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Polarization modulation by surface plasmons in Young’s double-slit setup
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A simple phenomenological model, justified by rigorous electromagnetic analysis, is used to examine far-
field polarization modulation introduced by a metallic screen with two subwavelength slits in uniform, partially
polarized illumination. The accuracy of this intuitive model is assessed numerically, by employing the Fourier
modal method, as regards the wavelength, the screen metal, and the slit depth, width, and separation. The Stokes
parameters and the degree of polarization are evaluated paraxially in the far zone of the slits. We demonstrate
that a uniform, partially linearly polarized incident beam can be rendered unpolarized by the nanoslits. Our work
provides insight into the pivotal role that surface plasmons have in polarization modulation in photonics.
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I. INTRODUCTION

Extraordinary optical transmission (EOT) [1], variably at-
tributed to the effects of surface plasmon polaritons (SPPs),
waveguide modes, optical vortices, and Fabry-Pérot-type
resonances in subwavelength metallic structures [2–5], has
aroused much interest in plasmonics since its initial obser-
vation. There has been a surge in plasmonic nanophotonics
research, which has led to a number of potential applications
[6–10]. To date, the SPPs have been observed to control the
transmission [11] and spatial coherence [10,12,13] of incident
light, demonstrated by Young’s classic two-beam setup with
subwavelength slits fabricated in a thin metallic layer. In this
work we consider the modulation of the polarization state of
light caused by surface plasmon effects by making use of a
simple phenomenological model. The value of this model lies
in the fact that it is computationally fast and efficient, ex-
haustive in terms if materials and wavelengths, and amenable
to future extensions. In particular, the model describes con-
ceptually and reasonably accurately the physical mechanism
that underlies optical diffraction by nanoapertures, namely,
the interplay between direct transmission and SPPs generated
at adjacent apertures. The model has previously been suc-
cessfully applied to explain both EOT [11] and coherence
modulation [12,13] by showing that in Young’s double-slit
experiment the field properties vary harmonically with slit
separation, with a period determined by the SPP wavelength.
We further explicitly confirm the accuracy of this intuitive
model by rigorous numerical simulations.

We begin by presenting, in Sec. II, an electromagnetic
extension of a widely employed phenomenological model
[11,12] for a plasmon-assisted Young double-slit experiment,
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restricting attention to uniform, partially polarized plane-wave
illumination. The application of this model requires the deter-
mination of certain transmission and scattering factors. The
evaluation of these coefficients by means of rigorous diffrac-
tion theory, the Fourier modal method [14], is the subject
of Sec. III. The range of validity of the model is investi-
gated in Sec. IV under various conditions and for different
materials and wavelengths. We demonstrate that the model
is highly accurate provided the slit separation is sufficiently
large to ignore multiple reflections of the plasmons between
the slits. In Sec. V we present analytical and numerical results
on the polarization-state modulation, in terms of the Stokes
parameters and the degree of polarization, which occur in a
plasmon-assisted Young experiment. We show in particular
that an incident partially linearly polarized beam field may
be rendered strictly unpolarized by the setup. The main con-
clusions of this work are summarized in Sec. VI. Certain
mathematical developments are relegated to Appendixes A
and B.

II. PHENOMENOLOGICAL MODEL

The optical configuration that we study is illustrated
schematically in Figs. 1 and 2. A plane electromagnetic wave
of free-space wavelength λ0 is normally incident on a metal-
lic screen confined between planes z = 0 and z = d . Two
subwavelength slits (of width w < λ0) are pierced into the
screen, with center-to-center spacing a. Light is transmitted
by these slits into the half space z > d , taken to be vacuum
(n = 1), and subsequently propagates into the far zone, form-
ing a Young interference pattern there. Our interest is finding
the state of polarization of the light in the far-zone paraxial
region and comparing that with the polarization of the incident
plane wave.
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FIG. 1. Illustration of the physical situation. Propagating fields
and the final interference pattern are shown with red solid lines;
evanescent fields are displayed with red shading. The far-zone inter-
ference pattern tr J at height z is created by the two beams emerging
from the slits. Surface plasmon waves, which affect the far-field
interference pattern, are presented as arrows.

