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Chapter 1

Introduction

When you are looking at something, do you see
only light or do you see the object?

· · · it is one of those dopey philosophical things that an

ordinary person has no difficulty with. Even the most

profound philosopher, sitting and eating his dinner has many

difficulties of making out, that what he looks at is, perhaps

only the light from the steak but it still implies the existence of

the steak which he can lift with his fork. But the philosophers

have been unable to make the analysis of the idea, having

fallen by the wayside for hunger.

Richard Feynman in his lecture: “Photons: Corpus-
cles of light”, Auckland, 1979.

1.1 The significance of optics

For centuries scientists and philosophers from Aristotle to Noam Chomsky
have attempted to explain and understand the nature of human conscious-
ness and the working of the human mind. John Locke, a seventeenth-
century English philosopher, postulated his “Tabula Rasa” theory on the
development of human consciousness. According to his ideas individu-
als are born without any built-in mental content, as a “blank slate”, and
knowledge comes from experience and sensory perception. Although his

9



10 1.1. The significance of optics

theory and many similar ones have been the subject of a millennia-long
debate, it is undeniable that sensory perceptions play an important role
in human development. Prime among the senses is vision, i.e. the ability
to interpret the surrounding environment, based on the ability to process
the information contained in visible light.

One important aspect of visual interpretation is understanding the
physical significance of the visual information that reaches the eye. Tradi-
tionally, the lack of knowledge of naturally occurring physical phenomena
has lead to many superstitions. Solar eclipses, for example, have the dis-
tinction of contributing to both the superstitious and scientific theories.
Total eclipses have been, for long, interpreted as a bad omen by people un-
aware of its astronomical explanation. The ancient Chinese believed that
solar eclipses were caused by dragons swallowing the sun in its entirety.
This lead to their practice of playing drums to scare away the sun-eating
dragons. However, Chinese astronomers seemed to understand eclipses as
natural phenomena around 720 B.C., with older observations scratched
into bones dating back perhaps 3,000 years.

All the Great Apes are known to be self-aware based on themirror test,
i.e. they are capable of recognising themselves in the mirror. Since the
dawn of civilisation, the self-aware humans have made use of dark stagnant
pools of water, or water from vessels as mirrors. Mirrors have been built as
early as 6000 B.C. it was not until the time of the Ancient Greeks that the
nature of light and reflections was systematically studied and discussed.
In the fifth century B.C., Empedocles argued that an interaction between
rays from the eyes and rays from a source such as the sun was responsible
for human vision. This hypothesis was challenged by Euclid a couple of
centuries later, when he postulated that light travelled in a straight line.
In his text Optica he described the laws of reflection and studied them
mathematically.

Mirrors were not the only optical device used in ancients human civil-
isations. One of the oldest lens artifacts has been dated back to the times
of ancient Assyria, where it might have been used as a magnifying glass.

Since the dawn of our civilisation the curiosity in natural optical phe-
nomena has helped us better our understanding in the field of optics.
Progressing steadily from rudimentary basics in geometric optics to the
more advanced fields of quantum optics and photonics, our curiosities have
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been fueled by the zeal to understand, record and sometimes recreate a
number of naturally occurring phenomena. Considerations like these, have
motivated many scientists and myself to take up the study of optics.

1.2 Basic concepts

In this subsection we give a brief overview of the different concepts that
are discussed in this thesis.

We begin by reviewing some elementary properties of random pro-
cesses. Let us consider a process that randomly varies in time, denoted
by x(t) with t denoting the time. Each measurement of x(t) will yield
a different outcome, say (1)x(t), (2)x(t), . . . The collection of all possible
outcomes of the measurements is known as the ensemble of x(t). The
ensemble average 〈x(t)〉e, or expectation value for a set of N realizations
can be defined as

〈x(t)〉e = lim
N→∞

1

N

N
∑

r=1

(r)x(t). (1.1)

Let p1(x, t)dx denote the probability that x(t) takes on a value in the
interval (x, x + dx) at a time t. The ensemble average defined by using
the probability density function, p1(x, t), is given as

〈x(t)〉e =

∫

xp1(x, t)dx, (1.2)

where the integration extends over all possible values of x. The prob-
ability density p1(x, t), does not describe the random process fully. It
is also necessary to consider the possible correlations between x(t1) and
x(t2). Such correlations are characterized by a joint probability den-
sity p2(x1, x2, t1, t2). The quantity p2(x1, x2, t1, t2)dx1dx2 represents the
probability that the random variable x will take a value in the range
(x1, x1+dx1) at time t1, and a value in the range (x2, x2+dx2) at time t2.
We can define, in a similar way, an infinite number of probability densities
for higher-order correlations that describe the joint probabilities at three
or more points in space and time, as

p1(x, t), p2(x1, x2, t1, t2), p3(x1, x2, x3, t1, t2, t3), · · · (1.3)
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The properties described thus far, can also be applied to a complex random
process described as z(t) = x(t) + iy(t) with x(t) and y(t) both real-
valued. The statistical properties of such a complex random process can
be described by the joint probability density functions similar to Eq. (1.3)
as

p1(z, t), p2(z1, z2, t1, t2), p3(z1, z2, z3, t1, t2, t3), · · · (1.4)

Here, p1(z, t)dxdy represents the probability that z(t) will take on a value
within (x, x+dx; y, y+dy) at time t. The ensemble average of the complex
random process z(t) is given by

〈z(t)〉e =

∫

zp1(z, t) dxdy, (1.5)

where the integration extends over all values of z. The joint probability,
p2, allows us to define the ensemble average of the product of z∗(t1)z(t2),
which is called the auto-correlation function Γ(t1, t2) as

Γ(t1, t2) = 〈z∗(t1)z(t2)〉e =

∫∫

z∗1 z2 p2(z1, z2, t1, t2) dx1dy1dx2dy2,

(1.6)

where the asterisk denote the complex conjugate.
A random process is called statistically stationary when the probability

densities p1, p2, p3 and so forth are time-shift invariant, i.e.

〈z∗(t1)z(t2)〉e = 〈z∗(t1 + T )z(t2 + T )〉e , (1.7)

for all values of T . A weaker form of stationarity, which is often employed,
is known as wide-sense stationarity. This requires that the random pro-
cess’ first and the second moments are time-shift invariant. It goes without
saying that any strict-sense stationary process is obviously, also wide-sense
stationary.

1.3 Coherence theory

Optical coherence theory is the study of the statistical properties of light
and the influence those statistical properties have on the observable char-
acteristics of optical fields. The theoretical beginnings of coherence theory
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can be traced back to [Verdet, 1865], who estimated the spatial coher-
ence length of sunlight on the Earth’s surface, and [Van Cittert, 1934]
and [Zernike, 1938], who calculated the evolution of the spatial coherence
of light propagating from an incoherent source.1

The modern theory of optical coherence, as championed by Wolf and
others, began with the study of the mutual coherence function Γ(r1, r2, τ)
of wide-sense statistically stationary optical fields, defined as

Γ(r1, r2, τ) = 〈U∗(r1, t1)U(r2, t2)〉, (1.8)

where the time difference τ ≡ t2−t1 and the angled brackets represent time
averaging or, equivalently for ergodic fields, ensemble averaging. The field
U(r, t) is typically taken to be scalar, with polarization effects neglected,
but the formalism can be readily extended to the fully electromagnetic
case, as discussed in detail in [Wolf, 2007]. It was shown by [Wolf, 1955]
that the mutual coherence function satisfies a pair of wave equations in
free space, namely,

(

∇2
1 −

1

c2
∂2

∂τ2

)

Γ(r1, r2, τ) = 0, (1.9)

(

∇2
2 −

1

c2
∂2

∂τ2

)

Γ(r1, r2, τ) = 0, (1.10)

where ∇2
i is the Laplacian with respect to the Cartesian coordinates of

position vector ri and c is the speed of light. From these equations one
can see that the statistical properties of light evolve in a well-defined way
on propagation, and much of the research in optical coherence theory has
involved the study of the consequences of these equations of evolution.

Just as it is possible to study the behaviour of deterministic wave fields
in the time domain or the frequency domain, however, it is also possible
to study the behaviour of partially coherent wave fields in either time or
in frequency. The cross-spectral density function W (r1, r2, ω) is defined
as the temporal Fourier transform of the mutual coherence function with

1More details on the history of optical coherence theory can be found in [Born and

Wolf, 1999], Section 10.1, and [Wolf, 2001]. Reprints of a number of classic papers
can be found in [Mandel and Wolf, 1970].
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respect to the time variable τ , i.e.

W (r1, r2, ω) =
1

2π

∫

∞

−∞

Γ(r1, r2, τ)e
−iωτdτ. (1.11)

The cross-spectral density will then satisfy a pair of Helmholtz equations,

(

∇2
1 + k2

)

W (r1, r2, ω) = 0, (1.12)
(

∇2
2 + k2

)

W (r1, r2, ω) = 0, (1.13)

where k = ω/c is the wavenumber of light corresponding to frequency ω.
This pair of elliptic partial differential equations for the cross-spectral den-
sity function is in general easier to solve than the pair of hyperbolic wave
equations for the mutual coherence function; the mutual coherence func-
tion can, however, be readily determined by an inverse Fourier transform
of the cross-spectral density.

The cross-spectral density is commonly written in terms of two other
functions, the spectral density S(r, ω) and the spectral degree of coherence
µ(r1, r2, ω), as

W (r1, r2, ω) =
√

S(r1, ω)
√

S(r2, ω)µ(r1, r2, ω). (1.14)

The spectral density S(r, ω) represents the intensity of the wavefield at
position r at frequency ω, and may be written in terms of the cross-
spectral density function as

S(r, ω) ≡ W (r, r, ω). (1.15)

The spectral degree of coherence µ(r1, r2, ω) is a measure of the degree of
correlation of the field at the two positions r1 and r2 and at frequency ω,
and may be written in terms of the cross-spectral density function as

µ(r1, r2, ω) ≡
W (r1, r2, ω)

√

S(r1, ω)S(r2, ω)
. (1.16)

It can be shown that the absolute value of the spectral degree of coherence
is restricted to the values

0 ≤ |µ(r1, r2, ω)| ≤ 1, (1.17)
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where 0 represents a complete lack of coherence, and 1 represents full
spatial coherence. The physical significance of µ(r1, r2, ω) is discussed in
more detail in [Gbur and Visser, 2010].

An important milestone in the development of coherence theory in the
space-frequency domain was the observation by [Wolf, 1982] that the
cross-spectral density itself may be represented as a correlation function
derived from an ensemble of monochromatic realizations of the field. This
can be proven by first noting that the cross-spectral density is Hermitian,
i.e.

W (r2, r1, ω) = W ∗(r1, r2, ω), (1.18)

and that it is non-negative definite, such that

∫

D

∫

D
W (r1, r2, ω)f

∗(r1)f(r2) d
2r1d

2r2 ≥ 0, (1.19)

where f(r) is an arbitrary square-integrable function and, for a secondary
source with a field propagating from z = 0, the domain of integration D is
the source plane. Assuming that the cross-spectral density is also square-
integrable over this domain, it represents a Hilbert-Schmidt kernel ; by
Mercer’s theorem2, it may be expanded in a series of orthogonal functions
of the form

W (r1, r2, ω) =
∑

n

λn(ω)φ
∗

n(r1, ω)φn(r2, ω), (1.20)

where the eigenvalues λn(ω) and the eigenfunctions φn(r, ω) satisfy the
integral equation

∫

D
W (r1, r2, ω)φn(r1, ω) d

2r1 = λn(ω)φn(r2, ω). (1.21)

The summation in general may be over multiple indices, and may be a
finite or infinite sum. The eigenvalues are non-negative and the eigen-
functions are orthogonal and typically taken to be orthonormal. Equation
(1.20) represents what is now known as the coherent mode representation
of the cross-spectral density.

2Mercer’s theorem and Hilbert-Schmidt kernels are introduced in the theory of inte-
gral equations; see, for instance [Moiseiwitsch, 1977].
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The coherent mode representation may be used to construct an ensem-
ble of monochromatic wave fields whose second-order average reproduces
a given cross-spectral density. To do so, we introduce an ensemble of fields
defined by

U(r, ω) =
∑

n

an(ω)φn(r, ω), (1.22)

where the coefficients an are random variables. We choose these variables
such that the average of them over the entire ensemble of fields (denoted
by 〈· · · 〉ω) satisfies the condition

〈a∗n(ω)am(ω)〉ω = λn(ω)δnm. (1.23)

It then follows that the cross-spectral density function may be written as

W (r1, r2, ω) = 〈U∗(r1, ω)U(r2, ω)〉ω. (1.24)

On substitution from Eq. (1.22) into Eq. (1.24), we readily find that
Eq. (1.20) is satisfied. Furthermore, on substitution from Eq. (1.24) into
Eqs. (1.12) and (1.13), it follows that the individual realizations U(r, ω)
each satisfy the Helmholtz equation and represent valid monochromatic,
and therefore coherent, wave fields.

This result, which seems very formal and almost trivial at first glance,
is perhaps one of the most useful results in modern coherence theory,
because it implies that a valid cross-spectral density can be found by any
suitable averaging process over a set of monochromatic realizations. This
is used, for instance, in the “beam wander” model discussed in [Gbur

and Visser, 2010].
It is to be noted that it is possible to extend the space-frequency the-

ory to higher-order correlation functions, as done by [Wolf, 1986] and
[Agarwal and Wolf, 1993]; the formalism becomes significantly more
complicated, however.

The theory of optical coherence has developed rapidly with the in-
troduction of the space-frequency representation. Perhaps the most sig-
nificant result to arise as yet is the theory of correlation-induced spectral
changes, in which the degree of spatial coherence of a source can affect the
properties of the radiated spectral density. The results arising from this
theory are too numerous to be included here; a comprehensive review was
provided some time ago by [Wolf and James, 1996].
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At its heart, the theory of optical coherence may be said to be the
optics of observable quantities. Whereas traditional optics focuses on the
behaviour of wave fields U(r, t) which are not directly observable, coher-
ence theory describes the behaviour of second-order and higher moments of
the wave field such as the mutual coherence function and the cross-spectral
density function, which can be measured through interference experiments.
An early discussion of this point of view was given by [Wolf, 1954].

1.4 Electromagnetic beams

In the previous section, Section 1.3, we have considered scalar fields in-
dependent of polarization. The concepts of coherence can be generalised
to represents stochastic electromagnetic beams as well. Coherence can be
considered as the correlations between two points in space whereas the
degree of polarization is the correlation between fluctuations of different
components of the electromagnetic beam at a single point in space.

1.4.1 General formalism

Let us consider a random electromagnetic beam propagating along the
z−axis, from the plane z = 0 into the half space z > 0. The state of
coherence and polarization of this beam is characterized by the electric
cross-spectral density matrix, which is defined as [Wolf, 2007]

W(r1, r2, ω) =

(

Wxx(r1, r2, ω) Wxy(r1, r2, ω)
Wyx(r1, r2, ω) Wyy(r1, r2, ω)

)

, (1.25)

where

Wij(r1, r2, ω) = 〈E∗

i (r1, ω)Ej(r2, ω)〉, (i, j = x, y). (1.26)

Here Ei(r, ω) is a Cartesian component of the electric field at a point r at
frequency ω, of a typical realization of the statistical ensemble representing
the beam. The spectral density S(r, ω) of the electromagnetic beam at a
point in space, r is the average electric density at that point. Thus we
have

S(r, ω) = 〈E∗(r, ω) ·E(r, ω)〉 , (1.27)

= Tr W(r, r, ω), (1.28)
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Q (ρ )1       1

z

R1

R2

P(r)

A B

Q (ρ )2       2

Figure 1.1: Notation pertaining to Young’s double slit experiment with
a stochastic electromagnetic beam. The two apertures in screen A are
located at ρ1 and ρ2. The observation poitn P (r) is on a second, parallel
screen B.

where Tr denotes the trace. Let E(r, ω) represent the electrical vector at
the point P (r) on the screen as shown in Fig. 1.1. A typical realization
for E(r, ω) in terms of realisations of E(ρ1, ω) and E(ρ2, ω) of the electric
field vector at points ρ1 and ρ2 is given as

E(r, ω) = K1E(ρ1, ω)e
ikR1 +K2E(ρ2, ω)e

ikR2 , (1.29)

where R1 and R2 are the distances from the points Q(ρ1) and Q(ρ2), re-
spectively to the point P (r). The factors K1 and K2 take into account
diffraction at the pinholes, which follows from the Huygens-Fresnel princi-
ple, see for example Section 8.2 of [Born and Wolf, 1999] and are given
as

Kj ≈ −
i

λRj
dAj (j = 1, 2). (1.30)

Here dA1 and dA2 are the areas of the two pinholes. Using Eqs. (1.26),
(1.28), and (1.29) we can obtain an expression for the spectral density
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S(r, ω) as

S(r, ω) =S(1)(r, ω) + S(2)(r, ω)

+ 2
√

S(1)(r, ω)
√

S(2)(r, ω)Re[η(ρ1,ρ2, ω)e
ik(R2−R1)], (1.31)

where Re denotes the real part. Here S(1)(r, ω) is the spectral density at
the point P (r) if the pinhole at position Q2(r2) is closed. Thus we have

S(j)(r, ω) = |Kj |
2S(ρj , ω), (1.32)

where j = 1 denotes the pinhole at Q1(ρ1) and j = 2 corresponds to the
pinhole at Q2(ρ2). We can see from Eq. (1.31), that the spectrum at the
point P (r) at the observation plane B is the sum of the spectra of the two
individual beams from points Q1(ρ1), and Q2(ρ2) and the interference
term with

η(ρ1,ρ2, ω) =
Tr W(ρ1,ρ2, ω)

√

S(ρ1, ω)
√

S(ρ2, ω)
. (1.33)

Here the term η(ρ1,ρ2, ω) is analogous to the term µ(ρ1, ρ2, ω) in Eq. (1.16)
and thus is the complex spectral degree of coherence of the stochastic elec-
tromagnetic field between at points Q1(ρ1) and Q2(ρ2).

It is crucial to note that the spectral degree of coherence for electro-
magnetic beams, η(ρ1,ρ2, ω) depends only on the diagonal elements of
the correlation matrix W, i.e. Wxx and Wyy. The spectral degree of co-
herence between two points of the electromagnetic beam is defined as the
capability of the field at these points to produce interference fringes, anal-
ogous to the scalar case. However, according to the Fresnel-Argo laws,
two orthogonal linearly polarized waves do not interfere. The fact that
orthogonal components of the random electric field do not interfere with
each other does not imply that these components are uncorrelated.

