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The classic experiments by Hanbury Brown and Twiss (HBT) were concerned with the correlation of intensity
fluctuations at two different positions in a wave field. We generalize the HBT effect that occurs in random electro-
magnetic beams by examining its polarization-resolved version. This leads naturally to the concept of correlations
of fluctuations of the four Stokes parameters. We calculate the correlations of such “Stokes fluctuations” for the
case of Gaussian statistics. When the two points of observation coincide, these correlations reduce to “Stokes
scintillations.” Our work reveals a new layer of complexity in random beams by showing that the HBT effect
and the scintillation coefficient are just two of many correlations that are present. We illustrate that, in general,
the fluctuations of the various Stokes parameters are all correlated by studying beams and sources with different
polarization states. © 2019 Optical Society of America

https://doi.org/10.1364/JOSAA.36.000362

1. INTRODUCTION

In their landmark experiments, Hanbury Brown and Twiss
measured the correlation of intensity fluctuations at two detec-
tors. Observing how this correlation decreases as the detectors
become more separated allowed them to determine the angular
diameter of radio stars [1–3]. The eponymous HBT effect has
since been applied in nuclear physics [4], quantum optics [5],
and atomic physics [6,7]. In classical optics [8,9], it has been
used for a variety of inverse problems [10,11], ghost imaging
[12], optical coherence tomography [13], and holography [14].

In order to analyze a polarization-resolved version of the
HBT effect, we recall that the state of polarization of an electro-
magnetic beam is characterized by the four Stokes parameters
that, for fully polarized radiation, correspond to a unique point
on the Poincaré sphere [15]. The correlation between the vari-
ous instantaneous Stokes parameters ([16], Section 3.1.6.6) has
been studied by several groups. Friberg et al. [17,18] used this
correlation to introduce the concepts of polarization time and
polarization length. These are measures of a duration of time
and a distance, respectively, over which the state of polarization
remains essentially unchanged. In [19,20], such Stokes corre-
lations were investigated experimentally.

In an astronomical HBT experiment, the value of the time-
averaged intensity at the two detectors is typically the same
and independent of the distance that separates them. As de-
scribed above, this is not true for the correlation of the intensity
fluctuations that are observed. Interestingly, these fluctuation

correlations contain information about the source that can-
not be otherwise obtained [11]. The first Stokes parameter,
denoted S0, describes the total spectral density at a specific
location. This means that the HBT coefficient is equivalent
to the two-point correlation of the fluctuations of S0. It seems
natural to generalize this approach and examine the correlation
between the fluctuations of the various Stokes parameters. Here,
we develop a framework to explore all possible correlations of
what we call Stokes fluctuations, (not to be confused with cor-
relations of the Stokes parameters themselves). For the case of
Gaussian statistics, these can be expressed in terms of second-
order correlation functions [21]. Our results show that, in gen-
eral, the fluctuations of any Stokes parameter at one particular
point of observation are correlated with the fluctuations of all
the other Stokes parameters at another point of observation.
When the two observation points coincide, these fluctuations
become Stokes scintillations. For the first Stokes parameter, S0,
this is equivalent to the scintillation coefficient of the beam.
Generalizing the two concepts of the Hanbury Brown–Twiss
effect and the scintillation coefficient reveals the existence of
a level of correlations that has previously not been explored.
Examples of the correlations of Stokes fluctuations and Stokes
scintillations are presented for beams and sources with different
states of polarization. Our results may be applied to cases where
polarization fluctuations play a significant role, e.g., in studies
on light–matter interactions [22], semiconductor lasers [23],
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supercontinuum generation [24], beam propagation [25], and
cosmology [26].

2. STOKES FLUCTUATIONS

Consider an electromagnetic beam that propagates along the z
direction. The longitudinal component of its electric field vec-
tor can then be neglected, and only the two orthogonal, trans-
verse Cartesian components, Ex and Ey, need to be taken into
account. The polarization properties of the beam are character-
ized by its four spectral Stokes parameters, which, at a position r
at frequency ω, are defined as [15]

S0�r,ω� � E�
x �r,ω�Ex�r,ω� � E�

y �r,ω�Ey�r,ω�, (1)

S1�r,ω� � E�
x �r,ω�Ex�r,ω� − E�

y �r,ω�Ey�r,ω�, (2)

S2�r,ω� � E�
x �r,ω�Ey�r,ω� � E�

y �r,ω�Ex�r,ω�, (3)

S3�r,ω� � i�E�
y �r,ω�Ex�r,ω� − E�

x �r,ω�Ey�r,ω��: (4)

These real-valued parameters can be determined by inten-
sity measurements (that are more robust than amplitude
and phase measurements) using standard polarimetry tech-
niques [27]. Their physical interpretation is discussed in ([15],
Section 10.9.3).

