that the cross-spectral density may be
expressed in the form

W (r1, r2, ω) =2

(

kδA

2π

)2

S(ω)
exp[ik(R2 − R1)]

R1R2

{

cos

[

kd

2
(cos θ1 − cos θ2)

]

+ |µ12(ω)| cos

[

kd

2
(cos θ1 + cos θ2) + β

]}

,

(6.28)

where θi is the angle between r̂i and the positive x-direction. It is readily seen that
Eq. (6.28) implies the existence of phase singularities, i.e. the existence of pairs of
points at which the cross-spectral density, and consequently the spectral degree of

1In [Gbur and Visser, 2003] it was indeed proven that the zeros of the spectral density are
not generic, and will therefore only occur under some special circumstances, such as in [Gori

et al., 1998; Ponomarenko, 2001].
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Figure 6.3: Schematic illustration of surfaces on which points of observation P1

and P2 in the far zone are located for which µ(r1, r2, ω) = 0, i.e., at which the
phase of µ(r1, r2, ω) is singular. P1 and P2 lie on opposite cones.

coherence, has zero value. In particular, W (r1, r2, ω) = 0 at points for which the
expression in the curly brackets vanishes. This expression is independent of the
distances R1 and R2 and, in fact, depends only on the directions of observation. It
follows that a given zero of the cross-spectral density requires that the observation
points P1 and P2 both lie on conical surfaces cos θi = constant. A sketch of such
surfaces is given in Fig. 6.3.

The behavior of the phase of µ in the immediate vicinity of such surfaces can
be readily found by noting that the expression in the curly brackets of Eq. (6.28)
is real-valued, so that the only possible phase change of this factor on changing
the angles θ1, θ2 is a change in sign. This corresponds to a jump in phase of ±π,
and these are the only possible singular behaviors across the “singular surfaces”.

We have studied the spectral degree of coherence in the region of superposition
numerically by using Eqs. (6.25) and (6.4). Let r1 = (x1, y1, z1) and r2 = (x2, y2, z2)
specify the position of the observation points P1(r1) and P2(r2), respectively. It is
to be noted that the cross-spectral density is computed using Eq. (6.25), not the
approximate form Eq. (6.28). By varying x2 and y2 while keeping z2 and r1 fixed,
the behavior of the phase, φµ(r1, r2, ω), of the spectral degree of coherence was
studied in a plane parallel to the screen containing the apertures. An example is
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Figure 6.4: Contours of equal phase of the spectral degree of coherence µ(r1, r2, ω)
near a singularity of its phase in a plane parallel to the screen. In this example
k = 0.333 × 107 m−1, d = 0.1 cm, µ12(ω) = 0.8 + 0.3 i, r1 = (0, 0, 1.5) m, and
z2 = 1.5 m.

shown in Fig. 6.4. The vertical line indicates the location of a phase singularity,
i.e., a set of points P2 (with P1 fixed) for which µ(r1, r2, ω) = 0 and hence the
phase of the spectral degree of coherence is singular. It can be seen from the figure
that the phase has a discontinuity of π across the singularity.

A detailed example of the behavior of the spectral degree of coherence is given
in Fig. 6.5. The point P1 and the coordinates y2 and z2 are kept fixed while x2 is
varied. The real and the imaginary part of µ(r1, r2, ω) are seen to change sign at
the phase singularity, in accordance with a π phase jump.

We notice that these phase singularities of the spectral degree of coherence
can easily be observed. This requires interfering the light from the vicinity of the
pair of points P1 and P2. This can be done, for instance, by bringing together the
light from these points by means of another Young’s interference experiment and
observing the behavior of the interference fringes produced at frequency ω by this
additional experiment as the point P1 is kept fixed and the point P2 is moved across
the phase singularity. Fig. 6.6 shows the fringe pattern that would be observed in
this second experiment for a selection of points P1, P2. The point P1 was chosen
as in Fig. 6.5, and the point P2 was taken along a line of constant phase at several
points in the vicinity of the phase singularity. The choices of P2 are illustrated in
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Figure 6.5: The real and the imaginary part of the spectral degree of coherence
µ(r1, r2, ω), with P1, y2 and z2 kept fixed whilst x2 is being varied. In this example
y2 = 0.9 mm, all other parameters have the same value as in Fig. 6.4.