In the phenomenological model we treat the slits as sec-
ondary line sources, which radiate cylindrical waves. In
s polarization (or TE, with the electric vector in the y
direction) the response of a single slit to unit-amplitude il-
lumination is described by a complex transmission factor β.
In p polarization (or TM, with the electric vector in the x di-
rection) the complex transmission factor under unit-amplitude
illumination is denoted by α. However, in this case the field
transmitted through one slit also excites a surface plasmon
polariton that propagates towards the other slit and is scattered
into a freely propagating field in the half space z > d , with an
excitation and scattering factor γ . Hence, the field emanating
from one slit is given by α + γ K , where K = exp(ikspa) is a
modulation factor due to SPP propagation between the slits
separated by distance a. Further, ksp = k0n/

√
1 + n2 [15] is

the complex plasmon propagation constant, k0 is the vacuum
wave number, and n is the (complex) refractive index of the
metal.

Considering a general, partially polarized plane-wave illu-
mination, we define the polarization state of the incident field
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FIG. 2. Geometry of the double-slit system used in rigorous cal-
culations, when both slits are open. The blue arrows illustrate how the
SPPs generated in slit 1 travel to slit 2 and subsequently scatter into
the far zone. The thickness of the metal screen is h, i.e., d = h + c,
where c is the Ti film depth. The role of the thin Ti layer is merely to
prevent plasmon propagation on the lower metal surface.

at z = 0 by a polarization matrix

Ji =
[

Jpp Jps

Jsp Jss

]
, (1)

normalized such that tr Ji = 1. With the notation for trans-
mission factors of the slits defined above, the polarization
matrix in the paraxial region of the far zone takes the form
(see Appendix A for more details)

J(θ ) = cos2

(
ak0θ

2

)
�, (2)

where θ is the diffraction angle and

� =
[
�xx �xy

�yx �yy

]

=
[

Jpp|α + γ K|2 Jpsβ(α + γ K )∗

Jspβ
∗(α + γ K ) Jss|β|2

]
. (3)

Hence we observe a cosinusoidal interference pattern of unit
visibility, multiplied by a constant matrix � defining the far-
field polarization state. Consequently, we can calculate the
Stokes parameters [16]

S0 = �xx + �yy, (4)

S1 = �xx − �yy, (5)

S2 = �xy + �yx, (6)

S3 = i[�yx − �xy] (7)

and their normalized forms s j = S j/S0, j ∈ {1, 2, 3}, as well
as the degree of polarization

P =
√

S2
1 + S2

2 + S2
3

S0
(8)

in the paraxial far zone of the double-slit structure.

III. DETERMINATION OF TRANSMISSION AND
SCATTERING FACTORS

Use of the phenomenological model to study the polariza-
tion modulation effects requires that we know the set of the
slit’s transmission and scattering factors (α, β, γ ). We make
use of the Fourier modal method (FMM) [14] to estimate these
parameters, although several other rigorous diffraction analy-
sis methods could be employed equally well. An advantage
of the model over these rigorous methods is that once the
coefficients have been determined, they can be used to explore
various physical effects without the need for further compu-
tationally extensive rigorous calculations. As an example we
may cite slit separation: A change in it leads to adjustments in
the computational window with cubic computing-time depen-
dence (FMM) on the window width, whereas a similar change
when employing the model has no influence. We consider the
physical arrangement illustrated in Fig. 2, where the metal
screen is fabricated on a substrate. The purpose of the tita-
nium layer between the metal and the substrate is to suppress
plasmon propagation on the input surface z = 0.

The factor β is evaluated by considering a purely
s-polarized unit-amplitude illumination and calculating the Ey

component of the field at the plane z = d for a single slit
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at its center point. The factor α is determined similarly by
computing the Ex component on p-polarized unit-amplitude
illumination.

To determine γ we leave slit 1 open, but block direct
transmission through slit 2, and then evaluate Jxx(θ ). In the
FMM analysis, blocking is effected by adding a slab of Ti
in front of the slit at the plane z = 0 (see Fig. 2). Since slit 2
then produces only a scattered contribution due to the plasmon
propagation from slit 1, we obtain an interference pattern of
reduced visibility and an offset of the central maximum from
the direction θ = 0. In terms of the phenomenological model,
we now have

Jxx(θ ) = |α|2 + |γ |2 exp[−2 Im(ksp)a]

+ 2|α||γ | exp[−Im(ksp)a]

