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Abstract: The superposition of two partially correlated waves is shown to produce fields with
drastically altered coherence properties. It is demonstrated, both theoretically and experimentally,
that two strongly correlated sources may generate a field with practically zero correlation between
certain pairs of points. This anomalous change in coherence is a general phenomenon that takes
place in all cases of wave superposition, including Mie scattering, as is shown. Our results
are particularly relevant to applications in which it is assumed that highly coherent radiation
maintains its spatial coherence on propagation, such as optical systems design and the imaging
of extended sources.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The coherence properties of a wavefield determine its evolution in space and time and its
interaction with material structures. The temporal coherence of an emitted wavefield is primarily
determined by the bandwidth of the source, whereas its spatial coherence is determined by the
relative size of its coherence area to its physical extent. These two forms are typically coupled,
although a monochromatic field can be spatially partially coherent when the source is composed
of (spectrally filtered) independent emitters. It is well known that the spatial coherence of a
partially coherent wavefield can change on propagation [1]. For example, according to the van
Cittert-Zernike theorem, the field radiated by a completely uncorrelated source becomes highly
correlated in the far zone [2]. This explains why sunlight can produce interference fringes on
earth [3–5]. Likewise, the field radiated by the broad class of Gaussian Schell-model sources
becomes more coherent on propagation (see Eq. (5.6–107) of Ref. [2]). Less well-known is the
fact that partially coherent sources can generate fields with increased spatial coherence for certain
pairs of points and decreased (even zero) coherence for others [6]. Here, we report practically
fully coherent sources that generate fields with zero coherence for certain pairs of points. Further,
we suggest that this phenomenon is a general manifestation of wave interference and is also
observed in the scattering of almost fully coherent light from dielectric spheres.

The extreme reduction in coherence is demonstrated for the two cases of (1) the field generated
by two correlated point sources and (2) the field generated by scattering of (practically) coherent
light on a dielectric sphere, and is validated experimentally for the case of correlated point
sources. To the best of our knowledge, a strong reduction in coherence has not been demonstrated
before for free-space propagation of radiated or scattered fields.
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2. Radiation

Consider two partially correlated scalar point sources located at points Q1 and Q2 in the plane
z = 0, separated by a distance d along the x axis (see Fig. 1). We analyze the superposition of
their fields along the x axis in the plane z = z0. The field at an observation point P1 equals

U(P1,ω) = U(Q1,ω)
eiknR11

R11
+ U(Q2,ω)

eiknR21

R21
, (1)

where U(Qi,ω) denotes the field at Qi at frequency ω, with i = 1, 2. Furthermore, k is the
free-space wavenumber, n is the refractive index of the background medium, and Rij is the
distance QiPj, for i, j = 1, 2. The coherence of the field in the plane z = z0 is characterized by the
cross-spectral density (CSD) function, which is defined as W(P1, P2,ω) ≡ ⟨U∗(P1,ω)U(P2,ω)⟩,
with the angular brackets denoting an ensemble average. The spectral density is given by
S(P1,ω) ≡ ⟨|U(P1,ω)|2⟩, namely,

S(P1,ω) =
S1(ω)

R2
11
+

S2(ω)

R2
21
+

2
√︁

S1(ω)S2(ω)

R11R21
Re

[︂
µ12(ω)eikn(R21−R11)

]︂
. (2)

Here Si(ω) = ⟨|U(Qi,ω)|2⟩ is the spectral density of source Qi, and the spectral degree of
coherence of the two sources is defined as

µ12(ω) ≡
⟨U∗(Q1,ω)U(Q2,ω)⟩√︁

S1(ω)S2(ω)
=

W(Q1, Q2,ω)√︁
S1(ω)S2(ω)

. (3)

It can be shown [2] that 0 ≤ |µ12(ω)| ≤ 1. The lower bound corresponds to the complete
absence of coherence, whereas the upper bound describes a fully coherent field. For all
intermediate values the field is said to be partially coherent. The spectral degree of coherence at
P1 and P2 is

µ(P1, P2) =

[︃
S1

eikn(R12−R11)

R11R12
+ ⟨U∗(Q1)U(Q2)⟩

eikn(R22−R11)

R11R22

+ S2
eikn(R22−R21)