Despite the fact that the off-diagonal elements of the cross-spectral
density W do not contribute to the correlation properties of the beam,
they play a role in determining the degree of polarization at any point in
the beam. The electromagnetic beam can be decomposed into two parts,
one of which is completely polarized and the other completely unpolarized
(see Section 8.2.3, [Wolf, 2007]). The spectral degree of polarization
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P (r, ω) of the stochastic electromagnetic beam at a point is the ratio of
the intensity of the completely polarized beam to its total intensity, which
can be shown to be

P (r, ω) =

√

1−
4DetW(r, r, ω)

[TrW(r, r, ω)]2
. (1.34)

Here Det denotes the determinant.

1.4.2 Quasi-Homogeneous beams

A secondary planar source producing an electromagnetic beam is charac-
terized by a cross-spectral density matrix of the form

W
(0)
ij (ρ′

1,ρ
′

2, ω) =

√

S
(0)
i (ρ′

1, ω)

√

S
(0)
j (ρ′

2, ω)µ
(0)
ij (ρ′

1,ρ
′

2, ω), (i = x, y),

(1.35)

where S
(0)
i (ρ′

1, ω) = W
(0)
ii (ρ′

1,ρ
′
1, ω), denotes the spectral density of the

ith component of the electric field and µ
(0)
ij (ρ′

1,ρ
′
2, ω) is the correlation

between Ei at ρ
′
1 and Ej at ρ

′
2 and the superscript (0) indicates the source

plane. A secondary planar source is said to be a Schell-model source, when
its correlation function µij(ρ

′
1,ρ

′
2) depends only on the difference ρ′

2−ρ′
1,

i.e.

µ
(0)
ij (ρ′

1,ρ
′

2, ω) = µ
(0)
ij (ρ′

2 − ρ′

1, ω). (1.36)

It is quite often the case that the spectral degree of coherence µ
(0)
ij (ρ′

2 −
ρ′
1, ω) of light in the source plane varies rapidly with the argument ρ′

2−ρ′
1,

in comparison to the variation of the spectral density S
(0)
i (ρ′, ω) with

its argument ρ′ for all the frequency components present. Such planar
secondary sources are said to be quasi-homogeneous. Since then both

S
(0)
x (ρ, ω) and S

(0)
y (ρ, ω) are ‘slow’ functions compared to µ

(0)
xx (ρ′

2−ρ′
1, ω)

and µ
(0)
yy (ρ′

2 − ρ′
1, ω), respectively, we can write

W (0)
xx (ρ′

1,ρ
′

2) ≈ S(0)
x

(

ρ′
1 + ρ′

2

2

)

µ(0)
xx (ρ

′

2 − ρ′

1), (1.37)

W (0)
yy (ρ′

1,ρ
′

2) ≈ S(0)
y

(

ρ′
1 + ρ′

2

2

)

µ(0)
yy (ρ

′

2 − ρ′

1), (1.38)
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where for brevity the ω-dependence of the various quantities has been
omitted. If we now introduce sum and difference variables defined as

ρ(+) =
ρ′
1 + ρ′

2

2
,

ρ(−) = ρ′

2 − ρ′

1, (1.39)

then the diagonal elements of the cross-spectral density matrix factorize
into a product of two functions of independent variables, namely

W (0)
xx (ρ′

1,ρ
′

2) ≈ S(0)
x [ρ(+)] µ(0)

xx [ρ
(−)], (1.40)

W (0)
yy (ρ′

1,ρ
′

2) ≈ S(0)
y [ρ(+)] µ(0)

yy [ρ
(−)]. (1.41)

This factorization has profound implications, as will be discussed in Chap-
ter 3 of this thesis.

1.4.3 Phase singularities in electromagnetic beams

All wave fields are characterized by a local amplitude and phase. At points
where the amplitude vanishes the phase is “singular” or undefined. Phase
singularities have been observed in tides [Berry, 1981], in the quantum
mechanical wavefunction [Hirschfelder et al., 1974a; Hirschfelder

et al., 1974b], and in optics in the energy flow of a convergent beam in
the focal plane [Boivin et al., 1967]. A systematic study of optical phase
singularities started with the seminal paper by [Nye and Berry, 1974]
which spawned a new branch of optics, called Singular Optics [Nye, 1999;
Soskin et al., 1997; Allen et al., 2003]. The subject of singular op-
tics is the structure of wave fields in the vicinity of optical vortices and
polarization singularities.

Unlike the above-mentioned wave fields, the spectral degree of coher-
ence is a function of two points. The spectral degree of coherence of
partially coherent fields emerging from two pinholes in Young’s double
slit experiment has been shown to exhibit singular behaviour [Schouten
et al., 2003a]. These correlation singularities occur at pairs of points at
which the fields are completely uncorrelated. The phase of the spectral de-
gree of coherence around these singular pairs of points typically exhibits
a vortex-like behavior [Gbur and Visser, 2003b]. These and subse-
quent studies on correlation singularities were dealing with scalar fields.
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In Chapters 4 and 5 the concept of a correlation singularity is extended
to electromagnetic beams.

As described in the previous sections, the state of coherence of an
electromagnetic beam is characterized by its cross-spectral density matrix
defined by, Eq. (1.35). The degree of coherence between two points in the
electromagnetic beam is described by the spectral degree of coherence,
namely

η(ρ1,ρ2, ω) =
Tr W(ρ1,ρ2, ω)

√

S(ρ1, ω)
√

S(ρ2, ω)
, (1.42)

which is complex-valued. Let us represent the numerator of η(ρ1,ρ2, ω)
as a product of an amplitude function A(ρ1,ρ2, z) and a phase function
φ(ρ1,ρ2, z) as

Wxx(ρ1,ρ2, z) +Wyy(ρ1,ρ2, z) = A(ρ1,ρ2, z)e
iφ(ρ1,ρ2,z). (1.43)

A correlation singularity arises at pairs of points in the vector field where
the amplitude function A(ρ1,ρ2, z) = 0 and hence the phase φ(ρ1,ρ2, z)
is undefined. In three-dimensional space the locus of these singular points
is typically a curve. A two-dimensional cross-section which includes the
singular point would show that equiphase lines usually display a vortex-like
behavior around the singularity. So if we consider C to be a closed curve
traversed in the counter-clockwise direction around a single correlation
singularity, with the phase φ, the topological charge s of the singularity is
defined as

s ≡
1

2π

∮

C
dφ =

1

2π

∮

C
∇φ · dr, s = 0,±1,±2, · · · . (1.44)

Since the phase is single-valued, s has an integer value and is independent
of the choice of the curve C. The topological charge is conserved for
smooth changes in the field. The only way for a singularity with a non-
zero charge, to disappear is by annihilating with another singularity of
opposite charge.

Another typical topological feature in the context of correlation sin-
gularities are stationary points. These are points of the field, where the
phase is well-defined, yet the gradient of the phase vanishes. These points
represent a minimum, or a maximum or a saddle point.
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Figure 1.2: The interface between a metal of permittivity ε1 and a dielec-
tric of permittivity ε2.

Similar to the topological charge s, one can also define a topological
charge of the singularities of the vector field ∇φ, which is called the topo-
logical index. This index t, for a positive and negative vortex is unity, while
a saddle point (which has no topological charge) has an index t = −1 and
a maximum or a minimum has an index t = 1. Just like the topological
charge, the topological index is also a conserved quantity.

The fact that topological charge and topological index are both con-
served, imposes constraints of the creation and annihilation of these topo-
logical features. For example, the creation of phase singularities usually
happens in pairs with one having a topological charge s = −1 and a topo-
logical index t = 1, while the other has a charge of s = 1 and index t = 1.
Conservation of topological index dictates that this process can be accom-
panied by the creation of two phase saddles with s = 0, t = −1. Several
other topological reaction are described in Chapter 5.

1.5 Surface plasmons

The interaction of metals with incident electromagnetic radiation is gov-
erned, largely, by the amount of free electrons in the metal. The Drude
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model assumes that the metal is made up of positively charged ions and
“free” electrons that are detached from their respective atoms. This model
ignores any long-range interaction between the ions and the electrons and
assumes that electrons do not interact with each other. At optical frequen-
cies, the metal’s “free electron gas” can sustain surface-charge density
oscillations called Surface Plasmon Polaritons (SPP). These oscillations
are essentially electromagnetic waves trapped on the metal surface. They
can give rise to a strongly enhanced electromagnetic field localized at the
interface between a metal and a dielectric.

Now let us consider an interface between a metal and a dielectric as
shown in Fig 1.2. Let ε1 denote the permittivity of the metal and ε2 denote
the permittivity of the dielectric. By solving Maxwell’s equation under
appropriate boundary conditions for an incident field that is TM-polarized,
we can obtain for the frequency-dependent surface plasmon wave-number
kSP the expression [Raether, 1988; Novotny and Hecht, 2006]

k2SP =
ε1ε2

ε1 + ε2
k20, (1.45)

where k0 is the free-space wavenumber ω/c. The normal component of
the wave-vector is given as

k2j,z =
ε2j

ε1 + ε2
k20. (1.46)

A sustained surface plasmon oscillations requires k2SP to be positive.
This is possible, if ε1 + ε2 > 0 and if both ε1 and ε2 are positive or if
ε1+ ε2 < 0 and ε1 < 0. For the oscillation to be localized to the interface,
the normal components of the wave-vector k1,z and k2,z must be imaginary,
giving rise to an exponentially decaying solution. This can be achieved
if ε1 + ε2 < 0 in Eq. (1.46). Thus the conditions for sustained surface
plasmon oscillations are

ε1ε2 < 0, (1.47)

ε1 + ε2 < 0. (1.48)

These conditions are satisfied for noble metals like gold or silver at opti-
cal frequencies [Johnson and Christy, 1972] at the interface with an
dielectric like air or glass.
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1.5.1 Propagation lengths of surface plasmons

Let us next write the complex-valued permittivity of the metal as

ε1 = ε′1 + iε′′1, (1.49)

where ε′1 and ε′′1 are both real. The imaginary part of ε1 is associated
with ohmic losses in the metal. We assume that the dielectric medium is
lossless and hence the permittivity ε2 is real-valued. Applying Eq. (1.49)
in Eq. (1.45) we find an expression for kSP = k′SP + ik′′SP (Section 2.1,
[Raether, 1988]), under the assumption |ε′′1| ≪ |ε′1| as

k′SP = k0

(

ε′1ε2
ε′1 + ε2

)1/2

, (1.50)

k′′SP = k0

(

ε′1ε2
ε′1 + ε2

)3/2 ε′′1
2ε′21

. (1.51)

The imaginary part of the wavenumber k′′SP is responsible for the decay
of the SPPs on a smooth surface. The length, after which the intensity
of the SPPs reduces to 1/e is around 10 µm for gold at a wavelength of
633 nm.

Similarly we can obtain an expression for the value of the skin depths
ẑi in the two media, namely

ẑ2 =
λ

2π

(

ε′1 + ε2
ε22

)1/2

, (1.52)

ẑ1 =
λ

2π

(

ε′1 + ε2
ε′21

)1/2

. (1.53)

For gold at 633 nm, the typical skin depth of the metal is around 28 nm
and that of air is 328 nm.

Thus three decay lengths are associated with the SPPs on an interface,
given as

1. a relatively large propagation length of SPPs on the surface dictated
by the ohmic losses in the metal,

2. a much smaller exponential decay length in the dielectric material,
typically of the order of the free-space wavelength, and
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3. a very small exponential decay length within the metal, typical an
order of magnitude smaller than the free-space wavelength.

1.5.2 Excitation of surface plasmons

The SPP dispersion curves show that kSP is larger than k0 and hence the
momentum of a surface plasmon, ~kSP, is greater than that of a free-space
photon ~k0 at the same wavelength. The use of photons to excite SPPs,
thus runs into trouble owing to this momentum mismatch. Different tech-
niques have been designed to provide this “missing” momentum and excite
SPPs on a surface. The more popular ones are the Otto and Kretschmann
configurations, where the missing momentum is provided by coupling an
evanacent wave to the interface [Novotny and Hecht, 2006].

Another method makes use of periodic surface corrugations, or a grat-
ing on the metal surface to excite the surface plasmons [Raether, 1988].
The surface wavevector component of an electromagnetic field illuminat-
ing such a diffraction grating can be momentum-matched with the SPPs,
and thus is capable of exciting them. Similarly, non-radiative SPPs prop-
agating on a smooth surface can be decoupled into photons when they are
scattered by surface corrugations or diffraction gratings.

This property of surface corrugations is used in Chapter 6 for the design
of our SPP-switching device. The device consists of a subwavelength slit
etched on a thin gold film. The slit is flanked on both sides by a series
of periodic grooves, positioned at a distance of 4 µm (which is smaller
than the propagation length) from the slit to convert the SPPs to a freely
propagating field. The intensity of this field is measured in the far zone.

1.6 The structure of this thesis

In this thesis, the concepts of coherence theory that we have just described
are applied to a variety of problems. In Chapter 2, the influence of the state
of coherence on the intensity distribution near focus is studied. Usually,
a decrease of spatial coherence of the field leads to an intensity distribu-
tion that is “smoothed out” compared to its fully coherent counterpart.
It is shown, experimentally, that for a special class of fields, namely those
that are Bessel-correlated, the intensity at the geometric focus is a mini-
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mum rather than a maximum, i.e. such fields produce a hollow sphere of
light when focused. Furthermore, by using a variable aperture, the focal
intensity can be changed in a continuous way from a minimum to a max-
imum. Having the ability to tailor the focal intensity distribution allows
one, for example, to switch from trapping high-index particles to trapping
low-index particles.

In Chapters 3-5, we generalize the concepts of scalar theory of co-
herence to electromagnetic beams. We begin, in Chapter 3, by deriving
expressions for the far-field properties of an electromagnetic beam gener-
ated by a planar quasi-homogeneous source. We derive two reciprocity
relations, the first of which relates the spectral density of the beam in
the far-zone to the Fourier transform of the correlation coefficients in the
source plane. The second one relates the spectral degree of coherence in
the far zone to the Fourier transforms of both the spectral density and of
the correlation coefficients of the source field. Using these two reciprocity
relations, we demonstrate that the spectral density, the the state of coher-
ence and the state of polarization of these beams may change significantly
on propagation.

The propagation-induced changes in the correlation properties of an
electromagnetic Gaussian Schell-model beam are studied in Chapter 4. An
expression for the spectral density matrix is derived and it is shown that
coherence vortices, singularities of the correlation function, generally occur
in these beams. These correlation singularities are three-dimensional in
nature and their locus forms a closed string.

In Chapter 5, the three-dimensional structure of the correlation func-
tion of Chapter 4 is analyzed by considering its surfaces of equal phase. It
is shown that in different cross-sections, the phase structures go through
a rich set of topological reactions, including the creation and annihilation
of singularities, dipoles, maxima, minima and phase saddles.

In Chapters 6 and 7 we describe an experiment to control the excitation
of guided modes in a sub-wavelength slit that sustains two TM-modes. By
varying the relative phase of three incident beams, the phase difference of
the two modes can be changed in a continuous manner. In Chapter 6 this
is used for the first demonstration of a dynamic surface plasmon switch.
In Chapter 7 the same technique is employed to steer the radiation of the
slit in a preferred direction.
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Chapter 2

Creating an Intensity
Minimum at the Focus of a
Laser Beam using Spatial
Coherence
This chapter is based on the following publication:

• S. B. Raghunathan, T. van Dijk, E. J. G. Peterman, and T. D. Visser
“Experimental demonstration of an intensity minimum at the focus
of a laser beam created by spatial coherence: Application to optical
trapping of dielectric particles”, Opt. Lett. 35, pp. 4166 – 4168
(2011).

Abstract
In trying to manipulate the intensity distribution of a focused field, one
typically uses amplitude or phase masks. Here we explore a novel ap-
proach, namely varying the state of spatial coherence of the incident field.
We experimentally demonstrate that focusing of a Bessel-correlated beam
produces an intensity minimum at the geometric focus, rather than a max-
imum. By varying the spatial coherence width of the field, which can be
achieved by merely changing the size of an iris, it is possible to change
this minimum into a maximum, in a continuous manner. This method
can be used, for example, in novel optical trapping schemes, to selectively
manipulate particles with either a low or a high index of refraction.

29
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2.1 Introduction

The intensity distribution of a wave field in the focal region of a lens is a
classical subject of physical optics [Stamnes, 1986]. One can manipulate
this distribution by employing phase or amplitude masks. Recent theo-
retical studies showed that the state of spatial coherence of the field can
also be used for this goal [Lu et al., 1995; Wang et al., 1997; Friberg
et al., 2001; Fischer and Visser, 2004; Wang and Lu, 2006; Pu et al.,
2006; Rao and Pu, 2007]. It was found, for example, that partially
coherent, Gaussian-correlated beams produce a focal intensity distribu-
tion that is more spread out than that of a fully coherent beam [Visser

et al., 2002]. Two studies of Bessel-correlated fields yielded the surpris-
ing prediction that it is possible to change the maximum of intensity at
the geometric focus into a minimum, in a continuous manner [Gbur and

Visser, 2003a; Van Dijk et al., 2008]. In this Chapter we discuss an ex-
perimental setup with which these predictions have been verified. Having
the ability to tailor the focal intensity distribution allows one, for exam-
ple, to switch from trapping high-index particles to trapping low-index
particles [Gahagan and Swartzlander, 1999].

f
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z
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Q(r')

.
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Figure 2.1: Illustration of the focusing configuration.

2.2 Theory

Let us first consider a converging, monochromatic field of frequency ω
emerging from a circular aperture of radius a in a plane opaque screen.
The origin O of a right-handed Cartesian coordinate system is taken at
the geometric focus (see Fig. 2.1). The field at a point Q(r′) on the
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Figure 2.2: Schematic of the setup.

wavefront A is denoted by U (0)(r′, ω), where r′ is a position vector. The
field at a point P (r) in the focal region is, according to the Huygens-Fresnel
principle ([Born and Wolf, 1999], Chapter 8), given by the expression

U(r, ω) = −
i

λ

∫

A
U (0)(r′, ω)

eiks

s
d2r′, (2.1)

where s = |r− r′| denotes the distance QP and λ is the wavelength of the
field. (A periodic time-dependent factor exp(−iωt) is suppressed.)