× cos[arg γ − arg α + Re(ksp)a − k0θa], (9)

where Re and Im denote the real and imaginary parts, respec-
tively. The phase of γ is obtained from the offset of the cosine
term, i.e.,

arg γ = arg α + [k0θ0 − Re(ksp)]a, (10)

where θ0 is the angular position of the shifted central max-
imum. The absolute value of γ is determined from the
visibility V = (Jmax − Jmin)/(Jmax + Jmin) of the interference
pattern,

|γ | = |α|
(

1

V
−

√
1

V 2
− 1

)
exp[Im(ksp)a]. (11)

The complex γ is determined by the offset and the visibility of
the interference pattern calculated by the FMM (normalized
by the single-slit radiation pattern) using a sufficiently large
value of slit separation a to effectively suppress the effects of
multiple scattering of the surface plasmons between the slits.
In practice, we choose a to be of the order of the SPP survival
(decay) length.

As an example of estimating the coefficients α, β, and
γ we consider a gold-air interface at vacuum wavelength
λ0 = 740 nm. The SPP decay length in this case is lsp =
1/Im(ksp) ≈ 114.5 μm, which we use as the slit separation a.
The slit width and depth are w = 250 nm and depth h = 200
nm, respectively, and the Ti layer thickness c = 20 nm. In the
one-slit case, a Ti cover of thickness 1 μm and width a/2 is
placed on the input of slit 2. The resulting transmission coef-
ficients are α = 0.377 + 0.211i and β = −0.115 − 0.258i.

Whereas in the two-slit case the coefficients γ and K are
separated in the phenomenological model, a small quasiperi-
odic variation in γ remains in the rigorous FMM simulations,
as is illustrated for the absolute value in Fig. 3(a). The period
of this fluctuation is equal to λsp = 2π/Re(ksp) = 720 nm,
suggesting that the variation originates from the SPP’s actual
phase which at the exit slit depends on the separation a. To
obtain a constant value for the coefficient γ , we therefore
take an average over the fluctuation period by varying a
within the range 114.5–115.9 μm, which in this case gives
γ = −0.050 − 0.101i.

Although the quasiperiodic variation of γ is averaged out,
the Stokes parameters still are left with small quasiperiodic
oscillations because of the term K in Eq. (3); these are shown

(a)

(b)

FIG. 3. Fluctuation of (a) |γ | for 159λsp � a � 161λsp and
(b) oscillation of the normalized far-field Stokes parameters s1 (blue
squares), s2 (red triangles), and s3 (yellow circles) for 159λsp �
a � 160λsp, with the corresponding polarization states presented as
ellipses, for a uniform 45◦ linearly polarized input field.

in Fig. 3(b). Paraxially, the diffracted field, resulting from
a 45◦ linearly polarized uniform illumination, is no longer
linearly polarized (s3 differs from zero), but rather ellipti-
cally polarized, as is explicitly illustrated in the figure. We
observe that the emerging elliptically polarized electric fields
contain considerable x and y components, since |α| and |β|
are roughly of equal size.

The coefficients α, β, and γ naturally depend on the metal
and the wavelength, as well as on the values of the slit width
and depth. Figure 4 shows a more systematic study of the
coefficient dependence on the width w and depth h of the slits
for the structure considered above (Au and air, λ0 = 740 nm,
Fig. 2). The solid lines illustrate the variations when the slit
depth is fixed at h = 200 nm and the width is scanned. The
dashed lines show the results when the width is fixed at w =
250 nm and the slit depth is varied. We restrict the scanning
range of w to below λ0/2 to retain the subwavelength nature
of the slit. On the other hand, we limit the range of h to values
above 150 nm to prevent light from penetrating through the
solid part of the metal screen. The values of γ are evaluated
around slit separation a = 97.75λsp.

Considering the transmission coefficients, |α| depends only
weakly on h and grows nearly linearly with w. On the
other hand, |β| is reduced when h increases but increases
with w. These results are expected in view of the theory of
metal-insulator-metal waveguides. The ratio of the scattering
coefficient |γ | to |α| is nearly independent of h, but depends
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(a)

(b)

FIG. 4. Numerically estimated values of (a) |α|, |β|, and |γ | and
(b) phases of α, β, and γ for a gold-air double slit at λ0 = 740 nm
and a = 97.75λsp. The solid lines correspond to h = 200 nm and w

is varied. The dashed lines represent the case when w = 250 nm and
h is varied. Red (circles) corresponds to α, blue (triangles) to β, and
black to γ .

on w. The values w = 250 nm and h = 200 nm represent a
good compromise and will therefore be used in our analyses
from now on.