Fig. 6.4. It can be seen in Fig. 6.6 that the π phase change results in the minima
of the secondary fringe pattern becoming maxima, and vice versa, in accordance
with the spectral interference law [Mandel and Wolf, 1995, Sec. 4.3.2].

After this study was performed, it was shown by Gbur and Visser [2003] that
in general the cross-spectral density possesses phase singularities in the form of
lines in three-dimensional space (“coherence vortices”) and not surfaces as was
found in this study. The phase singularities in the form of a surface are due to
the special symmetries of Young’s interference experiment. The phenomenon of
phase singularities in the context of partially coherent fields has recently also been
experimentally investigated [Palacios et al., 2004].

6.6 Plasmon-induced coherence in Young’s

interference experiment

In optical coherence theory the correlation of the field at position r1 at frequency ω
and the field at r2 at the same frequency is described by the so-called spectral degree

of coherence, µ(r1, r2, ω). The modulus of this correlation function is bound by zero
and unity. If |µ(r1, r2, ω)| = 0, the fields at r1 and r2 are completely uncorrelated
at frequency ω. If |µ(r1, r2, ω)| = 1 the fields are fully coherent. In all other cases
the fields are said to be partially coherent. For narrowband light the visibility

of the interference fringes that are formed in Young’s experiment is proportional

to the modulus of the spectral degree of coherence [Mandel and Wolf, 1995].
Therefore, one would expect that if each aperture is illuminated by a separate
laser, each tuned to a different frequency, the resulting fringes would have visibility



Chapter 6. Young’s Interference Experiment with Partially Coherent Light 117

− 4 − 2 2 4

0.5

1

1.5

0

A

B

C
D

E

x [mm]

S0

Figure 6.6: Illustrating the spectral interference pattern formed along the x-
direction by combining the light from the pinholes P1 and P2 in a second Young’s
interference experiment. The observation plane was taken to be at z = 1.5 m,
and the spacing of the pinholes was taken to be d = 0.1 cm. The positions of the
points P2 are illustrated in Fig. 6.4. S0 is a spectral density normalized by the
value of the spectral density on the curve C. All other parameters are the same as
in Fig. 6.4.

zero. However, we predict here that under such circumstances fringes with a good
visibility may be produced.

The explanation of this unexpected effect is the generation of surface plasmons
at the two slits [Raether, 1988]. These electromagnetic surface modes are ex-
cited at each slit only when the incident light is H-polarized. They can travel
from one slit to the other and then be converted back into a propagating light
field [Schouten et al., 2005]. This energy transfer causes the light that is emit-
ted at each slit to originate from both lasers rather than one. Moreover, there is a
fixed phase relation between the light that is directly transmitted at the first slit,
and the light at the second slit that is generated by surface plasmons stemming
from the first slit. In other words, the processes of excitation and de-excitation of
surface plasmons are phase coherent; hence the plasmon-induced emission at one
slit is coherent with the direct emission at the other slit. It is this “plasmon-induced
coherence” that causes the field at the two individually illuminated apertures to
become fully coherent at both frequencies, i.e., |µ12(ω1)| = |µ12(ω2)| = 1. The
resulting interference pattern therefore has fringes with a non-zero visibility.

This prediction is experimentally verified by Eliel et al. (Leiden University), see
[Kuzmin et al., 2005]. Their experimental setup consisted of two separate lasers, a
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(a)

(b)