For a partially coherent wave field one must, apart from the field, also
consider the cross-spectral density function of the field at two points Q(r′1)
and Q(r′2), namely [Wolf, 2007]

W (0)(r′1, r
′

2, ω) =
〈

U∗(r′1, ω)U(r′2, ω)
〉

, (2.2)

where the angular brackets denote the average taken over a statistical
ensemble of realizations. From equations (2.1) and (2.2) it follows that
the cross-spectral density function in the focal region satisfies the formula

W (r1, r2, ω) =
1

λ2

∫∫

A
W (0)(r′1, r

′

2, ω)
eik(s2−s1)

s1s2
d2r′1d

2r′2, (2.3)

where s1 = |r1 − r′1|, and s2 = |r2 − r′2|. The spectral density (or intensity
at frequency ω) at an observation point P (r) is given by the ‘diagonal
elements’ of the cross-spectral density function, i.e. S(r, ω) = W (r, r, ω).
A normalized measure of the field correlation is provided by the spectral
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Figure 2.3: Modulus of the degree of spatial coherence of the field as a
function of the slit separation d. The solid line indicates the theoretical
prediction, the circles indicate experimental values with error bars.

degree of coherence, which is defined as [Mandel and Wolf, 1995]

µ(0)(r1, r2, ω) =
W (0)(r1, r2, ω)

√

S(0)(r1, ω)S(0)(r2, ω)
. (2.4)

In our experiment the cross-spectral density of the field in the entrance
pupil of the lens is of the form

W (0)(r1, r2, ω) = S(0)(ω)J0(β|r2 − r1|). (2.5)

Here S(0) is the spectrum of the incident field, taken to be independent of
position, and J0 denotes the Bessel function of the first kind and zeroth
order. The parameter β is, roughly speaking, the inverse of the coherence
length. The numerical evaluation of Eq. (2.3) is discussed in [Gbur and

Visser, 2003a] and [Van Dijk et al., 2008].
Several tools, e.g. a programmable Spatial Light Modulator, can be

used to obtain a J0-correlated field. We have chose to create such a field
using the van Cittert-Zernike theorem [Wolf, 2007]. According to that
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Figure 2.4: Illustration of negative correlation of the field at the two slits.
At the center of the fringe pattern (vertical dashed line) an intensity min-
imum is observed. The dashed lines represent measurements with one slit
covered.

theorem, the degree of coherence between two points in the far-zone of
a completely incoherent source can be expressed in terms of the Fourier
transform of the intensity distribution across the source. Thus, for a
incoherent annular source, the degree of coherence follows a J0-distribution
in the far zone.

2.3 Experimental verification

The experimental setup is shown in Fig. 2.2. The output of a 15 mW
Helium-Neon laser, operating at 632.8 nm, is focused by Lens 1 onto a
rotating optical diffuser. As was verified, this renders the field practically
incoherent. The incoherent beam illuminates a thin annulus of inner radius
1.2 mm and outer radius 1.5 mm. The annulus is positioned in the back
focal plane of a 3.7 m lens (Lens 2), which produces a J0-correlated field
in its focal plane. This field is incident on an iris of radius 2.5 mm and
focused by a lens of focal length 10.6 cm (Lens 3). The focused image is
captured using a CCD camera connected to a PC via a frame grabber.
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Figure 2.5: Intensity along the z-axis. The solid line represents the theo-
retical prediction, the circles correspond to experimental measurements.

This provides a transverse image of the focused field. The CCD camera is
mounted on top of a translator, capable of taking steps of 0.01 mm along
the z-axis.

2.3.1 Producing and measuring a Bessel-correlated field

The state of coherence of the far-zone field produced by the annulus was
tested by replacing the iris by a series of identical double slits of width
0.172 mm and with varying slit spacing d. These pairs of slits were placed
at the focus of Lens 2 and the resulting interference pattern was recorded.
When the intensity at both slits is equal, the fringe visibility corresponds
to the absolute value of the degree of coherence µ12(ω) of the field at the
two slits [Mandel and Wolf, 1995]. Fig. 2.3 shows very good agreement
between the measured values of the modulus of the degree of coherence and
the theoretical predictions. For a slit spacing between 0.7 and 1.5 mm the
fields at the two slits are anti-correlated, i.e. µ12(ω) < 0. This was verified
using a slit pair with separation distance d = 0.8 mm. The recorded inter-
ference pattern is shown in Fig. 2.4. The blue and the red lines represent
measurements with one of the slits covered, and the black lines shown the
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Figure 2.6: Intensity distribution in the focal plane for an iris of radius
0.25mm

double-slit interference pattern. At the center of the fringe pattern (in-
dicated by the vertical dotted line), a minimum rather than a maximum
is observed, confirming the predicted anti-correlation. Having thus estab-
lished that the field that has indeed the desired Bessel-correlation, the slits
were replaced by an iris and Lens 3 (with a = 2.5 mm and f = 10.6 cm),
in order to study the focal intensity distribution.

2.3.2 Focusing the Bessel-correlated field

Intensity measurements in the xy-plane were made with steps of 0.1 mm
along the z-axis. The results are shown in Fig. 2.5 where the horizontal
axis represents the distance of the CCD camera from Lens 3. The solid
blue curve represents the theoretical prediction, while the red circles are
the experimental results. Instead of a maximum, an intensity minimum is
observed at the geometric focus (around 106 mm) between two intensity
peaks. It is seen that the experimental results closely follow the theoretical
predictions.

To observe the rotationally symmetric intensity profile in the focal
plane a set of three irises was used. The usage of irises with different radii
(0.25 mm, 0.75 mm, and 1.2 mm) changes the spatial coherence width of
the field. It is seen from Fig. 2.3 that for the smallest iris all points of
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Figure 2.7: Intensity distribution in the focal plane for an iris of radius
0.75mm

the incident field are positively correlated. For the two larger ones both
positive and negative field correlations occur. This enables us to observe
the transition of the focal plane intensity from a maximum to a minimum.
In order to maintain a Fresnel number larger than 20 in every case (to
avoid the focal shift phenomenon [Stamnes, 1986; Wolf and Li, 1981]),
Lens 3 was replaced by a lens with f = 1 cm. This results in a reduced
separation between the maxima in the transverse direction of the order of
2 µm. Since the size of a pixel on the CCD camera is 8.6 µm, a simple
magnification system was placed between Lens 3 and the camera.

The results of varying the radius of the iris is shown in Figs. 2.6, 2.7,
and 2.8. In Fig. 2.6 the magnified intensity profile in the focal plane is
shown for the case of an iris with a radius of 0.25 mm. The intensity
reaches its maximum at the geometric focus (at distance 0 µm). Fig. 2.7
depicts the gradual transition to a intensity minimum when the iris radius
is increased to 0.75 mm. In Fig. 2.8 this radius is further increased to 1.2
mm, and the intensity minimum at focus has become a near zero.

2.4 Conclusion

In conclusion, we have shown that the focusing of a J0-correlated field
produces an intensity minimum at the geometric focus. The observed in-
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Figure 2.8: Intensity distribution in the focal plane for an iris of radius
1.2mm

tensity profiles along the z-axis and in the focal plane agree well with the
theoretical predictions. The intensity minimum at the geometric focus can
be manipulated by changing the spatial coherence width of the incident
field. This is done by simply varying the aperture radius of the focusing
system, and this enables us to change the intensity minimum of the fo-
cused field to a maximum, in a continuous manner. We have thus shown
that, next to phase and amplitude control, there exists a fundamentally
different mechanism to shape the intensity distribution in the focal re-
gion, namely the manipulation of the state of coherence of the incident
field. This approach may prove to be of value in optical tweezers and in
optical trapping, where it can be used to selectively manipulate particles
with either a high or a low index of refraction. nmm



38 2.4. Conclusion



Chapter 3

Far-zone Properties of
Electromagnetic Beams
Generated by
Quasi-homogeneous Sources

This chapter is based on the following publication:

• S. B. Raghunathan, T. D. Visser, and E. Wolf “Far-zone properties
of electromagnetic beams generated by quasi-homogeneous sources”,
Opt. Commun. 295, pp. 11-16(2013).

Abstract
We derive so-called reciprocity relations for the far-zone properties of
electromagnetic beams generated by a broad class of partially coherent
sources, namely those of the quasi-homogeneous type. We use these re-
sults to study the intensity distribution, the state of coherence and the
polarization properties of such beams.
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3.1 Introduction

The fully coherent, monochromatic beams that are often encountered in
the literature are idealizations. In practice, optical fields are partially co-
herent. This may be due to several causes. The source may emit several
modes, or it may be fluctuating due to mechanical vibrations or quantum
noise. In addition, if the field propagates through a random medium such
as the atmosphere, its coherence will degrade. Partially coherent beams
have several interesting properties. For example, they may have the same
directionality as nearly coherent laser beams, but they do not give rise to
unwanted speckle [Mandel and Wolf, 1995, Sec. 5.4.2]. Equally impor-
tant, the state of coherence of a field can be controlled to optimize it for
certain uses such as propagation through atmospheric turbulence [Gbur

and Wolf, 2002], optical coherence tomography [Brezinski, 2006], and
the trapping of low index particles [Raghunathan et al., 2010]. Re-
views of partially coherent fields are given in [Mandel and Wolf, 1995],
[Wolf, 2007] and [Gbur and Visser, 2010].

The majority of studies dealing with partially coherent electromag-
netic beams, is concerned with beams that are generated by Gaussian
Schell model (GSM) sources, see, for example [James, 1994; Korotkova

et al., 2004;Korotkova et al., 2008]. Another important class of partially
coherent sources, which partially overlaps with those of the GSM type,
is formed by so-called quasi-homogeneous planar sources [Mandel and

Wolf, 1995, Sec. 5.3.2]. Such sources are characterized, at each frequency
ω, by a) a spectral degree of coherence that is homogeneous, meaning that
it only depends on the distance between two source points ρ′

1 and ρ′
2, i.e.,

µ(0)(ρ′
1,ρ

′
2, ω) = µ(0)(ρ′

2 − ρ′
1, ω), and b) by a spectral density S(0)(ρ′, ω)

that varies much slower with ρ′ than |µ(0)(ρ′
2−ρ′

1, ω)| varies with ρ′
2−ρ′

1.
The properties of such sources and the fields they generate have been
extensively studied. In particular, reciprocity relations, equations that
express far-zone properties of the field in terms of Fourier transforms of
properties of the source, were derived [Carter and Wolf, 1977; Col-

lett and Wolf, 1980; Wolf and Carter, 1984; Carter and Wolf,
1985;Kim and Wolf, 1987; Foley and Wolf, 1995; T. D. Visser and

Wolf, 2006]. All these studies, however, were limited to scalar fields. In
this article we extend the concept of quasi-homogeneity to sources that
generate electromagnetic beams, and derive new reciprocity relations for



Chapter 3. Quasi-homogeneous Sources 41

the spectral density and degree of coherence of the beams in the far zone.
These results are then used to study changes in the spectrum, the state
of coherence, and the state of polarization that such beams undergo on
propagation.

3.2 Partially coherent electromagnetic beams

The state of coherence and polarization of a random electromagnetic beam
that propagates along the z-axis may be characterized, in the space-
frequency domain, by a 2×2 electric cross-spectral density matrix [Wolf,
2007]

W(r1, r2, ω) =

(

Wxx(r1, r2, ω) Wxy(r1, r2, ω)
Wyx(r1, r2, ω) Wyy(r1, r2, ω)

)

, (3.1)

where

Wij(r1, r2, ω) = 〈E∗

i (r1, ω)Ej(r2, ω)〉, (i, j = x, y). (3.2)

Here Ei(r, ω) is a Cartesian component of the electric field at a point r at
frequency ω, of a typical realization of the statistical ensemble representing
the beam. The angled brackets indicate an ensemble average. From this
matrix several quantities can be derived.

The spectral density of the field is given by the expression

S(r, ω) = TrW(r, r, ω), (3.3)

where Tr denotes the trace.
The spectral degree of coherence of the field at two points r1 and r2 is

defined as

η(r1, r2, ω) =
TrW(r1, r2, ω)

[TrW(r1, r1, ω) TrW(r2, r2, ω)]
1/2

. (3.4)

It can be shown the modulus of the spectral degree of coherence is bounded,
viz.,

0 ≤ |η(r1, r2, ω)| ≤ 1. (3.5)
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The upper bound represents full coherence, whereas the lower bound in-
dicates a complete lack of coherence.

The degree of polarization, the ratio of the intensity of the polarized
portion of the beam and its total intensity, can be shown to be

P (r, ω) =

√

1−
4DetW(r, r, ω)

[TrW(r, r, ω)]2
, (3.6)

where Det denotes the determinant.
We will make use of definitions (3.3), (3.4) and (3.6) to study the

far-zone behavior of beams generated by quasi-homogeneous sources.

3.3 Quasi-homogeneous electromagnetic sources

Let us consider a planar, secondary, planar source that produces an elec-
tromagnetic beam which propagates along the z-direction (see Fig. 3.1).
Such a source may be characterized by an electric cross-spectral density
matrix W(0), whose diagonal elements can be expressed as [Wolf, 2007,
Sec. 9.4.2]

W (0)
xx (ρ′

1,ρ
′

2, ω) =

√

S
(0)
x (ρ′

1, ω) S
(0)
x (ρ′

2, ω) µ
(0)
xx (ρ

′

1,ρ
′

2, ω), (3.7)

W (0)
yy (ρ′

1,ρ
′

2, ω) =

√

S
(0)
y (ρ′

1, ω) S
(0)
y (ρ′

2, ω) µ
(0)
yy (ρ

′

1,ρ
′

2, ω). (3.8)

Here S
(0)
i (ρ′, ω) is the spectral density associated with a Cartesian com-

ponent Ei (i = x, y) of the electric field vector, and µ
(0)
ii is the correlation

coefficient of Ei at points ρ
′
1 and ρ′

2. The superscript (0) refers to quan-
tities in the source plane, taken to be at z = 0.

If the source is of the Schell-model type, the correlation coefficients
µii(ρ

′
1,ρ

′
2, ω) depend only on the difference ρ′

2 − ρ′
1, i.e.,

µii(ρ
′

1,ρ
′

2, ω) = µii(ρ
′

2 − ρ′

1, ω). (3.9)

Furthermore, a source is said to be quasi-homogeneous if the modulus of

the correlation coefficient µ
(0)
ii (ρ′

2 − ρ′
1, ω) varies much more rapidly with

its argument ρ′
2 − ρ′

1, than the spectral density S
(0)
i (ρ, ω) varies with ρ.
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z = 0

O
.

ρ

z

r = r s

ρ’
θ

Figure 3.1: Illustrating the notation. The vector ρ′ = (x, y) indicates a
transverse position in the source plane z = 0. The line from the origin O
to an observation point r = rs, with |s| = 1, makes an angle θ with the
positive z-axis.

Since then both S
(0)
x (ρ, ω) and S

(0)
y (ρ, ω) are ‘slow’ functions compared to

µ
(0)
xx (ρ′

2 − ρ′
1, ω) and µ

(0)
yy (ρ′

2 − ρ′
1, ω), respectively, we can write

W (0)
xx (ρ′

1,ρ
′

2) ≈ S(0)
x

(

ρ′
1 + ρ′

2

2

)

µ(0)
xx (ρ

′

2 − ρ′

1), (3.10)

W (0)
yy (ρ′

1,ρ
′

2) ≈ S(0)
y

(

ρ′
1 + ρ′

2

2

)

µ(0)
yy (ρ

′

2 − ρ′

1), (3.11)

where for brevity we have omitted the ω-dependence of the various quan-
tities. 1

Next we make the change of variables

ρ(+) =
ρ′
1 + ρ′

2

2
, (3.12)

ρ(−) = ρ′

2 − ρ′

1. (3.13)

The Jacobian of this transformation is unity, and the inverse transforma-

1Although in the derivation of the reciprocity relations of Section 3.4 the off-diagonal
elements are not used, it is to be noted that because of the non-negative definiteness of
the cross-spectral density matrix these elements are not independent from the diagonal
elements.
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tion is given by the expressions

ρ′

1 = ρ(+) − ρ(−)/2, (3.14)

ρ′

2 = ρ(+) + ρ(−)/2. (3.15)

For the purpose of later analysis we now derive an expression for

the four-dimensional, spatial Fourier transformation of W
(0)
ij (ρ′

1,ρ
′
2), de-

fined as

W̃
(0)
ij (f1, f2) =

(

1

2π

)2 ∫∫

z=0
W

(0)
ij (ρ′

1,ρ
′

2) e
−i[f1·ρ′

1+f2·ρ
′

2] d2ρ′1d
2ρ′2.

(3.16)

It is readily seen that W̃
(0)
ii (f1, f2) factorizes into the product of two two-

dimensional Fourier transforms, viz.

W̃
(0)
ii (f1, f2) = S̃

(0)
i (f1 + f2) µ̃

(0)
ii

(

f2 − f1
2

)

, (3.17)

where

S̃
(0)
i (f) =

1

(2π)2

∫

z=0
S
(0)
i (ρ′)e−if ·ρ′

d2ρ′, (3.18)

and

µ̃
(0)
ii (f) =

1

(2π)2

∫

z=0
µ
(0)
ii (ρ′)e−if ·ρ′

d2ρ′. (3.19)

We notice that the fact that µ
(0)
ii (ρ′) = µ

(0)∗
ii (−ρ′), implies that µ̃

(0)
ii (f) is

real-valued. In the next section we will make use of Eqs. (3.17)–(3.19).

3.4 Two reciprocity relations

The elements of the cross-spectral density matrix in the far-zone, which
we denote by the superscript (∞), are related those in the source plane
by the formula

W
(∞)
ij (r1s1, r2s2) = (2πk)2 cos θ1 cos θ2

eik(r2−r1)

r1r2
W̃

(0)
ij (−ks1⊥ , ks2⊥),(3.20)
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where si⊥ is the two-dimensional projection, considered as a vector, of si
onto the xy-plane. Equation (3.20) is a straightforward generalization of a
similar expression for scalar fields [Mandel and Wolf, 1995, Sec. 5.3.1].
A derivation is presented in Appendix A.

On substituting from Eq. (3.17) into Eq. (3.20) we obtain the expres-
sions

W (∞)
xx (r1s1, r2s2) = (2πk)2 cos θ1 cos θ2

eik(r2−r1)

r1r2

×S̃(0)
x [k(s2⊥ − s1⊥)] µ̃

(0)
xx [k(s1⊥ + s2⊥)/2],

(3.21)

W (∞)
yy (r1s1, r2s2) = (2πk)2 cos θ1 cos θ2

eik(r2−r1)

r1r2

×S̃(0)
y [k(s2⊥ − s1⊥)] µ̃

(0)
yy [k(s1⊥ + s2⊥)/2].