R22R21
+ ⟨U∗(Q2)U(Q1)⟩

eikn(R12−R21)

R12R21

]︃
× [S(P1)S(P2)]

−1/2 ,

(4)

where from now on we omit the ω dependence.
To illustrate the decrease of coherence we consider the case that the spectral densities of the

two sources are equal, i.e., S1 = S2 = S. Furthermore, we take µ12 to be real and positive, and set
the refractive index n = 1. It then follows (see Appendix, Sec. A) that in the far zone the spectral
degree of coherence in the angular directions zero and θ1 equals, to a good approximation,

|µ(θ1, 0)|2 =
(1 + µ12) cos2[k(d/2) sin θ1]

1 + µ12 cos(kd sin θ1)
. (5)

Due to the presence of the cosine term in the numerator, Eq. (5) has the surprising implication
that no matter how strong the two point sources are correlated, there will be certain directions
θ1 for which µ(θ1, 0) = 0 (provided the separation d between the two sources is at least several
wavelengths and µ12<1). In other words, we find that even for two almost perfectly coherent
point sources, there are always pairs of directions in which their combined field is completely
uncorrelated. An example is given in Fig. 2. It is seen that the approximation (5) is in excellent
agreement with the exact result (4). The angular regions in which the far-zone coherence is
increased (i.e., |µ(θ1, 0)|>µ12 = 0.85) are interspersed with regions in which the spectral degree
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Fig. 1. The superposition of the fields radiated by Q1 and Q2 is observed at P1(θ1) and
P2(θ2). The four distances are R11 = Q1P1, R1 = OP1, R22 = Q2P2, and R2 = OP2; R12
and R21 are not shown.

of coherence is strongly reduced, and even reaches zero. The spectral density, given by Eq. (19)
in the Appendix Sec. A,

S(θ1) =
2S
R2 [1 + µ12 cos(kd sin θ1)] , (6)

is also plotted (solid green curve). It follows from this expression that the minima of S(θ1)
coincide with those of |µ12(θ1, 0)|. We emphasize that the strong reduction of coherence is not a
far-zone effect. The choice of far-zone fields as an illustration is motivated by the fact that for
those cases simple analytical results like Eq. (5) can be derived. For observation points much
closer to the source plane (e.g., z0 = 200 λ) a numerical evaluation of Eq. (4) yields the blue curve
4. A decrease of |µ12(θ1, 0)| to near-zero values is again observed, but now at shifted angles.
The behavior in the limits of complete incoherence (µ12 = 0) and full coherence (µ12 = 1) is as
expected, and is described in Appendix Sec. B. A suggestive explanation for this phenomenon is
discussed at the end of Sec. 4.

Fig. 2. Modulus of the spectral degree of coherence µ(θ1, 0). The red-black curve [1,2]
represents both the exact expression (4), and the approximation given by Eq. (5). The green
curve [3] is the scaled spectral density S(θ1). In this example S1 = S2, d = 200 λ, z0 = 104 λ,
n = 1, and µ12 = 0.85. The blue curve [4] is |µ(θ1, 0)| for the case z0 = 200 λ.
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Three contour plots of |µ(θ1, θ2)|, calculated from Eq. (4) (i.e., without use of any approxima-
tions), are shown in the top row of Fig. 3. All plots are restricted to a representative 2D angular
interval. Panel a) is for the case µ12 = 0.94. The spectral degree of coherence of the far-zone
field exhibits a more or less square pattern. The case of a pair of point sources that are somewhat
less correlated, with µ12 = 0.75, is shown in b). The pattern is seen to become more sinuous, and
gradually transitions to a purely diagonal form as presented in c). This represents two virtually
uncorrelated point sources with µ12 = 1.0 × 10−22. We notice that in all three cases the spectral
degree of coherence ranges from near-zero values to unity. The increase of coherence in panel
c) is consistent with the van Cittert-Zernike theorem. However, to the best of our knowledge,
the anomalous decrease of coherence in the far-zone field of two strongly correlated sources as
shown in panels a) and b) has not been reported before.