IV. VALIDITY OF THE MODEL

The phenomenological model takes into account only one-
directional plasmon propagation from one slit to the other. It
thus ignores the phenomena of back (and multiple) reflections
of the SPPs, which grow stronger when the slit separation
is small in relation to the plasmon survival distance, i.e.,
a � lsp. All such effects are nonetheless fully accounted for
in the FMM analysis. We note that the simple model could
be enhanced by incorporating backpropagation phenomena as
well [17].

We consider three metals and several wavelengths in the
model validity analysis: gold (620 and 740 nm), silver (600,
700, and 800 nm), and aluminium (460, 560, and 660 nm).
The geometry of Fig. 2 is used, with the same structure pa-
rameters for all cases. The values of slit separation a are taken
at the maximum intensity points a = (n + 1

2 )λsp [11], starting
from n = 5, with an interval of λsp up to a = 3lsp/4, after
which we use an interval of 4λsp. The interval is increased
here since comparable results are obtained with the model
and the FMM, but the latter experiences a drastic increase in
computing time and memory usage. We calculate α, β, and γ

in the same fashion as before, and normalize the phenomeno-

(a)

(b)

FIG. 5. Deviations between the phenomenological model and
the FMM simulations. (a) Plots of Jxx (θ ) as a function of the slit
separation for silver at wavelengths 600 nm and 800 nm. The blue
solid line is the phenomenological model of Eq. (12) and red circles
are the results of FMM calculations. (b) Maximum relative error
after a certain a/lsp as a function of the SPP decay length for all
cases. Marked next to the calculated points are the wavelength in
nanometers (top) and |γ |2 × 10−3 (bottom).

logical model such that it coincides with the FMM results at
slit separation closest to point a = 1.2lsp, and scale the value
of the model to unity at the starting point for the phenomeno-
logical model (a = 7λsp/2). The normalization point should
be far enough to remove the effects of plasmon backscat-
tering completely. The far-field interference pattern for the
phenomenological model with two slits open is derived in the
same fashion as Eq. (9) (see Appendix A),

Jxx(θ ) = {|α|2 + |γ |2 exp[−2 Im(ksp)a]

+ 2|α||γ | exp[−Im(ksp)a]

× cos[arg γ − arg α + Re(ksp)a]}

× cos2

(
ak0θ

2

)
, (12)

for fully p-polarized incident light. We consider the angle θ =
0.5◦ in all the cases of comparison between the phenomeno-
logical and FMM results to acquire a better understanding of
the accuracy of the model when the slit separation is varied.
The interference pattern in Eq. (12) reaches zero when the last
cosine term vanishes, i.e., when ak0θ/2 = π , from which we
explicitly find the zero point at a/lsp = 0.5 Im(ksp)λ0/θ .

Figure 5(a) shows Jxx(θ ) as well as the numerically ob-
tained p-polarized far-field intensity for silver at 600 and
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800 nm. The cosine term in Eq. (12) becomes zero when
a/lsp ≈ 1.59 and 0.57, respectively. The phenomenological
model and the FMM results are observed to deviate somewhat
when a � lsp, as can be expected due to multiple traversals
of the SPPs between the slits. However, the agreement is
excellent for larger values of a where only single-scattered
plasmons contribute to the far-field interference pattern.

Figure 5(b) shows the relative deviations between the
FMM results and the phenomenological model as a function
of lsp for all the metals and wavelengths considered. The verti-
cal axis represents the value of a/lsp where the difference has
(roughly) decreased below 10%, 5%, and 3%. The numbers
accompanying each data point indicate the wavelength (in
nanometers, top) and the value of |γ |2 × 10−3 (bottom). The
minimum separations a, where the model’s accuracy reaches a
desired level, vary with both wavelength and metal. Obviously
the SPP strength also plays a role, which can partly be seen
from the values of |γ |2 and partly from the long decay lengths.
Another significant factor here is the ratio of the incident
light’s wavelength to the slit width, λ0/w. The phenomeno-
logical model is valid only when w � λ0, which is not always
fully the case in Fig. 5(b), for instance, aluminium at 460 nm
(λ0/w = 1.84).