(3.22)

On making use of Eqs. (3.21) and (3.22) in expression (3.3), we find for
the far-zone spectral density that

S(∞)(rs) =

(

2πk cos θ

r

)2
[

S̃(0)
x (0)µ̃(0)

xx (ks⊥) + S̃(0)
y (0)µ̃(0)

yy (ks⊥)
]

. (3.23)

Equation (3.23) is a reciprocity relation that shows that the far-zone spec-
tral density of an electromagnetic beam which is generated by a pla-
nar, secondary, quasi-homogeneous source, is a linear function of the two
Fourier transforms of the correlation coefficients of the electric field com-
ponents. This relation takes on a particularly simple form for an on-axis
observation point [i.e., s = (0, 0, 1)], viz.,

S(∞)(0, 0, z) =

(

2πk

z

)2
[

S̃(0)
x (0)µ̃(0)

xx (0) + S̃(0)
y (0)µ̃(0)

yy (0)
]

. (3.24)

Next we derive a reciprocity relation for the spectral degree of coher-
ence. On substituting from Eqs. (3.21) and (3.22) into expression (3.4) we
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Figure 3.2: Two symmetrically located observation points, with s1⊥ =
−s2⊥ .

find that

η(∞)(r1s1, r2s2) =

{

S̃(0)
x [k(s2⊥ − s1⊥)]µ̃

(0)
xx

[

k

2
(s1⊥ + s2⊥)

]

+ S̃(0)
y [k(s2⊥ − s1⊥)]µ̃

(0)
yy

[

k

2
(s1⊥ + s2⊥)

]}

eik(r2−r1)

×
[

S̃(0)
x (0)µ̃(0)

xx (ks1⊥) + S̃(0)
y (0)µ̃(0)

yy (ks1⊥)
]−1/2

×
[

S̃(0)
x (0)µ̃(0)

xx (ks2⊥) + S̃(0)
y (0)µ̃(0)

yy (ks2⊥)
]−1/2

.(3.25)

Since µ
(0)
ii is a “fast” function of its argument, its Fourier transform µ̃

(0)
ii

is a “slow” function. Hence

µ̃(0)
xx (ks1⊥) ≈ µ̃(0)

xx (ks2⊥) ≈ µ̃(0)
xx [k(s1⊥ + s2⊥)/2] , (3.26)

µ̃(0)
yy (ks1⊥) ≈ µ̃(0)

yy (ks2⊥) ≈ µ̃(0)
yy [k(s1⊥ + s2⊥)/2] . (3.27)
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On making use of these approximations in Eq. (3.25) we obtain the formula

η(∞)(r1s1, r2s2) =
{

S̃
(0)
x [k(s2⊥ − s1⊥)]µ̃

(0)
xx

[

k
2 (s1⊥ + s2⊥)

]

+S̃
(0)
y [k(s2⊥ − s1⊥)]µ̃

(0)
yy

[

k
2 (s1⊥ + s2⊥)

]

}

×
[

S̃
(0)
x (0)µ̃

(0)
xx [k(s1⊥ + s2⊥)/2]

+S̃
(0)
y (0)µ̃

(0)
yy [k(s1⊥ + s2⊥)/2

]−1
× eik(r2−r1).(3.28)

Equation (3.28) is a second reciprocity relation. It asserts that the far-field
spectral degree of coherence of an electromagnetic beam which is generated
by a planar, secondary, quasi-homogeneous source, is a related to the
Fourier transforms of both the spectral densities and of the correlation
coefficients of the field in the source plane. If we choose two observation
points that are located opposite each other with respect to the z-axis
(i.e., r1 = r2 = r; s1⊥ = −s2⊥), as is illustrated in Fig. 3.2, this relation
simplifies to the form

η(∞)(rs1, rs2) =
[

S̃(0)
x (2ks2⊥)µ̃

(0)
xx (0) + S̃(0)

y (2ks2⊥)µ̃
(0)
yy (0)

]

×
[

S̃(0)
x (0)µ̃(0)

xx (0) + S̃(0)
y (0)µ̃(0)

yy (0)
]−1

. (3.29)

We notice that the two reciprocity relations (3.23) and (3.28) are gen-
eralizations of well-known results for scalar fields, derived by Carter and
Wolf [Carter and Wolf, 1977].

3.5 Off-diagonal matrix elements

In order to study the degree of polarization [see Eq. (3.6)], we must also
consider the off-diagonal elements of the cross-spectral density matrix.
The first matrix element in the source plane reads

W (0)
xy (ρ′

1,ρ
′

2) =

√

S
(0)
x (ρ′

1) S
(0)
y (ρ′

2) µ
(0)
xy (ρ

′

2 − ρ′

1). (3.30)

In writing Eq. (3.30) the homogeneity of the source has been used. Next

we assume that both S
(0)
x (ρ′

1) and S
(0)
y (ρ′

2) vary much slower with their
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argument than µ
(0)
xy (ρ′

2 −ρ′
1) varies with ρ′

2 −ρ′
1. We then have to a good

approximation that

S(0)
x (ρ′

1) ≈ S(0)
x (ρ′

2) ≈ S(0)
x

(

ρ′
1 + ρ′

2

2

)

, (3.31)

S(0)
y (ρ′

2) ≈ S(0)
y (ρ′

1) ≈ S(0)
y

(

ρ′
1 + ρ′

2

2

)

. (3.32)

In such a case we may introduce a new function

S(0)
xy

(

ρ′
1 + ρ′

2

2

)

≡

√

S
(0)
x

(

ρ′
1 + ρ′

2

2

)

√

S
(0)
y

(

ρ′
1 + ρ′

2

2

)

, (3.33)

≈

√

S
(0)
x (ρ′

1)

√

S
(0)
y (ρ′

2). (3.34)

In terms of S
(0)
xy the matrix element of Eq. (3.30) may be expressed in the

form

W (0)
xy (ρ′

1,ρ
′

2) = S(0)
xy [ρ

(+)]µ(0)
xy [ρ

(−)], (3.35)

where the sum and difference variables defined by Eqs. (3.12) and (3.13)
have been used. In strict analogy with the derivation of Eq. (3.17) we find
that the Fourier transform of this matrix element equals

W̃ (0)
xy (f1, f2) = S̃(0)

xy (f1 + f2) µ̃
(0)
xy

(

f2 − f1
2

)

. (3.36)

On substituting from Eq. (3.36) into Eq. (3.20) we obtain the formula

W (∞)
xy (r1s1, r2s2) = (2πk)2 cos θ1 cos θ2 S̃

(0)
xy [k(s2⊥ − s1⊥)]

×µ̃(0)
xy [k(s1⊥ + s2⊥)/2]

eik(r2−r1)

r1r2
. (3.37)

The remaining matrix element is given by the expression

W (0)
yx (ρ′

1,ρ
′

2) =

√

S
(0)
y (ρ′

1) S
(0)
x (ρ′

2) µ
(0)
yx (ρ

′

2 − ρ′

1). (3.38)

It follows from the definition of the cross-spectral density matrix that

W (0)
yx (ρ′

1,ρ
′

2) =
[

W (0)
xy (ρ′

2,ρ
′

1)
]∗

, (3.39)

= S(0)
xy [ρ

(+)]µ(0)∗
xy [−ρ(−)]. (3.40)
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Since

1

(2π)2

∫

µ(0)∗
xy [−ρ(−)]e−if ·ρ(−)

d2ρ(−) = [µ̃(0)
xy (f)]

∗, (3.41)

we find that

W (∞)
yx (r1s1, r2s2) = (2πk)2 cos θ1 cos θ2 S̃

(0)
xy [k(s2⊥ − s1⊥)]

×µ̃(0)∗
xy [k(s1⊥ + s2⊥)/2]

eik(r2−r1)

r1r2
. (3.42)

All four elements of the cross-spectral density matrix of the far-zone beam
have now been established. On substituting from Eqs. (3.21), (3.22),
(3.37), and (3.42) into Eq. (3.6) we find for the degree of polarization
of the beam on-axis in the far zone the expression

P (∞)(0, 0, z) =

{

[

S̃(0)
x (0)µ̃(0)

xx (0)− S̃(0)
y (0)µ̃(0)

yy (0)
]2

+4
[

S̃(0)
xy (0)|µ̃

(0)
xy (0)|

]2
}1/2

×
∣

∣

∣
S̃(0)
x (0)µ̃(0)

xx (0) + S̃(0)
y (0)µ̃(0)

yy (0)
∣

∣

∣

−1
. (3.43)

It is seen from Eq. (3.43) that in this case the degree of coherence does not
depend on the specific forms of the spectral densities or the correlation
coefficients, but rather on their Fourier transform at frequency zero, i.e.,
on their spatial integrals.

3.6 Examples

In this section we will make use of the two reciprocity relations [Eqs. (3.24)
and (3.29)], and Eq. (3.43) to illustrate changes in the spectrum, the degree
of coherence, and the degree of polarization that occur on propagation to
the far zone.

3.6.1 The far-field spectrum

Coherence-induced spectral changes have been examined for several years
now. A review of this subject was given by Wolf and James [Wolf and
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James, 1996]. As mentioned before, in contrast to the present work,
almost all these studies deal with scalar fields. To see how the vectorial
nature of the beam influences the far-zone spectrum, we repeat Eq. (3.24),

S(∞)(0, 0, z;ω) =

(

2πk

z

)2
[

S̃(0)
x (0;ω)µ̃(0)

xx (0;ω) + S̃(0)
y (0;ω)µ̃(0)

yy (0;ω)
]

,

(3.44)

where we have for clarity again displayed the frequency-dependence of the
various quantities.

Let us now investigate the incoherent superposition of two laser beams,
with constant intensity A and an identical Gaussian spectrum, with central
frequency ω0. One beam is x-polarized and has a radius a, whereas the
other beam is y-polarized and has a radius b. In that case the two spectral
densities are given by the expressions

S(0)
x (ρ;ω) =

{

Ae−(ω−ω0)2/∆2
if |ρ| ≤ a,

0 if |ρ| > a,
(3.45)

S(0)
y (ρ;ω) =

{

Ae−(ω−ω0)2/∆2
if |ρ| ≤ b,

0 if |ρ| > b,
(3.46)

with ∆ the effective width of the two spectra. The two-dimensional spatial
Fourier transforms now equal

S̃(0)
x (f ;ω) =

a2A

2π
e−(ω−ω0)2/∆2 J1(fa)

fa
, (3.47)

S̃(0)
y (f ;ω) =

b2A

2π
e−(ω−ω0)2/∆2 J1(fb)

fb
, (3.48)

where J1 denotes the first order Bessel function of the first kind, and
f = |f |. Hence we find that

S̃(0)
x (0;ω) =

a2A

4π
e−(ω−ω0)2/∆2

, (3.49)

S̃(0)
y (0;ω) =

b2A

4π
e−(ω−ω0)2/∆2

. (3.50)
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In addition, we assume that the correlation coefficients µ
(0)
xx and µ

(0)
yy are

both Gaussians, but with different spatial and spectral widths, i.e.

µ(0)
xx (ρ

′;ω) = e−ρ′/2δ2xxe−(ω−ω0)2/∆2
xx , (3.51)

µ(0)
yy (ρ

′;ω) = e−ρ′/2δ2yye−(ω−ω0)2/∆2
yy . (3.52)

It then follows that

µ̃(0)
xx (0;ω) =

δ2xx
2π

e−(ω−ω0)2/∆2
xx , (3.53)

µ̃(0)
yy (0;ω) =

δ2yy
2π

e−(ω−ω0)2/∆2
yy . (3.54)

On substituting from Eqs. (3.49), (3.50), (3.53) and (3.54) into Eq. (3.44),
we obtain for the on-axis spectral density in the far zone the formula

S(∞)(0, 0, z;ω) =
A

2

(

k

z

)2

e−(ω−ω0)2/∆2

×
{

a2δ2xxe
−(ω−ω0)2/∆2

xx + b2δ2yye
−(ω−ω0)2/∆2

yy

}

.

(3.55)

Using the fact that the on-axis spectral density in the source plane is given
by the expression

S(0)(0, 0, 0;ω) = S(0)
x (0, 0, 0;ω) + S(0)

y (0, 0, 0;ω), (3.56)

= 2Ae−(ω−ω0)2/∆2
, (3.57)

we can write the on-axis far-zone spectral density in the form

S(∞)(0, 0, z;ω) = M(ω)S(0)(0, 0, 0;ω), (3.58)

where the spectral modifier function M is defined as

M(ω) =
1

4

( ω

zc

)2 {

a2δ2xxe
−(ω−ω0)2/∆2

xx + b2δ2yye
−(ω−ω0)2/∆2

yy

}

. (3.59)

Eq. (3.58) shows that the on-axis spectrum in the far-zone equals the on-
axis spectrum in the source plane modified by the function M(ω). We
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Figure 3.3: The on-axis spectrum in the source plane (black curve), and
two on-axis spectra in the far zone. All spectra are normalized to unity.
In this example a = 1, b = 2a, δxx = 1, δyy = 2, ∆ = ω0/10, ∆xx = 0.1
and ∆yy = 0.04 [far-zone spectrum (a)] or 0.2 [far-zone spectrum (b)].

note that the spectral modifier function contains several parameters: the
beam sizes a and b, the coherence lengths δxx and δyy and the spectral
widths ∆xx and ∆yy. Each of these parameters can give rise to changes
of the spectrum on propagation. An example of the far-zone spectrum is
shown in Fig. 3.3. It is seen the far-zone spectrum can be significantly
narrower than that in the source plane (case a). Also, the maximum of
the far-zone spectrum can be moved to higher frequencies (case b).

3.6.2 The far-field spectral degree of coherence

Let us next consider a source with two equal diagonal correlation coef-

ficients, i.e. µ
(0)
xx (ρ) = µ

(0)
yy (ρ). It is also assumed that the two spectral

densities are Gaussian functions with equal maxima, but with different
widths, viz.

S(0)
x (ρ′) = Ae−ρ′2/2σ2

x , (3.60)

S(0)
y (ρ′) = Ae−ρ′2/2σ2

y . (3.61)

We have from Eq. (3.29) that in this the spectral degree of coherence of
the field at two far field points is given by the formula

η(∞)(rs1, rs2) =
σ2
xe

−2(kσx sin θ)2 + σ2
ye

−2(kσy sin θ)2

σ2
x + σ2

y

, (s1⊥ = −s2⊥).(3.62)
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Figure 3.4: The spectral degree of coherence of a beam generated by a
quasi-homogeneous source in the far field. The two symmetrically located
observation points each make an angle θ with the beam axis (see Fig. 3.2).
The normalized widths of the two spectral densities are kσx = 20 and
kσy = 10, 25, 40.

An example of the angular dependence of η(∞)(rs1, rs2) is shown in Fig. 3.4
for various values of the scaled transverse coherence length kσy. It is seen
that the width of the spectral degree of coherence decreases when the
width of the spectral density kσy increases.

3.6.3 The far-field spectral degree of polarization

As our last example, we consider a source in which the two components of
the electric field have an identical spectral density, but are uncorrelated,
i.e.,

S(0)
x (ρ′) = S(0)

y (ρ′),

µ(0)
xy (ρ

′) = µ(0)
yx (ρ

′) = 0. (3.63)

Also, we assume that both non-zero correlation coefficients have a Gaus-
sian form

µ
(0)
ii (ρ′) = e−ρ′2/2δ2ii , (i = x, y). (3.64)

It follows immediately from Eq. (3.6) that the field everywhere in the
source plane is completely unpolarized, i.e. the degree of polarization
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Figure 3.5: The spectral degree of polarization of a beam generated by a
quasi-homogeneous source at a far-field axial point. In this example one
effective coherence length is taken to be δxx = 0.5 cm, whereas δyy =

varies between 0 and 3 cm. The two spectral densities S
(0)
x and S

(0)
y are

assumed to be equal.

P (0)(ρ′) = 0. However, in the far zone that is generally not the case (see
also [James, 1994]). We have from Eq. (3.64) that

µ̃
(0)
ii (0) =

1

2π
δ2ii. (3.65)

Under these circumstances, the expression for the far-zone degree of po-
larization of the beam on the axis, Eq. (3.43), reduces to a function of the
two effective correlation lengths only, namely

P (∞)(0, 0, z) =

∣

∣δ2xx − δ2yy
∣

∣

δ2xx + δ2yy
. (3.66)

An example of the behavior of P (∞)(0, 0, z) is shown in Fig. 3.5. It is seen
that the far-field degree of polarization varies strongly with the correlation
length δyy, and can take on all possible values between zero and unity.

3.7 Conclusions

We have studied the far-zone properties of electromagnetic beams that
are generated by planar, secondary quasi-homogeneous sources. Two reci-
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procity relations were derived. The first one relates the spectral density in
the far zone to the Fourier transforms of the correlation coefficients in the
source plane. The second one relates the spectral degree of coherence in
the far zone to the Fourier transforms of both the spectral densities and
of the correlation coefficients of the source field. We applied these two
relations to demonstrate how the spectral density, the coherence proper-
ties and the state of polarization can all change on propagation. While
this manuscript was being finalized, a paper [Rodŕıguez-Herrera and

Tyo, 2012] appeared in which some related results were reported.

APPENDIX A: Derivation of Eq. (3.20)

For a beam-like field generated by a planar, secondary source, we have,
according to the first Rayleigh diffraction formula [Mandel and Wolf,
1995, Sec. 3.2.5]

Ei(r) =
−1

2π

∫

z=0
E

(0)
i (ρ′)

∂

∂z

[

eikR

R

]

d2ρ′, (A-1)

where R = |(ρ′, 0)− r|. If r represents a point in the far zone, we have, to
a good approximation, that

R ≈ r − ρ′ · s⊥. (A-2)

Hence,

eikR ≈ eikre−ikρ′·s⊥ . (A-3)

It then follows that

∂

∂z

[

eikR

R

]

=
∂r

∂z

∂

∂r

[

eikR

R

]

, (A-4)

≈
ik

r
cos θ eikre−ikρ′·s⊥ , (A-5)

where we have made use of the facts that in the far zone r ≫ λ, together
with z = r cos θ. On making use of Eq. (A-5) in Eq. (A-1) we find that

E
(∞)
i (r) =

−ik

2π
cos θ

eikr

r

∫

z=0
E

(0)
i (ρ′) e−ikρ′·s⊥ d2ρ′, (A-6)

= −2πik cos θ
eikr

r
Ẽ

(0)
i (ks⊥), (A-7)
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where we used the definition of the Fourier transform, Eq. (3.18). On
substituting from Eq. (A-7) into Eqs. (3.1) and (3.16) we obtain the result

W
(∞)
ij (r1s1, r2s2) = 〈E

(∞)∗
i (r1s1)E

(∞)
j (r2s2)〉, (A-8)

= (2πk)2 cos θ1 cos θ2

〈Ẽ
(0)∗
i (ks1⊥)Ẽ

(0)
j (ks2⊥)〉

eik(r2−r1)

r1r2
, (A-9)

= (2πk)2 cos θ1 cos θ2

W̃
(0)
ij (−ks1⊥ , ks2⊥)

eik(r2−r1)

r1r2
, (A-10)

which is Eq. (3.20).



Chapter 4

Correlation Singularities of
Partially Coherent
Electromagnetic Beams

This chapter is based on the following publication:

• S. B. Raghunathan, H. F. Schouten, and T. D. Visser, “Correla-
tion singularities of partially coherent electromagnetic beams”, Op-
tics Letters 37, pp. 4179-4181 (2012).