Fig. 3. Contours of |µ(θ1, θ2)|, the modulus of the spectral degree of coherence as a function
of θ1 and θ2. The top row is for the far-zone field generated by two partially correlated point
sources for three values of µ12. a) µ12 = 0.94, b) µ12 = 0.75, c) µ12 = 1.0 × 10−22. The
other parameters are as in Fig. 2. The bottom row is for the far-zone field scattered by a
dielectric sphere of radius a = 100λ. From left to right the coherence radius of the incident
field decreases from σ = 500λ = 5a, to σ = 150λ = 1.5a, to σ = 20λ = 0.2a.

3. Experimental verification

A partially coherent field can be synthesized as an incoherent superposition of fully coherent
modes via the coherent mode decomposition (CMD) [7]. In the CMD, a given field realization is
represented as U(r) =

∑︁
m amϕm(r), where the random expansion coefficients am are uncorrelated,

i.e., ⟨a∗man⟩ = λmδmn with λm>0, and the field modes ϕm are orthonormal. It follows then that
the cross-spectral density takes the form

W(r1, r2) =
∑︂
m
λmϕ

∗
m(r1)ϕm(r2). (7)

In our case, the field to be synthesized is a secondary source consisting of a pair of partially
correlated point sources, which can be approximated mathematically as U(x, y) = A1δ

(2)(x +
d/2, y) + A2δ

(2)(x − d/2, y), where we take ⟨|A1 |
2⟩ = ⟨|A2 |

2⟩ = 1 and µ12 = ⟨A∗
1A2⟩ is their
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spectral degree of coherence. We utilize a two-dimensional geometry for simplicity. It can
be shown (see Appendix Sec. C) that the CMD of this source distribution contains only two
coherent modes, which correspond to symmetric and anti-symmetric combinations of the two
point sources. It can also be shown that their correlation is

µ12 = (λ1 − λ2)/(λ1 + λ2). (8)

The field produced by each source coherent mode in the far-zone (or interference region) is
realized, not by actual propagation into the far-zone, but by the Fourier transformation operation
of a (FT) lens. As illustrated in the Appendix Sec. D, the far-zone forms of the two coherent
modes in the back focal plane of the FT lens are a cosine and a sine, respectively [8, Ch. 5].

The utility of the CMD, as embodied by Eq. (7), is that the contribution of each coherent
mode to the cross-spectral density can be generated and measured independently, and then the
individual contributions can be summed incoherently with an appropriate weighting [9,10]. In
our case the contributions of each mode were recorded individually and summed numerically,
thus creating in silico the far-zone CSD of a source with a prescribed value of µ12. This would
be hard to achieve with traditional methods using diffusers.

Measurement of the cross-spectral density (and ultimately the degree of spectral correlation)
is performed using a Michelson-type interferometer, in which the output intensity for each
coherent mode (which contains an interference term proportional to the degree of coherence) is
individually recorded on a CCD.

Referring to Fig. 4, we see that the coherent modes in the plane z = 0 (secondary source plane)
are generated by laser illumination of a Spatial Light Modulator (SLM) programmed with one
of two specific phase profiles. Upon illumination with a flat-phase broad Gaussian beam, the
first order diffracted light (p = 1) from the phase grating contains the desired coherent mode in
the Fourier plane at z = 0. The required phase grating on the SLM that generates the coherent
modes was found by an inverse method explained in [11]. The laser was power-stablized and the
interferometer path-stabilized to keep the phase difference constant during the measurement. After
spatially filtering the p = 1 order, the coherent mode is propagated to the far-zone using another
FT lens and then presented to the input of the interferometer at z = 2f . The interferometer’s top
arm is a 2f imaging system consisting of a concave mirror and an SLM (not shown) to implement
a quadratic phase to cancel the defocus due to diffraction. This arm realizes the transformation
x → −x. The horizontal arm contains a 4f system which images the field with unit magnification,
after two reflections. Experimental details of the interferometer are described in [12]. Its output
field is

Uout(x, z = 2f ) ∝ ϕi(x, z = 2f ) + eiθϕi(−x, z = 2f ), (i = 1, 2) (9)

where θ is the global phase difference between the two arms. For i = 1 and θ = 0 we observe
the even mode at the output. For i = 2 and θ = π the odd mode is observed. At any given time
only one of the two coherent modes is sent through the setup, and the recorded intensities are
added in software. Care was taken to equalize the total power in the two coherent modes. A
total of 20 intensity frames was recorded by the CCD for both modes. By digitally adding, for
example, all twenty frames of mode ϕ1 with a single frame of mode ϕ2, we have set λ1 = 20 and
λ2 = 1. Inserting these values into Eq. (8) it is seen that we have then created the case for which
the spectral degree of coherence has the value

µ12 =
20 − 1
20 + 1

= 0.904. (10)

By gradually adding more frames of mode ϕ2 to the sum of the all recorded frames of ϕ1 we
get progressively lower values of µ12.