For the case of a stochastic beam, the Stokes parameters are
random quantities. The fluctuations around their average value
(i.e., Stokes fluctuations) are defined as

ΔSn�r,ω� � Sn�r,ω� − hSn�r,ω�i �n � 0, 1, 2, 3�, (5)

where Sn�r,ω� is the Stokes parameter pertaining to a single
realization of the beam, and hSn�r,ω�i denotes its ensemble
average.

We will now examine how these Stokes fluctuations are
correlated. All possible pairs of their 2-point correlations can
be captured by introducing a 4-by-4 matrix C�r1, r2,ω�, with
elements

Cnm�r1, r2,ω� � hΔSn�r1,ω�ΔSm�r2,ω�i
�n,m � 0, 1, 2, 3�:

(6)

It immediately follows that this matrix satisfies the symmetry
relation

Cnm�r1, r2� � Cmn�r2, r1�: (7)

Furthermore, it is clear from the definition of S0�r,ω�, given by
Eq. (1), that the element C00�r1, r2,ω� represents the correla-
tion of the intensity fluctuations at r1 and r2. It is therefore
identical to the traditional Hanbury Brown–Twiss coefficient.
The three other diagonal elements, Cpp�r1, r2,ω� with
p � 1, 2, or 3, represent the autocorrelation of the fluctuations
of Sp at two positions. The 12 off-diagonal elements represent
2-point cross-correlations of the Stokes fluctuations. The
C�r1, r2,ω� matrix is a generalization of the HBT coefficient,
a correlation of the fluctuations of just a single Stokes param-
eter, namely, S0, to all possible correlations between the four
Stokes parameters.

The second-order statistical properties of a partially coherent
electromagnetic beam are described by its cross-spectral density
matrix, which is defined as [21]

W�r1, r2,ω� �
�
W xx W xy
W yx W yy

�
, (8)

where all the matrix elements are functions of the same three
variables and given by the expression
W ij�r1, r2,ω� � hE�

i �r1,ω�Ej�r2,ω�i, �i, j � x, y�: (9)

As before, the angular brackets indicate an average taken over
an ensemble of beam realizations. The expectation value of the
Stokes parameters can be expressed in terms of the cross-spec-
tral density matrix. It readily follows from the definitions in
Eqs. (1)–(4) together with Eq. (9) that

hS0�r,ω�i � W xx�r, r,ω� �W yy�r, r,ω�, (10)

hS1�r,ω�i � W xx�r, r,ω� −W yy�r, r,ω�, (11)

hS2�r,ω�i � W xy�r, r,ω� �W yx�r, r,ω�, (12)

hS3�r,ω�i � i�W yx�r, r,ω� −W xy�r, r,ω��: (13)

All preceding equations have an explicit frequency dependence,
indicating that they are defined for a specific frequency com-
ponent of the optical field. For brevity, we will no longer display
this ω dependence. We next derive a general expression for the
correlations of the Stokes fluctuations in terms of the cross-
spectral density matrix and the Pauli spin matrices.

3. CORRELATION MATRIX FOR STOKES
FLUCTUATIONS

The 2-by-2 identity matrix, σ0, and the three Pauli spin ma-
trices are defined as

σ0 �
�
1 0

0 1

�
, σ1 �

�
1 0

0 −1

�
,

σ2 �
�
0 1

1 0

�
, σ3 �

�
0 −i

i 0

�
, (14)

respectively. The Stokes parameters can be expressed in terms of
these four matrices as ([27], Section 22.2)

Sn�r� � E�r�†σnE�r�, �n � 0, 1, 2, 3�, (15)

where † denotes the Hermitian conjugate, and

E�r� �
�
Ex�r�
Ey�r�

�
: (16)

Hence,

Sn�r� �
X
a, b

σnabE
�
a �r�Eb�r�, �a, b � x, y�: (17)