Abstract
We demonstrate that coherence vortices, singularities of the correlation
function, generally occur in partially coherent electromagnetic beams. In
successive cross-sections of Gaussian Schell-model beams, their locus is
found to be a closed string. These coherence singularities have implications
for both interference experiments and correlation of intensity fluctuations
measurements performed with such beams.
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4.1 Introduction

The subject of singular optics [Nye, 1999; Soskin and Vasnetsov, 2001]
is the structure of wave fields in the vicinity of optical vortices and polar-
ization singularities. Most studies deal with monochromatic, and hence
fully coherent, light.1 Many wave fields that are encountered in practice,
however, are partially coherent. Examples are the fields generated by
multi-mode lasers and fields that have traveled through a random medium
such as the atmosphere. The statistical properties of these fields are
described by correlation functions, such as the spectral degree of coher-
ence [Mandel and Wolf, 1995; Gbur and Visser, 2010]. A few years
ago it was pointed out that these correlation functions can also exhibit
singular behavior [Schouten et al., 2003a]. Such correlation singulari-
ties, or “coherence vortices,” occur at pairs of points at which the fields
are completely uncorrelated. Coherence vortices have since been found in

z = 0

z

ρρ

Figure 4.1: Illustrating the notation. The vector ρ = (x, y) indicates a
transverse position.

optical beams [Gbur and Visser, 2003b], focused fields [Fischer and

Visser, 2004], and in fields produced by Mie scattering [Marasinghe

et al., 2010]. These studies are all limited to scalar fields. Although the
concept of a spectral degree of coherence has been generalized to electro-
magnetic beams [Wolf, 2007], the possible existence of electromagnetic
coherence singularities in practical physical systems has not yet been ex-
amined. In this Chapter we show that these singularities occur quite
generally in a wide class of electromagnetic beams, namely those of the
Gaussian Schell-model type. We describe their evolution in successive
cross-sections of these beams, and their physical implications.

1This qualification applies, strictly speaking, only to scalar fields.
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4.2 Cross-spectral density of a random
electromagnetic field

The state of coherence and polarization of a random beam that propagates
along the z-axis is characterized by the electric cross-spectral density ma-
trix, which is defined as [Wolf, 2007]

W(r1, r2, ω) =

(

Wxx(r1, r2, ω) Wxy(r1, r2, ω)
Wyx(r1, r2, ω) Wyy(r1, r2, ω)

)

, (4.1)

where

Wij(r1, r2, ω) = 〈E∗

i (r1, ω)Ej(r2, ω)〉, (i, j = x, y). (4.2)

Here Ei(r, ω) is a Cartesian component of the electric field at a point r at
frequency ω, of a typical realization of the statistical ensemble representing
the beam. The spectral degree of coherence η(r1, r2, ω) of the field is
defined as

η(r1, r2, ω) =
TrW(r1, r2, ω)

[TrW(r1, r1, ω) TrW(r2, r2, ω)]
1/2

, (4.3)

where Tr denotes the trace. A correlation singularity occurs at pairs of
points for which

η(r1, r2, ω) = 0. (4.4)

(From here on the ω-dependence of the various quantities is suppressed.)
The physical meaning of correlation singularities is twofold. First, when
the fields at two points r1 and r2 are combined in Young’s experiment,
the visibility of the ensuing interference fringes depends on the value of
η(r1, r2) [Wolf, 2007, Sec. 9.2]. At a singularity, where η(r1, r2) = 0,
the fringe visibility will be zero. Second, in Hanbury Brown-Twiss ex-
periments one determines the correlation of intensity fluctuations at two
points [Brown and Twiss, 1956]. These correlations depend on the so-
called degree of cross-polarization [Volkov et al., 2008]. It is easily seen
that correlation singularities coincide with a divergence of the degree of
cross-polarization. The consequences of this are discussed by [Hassinen

et al., 2011]. In view of these effects and because of the practical impor-
tance of partially coherent beams, it is therefore of interest to ask whether
they contain coherence vortices.
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Figure 4.2: The locus of equal modulus of Wxx and Wyy (red curve), and
the contours of Arg[Wxx] − Arg[Wyy] = π (mod 2π). Their intersections,
ρA and ρB, are correlation singularities. In this example Ax = 1, Ay = 3,
λ = 632.8 nm, σ = 1 mm, δxx = 0.2 mm, δyy = 0.09 mm, z = 1.4 m, and
ρ1 = (2.5, 0) mm.

4.3 Correlation singularities

According to Eq. (4.3) coherence vortices occur in a transverse plane z
when both

|Wxx(ρ1,ρ2, z)| = |Wyy(ρ1,ρ2, z)|, (4.5)

Arg[Wxx(ρ1,ρ2, z)]−Arg[Wyy(ρ1,ρ2, z)] = π

(mod 2π). (4.6)

For fixed ρ1 and z, the points ρ2 that satisfy condition (4.5) generally
form a line. The same holds true for the solutions of Eq. (4.6). We
therefore expect the simultaneous solutions, i.e. the coherence vortices, to
be isolated points in the two-dimensional ρ2-plane. Note that when the
fields at the two points that form an electromagnetic coherence singularity
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are combined in Young’s experiment, the local modulations of |Ex|
2 and

|Ey|
2 on the observation screen have equal magnitude and opposite sign,

resulting in zero visibility of the total spectral density.
As we will show by example, such correlation singularities generically

occur in Gaussian Schell-model beams. Such beams form a wide class of
partially coherent electromagnetic beams for which in the source plane
z = 0 (see Fig. 4.1) the elements of the cross-spectral density matrix read

Wij(ρ1,ρ2, z = 0) =
√

Si(ρ1)Sj(ρ2)µij(ρ2 − ρ1), (4.7)

with the spectral densities Si(ρ) = Wii(ρ,ρ) and the degree of correlation
µij(ρ2 − ρ1) both Gaussian functions, i.e.

Si(ρ) = A2
i exp(−ρ2/2σ2

i ), (4.8)

µij(ρ2 − ρ1) = Bij exp[−(ρ2 − ρ1)
2/2δ2ij ]. (4.9)

The parameters Ai, Bij , σi and δij are independent of position, but may
depend on the frequency ω. In addition, they have to satisfy certain
contraints to ensure that the field is beam-like [Wolf, 2007]. As the
beam propagates to a plane z > 0, and if we take σx = σy = σ, the matrix
elements become [Wolf, 2007] 2

Wij(ρ1,ρ2, z) =
AiAjBij

∆2
ij(z)

exp

[

−
(ρ1 + ρ2)

2

8σ2∆2
ij(z)

]

× exp

[

−
(ρ2 − ρ1)

2

2Ω2
ij∆

2
ij(z)

]

exp

[

ik(ρ2
2 − ρ2

1)

2Rij(z)

]

, (4.10)

where

∆2
ij(z) = 1 + (z/kσΩij)

2, (4.11)

1

Ω2
ij

=
1

4σ2
+

1

δ2ij
, (4.12)

Rij(z) = [1 + (kσΩij/z)
2]z. (4.13)

We note that the matrix elements of Eq. (4.7) are real-valued and positive.
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Figure 4.3: Color-coded phase plot of the degree of coherence η(ρ1,ρ2, z)
in the plane z = 1.4 m. The singularities at ρA and ρB have opposite
topological charge.
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Figure 4.4: Normalized spectral density of the beam in the cross-section
z = 1.4 m. The points ρ1, ρA, and ρB are indicated by the three white
dots.
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Therefore, according to Eq. (4.6), there are no correlation singularities
in the source plane. However, as we will now show, such singularities are
created on propagation. In a cross-section of the beam we choose the
point ρ1, and calculate for which points ρ2 both Eqs. (4.5) and (4.6) are
satisfied. An example is shown in Fig. 4.2, in which the intersections of
the curves, labeled ρA and ρB, indicate two simultaneous solutions.That
these points are indeed coherence vortices is also evidenced by Fig. 4.3.
At the two singular points all phase contours coincide. It is seen that
η(ρ1,ρA, z) and η(ρ1,ρB, z) have opposite topological charge, namely +1
and −1, respectively [Nye, 1999]. That the singularities formed by the
pairs (ρ1,ρA, z) and (ρ1,ρB, z) lie well within the region of appreciable
intensity is shown in Fig. 4.4 in which the normalized spectral density of
the beam is plotted, together with the three points ρ1, ρA, and ρB. It is
to be noted that for scalar Gaussian Schell-model beams [Mandel and

Wolf, 1995, Eq. 5.6-91], such singularities do not exist.
When the cross-sectional plane z is taken close to the source plane and

is then gradually moved away, there first are no coherence singularities,
until the pair (ρ1,ρA, z) and (ρ1,ρB, z) is created. This observation ex-
plains the opposite topological charge of the two coherence singularities,
because, just as for “ordinary” phase singularities, topological charge is
conserved in the creation process [Diehl and Visser, 2004]. When the
plane z is taken further away from the source, the opposite takes place:
the points ρA and ρB move closer together until they eventually annihi-
late. This is connected to the fact that as z → ∞ condition (4.6) can no
longer be satisfied.

The evolution of the pair of singularities (ρ1,ρA, z) and (ρ1,ρB, z)
along the direction of propagation is shown in Fig. 4.5. The surface cor-
responding to Eq. (4.5) is depicted in green (“equal amplitude”), whereas
the surfaces corresponding to Eq. (4.6) are depicted in red (“opposite
phase”). It is seen that the singularities, i.e. the intersection of these
surfaces, form a closed “string” or loop in the direction of the beam, with
one half of the string formed by ρA and the other by ρB, having opposite
topological charge. It follows from Eqs. (4.6) and (4.13) that the loca-
tion of correlation singularities depends crucially on the parameters δxx

2The one but last minus sign of Eq. 4.10 on p. 184 should be a plus sign as derived
in the Appendix of this chapter.
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and δyy, the transverse coherence length of the electric field components
Ex and Ey, respectively. Indeed, if we increase δyy from 0.09 mm (as in
all previous examples), to 0.12 mm, the string of singularities becomes
markedly shorter, as is shown in Fig. 4.6. For a value near δyy = 0.13 mm
the string disappears.

4.4 Conclusion

In conclusion, we have demonstrated that a new type of correlation sin-
gularities, namely an electromagnetic coherence vortex, generically occurs
in partially coherent beams of the Gaussian Schell-model type. In con-
secutive cross-sections the singularities form a closed loop. At the end
points of the loop the singularities are created or annihilated pairwise.
The presence of these singularities have profound consequences for inter-
ference experiments performed with partially coherent beams.

Appendix - The cross-spectral density matrix in
the far-zone

In this Appendix we derive an expression for the cross-spectral density
matrix in the far-zone. This matrix is given by the formula

W(ρ1,ρ2, z) =

∫∫

z=0
W(0)(ρ′

1,ρ
′

2, z)G
∗(ρ1 − ρ′

1, z)

×G(ρ2 − ρ′

2, z) d
2ρ1d

2ρ2. (A-1)

Here the paraxial Green’s function reads,

G(ρ1 − ρ′

1, z) =
−ik

2πz
eik(ρ1−ρ′

1)
2/2z. (A-2)

The cross-spectral density matrix in the source plane is defined as

W
(0)
ij (ρ′

1,ρ
′

2) =

√

S
(0)
i (ρ′

1)

√

S
(0)
j (ρ′

2) µ
(0)
ij (ρ′

2 − ρ′

1), (A-3)

Here S
(0)
i and S

(0)
j are the spectral densities of the electric field components

Ei and Ej at the points ρ′
1 and ρ′

2 respectively. µ
(0)
ij is the correlation
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coefficient between the electric field components Ei and Ej at the points
ρ′
1 and ρ′

2. They are defined as

S
(0)
i (ρ′

1) = A2
i e

−ρ′2
1 /2σ2

i , (A-4)

S
(0)
j (ρ′

2) = A2
je

−ρ′2
2 /2σ2

j , (A-5)

µ
(0)
ij (ρ′

2 − ρ′

2) = Bije
(ρ′

2−ρ′

1)
2/2δ2ij . (A-6)

where Ai, Bij , σi and δij are constants which are independent of position,

but may depend on the frequency. Since µ
(0)
xx (0) = µ

(0)
yy (0) = 1, it follows

that

Bij = 1 when i = j. (A-7)

Since W is a Hermitian positive definite matrix,

|Bij | ≤ 1 when i 6= j, (A-8)

Bij = B∗

ij , (A-9)

δij = δji. (A-10)

Next, we assume that σx = σy = σ, and thus

W
(0)
ij (ρ′

1,ρ
′

2) = AiAj Bij e
−ρ′2

1 /4σ2
e−ρ′2

2 /4σ2
e(ρ

′

2−ρ′

1)
2/2δ2ij . (A-11)

Hence,

W(ρ1,ρ2, z) =

(

k

2πz

)2

AiAj Bij

∫∫

e−(ρ′2
1 +ρ′2

2 )/4σ2
e(ρ

′

2−ρ′

1)
2/2δ2ij

× e−ik(ρ1−ρ′

1)
2/2zeik(ρ2−ρ′

2)
2/2z d2ρ1d

2ρ2. (A-12)

Next we make the change of variables,

R(−) = ρ′
2 − ρ′

1,

R(+) = ρ′
2 + ρ′

1.

(A-13)

The inverse transformations read

ρ′
1 =

R(+)−R(−)

2 ,

ρ′
2 =

R(+)+R(−)

2 .

(A-14)
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The Jacobian of this transformation is the modulus of the determinant of
the 4× 4 matrix

J =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ρ′1x/∂R
(+)
x ∂ρ′1x/∂R

(+)
y ∂ρ′1x/∂R

(−)
x ∂ρ′1x/∂R

(−)
y

∂ρ′1y/∂R
(+)
x ∂ρ′1y/∂R

(+)
y ∂ρ′1y/∂R

(−)
x ∂ρ′1y/∂R

(−)
y

∂ρ′2x/∂R
(+)
x ∂ρ′2x/∂R

(+)
y ∂ρ′2x/∂R

(−)
x ∂ρ′2x/∂R

(−)
y

∂ρ′2y/∂R
(+)
x ∂ρ′2y/∂R

(+)
y ∂ρ′2y/∂R

(−)
x ∂ρ′2y/∂R

(−)
y

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

=

∣

∣

∣

∣

∣

∣

∣

∣

1/2 0 −1/2 0
0 1/2 0 −1/2
1/2 0 1/2 0
0 1/2 0 1/2

∣

∣

∣

∣

∣

∣

∣

∣

,

= 1/4. (A-15)

Since

ρ′2
1 = 1

4

[

R(+)2 +R(−)2 − 2R(+) ·R(−)
]

,

ρ′2
2 = 1

4

[

R(+)2 +R(−)2 + 2R(+) ·R(−)
]

,

(A-16)

it follows that

e−(ρ′2
1 +ρ′2

2 )/4σ2
= e−[R(+)2+R(−)2]/8σ2

, (A-17)

e−(ρ′

2−ρ′

1)
2/2δ2ij = e−R(−)2/2δ2ij , (A-18)

e−ik(ρ1−ρ′

1)
2/2z = e−ikρ2

1/2z e−ik[R(+)2+R(−)2−2R(+)·R(−)]/8z

× eik[R
(+)−R(−)]·ρ1/2z, (A-19)

eik(ρ2−ρ′

2)
2/2z = eikρ

2
2/2z eik[R

(+)2+R(−)2+2R(+)·R(−)]/8z

× e−ik[R(+)+R(−)]·ρ2/2z. (A-20)

Let us define,

β =

(

k

2πz

)2 AiAjBij

4
, (A-21)
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Using Eqs. (A-17)–(A-21), we obtain

Wij(ρ1,ρ2, z) = βeik(ρ
2
2−ρ2

1)/2z

∫∫

e−R(−)2/2δ2ij e−(R(+)2+R(−)2)/8σ2

× e−ikρ2
1/2ze−ik[R(+)2+R(−)2−2R(+)·R(−)]/8z

× eik[R
(+)−R(−)]·ρ1/2z

× eikρ
2
2/2z eik(R

(+)2+R(−)2+2R(+)·R(−))/8z

× e−ik[R(+)+R(−)]·ρ2/2z d2R(+)d2R(−). (A-22)

Now we define

1

Ω2
ij

=
1

4σ2
+

1

δ2ij
. (A-23)

Applying Eq. (A-23) in Eq. (A-22), we obtain

Wij(ρ1,ρ2, z) = β eik(ρ
2
2−ρ2

1)/2z

∫∫

e−R(−)2/2Ω2
ij e−ikR(−)·(ρ1+ρ2)/2ze−R(+)2/8σ2

× e{[ikR
(+)·(ρ1−ρ2)/2z]+[ikR(+)·R(−)/2z]} d2R(+)d2R(−).

(A-24)

Eq. (A-24) can be re-written as

Wij(ρ1, ρ2, z) = β eik(ρ
2
2−ρ2

1)/2z

×

∫

e−R(−)2/2Ω2
ij e−ikR(−)·(ρ1+ρ2)/2z d2R(−)

×

∫

e−R(+)2/8σ2
eikR

(+)·[R(−)+(ρ1−ρ2)]/2z d2R(+).

(A-25)
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The latter part of Eq. (A-25), is in fact the Fourier transform of a Gaussian
function. Thus, the Fourier integral part of Eq. (A-25) reduces to
∫ +∞

−∞

e−R(+)2/8σ2
eikR

(+)·[R(−)+(ρ1−ρ2)]/2z d2R(+)

=

∫ +∞

−∞

e−x2/8σ2
eikaxdx×

∫ +∞

−∞

e−y2/8σ2
eikbydy

= 4σ22πe−2(a2+b2)k2σ2
,

= 8πσ2

{

e−(ρ1−ρ2)
2k2σ2/2z2 e−R(−)2k2σ2/2z2 e−R(−)·(ρ1−ρ2)k

2σ2/z2
}

.

(A-26)

Hence

Wij(ρ1,ρ2, z, ω) = βeik(ρ
2
2−ρ2

1)/2z 8πσ2e−(ρ1−ρ2)
2k2σ2/2z2

×

∫

e−R(−)2/2Ω2
ij e−ikR(−)·(ρ1+ρ2)/2z

× e−R(−)2k2σ2/2z2 e−R(−)·(ρ1−ρ2)k
2σ2/z2 d2R(−).

(A-27)

Now let us set,

−

[

R(−)2k2σ2

2z2
+

R(−)2

2Ω2
ij

+
R(−) · (ρ1 − ρ2)k

2σ2

z2

]

=

−α
[

R(−)2 +R(−) · β̂
]

, (A-28)

where

α =
k2σ2

2z2
+

1

2Ω2
ij

, (A-29)

β̂ = (ρ1 − ρ2)
k2σ2

αz2
. (A-30)

On substituting from Eqs. (A-28) – (A-30) into Eq. (A-27) we obtain

Wij(ρ1,ρ2, z, ω) = 8πσ2βeik(ρ
2
2−ρ2

1)/2z e−(ρ1−ρ2)
2k2σ2/2z2 eαβ̂

2
/4

×

∫

e−α[R(−)+β̂/2]
2

e−ikR(−)·(ρ1+ρ2)/2z d2R(−).