V. POLARIZATION MODULATION

In this section we make use of the phenomenologi-
cal model to analyze polarization-state modulation by the
metallic double-slit structure. We consider uniform, partially
linearly polarized illumination and represent the associated
polarization matrix Ji as a sum of the unpolarized and fully
polarized parts. We may then express its elements as (see
Appendix B)

Jpp = 1
2 (1 − Pi ) + Pi cos2 φ, (13)

Jps = Jsp = Pi sin φ cos φ, (14)

Jss = 1
2 (1 − Pi ) + Pi sin2 φ, (15)

where Pi is the degree of polarization of the input field and
φ is the polarization angle of the linearly polarized part mea-
sured from the x direction. Inserting these expressions into
Eq. (3), we can determine the elements of the matrix � and
consequently the Stokes parameters given by Eqs. (4)–(7)
(see Appendix B for the explicit expressions) along with the
far-field degree of polarization P as functions of Pi and φ.

Figure 6 illustrates the behavior of the normalized Stokes
parameters s j , j ∈ {1, 2, 3}, and the degree of polarization
P in the far zone as a function of Pi for selected values
of φ. In the numerical examples we consider gold and take
w = 250 nm and h = 200 nm. With these values we find α =
0.377 + 0.211i, β = −0.115 − 0.258i, and γ = −0.050 −
0.101i, as before, and K = 8.7261 + 0.0087i, which corre-
sponds to a slit separation a = 115 μm and Au at wavelength
λ0 = 740 nm. The dashed lines indicate the cases when
plasmon-assisted effects are ignored, i.e., we have set γ = 0.
Hence the difference between the solid and dashed lines in-
dicates the influence of the SPPs, which is clearly observable
even for the relatively large value of a considered here, and
grows substantially for smaller slit separations.

(a)

(b)

(c)

FIG. 6. Polarization properties in the far field as a function of
the input degree of polarization Pi for (a) φ = 30◦, (b) φ = 60◦, and
(c) φ = 85◦ linearly polarized light. The dashed lines correspond to
the case γ = 0. The blue (squares) lines present s1, red (triangles) s2,
and yellow (circles) s3. In the polarization ellipses the red dashed line
corresponds to maxima and the blue solid line to minima in Fig. 3.

For small values of φ, P increases monotonically with
Pi. However, in a certain range of φ and Pi we observe a
minimum for P. A closer study shows that for P to attain
a minimum, the condition S1 = 0 must be satisfied. Using
Eqs. (B5)–(B8), we readily find that this requires

Pi = − |α + γ K|2 − |β|2
(|α + γ K|2 + |β|2) cos(2φ)

, (16)
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assuming that |α + γ K| � |β| admissible solutions with 0 �
Pi � 1 are found in the range φc � φ � π − φc, where

φc = 1

2
arccos

( |β|2 − |α + γ K|2
|α + γ K|2 + |β|2

)
. (17)

However, the condition that S1 = 0 is not sufficient for the
light paraxially in the far zone to be unpolarized, but addi-
tionally it is necessary that the off-diagonal elements of the
polarization matrix � in Eq. (3) are zero. If S1 = 0, the degree
of polarization in the far zone takes the form P = |�xy|/S0.
From Eqs. (B6) and (B9) we then find

P = (|α + γ K|2 − |β|2)| sin(2φ)|
4|α + γ K||β| cos(2φ)

, (18)

which shows that unpolarized output in the paraxial direc-
tion in these circumstances is possible only if φ = π/2 or
|α + γ K|2 = |β|2. If, on the other hand, |β| � |α + γ K|, then
solutions with 0 � Pi � 1 yielding S1 = 0 are found in the
range −φc � φ � φc. Besides |α + γ K|2 = |β|2 as above, in
this case a paraxially unpolarized output field is possible only
if φ = 0. It should be noted, though, that |β| � |α + γ K|
would normally not occur with subwavelength metal slits,
which are the basic premise of the phenomenological model.

Several conclusions can be drawn from our findings. First
of all, in view of Eqs. (16) and (18), the condition |α +
γ K|2 = |β|2 implies that an incident uniform unpolarized
field emerges from the metallic double-slit structure into the
far zone unpolarized. This is a kind of trivial case since
nothing happens to the polarization state. Second, if instead
|α + γ K|2 �= |β|2, our results show that a uniform linearly
partially polarized input field can be rendered fully unpo-
larized, provided the coefficients (α, β, and γ ) and K are
chosen appropriately and the polarized part is either s polar-
ized (|α + γ K| > |β|) or p polarized (|β| > |α + γ K|). This
can always be arranged by suitably orienting the incident
polarization. Third, it follows that elliptically (or circularly)
partially polarized uniform fields cannot be made unpolarized
in this way, since the polarized contribution has to be either a
TE or a TM field and elliptical polarization states necessarily
contain both.