An example of the data that were produced for the case µ12 = 0.904 is shown in Fig. 5. To
obtain W(x,−x) we have subtracted the individual spectral densities W(x, x) of each interferometer
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Fig. 4. Experimental setup. A 795 nm Gaussian beam passes through a beam expander
(BE) and is then converted into either a symmetric (ϕ1) or an antisymmetric (ϕ2) coherent
mode, shown in the inset, via a mode converter consisting of a phase SLM and a spatial
filtering setup, which selects the p = 1 diffraction order. Polarization optics and attenuators,
not shown, are used to control the power of the beam.

arm, obtained by blocking the other arm, from the combined image when both arms are not
blocked. The result is an image that is proportional to W(x,−x) = ⟨U∗(x)U(−x)⟩ . Each row in
Fig. 5 represents a time averaged realization of U∗(x)U(−x). We then average the image across y
to obtain an ensemble average ⟨U∗(−x)U(x)⟩. The y-averaging improves the signal-to-noise ratio
of the interference curves by eliminating effects of beam inhomogeneities, such as the rings in
Fig. 5 which are due to the 2π phase jumps in the SLMs of the interferometer. Mathematically,
we have for the degree of coherence the expression

µ(x,−x) =

∫
dy U∗(x, y)U(−x, y)∫
dy

√︁
S1(x, y)S2(x, y)

, (11)

where Sk, with k = 1 or 2, are the individual spectral densities of the two interferometer arms.
Theoretically, the spectral degree of coherence µ measured by the interferometer is given by

µ(x,−x) =
µ12 + cos(2kpx)

1 + µ12 cos(2kpx)
, (12)

where kp = kd/(2f ) is the spatial frequency of the far-field coherent modes. The measured
spectral degrees of coherence according to Eq. (11) for selected values of µ12 are shown in Fig. 6.
The value of kp was chosen to be 2.0 × 104 m−1. This ensures oversampling of the fringes by the
CCD array with pixel size 4.4 µm. The maximum value of µ as measured by using Eq. (11) is
not necessarily unity due to other sources of error. The SLM has 2π phase jumps which causes
circular rings in the beam, hence the coherence value is not perfectly uniform across an individual
coherent mode. Further sources of error are a small tilt phase difference between the two arms,
beam inhomogenieties, a polarization mismatch in the two interferometer arms, and the laser
not operating in a pure longitudinal mode. We therefore normalize the measured µ value by
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its largest value across x. We see very good agreement between the measured and theoretical
curves. The coherence zeros predicted by the theory are accurately captured by the minima of the
experimental curves. We conclude that the experiment unambiguously shows a drastic reduction
of spatial coherence for highly correlated sources. Furthermore, such an anomalous decrease of
coherence occurs not just in the context of radiation, but also in Mie scattering as we will next
discuss.

Fig. 5. The interference pattern representing the observed values of ⟨U∗(x, y)U(−x, y)⟩ for
the case µ12 = 0.904.

Fig. 6. Measured value of |µ(x,−x)| for (a) µ12 = 0, (b) µ12 = 0.75, and (c) µ = 0.9. Blue
lines show the measured data and purple lines show the expected theory curves.