(A-31)
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Next we apply a change of variables where

R = R(−) +
β̂

2
. (A-32)

The Jacobian of this transformation is unity. Thus, Eq. (A-31) can be
re-written as

Wij(ρ1,ρ2, z, ω) = 8πσ2β eik(ρ
2
2−ρ2

1)/2z e−(ρ1−ρ2)
2k2σ2/2z2

× eik[ρ
2
2−ρ2

1]k
2σ2/4αz3 eαβ̂

2
/4

×

∫

e−αR2
e−ikR·(ρ1+ρ2)/2z d2R. (A-33)

From the definition of Fourier transform, we can write

∫

e−αR2
e−ikR·(ρ1+ρ2)/2z d2R =

π

α
e−k2(ρ1+ρ2)

2/16αz2 . (A-34)

Applying Eq. (A-34) and using Eqs. (A-21), (A-29), (A-30), (4.11), (4.12)
and Eq. (4.13) in Eq. (A-33) and simplifying, we obtain

Wij(ρ1,ρ2, z) =
AiAjBij

∆2
ij(z)

exp

[

−
(ρ1 + ρ2)

2

8σ2∆2
ij(z)

]

× exp

[

−
(ρ2 − ρ1)

2

2Ω2
ij∆

2
ij(z)

]

exp

[

ik(ρ2
2 − ρ2

1)

2Rij(z)

]

, (A-35)

which is Eq. (4.10).
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Topological Reactions of
Correlation Functions in
Partially Coherent
Electromagnetic Beams

This chapter is based on the following publication:

• S. B. Raghunathan, H. F. Schouten, and T. D. Visser, “Topological
reactions of correlation functions in partially coherent electromag-
netic beams”, J. Opt. Soc. Am. A 30, pp. 582-588 (2013).

Abstract
It was recently shown that so-called coherence vortices, singularities of the
two-point correlation function, generally occur in partially coherent elec-
tromagnetic beams. We study the three-dimensional structure of these
singularities and show that in successive cross-sections of a beam a rich
variety of topological reactions takes place. These reactions involve, apart
from vortices, the creation or annihilation of dipoles, saddles, maxima
and minima of the phase of the correlation function. Since these reac-
tions happen generically, i.e. under quite general conditions, these ob-
servations have implications for interference experiments with partially
coherent, electromagnetic beams.
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5.1 Introduction

It is well known that wave fields exhibit remarkable structures near their
zeros of intensity [Nye and Berry, 1974]. These zeros may exist briefly,
for example when pulsed fields are interfering with each other, or they
may be permanent, when the fields are monochromatic. At such a zero,
the amplitude of the field vanishes and its phase is, therefore, undefined
or singular. Around these phase singularities the phase typically has a
vortex-like behavior. Apart from phase singularities, phase dipoles, phase
extrema and phase saddles may also occur. These different structures
can exist arbitrarily close to one another, and can in fact be created or
annihilated in so-called topological reactions, see for example [Freund,
2001; Freund, 2000; Freund and Kessler, 2001; Molina-Terriza

et al., 2001; Bekshaev et al., 2004; Bezryadina et al., 2006].
The most often-studied phase singularities are those of scalar wave

fields, the Airy rings of focal fields being a prime example, see [Born

and Wolf, 1999, Sec. 8.8.4] and [Karman et al., 1997]. Singularities
of the Poynting vector have also been analyzed. These occur in Som-
merfeld’s diffraction problem [Born and Wolf, 1999, Sec. 11.5], in fo-
cused fields [Boivin et al., 1967], and in the transmission of light by sub-
wavelength apertures [Schouten et al., 2003b; Schouten et al., 2004b].
Singularities of individual Cartesian components of the electric field vec-
tor have also been described in focal fields [Diehl and Visser, 2004].
Studies of this type (and also of polarization singularities, with which we
will not be concerned here) have given rise to the relatively new discipline
of singular optics. Reviews are presented in [Nye, 1999; Soskin and

Vasnetsov, 2001].
In recent years, singular optics has been expanded to include par-

tially coherent wave fields. Many fields that are encountered in practice,
such as those generated by multi-mode lasers or fields that have traveled
through atmospheric turbulence, belong to this category. In such fields
the phase is a random quantity and therefore they do not contain “tradi-
tional” phase singularities. However, the statistical properties of these
fields are described by two-point correlation functions, which do have
a definite phase [Mandel and Wolf, 1995; Wolf, 2007; Gbur and

Visser, 2010]. A few years ago it was pointed out that these functions
can also exhibit singular behavior [Schouten et al., 2003a]. Such cor-
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relation singularities, or “coherence vortices,” occur at pairs of points at
which the field is completely uncorrelated. Coherence vortices have since
been found in optical beams [Gbur and Visser, 2003b; Bogatyryova

et al., 2003; Palacios et al., 2004; Swartzlander Jr and Schmit,
2004; Maleev et al., 2004; Wang et al., 2006b; Swartzlander Jr

and Hernandez-Aranda, 2007; Van Dijk and Visser, 2009], focused
fields [Fischer and Visser, 2004], in the far-zone of quasi-homogeneous
sources [Van Dijk et al., 2009], and in fields produced by Mie scatter-
ing [Marasinghe et al., 2010; Marasinghe et al., 2012]. Some of these
studies have been carried out in the space-time domain, others in the
space-frequency domain. Here we will use the latter approach. This means
that the main two-point correlation function we will be dealing with is the
spectral degree of coherence [Mandel and Wolf, 1995]. Just like their
monochromatic counterparts, coherence vortices can also undergo topolog-
ical reactions. Thus far such reactions have hardly been studied. Notable
exceptions are [Wang and Takeda, 2006; Gu and Gbur, 2009; Maras-

inghe et al., 2011].
In all the coherence studies mentioned above, the analysis was limited

to scalar wave fields. Only recently has it has been shown that coher-
ence singularities occur generically in partially coherent electromagnetic
beams [Raghunathan et al., 2012b]. For the wide class of electromagnetic
Gaussian Schell-model (GSM) beams [Wolf, 2007] it was demonstrated
that, even in the absence of ordinary phase singularities, the spectral de-
gree of coherence typically displays singular behavior. (Notice that scalar
GSM beams have no such coherence singularities.)

In this article we demonstrate that electromagnetic GSM beams are
intrinsically three-dimensional in nature. We illustrate this by examining
the structure of surfaces of equal-phase of the correlation function. In
particular, this three-dimensional character implies that different beam
cross-sections have different topological features [Freund, 2001]. Thus,
an observer moving through successive cross-sectional planes will notice
a sequence of topological reactions. From the conservation of topological
charge and topological index [Nye, 1999; Strogatz, 1994], it is to be
expected that the creation or annihilation of coherence vortices involves
phase saddles. We find this to be the case, but reactions between phase ex-
trema (maxima and minima), dipoles and phase saddles of the correlation
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z = 0

z

ρρ

Figure 5.1: Illustrating the notation. A partially coherent, electromagnetic
Gaussian-Schell model beam propagates in the z-direction. The source
plane is taken to be at z = 0. The vector ρ = (x, y) indicates a transverse
position.

function are also observed. As we will show, a rich variety of topological
reactions occurs on propagation of these partially coherent, electromag-
netic GSM beams. The observation that different cross-sections of a GSM
beam have different coherence properties, has profound implications for
their use in scattering [Van Dijk et al., 2010] and interference experi-
ments [Wolf, 2007].

5.2 Partially coherent electromagnetic beams

The properties of partially coherent, electromagnetic beams are described
in detail in a textbook by Wolf [Wolf, 2007]. Here we summarize some of
the main definitions. The state of coherence and polarization of a random
beam that propagates along the z-axis is characterized by its electric cross-
spectral density matrix

W(r1, r2, ω) =

(

Wxx(r1, r2, ω) Wxy(r1, r2, ω)
Wyx(r1, r2, ω) Wyy(r1, r2, ω)

)

, (5.1)

where

Wij(r1, r2, ω) = 〈E∗

i (r1, ω)Ej(r2, ω)〉, (i, j = x, y). (5.2)

Here Ei(r, ω) is a Cartesian component of the electric field at a point r at
frequency ω, of a typical realization of the statistical ensemble representing
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the beam, and the angled brackets indicate the ensemble average. The
spectral degree of coherence η(r1, r2, ω) of the field is defined as

η(r1, r2, ω) =
TrW(r1, r2, ω)

[TrW(r1, r1, ω) TrW(r2, r2, ω)]
1/2

, (5.3)

where Tr denotes the trace. A correlation singularity occurs at pairs
of points for which η(r1, r2, ω) = 0. (From now on we suppress the ω-
dependence of the various quantities.)

The presence of correlation singularities in a wave field has several
consequences. First, when the fields at points r1 and r2 are combined in
Young’s experiment, the visibility of the ensuing interference fringes cru-
cially depends on the value of η(r1, r2), see [Wolf, 2007, Sec. 9.2]. At
a singularity, where η(r1, r2) = 0, the fringe visibility will be zero. This
is because the local modulations of |Ex|

2 and |Ey|
2 on the observation

screen have equal magnitude and opposite sign, resulting in a zero visibil-
ity of the total spectral density. Second, in experiments of the Hanbury
Brown-Twiss type one determines the correlation of intensity fluctuations
at two points [Brown and Twiss, 1956]. These higher-order correlations
depend on the so-called degree of cross-polarization [Volkov et al., 2008].
Correlation singularities coincide with a divergence of the degree of cross-
polarization, the consequences of which are discussed in [Hassinen et al.,
2011]. Furthermore, it is to be noted that the phase singularities found in
monochromatic fields and the coherence singularities of partially coherent
fields are not independent of one another. The former can evolve into the
latter when the coherence of the field decreases [Gbur et al., 2004; Gbur

and Visser, 2006; Visser and Schoonover, 2008; Gbur and Swart-

zlander, 2008].
Since we are dealing with beams, it is natural to investigate the possible

occurence of coherence vortices in a transverse plane z = constant (see
Fig. 5.1). We therefore set r1 = (ρ1, z) and r2 = (ρ2, z). According to
Eq. (5.3) a coherence vortex exists when both

|Wxx(ρ1,ρ2, z)| = |Wyy(ρ1,ρ2, z)|, (5.4)

and

arg[Wxx(ρ1,ρ2, z)]− arg[Wyy(ρ1,ρ2, z)] = π (mod 2π), (5.5)

where arg denotes the argument or phase of the matrix element.



76 5.3. Electromagnetic Gaussian Schell-model beams

5.3 Electromagnetic Gaussian Schell-model
beams

Gaussian Schell-model beams [Wolf, 2007] form a wide class of partially
coherent, electromagnetic beams that includes the lowest-order Gaussian
laser mode. For such beams the elements of the cross-spectral density
matrix in the source plane z = 0 read

Wij(ρ1,ρ2, z = 0) =
√

Si(ρ1)Sj(ρ2)µij(ρ2 − ρ1), (i, j = x, y), (5.6)

with the spectral densities of the two individual components of the electric
field vector Si(ρ) = Wii(ρ,ρ) and the correlation coefficient µij(ρ2 − ρ1)
both assumed to be Gaussian functions, i.e.

Si(ρ) = A2
i exp(−ρ2/2σ2

i ), (5.7)

µij(ρ2 − ρ1) = Bij exp[−(ρ2 − ρ1)
2/2δ2ij ]. (5.8)

The parameters Ai, Bij , σi and δij are independent of position, but may
depend on the frequency ω. In addition, they have to satisfy certain
constraints to ensure that the field is beam-like [Wolf, 2007]. As the
beam propagates to a plane z > 0, and if we take σx = σy = σ, the matrix
elements become (see [Wolf, 2007], where the one but last minus sign of
Eq. (10) on p. 184 should be a plus sign)

Wij(ρ1,ρ2, z) =
AiAjBij

∆2
ij(z)

exp

[

−
(ρ1 + ρ2)

2

8σ2∆2
ij(z)

]

× exp

[

−
(ρ2 − ρ1)

2

2Ω2
ij∆

2
ij(z)

]

exp

[

ik(ρ2
2 − ρ2

1)

2Rij(z)

]

, (5.9)

where

∆2
ij(z) = 1 + (z/kσΩij)

2, (5.10)

1

Ω2
ij

=
1

4σ2
+

1

δ2ij
, (5.11)

Rij(z) = [1 + (kσΩij/z)
2]z, (5.12)
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with k = ω/c the wavenumber associated with frequency ω, c being the
speed of light in vacuum.

We note that the diagonal matrix elements as given by Eq. (5.6) are
real-valued and positive. Therefore, according to Eq. (5.5), there are no
correlation singularities in the source plane. However, as we will illustrate
in section 5.4, such singularities can be created as the beam propagates.

5.4 The three-dimensional structure of
correlation singularities

Let us first analyze the shape of the surfaces of equal phase of the correla-
tion function when there are no coherence singularities present. We choose
a fixed point of reference ρ1 and then calculate the phase of η(ρ1,ρ2, z).
An example for arg η(ρ1,ρ2, z) = π is shown in Fig. 5.2, where two sheets
of this constant phase can be seen. (On increasing the field of view, more
of these sheets become visible.) If we slightly reduce the value of one of the
correlation lengths to δyy = 0.14 mm, the two initially smooth surfaces get
somewhat “dented,” as is shown in Fig. 5.3. These dents corresponds to
minima of the phase in transverse cross-sections of the beam (i.e., planes
for which z = constant), and will be discussed in section 5.5.

On further decreasing δyy to 0.12 mm, correlation singularities come
into existence. These lines of coherence vortices form a closed string, as
shown in Fig. 5.4. For all values of the phase, surfaces of equal phase end
on this string. This can either happen from “within” the string, or from
“outside” of the string. The former leads to a protrusion of the phase
surface, the latter leads to a hole in the surface. As is seen from Fig. 5.5,
both cases happen simultaneously: the string (indicated in green) borders
both a hole and a protrusion of the phase sheet. Notice that the left-hand
sheet is now dented even more.

If we further decrease the value of δyy, the string of coherence vortices
increases in size, and extends to both surfaces of equal phase, as is shown
in Fig. 5.6. The protrusion of Fig. 5.5 has grown in size and now connects
the two sheets. When the value of δyy decreased even more, the string
of singularities gradually moves to the left (i.e., to smaller values of ρ2x),
and only intersects the left-hand phase sheet. The right-hand sheet has
returned to its previous smooth state. This is shown in Fig. 5.7.
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Figure 5.2: Two surfaces for which the phase of η(ρ1,ρ2, z) equals π.
In this case δyy = 0.18 mm. The other parameters are λ = 632.8 nm,
δxx = 0.2 mm, σ = 1 mm, Ax = 1 and Ay=3. The reference point
ρ1 = (2.5, 0) mm.
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Figure 5.3: Two surfaces for which the phase of η(ρ1,ρ2, z) equals π. In
this case δyy = 0.14 mm.
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Figure 5.4: A closed string of coherence singularities (green curve).
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Figure 5.5: Two surfaces for which the phase of η(ρ1,ρ2, z) equals π. In
this case δyy = 0.12 mm. A closed string of coherence vortices (green
curve) has come into existence. The right-hand phase sheet terminates on
the string, creating a hole and a protrusion of the sheet.
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Figure 5.6: A single surface for which the phase of η(ρ1,ρ2, z) equals
π. In this case δyy = 0.11 mm. The string of coherence vortices (green
curve) has expanded, causing the protrusion of Fig. 5.5 to grow. The two
formerly disjointed phase sheets are now connected.
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Figure 5.7: Two surfaces for which the phase of η(ρ1,ρ2, z) equals π. In
this case δyy = 0.06 mm. The string of coherence vortices (green curve)
has moved sideways and now only intersects the left-hand phase sheets.
The two phase sheets are again disconnected.
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Figure 5.8: Phase contours of η(ρ1,ρ2, z) in the plane z = 0.1 m. A
minimum, a maximum and two saddle points (intersections of the red
curves) can be seen. In this and in the following examples we have taken
ρ1 = (2.5, 0) mm, Ax = 1, Ay = 3, σ = 1 mm, δxx = 0.2 mm, δyy =
0.12 mm, and the wavelength λ = 633 nm.

From the complicated three-dimensional nature of the correlation func-
tion as illustrated in Figs. 5.2–5.7 it follows that different transverse cross-
sections of the beam will have quite different topological features. There-
fore an observer moving from one transverse plane to another, witnesses
a series of topological reactions, as will be discussed in the next section.

5.5 Topological reactions

As noted above, the phase of monochromatic fields typically has a vortex-
like behavior around a phase singularity. This is also true for the phase of
the spectral degree of coherence η(ρ1,ρ2, z) around a correlation singular-
ity. On keeping ρ1 fixed, while traversing in a counter-clockwise manner a
closed circuit in the ρ2, z-plane which encompasses a single singularity, the
phase of η(ρ1,ρ2, z) changes by an amount of 2nπ. The non-zero integer n
is called the topological charge. To the singularities (vortices and dipoles)
and to the stationary points (extrema and saddles) of the phase of the cor-
relation function we can also assign a topological index [Nye, 1998], which
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Figure 5.9: Phase of η(ρ1,ρ2, z) at the minimum and at the phase saddle
(visible on the left-hand side in Fig. 5.8), in various cross-sections of the
beam.

is defined as the topological charge of the phase singularities of the vector
field ∇⊥arg[η(ρ1,ρ2, z)], where ∇⊥ denotes differentiation with respect
to ρ2. In topological reactions both the charge and index are conserved
quantities [Strogatz, 1994]. In Table 5.1 they are listed for different
types of points.

Table 5.1: Topological charge and index of singular and stationary points.

charge index

vortex ±1 1
saddle 0 −1
maximum 0 1
minimum 0 1
dipole 0 2

In the following examples we first choose a fixed reference point ρ1, and
then, keeping all other parameters fixed, we calculate the phase contours
of η(ρ1,ρ2, z) in successive cross-sections of the beam.

A first result is shown in Fig. 5.8 for the plane z = 0.1 m. On the left
there is a phase minimum together with a phase saddle (the intersection
of the red contour line with itself), whereas on the right a phase maximum
and another phase saddle can be seen. If the plane of observation is moved
away from the source, the minimum and the nearby saddle gradually move
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Figure 5.10: The position ρ2x of the minimum (blue curve) and that of the
saddle (red curve) in various cross-sections of the beam. Near z = 2.06 m
the minimum and the saddle point annihilate each other.

together and the phase of η(ρ1,ρ2, z) at the minimum and at the saddle
point converge. This goes on until the minimum and the saddle annihilate
each other near z = 2.06 m. This process is illustrated in Figs. 5.9 and 5.10.

From here on we will concentrate on the the maximum and its nearby
saddle point of Fig. 5.8 which, as we will see, go through a rich series of
topological reactions in which both the zero total topological charge and
the zero topological index are conserved. As the plane of observation is
gradually moved away from the source, the saddle decays into a minimum
and two saddle points (near z = 0.89 m). The end result of this reaction
is shown in Fig. 5.11.