We can now calculate the elements of the Stokes fluctuations
matrix as follows:

Cnm�r1, r2� � hΔSn�r1�ΔSm�r2�i (18)

� hSn�r1�Sm�r2�i − hSn�r1�ihSm�r2�i (19)

�
X
a, b

X
c, d

σnabσ
m
cd hE�

a �r1�Eb�r1�E�
c �r2�Ed �r2�i

−
X
a, b

σnabhE�
a �r1�Eb�r1�i

X
c, d

σmcd hE�
c �r2�Ed �r2�i:

(20)
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Let us now invoke the assumption of Gaussian statistics. This
allows us to make use of the Gaussian moment theorem [28]
and, hence, express the fourth-order correlations on the right-
hand side of Eq. (20) as the sum of products of second-order
correlations. Specifically,

Cnm�r1, r2� �
X
a, b

X
c, d

σnabσ
m
cd �hE�

a �r1�Eb�r1�ihE�
c �r2�Ed �r2�i

� hE�
a �r1�Ed �r2�ihE�

c �r2�Eb�r1�i�
−
X
a, b

X
c, d

σnabσ
m
cd hE�

a �r1�Eb�r1�ihE�
c �r2�Ed �r2�i

(21)

�
X
a, b

X
c, d

σnabσ
m
cdW ad �r1, r2�W �

bc�r1, r2�: (22)

Because each σ matrix has only two nonzero elements, the total
sum in Eq. (22) consists of just four terms for each choice of n
and m. We can introduce normalized matrix elements, indi-
cated by the superscript N , by defining

CN
nm�r1, r2� ≡

Cnm�r1, r2�
hS0�r1�ihS0�r2�i

: (23)

On making use of Eq. (22), it can be seen that the sum of
the four normalized diagonal elements has a clear physical
meaning:

X3
m�0

CN
mm�r1, r2� � 2

fjW xx�r1, r2�j2 � jW yy�r1, r2�j2 � 2Re�W xx�r1, r2�W �
yy�r1, r2��g

hS0�r1�ihS0�r2�i
(24)

� 2
jTrW�r1, r2�j2

TrW�r1, r1�TrW�r2, r2�
� 2jη�r1, r2�j2: (25)

Here, η�r1, r2� denotes the spectral degree of coherence [21],
the magnitude of which indicates the visibility of the inter-
ference pattern produced in Young’s experiment with pinholes
located at r1 and r2.

It is worth noting that, whereas the Stokes fluctuation cor-
relations are described by Eq. (22), the average Stokes param-
eters themselves are related by the inequality

hS1�r,ω�i2 � hS2�r,ω�i2 � hS3�r,ω�i2 ≤ hS0�r,ω�i2: (26)

The equality holds only for the case of a fully polarized beam.

4. STOKES SCINTILLATIONS

Just as the HBT coefficient is a special case of the correlation of
Stokes fluctuations, the scintillation coefficient of a random
beam is a special case of Stokes scintillations. This can be seen
by considering the behavior of the matrix C�r1, r2�, defined by
Eq. (6), when its two spatial arguments coincide. Let us use
Eqs. (10)–(13) to express the elements of the cross-spectral den-
sity matrix W ij�r, r� in terms of the four ensemble-averaged
Stokes parameters. The resulting formulas are

W xx�r, r� �
1

2
�hS0�r�i � hS1�r�i�, (27)

W yy�r, r� �
1

2
�hS0�r�i − hS1�r�i�, (28)

W xy�r, r� �
1

2
�hS2�r�i � ihS3�r�i�, (29)

W yx�r, r� �
1

2
�hS2�r�i − ihS3�r�i�: (30)

On making use of these expressions in Eq. (22), we find for
the four diagonal elements of the Stokes scintillation matrix
Dnm�r� ≡ Cnm�r, r� that

D00�r� �
1

2
�hS0�r�i2 � hS1�r�i2 � hS2�r�i2 � hS3�r�i2�,

(31)

D11�r� �
1

2
��hS0�r�i2 � hS1�r�i2 − hS2�r�i2 − hS3�r�i2�,

(32)

D22�r� �
1

2
�hS0�r�i2 − hS1�r�i2 � hS2�r�i2 − hS3�r�i2�,

(33)