4. Mie scattering

We next turn our attention to the scattering by a homogeneous sphere [13–15]. A formalism to study
the far-zone coherence properties of the scattered Mie field (see Fig. 7) was recently presented in
[16]. In that study an incident beam, propagating along the z axis, was assumed to have a uniform
amplitude and a Gaussian spectral degree of coherence, i.e., µ(in) = exp[−(ρ2 − ρ1)

2/(2σ2)]. In
this expression σ denotes the effective transverse coherence width, and ρ = (x2 + y2)1/2. Three
examples of the spectral degree of coherence in the far zone are shown in the bottom row of
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Fig. 3. Panel (d) shows that even though the incident field is highly coherent, with a coherence
width that is five times larger than the sphere radius a, there are pairs of directions for which
|µ(θ1, θ2)| is strongly reduced. Even though the scattering process that produces this field is
completely different from the radiation process that was discussed above, the similarities between
panels a) and d) are striking. If the transverse coherence width of the incident field is reduced to
σ = 150 λ = 1.5a, the resulting spectral degree of coherence becomes as presented in panel e). In
this case the coherence pattern is remarkably similar to its radiation counterpart panel b). Again
a strong decrease of coherence is seen to occur. A third example is shown in f). This represents a
very weakly coherent incident field with σ = 20λ = 0.2a. Once again the similarities, now with
panel c), are compelling.

Fig. 7. Mie scattering by a homogeneous sphere with radius a and refractive index n. The
center of the sphere is situated on the z axis. (a) If the incident field is spatially partially
coherent, the field scattered in two directions u1 and u2, at angles θ1 and θ2 with the z axis,
will be partially correlated. (b) The scattered field in a direction θ, mainly consisting of a
transmitted ray with amplitude T , and a reflected ray with amplitude R.

The remarkable decrease of coherence in Fig. 3 occurs in two completely different contexts,
namely radiation and scattering. What then explains the similarities between these two cases? On
the one hand, the radiation of two partially correlated point sources, when considered in the far
zone, leads to a simple model [Eq. (5)] that predicts that for certain pairs of directions the spectral
degree of coherence will be increased, whereas for other directions it will be strongly decreased
and can even become zero. On the other hand, the formalism that describes Mie scattering has
the form of a sum of sometimes hundreds of Legendre polynomials (see Eq. (20) of Ref. [16]).
The physical meaning of such a summation is much less clear. However, for spheres much larger
than the wavelength a geometrical optics description is known to work quite well [17]. According
to such a model, for many forward directions the main contribution to the scattered field is due to
two rays, one that is reflected and one that is transmitted. Higher-order contributions, due to one
or more internal reflections can, to first order, be neglected. This then reduces the Mie scattering
process to the superposition of two parallel plane waves, with amplitudes R and T (see Fig. 7).
If the scattering angle θ changes, the optical path difference between these two contributions
changes, causing a continuous variation in the spectral degree of coherence. This explains why
the drastic decrease of coherence that we found in the case of two highly-correlated radiating
point sources also occurs in Mie scattering with highly coherent fields.

If the coherence length σ of the incident field is increased, the strong decrease of coherence
of the scattered field is found to be remarkably persistent, but for gradually narrower angular
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ranges. This is illustrated in Fig. 8. Even for coherence lengths much larger than the particle
radius, near-zero values of |µ(θ1, 67◦)| occur. It is only when σ>1000a, that the scattered field is
(almost) fully coherent.

Fig. 8. Magnitude of the far-zone spectral degree of coherence |µ(θ1, 67◦)| of a field
scattered by a sphere with radius a = 100 λ and refractive index n = 1.33. The vertical
axis shows the coherence length σ of the incident field (in free-space wavelengths), on a
logarithmic scale.

The examples in the bottom row of Fig. 3 are for a large sphere for which the geometrical
optics approach is reasonable, and depict an angular domain in which the amplitudes R and T are
comparable. Also, the values of the coherence radius are chosen to yield a correlation between
the reflected and the transmitted ray that is similar to the values of µ12 in the panels of the top
row. More generally, it can be shown that a significant reduction of coherence still occurs even if
the values of R and T are not comparable.

A somewhat hand-waiving explanation of our results is that the total field can be written as a
sum of completely correlated parts and parts that are completely uncorrelated. In this picture,
regions of low spectral density are where the correlated parts destructively interfere, leaving only
the uncorrelated parts. This would then explain why such regions have a low mutual coherence.
However, as was recently pointed out, such a decomposition is typically not unique [18].