Finally, we display in Fig. 7 explicit graphs of Pi, P, and the
depolarization ratio P/Pi within the range where physically
meaningful solutions of Eq. (16) are found. In Fig. 7(a) we
show the results when the system parameters are the same as
in Fig. 6. We observe that P = 0 only when φ = π/2. The
effects of surface plasmons are significant, as the differences
between the solid and dashed lines demonstrate. We note that,
according to Eq. (17), the allowed φ range is also widened by
the SPPs. In Fig. 7(b) we show similar plots for a smaller slit
separation a = 50λsp, in which case the plasmon effects are
even more pronounced.

VI. CONCLUSION

We have considered the polarization state of the radiation
emerging paraxially from a double-slit structure in a metal
film under uniform, partially polarized illumination. Making
use of rigorous numerical electromagnetic field computations
(Fourier modal method), we have assessed the accuracy of
a phenomenological model applicable to subwavelength slits

(a)

(b)

FIG. 7. Depolarization effects. The solid lines represent the cases
(a) a = 159λsp and (b) a = 50λsp. In both figures the dashed lines
refer to the situation when the plasmon effects are ignored (γ = 0).
All other parameters in both figures are as in Fig. 6.

of sufficient depth and incorporating the effects of surface
plasmon propagation. We demonstrated that the simple in-
tuitive model can accurately be used for any slit separation
and plasmon propagation length as long as the former is large
enough to ignore (multiple) SPP reflections between the slits.
This required slit separation strongly depends on the metal and
the incident-light wavelength and thus reflects the strength of
the plasmon field. The plasmon-mediated interference allows
one to control the far-zone polarization degree and state. In
particular, we showed that a linearly, partially polarized inci-
dent field can, under suitable conditions, be rendered totally
unpolarized.
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APPENDIX A: DERIVATION OF EQS. (2), (3), (8), and (12)

Using any suitable rigorous electromagnetic technique, we
can determine the response of the structure separately in p
and s (TM and TE) polarizations. Let us denote the transverse
(x, y) components of the fields at z = d , arising from a unit-
amplitude plane-wave illumination from z < 0, by Ex(x, d ) in
p polarization and by Ey(x, d ) in s polarization. This can be
done whether both slits are open or one of them is covered
with a block preventing direct transmission.

The fields at z = d can be propagated to an arbitrary plane
z > d using the angular spectrum technique

Ej (x, z) =
∫ ∞

−∞
Aj (kx ) exp[i(kxx + kz
z)]dkx, (A1)

where 
z = z − d ,

Aj (kx ) = 1

2π

∫ ∞

−∞
Ej (x, d ) exp(−ikxx)dx, (A2)

and

kz =
⎧⎨
⎩

√
k2

0 − k2
x when |kx| < k0

i
√

k2
x − k2

0 when |kx| > k0.
(A3)

At distances 
z 
 λ0 the contributions of the evanescent
waves with imaginary values of kz (giving rise to the plas-
monic fields in p polarization) can be ignored. In such
circumstances we may limit the spatial integration in Eq. (A2)
to the close proximity of the slits.

At sufficiently large values of 
z the field Ej (x, z) can be
accurately described by an asymptotic expression

Ej (x, z) =
√

2πk0 exp
(
− iπ

4

)
szA j (k0sx )

exp(ik0r)√
r

, (A4)

where sx = x/r, sz = 
z/r, and r = √
x2 + 
z2. Although

this formula is strictly valid in the limit r → ∞, in practice
it is a good approximation when 
z 
 a. In this paper we are
interested only in the paraxial region. Here r ≈ 
z, sz ≈ 1,
and sx ≈ x/
z = sin θ ≈ θ , where θ is the diffraction angle.
Now Eq. (A4) reduces to

Ej (x, z) ≈
√

2πk0 exp
(
− iπ

4

)
Aj (k0θ )

exp(ik0
z)√

z

. (A5)

This result holds for both p ( j = x) and s ( j = y)
polarizations.