D33�r� �
1

2
�hS0�r�i2 − hS1�r�i2 − hS2�r�i2 � hS3�r�i2�,

(34)

whereas the 12 off-diagonal elements are given by the expressions

Dpq�r� � hSp�r�ihSq�r�i, �p ≠ q; and p, q � 0, 1, 2, 3�:
(35)

The matrixD is seen to be symmetric and has diagonal elements
of the form Dnn�r� � h�ΔSn�r��2i. It is a generalization of the
scintillation coefficient, which is the variance of S0, to all possible
variances of the Stokes parameters. The element D00�r� repre-
sents the usual intensity scintillation at position r. The other
three diagonal elements Dpp�r� with p � 1, 2, or 3 represent
the variance of S1, S2, and S3, respectively. The 12 off-diagonal
matrix elements describe all possible 1-point cross-correlations of
the fluctuations of the Stokes parameters.

We can again introduce normalized matrix elements by
defining

DN
nm�r� ≡

Dnm�r�
hS0�r�i2

: (36)
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The first element, DN
00�r�, is the square of the usual scintillation

index [29]. The assumption of Gaussian statistics implies that it
is bounded [30], i.e.,

1∕2 ≤ DN
00�r� ≤ 1. (37)

Onmaking use of the fact that η�r, r� � 1 in Eq. (25), it readily
follows that

X3
m�0

DN
mm�r� � 2. (38)

This result shows that the normalized, diagonal Stokes scintil-
lations are not independent of each other because their sum
equals two. Both Eqs. (25) and (38) hold for any stochastic
electromagnetic beam that is generated by a source that is gov-
erned by Gaussian statistics.

It is worth noting that the Stokes fluctuations and the Stokes
scintillations can be measured using a narrowband spectral filter
together with a division-of-amplitude photopolarimeter, see,
for example, [31] and the references therein. Having estab-
lished this general formalism, we next discuss some specific
examples.

5. EXAMPLES

I. As a particular example of a fully polarized beam, consider the
case where

W ij�r1, r2� � E�
i �r1�Ej�r2�: (39)

We note that the matrix elements now factorize, and there is no
ensemble averaging involved. On substituting from Eq. (39)
into the definition of the degree of polarization, namely, [21]

P�r� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4DetW �r, r�
�TrW �r, r��2

s
, (40)

it is readily seen that P�r� � 1, i.e., the beam is indeed fully
polarized. Furthermore, Eq. (22) now takes on the form

Cnm�r1, r2� �
X
a, b

X
c, d

σnabσ
m
cdE

�
a �r1�Ed �r2�Eb�r1�E�

c �r2� (41)

�
X
a, b

σnabE
�
a �r1�Eb�r1� ×

X
c, d

σmcdE
�
c �r2�Ed �r2�

(42)

� Sn�r1�Sm�r2�: (43)

It is worth pointing out that, for this case, all cross-correlations
can be nonzero.

The Stokes scintillation matrix for this case is obtained by
setting r1 � r2 � r in Eq. (43). This means that

D�r�nm � Sn�r�Sm�r�: (44)

II. As an example of a partial polarization, we study a beam
whose cross-spectral density matrix elements are

W xx�r1, r2� ≠ 0, (45)

W yy�r1, r2� ≠ 0, (46)

W xy�r1, r2� � W yx�r1, r2� � 0. (47)

The two nonzero diagonal elements need not be equal. A beam
of this type can be realized by superposing two independent
beams, one that is x polarized and the other y polarized. Their
respective amplitudes and transverse coherence widths can be
chosen arbitrarily. On substituting into Eq. (40), one finds for
the degree of polarization the expression

P�r� �
���� W xx�r� −W yy�r�
W xx�r� �W yy�r�

����, (48)

which is between 0 and 1, indicating that the beam is indeed
partially polarized. We now have that

C�r1, r2� �

0
BB@

jW xx j2 � jW yyj2 jW xx j2 − jW yyj2 0 0
jW xxj2 − jW yyj2 jW xx j2 � jW yyj2 0 0

0 0 2Re�W �
xxW yy � 2 Im�W �

xxW yy �
0 0 2 Im�W xxW �

yy � 2Re�W xxW �
yy�

1
CCA, (49)

with the �r1, r2� dependence of the matrix elements suppressed for brevity. We note that, unlike the HBT coefficient, the other Stokes
fluctuation correlations are not always positive. For example, if jW yy�r1, r2�j > jW xx�r1, r2�j, then both C01 and C10 are negative.