On further moving the cross-sectional plane another reaction occurs:
the two phase extrema move closer to each other (along the ρ2x-axis) until
they form a dipole [Hsiung, 1981] with index 2 (near z = 1.18 m), as is
illustrated in Fig. 5.12. A dipole is formed when the cross-sectionial plane
is tangential to the vortex string shown in Fig. 5.4. This dipole imme-
diately decays into two phase vortices with opposite topological charge,
which in successive cross-sections gradually move away from each other
along the ρ2y-direction. The result is depicted in Fig. 5.13. Notice that
two vortices occur whenever the cross-sectional plane intersects the vortex
string at two points.

According to Eq. (5.12), the factor Rij(z) becomes infinite as z → ∞.
This implies that in that limit Eq. (4.6) can no longer be satisfied, since
both diagonal elements of the cross-spectral density matrix become real-
valued and positive. Therefore the correlation vortices must eventually
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Figure 5.11: Phase contours of η(ρ1,ρ2, z) in the plane z = 1.12 m. The
right-hand side phase saddle of Fig. 5.8 has decayed into a minimum and
two saddles (intersections of the two red curves).
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Figure 5.12: Phase contours of η(ρ1,ρ2, z) in the plane z = 1.1808 m,
containing a dipole and two saddle points (intersections of the red curves).
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Figure 5.13: Phase contours of η(ρ1,ρ2, z) in the plane z = 1.4 m, con-
taining two vortices (“coherence singularities”) and two saddle points (in-
tersections of the red curves).
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Figure 5.14: Phase contours of η(ρ1,ρ2, z) in the plane z = 2.4 m, con-
taining a maximum, a minimum and two saddle points (intersections of
the green curves).
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Figure 5.15: Phase contours of η(ρ1,ρ2, z) in the plane z = 3.0 m, con-
taining a maximum and a saddle (intersection of the red curve).
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Figure 5.16: Phase contours of η(ρ1,ρ2, z) in the plane z = 3.33 m, right
after the final topological reaction. There are no more singularities or
stationary points.
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disappear. Indeed we find that near z = 2.35 m the two vortices briefly
form a second dipole, which decays into a maximum and a minimum.
These two phase extrema, together with the two remaining saddle points
are shown in Fig. 5.14.

The next reaction takes place in the plane z = 2.81 m. There the
minimum and the two saddle points merge together to form a single saddle
point. This is illustrated in Fig. 5.15.

The final reaction occurs at z = 3.33 m. The maximum and the
saddle annihilate each other, leaving a field without topological features,
as is depicted in Fig. 5.16.

5.6 Conclusions

We have studied the properties of the correlation function of an elec-
tromagnetic, partially coherent beam of the Gaussian Schell-model class.
Although the spectral density of such beams has no singular points, the
phase of its correlation function does show a rich variety of saddles, ex-
trema, dipoles and vortices. The structure of the correlation function
is found to be essentially three-dimensional. This was illustrated by its
complex-shaped surfaces of equal phase. On smoothly changing a param-
eter that characterizes the beam, these surfaces are first slightly deformed
and then torn when correlation singularities come into existence. Since
different cross-sections of the beam have different topological features,
an observer moving from one transverse plane to another, will witnesses
a series of complicated topological reactions. In all these reactions the
topological charge and the topological index are conserved. We emphasize
that all these reactions are generic, i.e., they occur quite generally and
not just for special choices of the parameters that characterize the beam.
The observation that different cross-sections of partially coherent electro-
magnetic beams have quite different coherence properties has profound
implications for interference and scattering experiments with such beams.
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Chapter 6

Plasmon switching:
Observation of Dynamic
Surface Plasmon Steering by
Selective Mode Excitation
in a Sub-wavelength Slit

This chapter is based on the following publication:

• S. B. Raghunathan, C. H. Gan, T. van Dijk, B. Ea Kim, H. F.
Schouten, W. Ubachs, P. Lalanne, and T. D. Visser, “Plasmon
switching: Observation of dynamic surface plasmon steering by se-
lective mode excitation in a sub-wavelength slit”, Optics Express 20,
pp. 15326-15335 (2012).

Abstract
We report a plasmon steering method that enables us to dynamically con-
trol the direction of surface plasmons generated by a two-mode slit in a
thin metal film. By varying the phase between different coherent beams
that are incident on the slit, individual waveguide modes are excited. Dif-
ferent linear combinations of the two modes lead to different diffracted
fields at the exit of the slit. As a result, the direction in which surface
plasmons are launched can be controlled. Experiments confirm that it is
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possible to distribute an approximately constant surface plasmon intensity
in any desired proportion over the two launching directions. We also find
that the anti-symmetric mode generates surface plasmons more efficiently
than the fundamental symmetric mode.



Chapter 6. Plasmon Switching 91

6.1 Introduction

An electromagnetic field directed at the interface between a metal and
a dielectric can cause the free electrons in the metal to oscillate at the
same frequency as the field. Under the right conditions such a collec-
tive excitation of electrons, known as a surface plasmon (SP), will propa-
gate along the interface, and can be converted back into a freely prop-
agating field when it is scattered by a surface imperfection such as a
ridge or a groove [Raether, 1988]. The wavelength of an SP is much
smaller than the wavelength of the electromagnetic field by which it is
generated. This suggests the possibility of ultra-compact “plasmonic” de-
vices in which information-carrying electromagnetic fields generate SPs
that are then processed before being turned back again into a free field
[Atwater, 2007]. Following the observation of plasmon-enhanced trans-
mission through subwavelength-size hole arrays [Ebbesen et al., 1998]
and single subwavelength apertures [Thio et al., 2001] in metal plates,
numerous research efforts to develop nanoscale plasmonic devices were
triggered. Plasmonic couplers [Steinberger et al., 2007], waveguides
[Maier et al., 2003], interferometers [Gan et al., 2009], lasers [Noginov

et al., 2009] and dichroic splitters [Liu et al., 2011] have already been re-
alized. However, for the field of plasmonics to achieve its full potential, it
is necessary to control the direction in which SPs are launched. Compact
schemes for directional launching of SPs based on geometries such as a
nanoslit with a Bragg resonator [Genet and Ebbesen, 2007], an asym-
metrically illuminated single nanoslit [Wang et al., 2009] and pairs of
nanoslits [Li et al., 2011], and an optimized multi-groove coupler [Baron

et al., 2011] have been proposed and implemented, with extinction ratios
as high as 50. These schemes all rely on some static, built-in asymmetry
that favors a particular direction of SP launching. To address the impor-
tant aspect of flexible directional launching of SPs, an essential feature for
any kind of integrated plasmonic circuitry, we present a generic approach
to dynamically switch plasmons between two channels with a constant
total intensity and with a nanoscale footprint.



92 6.1. Introduction

(b)

A −A

(a)
β (r)

B

β (l)

x

z

s

a

Glass

Gold

0 

1.0 

symmetric

anti-symmetric

sym + anti-sym

|H|2

(a.u.)

Figure 6.1: Principle of the proposed surface plasmon steering method.
(a) A subwavelength slit of width w in a gold film supports only two TM
modes for λ/2 . w . λ: a symmetric mode (s, green curve) and an
anti-symmetric mode (a, blue curve). Three coherent beams, A, -A (with
opposite angle of incidence compared to A and π-phase shifted), and B
are incident on the slit from the glass substrate. (b) Illustrating how a
coherent superposition of the a and s modes can lead to unidirectional SP
launching at a gold-air interface. The first two panels show the intensity
of the magnetic field when the slit is illuminated with either the s or the
a mode. Superposed dotted blue curves show the total magnetic field
scattered on the interface. The length of the white bar in the first panel
indicates the illumination wavelength in vacuum (λ = 600 nm), and the
slit width w is λ/2.
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6.2 Theory

In its simplest form, our approach is depicted in Fig. 6.1, where a narrow
slit in a thin gold film is illuminated from the glass substrate by three co-
herent beams with Transverse Magnetic (TM) polarization. The slit width
is such that for an illumination wavelength λ only two TM modes–one
symmetric (TM0), the other anti-symmetric (TM1)–are non-evanescent.
Beam B is normally incident and therefore only excites the fundamental
TM0 mode. In the path of this beam a piezo element is mounted, allowing
its phase to be varied. Beams A and −A, which have opposite but equal
amplitudes, make an angle of +θ and −θ with B, respectively. They have
the same intensity, but are π−phase shifted with respect to each other. It
follows from symmetry that the combination of these two oblique beams
excites only the TM1 mode [Miyata and Takahara, 2012]. At the slit
exit, both left and right travelling surface plasmons are generated. Their
amplitudes are denoted by β(l) and β(r), respectively. A series of grooves
at 8 µm from either side of the slit converts the SPs back to freely propa-
gating fields that are detected in the far field.

To illustrate how plasmon beam steering may be achieved with a
two-mode nanoslit, Fig. 6.1 shows the interference pattern generated by
an appropriate linear combination of the TM0 and TM1 modes in the
slit. These modes scatter at the slit exit and a complete extinction
of SPs in one launching direction is predicted. The fields are calcu-
lated with a frequency-domain, aperiodic Fourier modal method, incor-
porating perfectly-matched layers (method MM3 in the benchmark arti-
cle Ref. [Besbes et al., 2007]). The distributions of the magnetic field
intensity |H|2 in the near field of the metal-air interface are first shown
for the cases where the same slit is illuminated with either the symmetric
TM0 or the anti-symmetric TM1 mode. To illustrate the phase relation-
ship between the excited SP fields, the total magnetic field Re(H) on the
gold-air interface is superimposed as a dotted red curve. On each side,
the oscillating wave is composed of an SP mode, and a quasi-cylindrical
wave that rapidly decays within a few-wavelengths from the slit [Lalanne
et al., 2009]. For illumination with either the TM0 or the TM1 mode, the
fields on opposite sides of the slit are in phase or π−phase shifted, respec-
tively. Let us adjust the (complex) amplitude of the TM0 mode such that
it excites SPs on the right side of the slit with the same phase and intensity
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as the TM1 mode. It is apparent that the linear combination of the two
modes (Fig. 6.1, lower panel) then gives rise to complete destructive inter-
ference on the left side of the slit whereas constructive interference takes
place on the right side. In the specific example of Fig. 6.1 it is taken that
λ = 600 nm, w = λ/2, and the refractive index of gold nAu = 0.23 + i2.98
(see [Palik, 1998]). The lower panel of Fig. 6.1 clearly shows that the total
field at the gold-air interface is almost null to the left of the slit, indicating
that not only the SP excitation is zero, but also that the excitation of the
accompanying quasi-cylindrical waves is very weak.

As explained, beams A and -A together excite only the TM1 mode,
whereas beam B excites only the TM0 mode. At the slit exit, each mode
can be scattered into radiation that propagates to the far field, or can
be dissipated as absorption loss on the gold surface, or be reflected as
a backward propagating mode in the slit. A part of the absorption loss
is carried by the SPs launched on both sides of the slit. Let the SP
scattering coefficients at the left and right-hand side of the slit for the
two-beam system {A,−A} be Aa and −Aa, respectively. For beam B we
denote the SP scattering coefficient on each side by Bs. To calculate these
coefficients, we use the mode orthogonality of translational-invariant lossy
waveguides [Lalanne et al., 2009], which yields

Aa =

∫

∞

−∞

[E(a)
z (x, z) HSP(x, z)−H(a)(x, z) ESP

z (x, z)] dz, (6.1)

and

Bs =

∫

∞

−∞

[E(s)
z (x, z) HSP(x, z)−H(s)(x, z) ESP

z (x, z)] dz. (6.2)

where the field components [HSP(x, z), ESP
z (x, z)], corresponding to an SP

propagating in the negative x-direction with a unit power-flow at x = 0,

are calculated analytically [Raether, 1988]. Also, [H(a)(x, z), E
(a)
z (x, z)]

and [H(s)(x, z), E
(s)
z (x, z)], are the scattered field components of the com-

bined incident field of beams A and −A, and of the incident beam B alone,
respectively. Note that the integral over z is independent of x, provided
that x corresponds to an abscissa on the right side of the slit (see details
in [Lalanne et al., 2009]).
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Figure 6.2: The calculated SP cross sections σa and σs as defined in
Eqs. (6.3) and (6.4) for a unit Poynting vector of each of the incident
beams. (a) Variation of σa and σs with slit width w. The angles of inci-
dence of the plane waves A, -A are taken to be θ = ±30◦. The two insets
indicate the setup for calculating σa and σs, respectively. (b) Variation of
σa with angle of incidence θ for slit widths w = 300, 320, 350, and 450 nm.
The refractive index of gold nAu = 0.18+ i2.99 for λ = 632.8 nm, is taken
from [PALIK, 1998], and the thickness of the gold film is 200 nm.
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We define

σs = 2|Bs|
2, (6.3)

which has a dimension of length for our two-dimensional case and can be
seen as a SP cross-section [Liu et al., 2008; Verslegers et al., 2010],
by analogy with the scattering or extinction cross-sections defined for
nanoparticles [Bohren and Huffman, 1983]. The factor 2 takes into
account the SPs launched on both sides of the slit. The anti-symmetric
case corresponds to a spatially non-uniform illumination of the slit. Usu-
ally scattering cross sections are defined for incident fields that do not vary
at the scale of the scatterer. However, this Ansatz is not necessary, and
in a consistent manner we may define an anti-symmetric SP cross section

σa = 2|Aa|
2, (6.4)

where the integral Aa is normalized such that the Poynting-vector modulus
of each individual plane wave, A and -A, is one half. On spatial averaging
over the fringe pattern formed by the interference of the two incident
plane waves, the total energy transported by the two-beam combination
is precisely equal to the energy transported by the single plane wave B
in the symmetric case. Finally, note that an SP scattering cross-section
greater than the geometrical cross section of the slit (w) implies that more
energy is converted to SPs than is geometrically incident upon it.

Figure 6.2 summarizes the main results obtained for the cross-sections
at λ = 632.8 nm and for a gold-film thickness of 200 nm. In Fig. 6.2(a) the
influence of the slit width is shown. The calculation of σa is performed by
assuming that the angle of incidence of the plane waves with amplitude
A and -A is θ = 30◦. Starting from w = 0, the SP cross section of the
symmetric case (circles) increases gradually to a maximum value ∼ 60 nm
at w ≈ 300 nm, and then decreases as the slit width is further increased.
The overall behavior is consistent with earlier works on the ability of
isolated slits or grooves to launch SPs [Lalanne et al., 2009]. More
interesting is the anti-symmetric case (crosses) for which the slit is placed
at an anti-node of the interference pattern formed by the two incident
plane waves. For very small slit widths, the incident field on the slit is
virtually null and the TM1 mode is weakly excited. In addition, since
the TM1 mode is below cutoff, the energy transfer towards the upper slit
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aperture is inefficient, and it is only when this mode becomes propagating
(for w ≈ 300 nm) that a rising behavior is observed. Then σa rapidly
becomes significantly larger than σs. This remarkable result (note that
the incident field is null at the slit center for the anti-symmetric case)
attests to the great potential of the TM1 mode to deliver large and steady
SP flows, a property that is rarely used in plasmonic devices [Schuller
and Brongersma, 2009] whose operation mostly rely on the fundamental
TM0 mode and on tiny slits or grooves. [Raether, 1988; Atwater, 2007;
Ebbesen et al., 1998; Thio et al., 2001; Steinberger et al., 2007; Liu
et al., 2011; Genet and Ebbesen, 2007; Wang et al., 2009; Li et al.,
2011; Baron et al., 2011]

Figure 6.2(b) shows the influence of the angle θ on the SP cross section
σa. Starting from θ = 0 (a degenerate asymptotic case for which the
incident field is null), the general trend is an increase of σa to a peak
value for an intermediate angle of incidence, followed by a monotonic
decrease to null for θ = 90◦. This behavior depends only weakly on the
slit width, although we note that as w increases, the angle for maximum SP
excitation is gradually shifted to a less oblique angle of incidence, ranging
from 46◦ > θ > 36◦ for the range of slit widths considered from 300 nm to
450 nm. For θ ≈ 20◦ and w = 450 nm as used in the experiment hereafter,
σa = 100 nm, implying that 22% of the energy directly incident onto the
slit is converted into SPs launched on the upper interface.

Turning our attention back to the plasmon switch (Fig. 6.1), it is clear
that the SP amplitudes β(l) and β(r) of the left and right traveling surface
plasmons may be represented as a linear combination of the SPs excited
by the TM0 and the TM1 mode. It follows that β(l) and β(r) are given by
the expressions

β(l)(δ) = Bs e
iδ +Aa, (6.5a)

β(r)(δ) = Bs e
iδ −Aa, (6.5b)

where δ is a variable phase controlled by the voltage across the piezo
element in the normally incident beam B. As will be seen shortly, the
independent excitation of the two modes, together with the adjustable
phase δ, allows us to control the direction in which the SPs are launched.
By using variable grey filters or by varying the angle of incidence, it is
possible to carefully tune the intensity of the beams to compensate for the
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difference between SP cross-sections σa and σs, and hence set |Bs| = |Aa|.
In that case we have for the two SP intensities I(l)(δ) and I(r)(δ) the
formulas

I(l)(δ) = |β(l)(δ)|2 = 2|Bs|
2(1 + cos δ), (6.6a)

I(r)(δ) = |β(r)(δ)|2 = 2|Bs|
2(1− cos δ). (6.6b)

We note that a) the total plasmon intensity I(l)(δ) + I(r)(δ) = 4|Bs|
2 is

independent of the phase δ, and b) the ratio I(l)(δ)/I(r)(δ) ranges from
zero to infinity when δ is varied. In other words, under precise coherent
illumination, a single slit supporting two propagating modes allows one
to dynamically distribute a fixed surface plasmon flow between left-going
SPs and right-going SPs.

We note that for wider slits, that allow more than two TM modes, one
could use the same scheme to obtain plasmon steering. In such a multi-
mode slit the combination of beams A and -A only excites odd modes,
whereas beam B excites only even modes. Cancellation of the combined
odd modes by the combined even modes at one side of the slit can be
achieved by balancing the amplitudes of the beams. The SPs are then
launched from the other side of the slit. However, in a wider slit the
conversion of incident light into SPs will be less efficient as more light is
directly transmitted.

6.3 Experiment

Figure 6.3 shows the experimental setup with which the proposed steer-
ing of the SP intensities was realized. The linearly-polarized output of a
16 mW He-Ne laser operating at λ = 632.8 nm is first divided into three
beams. Each beam is passed through a combination of quarter-wave plates
and a linear polarizer such that the field at the sample is TM polarized.
To ensure coherent mode excitation, the path difference between the arms
was minimized by use of delay lines in arms B and A. Arm B is normally
incident, whereas arms A and -A are obliquely incident in air at +30◦ and
−30◦, respectively. By mounting the last mirror in arm -A on a microm-
eter linear translator the two oblique arms are made to have a π phase
difference with respect to each other. The last mirror in Arm B is mounted
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Figure 6.3: Sketch of the experimental setup. The sample is illuminated
from the glass-substrate side.
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Figure 6.4: Typical line trace of the CCD camera screen, perpendicular
to the slits



100 6.3. Experiment

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

 

 

Piezo Voltage [V]

S
u

rf
a

ce
 P

la
sm

o
n

 In
te

n
si

ti
e

s 
[a

.u
.]