Allowing the incident plane-wave field to be partially po-
larized and representing it with Eq. (1), the action of the slit
system (as regards the transverse electric field) can formally
be described by a deterministic diagonal transmission (Jones)
matrix T(x, d ) with diagonal elements Ex(x, d ) and Ey(x, d ).
The polarization matrix at the exit plane z = d takes the form

J(x, d ) = T∗(x, d )Ji(x, 0)TT(x, d )

=
[

Jxx(x, d ) Jxy(x, d )
Jyx(x, d ) Jyy(x, d )

]

=
[

Jpp|Ex(x, d )|2 JpsE∗
x (x, d )Ey(x, d )

JspE∗
y (x, d )Ex(x, d ) Jss|Ey(x, d )|2

]
.

(A6)

The polarization properties in the paraxial region of the far
zone are defined by a polarization matrix

J(x, z) = 2πk0


z
J(θ ), (A7)

where

J(θ ) =
[

Jxx(θ ) Jxy(θ )
Jyx(θ ) Jyy(θ )

]

=
[

Jpp|Ax(k0θ )|2 JpsA∗
x (k0θ )Ay(k0θ )

JspA∗
y (k0θ )Ax(k0θ ) Jss|Ay(k0θ )|2

]
(A8)

may be called the angular polarization matrix.
The phenomenological model employed in the main text

follows if we formally take the slits to be line sources of
appropriate strengths. When both slits are open, we may set

Ex(x, d ) = π (α + γ K )
[
δ
(

x + a

2

)
+ δ

(
x − a

2

)]
, (A9)

Ey(x, d ) = πβ
[
δ
(

x + a

2

)
+ δ

(
x − a

2

)]
. (A10)

This gives

Ax(kx ) = (α + γ K ) cos

(
akx

2

)
, (A11)

Ay(kx ) = β cos

(
akx

2

)
, (A12)

leading to Eqs. (2) and (3). When only slit 1 is open (slit 2 is
blocked) and the illumination is p polarized, we have

Ex(x, d ) = 2π
[
αδ

(
x + a

2

)
+ γ Kδ

(
x − a

2

)]
, (A13)

Ax(kx ) = α exp

(
ikx

2

)
+ γ K exp

(
− ikxa

2

)
, (A14)

resulting in Eq. (9). When both slits are open but the illumi-
nation is strictly p polarized, we have Eqs. (A9) and (A11),
leading to Eq. (12). We emphasize that because of the nature
of the phenomenological model, only the relative values of
the complex factors (α, β, and γ ) are important in any given
metal, slit, and illumination configuration.

APPENDIX B: FAR-ZONE POLARIZATION STATE

Let us represent the polarization matrix of the incident
field as a sum of unpolarized and polarized parts [see [18],
Eqs. (6.3– 16) and (6.3–17)]

Ji = Ji
u + Ji

p = A

[
1 0
0 1

]
+

[
B D

D∗ C

]
, (B1)

with BC − DD∗ = 0. Since we set tr Ji = 1, we obtain 2A +
B + C = 1. If we also fix the degree of polarization

Pi = tr Ji
p

tr Ji
= 1 − 2A, (B2)

we find that the elements of the decomposed matrix must
satisfy the conditions

A = 1 − Pi

2
, B + C = Pi, |D|2 = BC. (B3)
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Taking the fully polarized part of the incident field to be
linearly polarized, the conditions in Eq. (B3) lead to a repre-
sentation

Ji = 1

2
(1 − Pi )

[
1 0
0 1

]
+ Pi

[
cos2 φ sin φ cos φ

sin φ cos φ sin2 φ

]
,

(B4)

where φ is the polarization angle measured from the x direc-
tion. The elements of the far-field polarization matrix defined
in Eq. (3) then read

�xx = [ 1
2 (1 − Pi ) + Pi cos2 φ]|α + γ K|2, (B5)

�xy = Pi(α + γ K )∗β sin φ cos φ, (B6)

�yx = Pi(α + γ K )β∗ sin φ cos φ, (B7)

�yy = [ 1
2 (1 − Pi ) + Pi sin2 φ]|β|2. (B8)

The Stokes parameters associated with the matrix � take the
explicit forms

S0 = 1
2 [|α + γ K|2 + |β|2

+ Pi(|α + γ K|2 − |β|2) cos(2φ)], (B9)

S1 = 1
2 [|α + γ K|2 − |β|2

+ Pi(|α + γ K|2 + |β|2) cos(2φ)], (B10)

S2 = PiRe[(α + γ K )∗β] sin(2φ), (B11)

S3 = PiIm[(α + γ K )∗β] sin(2φ), (B12)

where, as before, Re and Im denote the real and imaginary
parts, respectively.
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