For the Stokes scintillation matrix, we obtain

D�r� �

0
BB@

1
2 �hS0i2 � hS1i2� hS0ihS1i 0 0

hS0ihS1i 1
2 �hS0i2 � hS1i2� 0 0

0 0 1
2
�hS0i2 − hS1i2� 0

0 0 0 1
2 �hS0i2 − hS1i2�

1
CCA, (50)

with the r dependence of the various Stokes parameters not
being displayed. Notice that beams that are purely x or y po-
larized are special cases of beams of this kind.

For the sake of completeness, we state without proof that,
for the case of a completely unpolarized beam, both C�r1, r2�
and D�r� are proportional to the identity matrix.

III. As a final example, we consider the generalized scintil-
lations that occur in a planar Gaussian–Schell model (GSM)
source. In that case [21],

W ij�ρ1,ρ2��AiAjBij exp

�
−

�
ρ21
4σ2i

� ρ22
4σ2j

��
exp

�
−
�ρ2 −ρ1�2

2δ2ij

�
:

(51)

Here, ρi � �xi, yi� denotes a transverse position in the source
plane, Ai is the spectral amplitude of Ei, and Bij is the
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correlation coefficent between Ei and Ej. The symbols σi and
δij represent effective widths and coherence radii, respectively.
We will restrict ourselves to the case σx � σy � σ. On making
use of Eq. (51), we find for the normalized, diagonal Stokes
scintillations in the source plane the expressions

DN
00 �

A4
x � A4

y � 2A2
xA2

y jBxyj2
�A2

x � A2
y �2

, (52)

DN
11 �

A4
x � A4

y − 2A2
xA2

y jBxyj2
�A2

x � A2
y �2

, (53)

DN
22 �

2A2
xA2

y �1� jBxyj2 cos�2ϕ��
�A2

x � A2
y �2

, (54)

DN
33 �

2A2
xA2

y �1 − jBxyj2 cos�2ϕ��
�A2

x � A2
y �2

, (55)

where ϕ denotes the angle, or phase, of the complex-valued
coefficient Bxy. We note that, whereas DN

00 and DN
11 are in-

dependent of this angle, the other two Stokes scintillations
display a harmonic dependence. It is seen that the scintillations
are all uniform, i.e., they are independent of the transverse
position ρ. Furthermore, it is easily verified that their sum
equals 2, in agreement with Eq. (38). This means that a GSM
source that is designed to have a reduced scintillation DN

00 will
have an increased scintillation of some of the other Stokes
parameters.

6. CONCLUSIONS

We have developed a formalism to analyze the correlations of
the fluctuations of the four Stokes parameters that occur in ran-
dom electromagnetic beams. These correlations can be inter-
preted as a polarization-resolved generalization of the Hanbury
Brown–Twiss effect. Under the assumption that the source
fluctuations obey Gaussian statistics, they can be described in
terms of the second-order cross-spectral density matrix. It is
found, in general, that the fluctuations of each Stokes param-
eter at a certain point are correlated with the fluctuations of all
other Stokes parameters elsewhere. Furthermore, the sum of
the diagonal Stokes fluctuations was shown to be related to the
spectral degree of coherence, i.e., to the fringe visibility in
Young’s experiment.

We also derived expressions for the variance of the Stokes
parameters at a single point. These are a natural generalization
of the usual scintillation coefficient. The sum of the normalized
diagonal scintillation coefficients equals 2, showing that they
are not independent. This means that a decreased scintillation
of S0 comes at a cost, namely, an increased variance of other
Stokes parameters. Whether or not such an increase is accept-
able will be highly context-dependent.

Examples of beams with different states of polarization were
presented. In those examples, the Stokes fluctuations and
Stokes scintillations matrices take on different forms. For the
case of a Gaussian–Schell model source, expressions were de-
rived that show the dependence of the Stokes scintillations on
the source parameters.

Observing the Stokes fluctuations and their correlations
provides a new way to characterize random electromagnetic
beams. Our results may be applied to the wide range of systems,
discussed in [22–26], in which polarization fluctuations play an
important role.

Funding. Air Force Office of Scientific Research (AFOSR)
(FA9550-16-1-0119).
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