Phase     [Rad]δ
0 π/2 π 3π/2 2π

Figure 6.5: Experimental results of the proposed plasmon switching
method. The SP intensities I(l)(δ) (red curve) and I(r)(δ) (blue curve)
are shown as a function of the phase δ of arm B or, equivalently, as
a function of the voltage across the piezo element. The total intensity
I(l)(δ) + I(r)(δ) is shown as a dotted grey curve. The error bars indicate
the standard deviation of ten independent measurements.

on top of a piezo element which is connected to a DC voltage source with
a range of 0− 300 V. The voltage across the piezo determines the phase δ
of beam B. In a separate interference experiment with the same laser, the
piezo voltage scale was calibrated in terms of phase, yielding that a 120 V
ramp corresponds to a π−phase shift in δ.

Scanning electron microscopy (SEM) images of the fabricated sample
are shown in the insets of Fig. 6.4. Subwavelength slits with widths vary-
ing between 250 and 650 nm were etched by electron-beam lithography
followed by ion-beam etching in a 200 nm thick gold layer evaporated
onto a 0.5 mm thick fused-silica substrate. On either side of this “central
slit”, at a distance of 8 µm, there is a set of 6 grooves with a 600 nm
center-to-center spacing.

Due to their tiny widths, only the central slits are etched all through-
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out the gold film, whereas the grooves are only partially engraved. To ease
the alignment procedure, there is a reference slit located at a distance of
around 25 µm to the left of each central slit. A 450 nm wide slit, which
supports both the TM0 and TM1 modes, was used for the experimental re-
sults reported hereafter, but similar results have been obtained with other
widths. The 8 µm slit-grooves separation helps suppress the amplitude of
the quasi-cylindrical waves so that the grooves serve only to scatter the
SPs. This ensures that the line trace pattern of the CCD camera in the
far-field is effectively proportional to the intensity of the SPs and is not
contaminated with additional direct-wave contributions [Lalanne and

Hugonin, 2006].
A typical line trace of the CCD camera screen, perpendicular to the

slits is shown in Fig. 6.4. The first low peak on the left (near pixel 70)
is the signal from the indicator slit. The second and fourth peak are the
intensities I(l)(δ) and I(r)(δ) from surface plasmons scattered by the left-
hand grooves and right-hand grooves, respectively. The highest peak is the
intensity transmitted by the central slit. The insets show sample details of
the the central slit and the plasmon grooves made by a scanning electron
microscope.

Experimental results for the 450 nm wide slit are shown in Fig. 6.5,
where the intensities of the left- and right-travelling surface plasmons,
I(l)(δ) and I(r)(δ) are plotted as a function of the voltage across the piezo
element that regulates the phase δ of the normally incident beam. The
agreement with Eqs. (6.6) is very good. It is seen that more than 94%
of the surface plasmons are launched to the left when the piezo voltage
is 80 V, whereas for a voltage of 200 V about 92% is launched to the
right. For intermediate voltage settings, arbitrary ratios of I(l)(δ)/I(r)(δ)
can be obtained, which makes the device act as a variable beam splitter.
The average total intensity I(l)(δ) + I(r)(δ) = 36.6 (dotted grey line).
The attained visibility of 0.82 is limited by several factors, viz. a) the
three beams not being spatially fully coherent due to the relatively low
coherence length of the He-Ne laser, b) the amplitudes of arms A and
-A being different by about 2 − 4%, and c) the amplitude |Bs| differing
from |Aa| by about 2 − 5%. Notice however, that the sum of the two SP
intensities is rather constant, with a mean value of 36.6 and a relative
standard deviation less than 7% over the entire voltage sweep. Also the
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peak to minimum distance of 120 V is in excellent agreement with the
independently observed π change in the phase δ of arm B. Additionally,
by performing far-field measurements of the intensity radiated by the slit,
we have observed a “lighthouse effect”, i.e. the maximum in the far-field
intensity distribution can be continuously shifted from the left to the right
and vice versa, as one varies the voltage across the piezo element. This
suggests that one may also achieve beam steering in the far-field of a two-
mode nanoslit by controlling the linear combination of the two modes. 1

6.4 Conclusion

In conclusion, we have demonstrated that the selective coherent excitation
of the two fundamental TM modes in a sub-wavelength slit allows us to
launch an approximately constant intensity of surface plasmons either to
the left or to the right of the slit; or to distribute them in any desired ratio
over these two directions. This gives, for the first time, dynamic control
over the directionality of surface plasmons. Our theoretical analysis shows
that, although its excitation requires a null illumination at the slit center,
the TM1 mode above cutoff offers the potential of higher SP conversion ef-
ficiencies compared to narrow sub-wavelength apertures that support only
the TM0 mode. Note that the radially polarized TM01 mode of subwave-
length circular holes [Vassallo, 1991] presents an axial field singularity
and is likely, just as the TM1 mode of slits, to efficiently generate SPs.

The present work illustrates how the combination of a static symmetric
structure with a versatile illumination scheme may lead to the controlled
launching of surface or guided waves at the nanoscale, and as such it may
be considered a generic demonstration. Indeed, further work is needed
to realize a competitive device. With additional calculations, we have
checked for λ = 0.6 µm that as high as 40% and 55% of the TM0 and
TM1 modes are scattered into SPs at the slit exit aperture. Therefore,
the throughput of our experimental system is presently limited by the
coupling between the incident beams and the slit modes. This coupling
can be further improved by increasing either the refractive index of the
substrate, or the cross-section of the slit aperture. Different approaches
that preserve the symmetry are possible, for example surrounding the slit

1This is demonstrated in Chapter 7.
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with an array of optimized phased grooves [Baron et al., 2011; Garcia-

Vidal et al., 2003a; Degiron and Ebbesen, 2004], or placing a nano-
antenna at the near-field of the slit entrance [Aydin et al., 2009]. This
would keep the transverse size of the switching device below the diffraction
limit. A drastic miniaturization of our table-top illumination setup can be
achieved with micro-optical components and gratings, and thanks to the
very fast development of active plasmonics technologies [MacDonald

et al., 2008], it would be interesting to investigate architectures for full
on-chip integration. Such an ultra-compact plasmonic switch would have
potential application in telecommunications and optical sensing.
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Chapter 7

Beam Steering by Selective
Mode Excitation in a
Sub-wavelength Slit

This chapter is based on the following publication:

• S. B. Raghunathan, C. H. Gan, T. van Dijk, B. Ea Kim, H. F.
Schouten, W. Ubachs, P. Lalanne, and T. D. Visser, “Beam steering
by selective mode excitation in a sub-wavelength slit”, to be submit-
ted (2013).

Abstract
We analyse and measure the radiation pattern of a sub-wavelength slit
carved out of a thin gold film. The slit width is designed such that only
the first two TM-modes are non-evanescent. By controlling the phase
difference between three coherent laser beams that are incident on the
slit, the two guided modes can be excited individually. It is demonstrated
that different superpositions the modes lead to a change in the direction of
maximum radiated intensity from −10◦ to +10◦. This method can be used
to selectively address two for-zone detectors placed under these angles.

105
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7.1 Introduction

The study of light transmission through small apertures has a venerable
history [Rayleigh, 1897; Bethe, 1944; Bouwkamp, 1954; Born and

Wolf, 1999]. The study of these nano-slit systems has been a subject of
renewed interest since Ebbesen et al. [Ebbesen et al., 1998] demonstrated
experimentally that certain arrays of cylindrical cavities cut in metal plates
allow light transmission that is orders of magnitude larger than the pre-
diction by standard aperture theory. This extraordinary transmission in
nano-metallic structures has been attributed to the coupling of light with
surface plasmon polaritons (SPPs)[Ebbesen et al., 1998; Porto et al.,
1999; Martin-Moreno et al., 2001] and Fabry-Pérot cavity-like resonant
modes [Astilean et al., 2000; Takakura, 2001]. A wide range of opti-
cal phenomena, such as beaming, focusing, and wave-guiding [Schouten
et al., 2003c] in these systems has been theoretically predicted and exper-
imentally verified [Lezec et al., 2002].

An important aspect of light transmission by nano-apertures is the di-
rectionality of the radiated field. A highly directional transmission can be
achieved by using a single sub-wavelength slit surrounded by surface cor-
rugations or grooves [Garcia-Vidal et al., 2003b; Wang et al., 2006a].
Other schemes, such as varying the refractive index inside resonant neigh-
bouring subwavelength slits [Vincenti et al., 2009], have also been used.
However, these schemes typically depend on a static built-in asymmetry in
the device to obtain radiation in a specific direction. Achieving dynamic
beam steering in subwavelength apertures opens up the possibilities of
fabricating phased-array nano-antennas with a strong and flexible direc-
tionality. In this publication, we report a novel method that enables us
to selectively address two detectors situated in the far zone of a subwave-
length slit.

In a recent publication [Raghunathan et al., 2012a], we demon-
strated a set-up that selectively excites two coherent TM-modes in a sub-
wavelength slit. This allowed for the dynamic steering of SPPs in the two
launching directions perpendicular to the slit. In this article, we demon-
strate experimentally, that by controlling the linear combination of these
two modes within the subwavelength slit it is possible to achieve a dynamic
steering of the slit’s radiation field.
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7.2 Analysis

Consider three coherence laser beams impinging on a 500 nm wide sub-
wavelength slit etched in a 200 nm thick gold film deposited on a quartz
plate, see Fig. 7.1. At a wavelength of 632.8 nm, this slit supports two
non-evanescent TM-modes, one of which is symmetric and one of which
is anti-symmetric. A normally incident beam, B, excites the symmetric
TM0-mode. Two obliquely incident beams, A and −A, make angles of 20◦

and −20◦ with B. Beams A and −A are set to same intensity, but are out
of phase. Although the two oblique beams individually excite both the
symmetric and the anti-symmetric mode, their superposition results in the
cancellation of the symmetric mode and excites only the anti-symmetric
TM1-mode. The path of beam B contains a piezo element, which is used
to vary the relative phase δ of the two guided modes.

As an approximate model of our device we consider a two-dimensional,
perfectly conducting waveguide. In that case we have for the y-component
of the magnetic field of the two TM-modes the expressions [Pollack and

Stump, 2002]

Hy(x, z) = C1 exp(ikz0z), (TM0)
Hy(x, z) = C2 sin(πx/w) exp(ikz1z). (TM1)

(6.1)

Here C1, C2 are both constants. The phase δ is controlled by the voltage
across the piezo element. Also, kzi with i = 0, 1 denotes the z-component
of the effective wave vector of the TMi mode. The intensity in the far
zone equals [Schouten et al., 2004a]

I(θ) ∝ cos2(θ)
∣

∣

∣
H̃y[k sin(θ)]

∣

∣

∣

2
, (6.2)

where k = ω/c, c being the speed of light, denotes the wavenumber as-
sociated with frequency ω, and the tilde indicates the Fourier transform.
Hence when both waveguide modes are excited

H̃y(u) =
C1

πu
sin(uw/2)− i

C2

πu
cos(uw/2)

u2

(π/w)2 − u2
. (6.3)

On making use of Eqs. (6.3) and (6.2) we can calculate the radiation
pattern of the slit as a function of the phase δ caused by the piezo element.
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Figure 7.1: A subwavelength slit of width w = 500 nm in a gold film
supports only two TMmodes for w < λ, a symmetric mode (s, green curve)
and an anti-symmetric mode (a, red curve). Three coherent beams, A, -A
(with opposite angle of incidence compared to A and π-phase shifted), and
B are incident on the slit from the glass substrate.

Three examples are shown in Fig. 7.2 for three values δ. It is seen that
the radiation can be targeted towards either θ ≈ 15◦ or θ ≈ −15◦. Also it
is possible to distribute the intensity more equally.

7.3 Experiment

The experimental setup consists of a 16 mW He-Ne laser operating at
632.8 nm, whose output is divided into three beams. These beams are
then passed through three separate linear polarizers, the orientation of
which is fixed such that the field at the sample is TM polarized. To
ensure a coherent mode excitation, the path difference between the arms
was minimized by use of delay lines in arm B and arm A. By mounting
the last mirror in arm -A on a micrometer linear translator, connected to
a DC voltage source, the phase difference of the two oblique arms is set
to be π. The last mirror in arm B is mounted on top of a piezo element
and connected to a DC voltage source with a range of 0 − 300 V. This
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Figure 7.2: The radiation pattern of a sub-wavelength slit for three values
of the phase difference δ. For the dashed curve δ = −π/2, for the dotted
curve δ = 0 and for the solid curve δ = π/2.

voltage determines the phase difference δ. A CCD camera was positioned
at a distance of 3 mm from the sample to capture the radiation pattern
with a field of view from −40◦ to +40◦.

A plot of the measured radiation pattern of the individual modes is
shown in Fig. 7.3. The blue curve in the figure represents the far-field
pattern of the symmetric mode and the red curve represents the far-field
pattern of the anti-symmetric mode. Both the radiation patterns are sym-
metric with respect to the normal, only that for the anti-symmteric mode
the lobes on either side of the normal, with the maxima at +10◦ and −10◦,
are out of phase. The sharp peaks in the radiation patterns correspond to
the laser beam being directly transmitted through the sample, and these
occur at 0◦, +20◦ and −20◦.

The beam B illuminating the slit is set such that at the angles +10◦ and
−10◦ both the symmetric and the anti-symmetric mode radiation patterns
have the same intensity. Therefore maximal constructive and destructive
interference will take place in these two directions.

In Figs. 7.4, 7.5 and 7.6 the intensity of the combined radiation pattern
of TM0 and TM1 at a distance of 3 mm from the sample, is plotted as a
function of the azimuthal angle for three different voltages across the piezo
element in beam B. The maximum of the radiation patterns in the figures
3-5 are at +10◦ and −10◦, as it depends not on the direct transmission
through the sample, but on the superposition between the symmetric and
the anti-symmetric mode as shown in the figure. Thus, only the diffracted
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Figure 7.3: Plot of the radiation from a symmetric (blue curve) and an
anti-symmetric (red curve) mode.
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Figure 7.4: (Colour online) Polar plot of light diffracted from the sub-
wavelength aperture. The radial scale indicates the intensity (a.u.). The
peak of the diffracted light is towards left at an angle of +10◦.
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Figure 7.5: (Colour online) Polar plot of light diffracted from the sub-
wavelength aperture. The radial scale indicates the intensity (a.u.). The
peak of the diffracted light is at an angle on 0◦
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Figure 7.6: (Color online) Polar plot of light diffracted from the subwave-
length aperture. The radial scale indicates the intensity (a.u.). The peak
of the diffracted light is towards right at an angle of +10◦



112 7.4. Conclusion

field will reach detectors placed in the far-field at ±10◦. The effect of the
direct transmission can be mitigated by using a thicker and hence more
opaque gold film.

7.4 Conclusion

In conclusion, we have demonstrated a method to dynamically steer the
radiation from a sub-wavelength slit. By controlling the phase difference
of the two non-evanascent TM-modes, it is possible to steer the radia-
tion maximum from −10◦ to 10◦. This gives the possibility of selectively
addressing one or two detectors positioned in the far zone of the slit. A
simple model provides a good qualitative agreement with the experimental
results.
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Samenvatting

De Nederlandstalige titel van dit proefschrift luidt: Studies in Optica –
Coherentie en Oppervlakte Plasmonen. De verschillende hoofdstukken zijn
gebaseerd op reeds verschenen of voor publikatie geaccepteerde artikelen.
Alleen het laatste hoofdstuk moet nog worden ingediend. Hoofdstuk 1
bevat een korte toelichting van verschillende concepten die we later zullen
gebruiken. Het gaat om begrippen uit de coherentie theorie, de singuliere
optica en de plasmonica. Hoofdstuk 2 beschrijft een experimentele studie
naar partieel coherente laserbundels. In eerdere theoretische artikelen is
voorspeld dat het focuseren van Bessel-gecorreleerd licht tot een inten-
siteitsverdeling leidt die bij het brandpunt een minimum heeft. Deze voor-
spelling is niet alleen geverifieerd, maar we laten tevens zien hoe door het
variëren van een iris de intensiteit bij het focus traploos van een minimum
in het gebruikelijke maximum is te veranderen. Een mogelijke toepass-
ing hiervan is het selectief manipuleren van deeltjes met een hogere dan
wel een lagere brekingsindex dan het omringende medium. Hoofdstuk
3 is een theoretische analyse van een grote klasse van partieel coherente
bronnen, namelijk die van het quasi-homogene type. Verschillende zo-
genaamde reciprociteitsrelaties, die de velden in het bronvlak aan die in
het verre veld relateren, worden afgeleid. Met deze resultaten kunnen we
makkelijk bestuderen hoe het spectrum, de polarisatie en de coherentie
van licht verandert bij voortplanting. Hoofdstuk 4 behandelt een onder-
werp uit de singuliere optica. Dat golfvelden fase singulariteiten kunnen
bevatten is wel-bekend. Dat dit ook geldt voor correlatiefuncties is echter
een meer recent inzicht. We laten met numerieke voorbeelden zien dat
zogenaamde coherentie vortices algemeen voorkomen in partieel coherente
elektromagnetische bundels. In Hoofdstuk 5 bekijken we de elektromag-
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netische bundels uit het vorige hoofdstuk in meer detail. Het blijkt dat
de coherentie eigenschappen in verschillende dwarsdoorsnedes in het al-
gemeen sterk van elkaar verschillen. Dat betekent dat een waarnemer
die een opeenvolging van zulke doorsnedes bekijkt, een hele reeks topol-
ogische reacties zal zien. In deze reacties worden vortices, zadelpunten
en andere structuren gecreërd en geannihileerd. Hoofdstuk 6 beschrijft
een experiment waarin een speciaal soort oppervlaktegolven, zogenaamde
oppervlakte plasmonen, centraal staan. Door de ultra-korte lengteschalen
waardoor deze golven worden gekarakteriseerd, houden ze een grote belofte
in voor opto-elektronische toepassingen. Tot nu toe is het echter niet goed
mogelijk om plasmonen dynamisch van richting te laten veranderen. We
laten zien hoe met behulp van selectieve excitatie van geleide golven in een
nano-spleet een plasmon-schakelaar te realiseren valt. De gemeten data
stemmen goed overeen met de voorspellingen van een simpel model. In
Hoofdstuk 7 wordt dezelfde techniek van selectieve excitatie van geleide
golven gebruikt voor een ander doel, namelijk het bëınvloeden van het
stralingspatroon van een sub-golflengte spleet in een metalen film. We
tonen aan dat het hierdoor mogelijk is om het uitgezonden licht naar één
van twee detectoren te sturen, of om het licht over beide detectoren te
verdelen.
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