Figure 6.7: Experimental results by Eliel et al. (Leiden University): (a) The
far-field interference pattern that is measured when the polarization of both laser
beams is parallel to the two slits (E-polarization). The Ti:sapphire laser is tuned
to 808 nm. The fringe visibility V ≈ 0% in this case. (b) The interference pattern
that is measured when the polarization of both laser beams is perpendicular to
the two slits (H-polarization). The fringe visibility V ≈ 28% in this case.
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narrowband Ti-Sapphire laser, tunable from 808 to 824 nm, and a semiconductor
diode laser operating at 812 nm each illuminate a single slit in a 200 nm thick
gold film. Each laser is focused to a spot of approximately 5 µm FWHM. The
two parallel slits, ∼ 25 µm apart, are 50 µm long and 0.2 µm wide. The gold
film is evaporated on top of a 0.5 mm thick fused quartz substrate with a 10 nm
thick titanium adhesion layer between the gold and the quartz. A CCD camera
with a 100 ms shutter time is used to record the far-field diffraction pattern. If
the polarization of the two beams is parallel to the two slits (E-polarization), the
resulting far-field pattern has, as expected, no fringes. An example is shown in
Fig. 6.7 (a). However, when the polarization is changed to be perpendicular to
the slits (H-polarization), an interference pattern with fringes with good visibility
is obtained. This is shown in Fig. 6.7 (b), in which the fringe visibility V = 28%,
even though each slit is illuminated by a separate laser.

6.7 Conclusions

In summary, we have investigated the coherence properties of the field in Young’s
interference experiment. In Sec. 6.4 it was shown that for any pair of points within
certain planes the light is fully coherent, i.e. |µ| = 1, irrespective of the correlation
of the field at the two pinholes; in particular, the light could originate from two
independent lasers, each illuminating only one of the pinholes.

In Sec. 6.5, we have demonstrated the existence of phase singularities of the
spectral degree of coherence of the field at pairs of points in the region of su-
perposition in Young’s interference experiment with partially coherent light. The
phase of the spectral degree of coherence is shown to make a ±π jump across such
singularities. This phase jump can be observed by means of a second Young’s ex-
periment. To our knowledge, this study is the first extension of the field of singular
optics to the realm of correlation functions.

Finally, in Sec. 6.6 it was explained how surface plasmons travelling between
the two slits can alter the degree of coherence in Young’s experiment. In partic-
ular, it was predicted that two independent lasers both illuminating only a single
slit can still produce interference fringes. This prediction has very recently been
verified experimentally [Kuzmin et al., 2005]. Note that this is completely differ-
ent from the planes of full coherence mentioned before, because here the effect is
not restricted to certain pairs of points.
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lumière”, Ann. Chim. 63, pp. 385–414 (1861).

I. Freund, “Saddles, singularities, and extrema in random phase fields”, Phys.

Rev. E 52, pp. 2348–2360 (1995).

I. Freund, “Vortex flowers”, Opt. Commun. 196, pp. 63–76 (2001).
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Samenvatting

In dit proefschrift is de lichttransmissie door subgolflengte gaten onderzocht. Het
gedrag van licht bij gaten is een onderwerp dat al sinds de negentiende eeuw veel
bestudeerd is. Echter, het gaat bijna altijd om gaten met dimensies die veel groter
zijn dan de golflengte van het inkomende veld. In de gevallen dat er wel sprake
was van subgolflengte gaten, ging het meestal om radio- of microgolven, waarbij,
in tegenstelling tot zichtbaar licht, aangenomen mag worden dat het metaal een
perfecte geleider is. Dit proefschrift beschrijft een methode om in gevallen van
subgolflengte spleten in metalen met een realistische geleidbaarheid de transmissie
te berekenen. De resultaten hiervan zijn van groot belang voor toepassingen in
bijvoorbeeld het gebied van optische opslag of nabije veld microscopie.

In het tweede hoofdstuk wordt het wiskundig formalisme ontwikkeld om de
berekeningen uit te voeren. De basisvergelijkingen van de Elektrodynamica, de
Maxwell vergelijkingen, worden daar voor het geval van een lichtverstrooier in-
gebed in een gelaagd medium omgezet in een integraalvergelijking met als domein
het gebied ingenomen door deze verstrooier en met als kern een Greense tensor.
Deze Greense tensor wordt afgeleid voor een willekeurig gelaagd medium. Ver-
volgens wordt de numerieke methode om de integraalvergelijking op te lossen uit-
gelegd. Bij deze methode wordt de integraalvergelijking omgezet in een stelsel van
lineaire vergelijkingen. De laatste sectie van het hoofdstuk beschrijft een methode
om dit stelsel efficiënt op te lossen.