5. Conclusion

The superposition of waves is central to quantum mechanics, acoustics and optics. We have
examined, both theoretically and experimentally, the surprising phenomenon that, contrary to
what might be expected, a field that starts out as highly coherent, can evolve into a field with
near-zero coherence in certain directions. This effect occurs universally on wave superposition,
as takes place in both radiation and scattering. This behavior can be considered the converse of
that predicted by the van Cittert-Zernike theorem for highly uncorrelated sources, in which there
is an increase in coherence on propagation.

The anomalous decrease of spatial coherence was demonstrated, both theoretically and
experimentally, for a simple, highly-correlated radiation system. An almost fully coherent beam
scattered by an extended Mie sphere was found to have a very similar behavior. We note that this
is not a far-zone effect, it also occurs in the the proximity of sources and scatterers.

In practice, one often deals with two highly, but not perfectly, correlated sources, like two
quantum dots that are driven resonantly by the same laser. The extreme decrease in coherence
that we discussed should also occur in such cases. Because the state of coherence of a wave field
determines its directionality and its ability to form interference fringes, this drastic decrease of
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coherence has consequences for optical design and imaging systems. Furthermore, we anticipate
our discovery will have analogy in decoherence processes for evolving quantum systems [19].

Appendix

A. Derivation of Eq. (5)

The spectral density at an observation point P1 is given by Eq. (2), i.e.,

S(P1,ω) =
S1(ω)

R2
11
+

S2(ω)

R2
21
+

2
√︁

S1(ω)S2(ω)

R11R21
Re

[︂
µ12(ω)eikn(R21−R11)

]︂
. (13)

To simplify our notation we suppress the ω dependence of the various quantities from now
on, and we denote the observation points in the plane z = z0 by their angle θ with the positive z
axis. We consider the case that S1 = S2 = S, n = 1, and µ12 ∈ R. In the far zone we have the
approximations

R11 ≈ R1 − (d/2) sin θ1. (14)

R21 ≈ R1 + (d/2) sin θ1. (15)

R12 ≈ R2 − (d/2) sin θ2. (16)

R22 ≈ R2 + (d/2) sin θ2. (17)

1/R2
ij ≈ 1/R2, for i, j = 1, 2. (18)

On making use of these expression in Eq. (13) it is readily found that

S(θ1) =
2S
R2 [1 + µ12 cos(kd sin θ1)] , (19)

and, in a completely similar way, that

S(θ2) =
2S
R2 [1 + µ12 cos(kd sin θ2)] . (20)

The spectral degree of coherence at two points P1 and P2 is defined as

µ(θ1, θ2) =
⟨U∗(θ1)U(θ2)⟩√︁

S(θ1)S(θ2)
. (21)

Using the expressions (19) and (20) for the spectral density and the approximations that were
used in their derivation, it is straightforward to show that

µ(θ1, θ2) = eik(R2−R1) {cos[k(d/2)(sin θ1 − sin θ2)]
+µ12 cos[k(d/2)(sin θ1 + sin θ2)]}

× [1 + µ12 cos(kd sin θ1)]−1/2[1 + µ12 cos(kd sin θ2)]−1/2.
(22)

We next choose θ2 = 0, and obtain

|µ(θ1, 0)|2 =
(1 + µ12) cos2[k(d/2) sin θ1]

1 + µ12 cos(kd sin θ1)
, (23)

which is Eq. (5).
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B. Two limiting cases

For the sake of completeness we consider the two limits of complete incoherence (µ12 = 0) and
full coherence (µ12 = 1). In the first case Eq. (5) reduces to

µ(θ1, 0) = cos[kn(d/2) sin θ1], (µ12 = 0). (24)

On varying the angle θ1 the spectral degree of coherence is seen to oscillate between zero and
plus or minus one. This is exactly the behavior predicted by the van Cittert-Zernike theorem [2].

In the case of full coherence we find that

|µ(θ1, 0)|2 =
2 cos2[k(d/2) sin θ1]

1 + cos(kd sin θ1)
=

2 cos2[k(d/2) sin θ1]
2 cos2[k(d/2) sin θ1]

, (µ12 = 1). (25)

This equals 1 execept when kd sin θ1 = ±(m + 1)π, with m = 0, 1, 2, . . ., in which case the
expression is indeterminate. Using l’Hôpital’s rule we find that |µ(θ1, 0)| = 1 for those values of
θ1 also, as was expected.