Het derde hoofdstuk gaat over de lichttransmissie door een enkele spleet. Hier
wordt met name ingegaan op de lichttransmissie als een functie van de spleet-
breedte. Ook wordt de rol van de verschillende soorten materiaal waar de plaat uit
kan bestaan, de dikte van de plaat en de polarisatie van het inkomende elektrische
veld onderzocht. De resultaten blijken goed te verklaren door zowel golfgeleid-
ing als fase singulariteiten te beschouwen. Fase singulariteiten zijn punten in de
ruimte waar de amplitude van het veld nul is en de fase van het veld daardoor
ongedefinieerd. Deze fase singulariteiten hebben een topologische lading, die be-
houden is. Het blijkt dat de verhoogde transmissie door een spleet in een dunne
metalen plaat gepaard gaat met de annihilatie van zulke fase singulariteiten. Dit
fenomeen treedt op als de breedte van de spleet gevarieerd wordt en er een afsnij-
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breedte van een geleide mode in de spleet bereikt wordt.
In het vierde hoofdstuk wordt ook naar een enkele spleet in een metalen plaat

gekeken. Echter, in plaats van naar de totale lichttransmissie wordt hier naar het
stralingspatroon gekeken, d.w.z. naar de verschillende richtingen waarin het licht
door de spleet wordt verstrooid. Ook hier spelen fase singulariteiten een rol. Het
blijkt namelijk dat de minima in het verre veld stralingspatroon samenhangen met
fase singulariteiten in het nabije veld van de spleet. Indien er een systeemparameter
zoals de golflengte van het licht of de dikte van de plaat wordt gevarieerd, dan kan
zo’n fase singulariteit van de spleet naar oneindig lopen en daar een singulariteit in
het stralingspatroon worden. Deze laatste singulariteit is niet enkel een minimum,
maar zelfs een exact nulpunt van het stralingspatroon. Het werd ook aangetoond
dat fase singulariteiten op deze manier ook in hun eentje op oneindig kunnen
verdwijnen, wat een schending is van topologisch ladingsbehoud. Ook wordt er
aangegeven, hoe een verdwijning van een fase singulariteit experimenteel gemeten
zou kunnen worden.

De transmissie van licht door twee spleten is het onderwerp van het vijfde
hoofdstuk. De transmissie blijkt te worden versterkt of verzwakt als functie van
de afstand tussen de twee spleten of als functie de golflengte. Deze modulatie
wordt verklaard door zogenaamde oppervlakteplasmonen. Dit zijn elektromag-
netische oppervlaktegolven die langs het metaal-luchtraakvlak lopen. Zo’n opper-
vlakteplasmon wordt aangeslagen bij een spleet, loopt vervolgens naar de andere
spleet, waarbij hij kan koppelen aan het doorgelaten veld. De interferentie tussen
het licht dat direct door een spleet wordt doorgelaten en licht dat de beschreven
“plasmonomweg” neemt, veroorzaakt een interferentiepatroon in de totale trans-
missie van het licht. Deze voorspelling is experimenteel bevestigd door onderzoek-
ers van de Universiteit Leiden.

Het laatste hoofdstuk verschilt met de rest van het proefschrift in dat het niet
aanneemt dat het elektromagnetische veld coherent en monochromatisch is. Het
onderwerp is de transmissie van partieel coherent licht door twee gaten. In het
eerste deel worden de coherentie eigenschappen van het licht in het interferentie-
experiment van Young beschreven. Speciaal wordt gekeken naar paren van punten
waar het veld volledig coherent of volledig incoherent is. Het tweede deel voor-
spelt het effect van oppervlakteplasmonen op de coherentie eigenschappen van
Young’s experiment. Het blijkt dat er een plasmon-gëınduceerde coherentie tussen
de twee spleten kan bestaan, zelfs als ze incoherent belicht worden. Deze laatste
voorspelling is inmiddels ook experimenteel bevestigd.
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