C. Coherent mode decomposition

For the case of two point sources the field in the source plane may be approximated by the
expression

U(x, z = 0) = A1δ(x + d/2) + A2δ(x − d/2) (26)

where A1 and A2 denote an amplitude. We take ⟨|A1 |
2⟩ = ⟨|A2 |

2⟩ = A2, and ⟨A∗
1A2⟩ = µ12A2.

The CSD is then

W(x1, x2, z = 0) ≡ ⟨U∗(x1, 0)U(x2, 0)⟩

= A2δ(x1 + d/2)δ(x2 + d/2) + A2δ(x1 − d/2)δ(x2 − d/2)
(27)

+A2µ12δ(x1 + d/2)δ(x2 − d/2) + A2µ12δ(x1 − d/2)δ(x2 + d/2), (28)

with the spectral degree of coherence µ12 assumed to be real. The CSD can be represented via
the CMD (Cf. Equation (7)) as

W(x1, x2, z = 0) =
∑︂
m
λmϕ

∗
m(x1)ϕm(x2), (29)

where the coherent modes ϕm(x) are orthogonal and satisfy a homogeneous Fredholm equation
of the second kind with the kernel W(x1, x2). It can be shown by construction that there are two
coherent modes in this case, namely

ϕ1(x) = C [δ(x + d/2) + δ(x − d/2)] , (30)

ϕ2(x) = C [δ(x + d/2) − δ(x − d/2)] , (31)

with C a constant. On substituting these expressions into Eq. (29) we obtain

W(x1, x2, z = 0) = |C |2(λ1 + λ2) [δ(x1 + d/2)δ(x2 + d/2)]

+ |C |2(λ1 + λ2) [δ(x1 − d/2)δ(x2 − d/2)]

+ |C |2(λ1 − λ2) [δ(x1 + d/2)δ(x2 − d/2)]

+ |C |2(λ1 − λ2) [δ(x1 − d/2)δ(x2 + d/2)] .

(32)

Comparing Eqs. (28) and (32) it is found that if

A2 = |C |2(λ1 + λ2), (33)
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A2µ12 = |C |2(λ1 − λ2), (34)

then Eqs. (28) and (32) will be equal, and hence

µ12 =
λ1 − λ2
λ1 + λ2

, (35)

which is Eq. (8). It can be seen that the coherent modes given by Eqs. (30) and (31) are
indeed orthogonal and satisfy the associated Fredholm integral equation. Also note that only
in the completely incoherent limit of µ12 = 0 can the CSD be alternatively decomposed into
ϕ1(x) = δ(x + d/2) and ϕ2(x) = δ(x − d/2), which is a manifestation of the non-uniqueness of the
CMD.

D. Derivation of Eq. (12)

As described in the Experimental Verification section of the main text, the two source coherent
modes get Fourier transformed by a lens to generate their far-zone forms. This implies that the
fields of the two coherent modes in the back focal plane (z = 2f ) are [8]

ϕ1(x, z = 2f ) = 2A cos(kpx), (36)

ϕ2(x, z = 2f ) = 2iA sin(kpx), (37)

with A an arbitrary amplitude and kp = kd/(2f ). By using Eq. (7) one finds for the cross-spectral
density in the focal plane the expression

W(x1, x2, z = 2f ) = λ14A2 cos(kpx1) cos(kpx2) + λ24A2 sin(kpx1) sin(kpx2). (38)

If we set x1 = x and x2 = −x and recall the definition (3) of the degree of coherence, then it is
readily derived that

µ(x,−x, z = 2f ) =
λ1 cos2(kpx) − λ2 sin2(kpx)
λ1 cos2(kpx) + λ2 sin2(kpx)

. (39)

Using Eq. (35) this can be written in the form of Eq. (12), i.e.

µ(x,−x, z = 2f ) =
(1 + µ12) cos2(kpx) − (1 − µ12) sin2(kpx)
(1 + µ12) cos2(kpx) + (1 − µ12) sin2(kpx)

,

=
µ12 + cos(2kpx)

1 + µ12 cos(2kpx)
.

(40)
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