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Abstract: It is well known that in general the spectrum of a beam that is generated by a partially
coherent source will change on propagation. Here we derive necessary and sufficient conditions
under which the often-used Gaussian Schell-model sources can produce beams whose normalized
spectrum is invariant everywhere, or is invariant just along the beam axis. These sources are not
necessarily quasi-homogeneous or obeying the scaling law.
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1. Introduction

Due to the pioneering work of Wolf it is now generally appreciated that, in general, the spectrum
of the field that is generated by a partially coherent source changes on propagation [1–4]. An
exception are quasi-homogeneous sources [5, Sec. 5.3.2] that obey the scaling law [6–8]. These
are planar, secondary sources that, at points ρ1 and ρ2 and frequency ω, are characterized by
a spectral degree of coherence µ(0)(ρ1, ρ2;ω) that depends on ρ1 and ρ2 only through their
difference, i.e.,

µ(0)(ρ1, ρ2;ω) = µ(0)(ρ2 − ρ1;ω). (1)

Here the superscript (0) indicates the source plane z = 0. Furthermore, at each frequency the
spectral density S(0)(ρ,ω) of these sources varies much slower with ρ than µ(0) varies with
ρ2 − ρ1. If, in addition, the frequency dependence of µ(0) has the functional form

µ(0)(ρ2 − ρ1;ω) = µ(0)[k(ρ2 − ρ1)], (2)

with k the wavenumber associated with frequency ω, then everywhere the normalized spectrum
of the radiated field is equal to the normalized source spectrum. Equation (2) is referred to as the
scaling law. Examples of quasi-homogeneous sources that satisfy this law, and hence produce
spectrally invariant fields, are certain LEDs [9] and thermal sources [6].
Apart from the researches we just mentioned, most studies do not explore the possibility

of the source width or the spectral degree of coherence being frequency-dependent. Notable
exceptions are [10–12] in which frequency-dependent source parameters are shown to cause
significant spectral changes. Taking the opposite approach, we investigate if such a frequency
dependence can lead to spectrally invariant beams. A related investigation was reported in [13].
There conditions were derived under which the spatial distribution of the spectral density remains
invariant on propagation, apart from a transverse scale modification.
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We report two new classes of Gaussian Schell-model (GSM) sources. One generates beams
whose normalized spectrum is invariant everywhere, the other produces beams whose spectrum
is invariant just along the propagation axis. These sources need not be of the quasi-homogeneous
type, and they do not necessarily satisfy the scaling law. GSM sources are the workhorse of
coherence theory [5, Sec. 5.4] and numerous studies have been dedicated to the fields that
they generate. Because of their ubiquity, and their use as being representative of a general
source, a better understanding of the spectral changes that they may or may not produce is useful.
Furthermore, GSM beams are candidates for telecommunication applications because they are
known to be more resistant to atmospheric turbulence than their fully coherent counterparts [14].
The GSM sources that we describe in this study would also display this robustness, but with the
additional advantage of having a spectrum that remains invariant.

2. Gausian Schell-model sources

A scalar, planar, secondary GSM source (see Fig. 1) is described by a cross-spectral density
function

W (0)(ρ1, ρ2; k) =
√
S(0)(ρ1; k)

√
S(0)(ρ2; k)µ(0)(ρ2 − ρ1; k). (3)

Both the spectral density and the spectral degree of coherence are assumed to have a Gaussian
form, i.e.,

S(0)(ρ; k) = S0(k)e−ρ
2/2σ2(k), (4)

µ(0)(ρ2 − ρ1; k) = e−(ρ2−ρ1)
2/2δ2(k). (5)

Here S0(k) is the spectrum at the center O of the source, σ(k) denotes the effective source width,
and δ(k) represents the transverse coherence length (or coherence radius). As our notation
suggests, we explore the possibility that the latter two quantities depend on the wavenumber. A
GSM source will produce a beam-like field if, for each wavenumber k that is present in the source
spectrum, the inequality [5, Eq. (5.6–73)],

1
4σ2(k)

+
1

δ2(k)
�

k2

2
(6)

holds. If δ(k) � σ(k) the source is quasi-homogeneous. However, we will not assume
quasi-homogeneity.

Fig. 1. A planar, secondary Gaussian Schell-model source occupies the plane z = 0 and
radiates into the half-space z>0. The vector ρ denotes a position transverse to the z axis.
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The spectral density at an arbitrary point of observation r = (ρ, z) in the half-space z ≥ 0
follows from the cross-spectral density function through the relation

S(ρ, z; k) = W(ρ, ρ, z; k). (7)

It is important to distinguish the spectral density and the normalized spectral density. The latter
is defined as

s(ρ, z; k) =
S(ρ, z; k)∫ ∞

0 S(ρ, z; k′) dk′
. (8)

On propagation to a plane z ≥ 0 the cross-spectral density function of a GSM beam is given by
the scalar version of [15, p. 184, Eq. (10)], with an obvious change in notation and with the
penultimate last minus sign corrected:

W(ρ1, ρ2, z; k) =
S0(k)
∆2(z; k)

exp
[
−
(ρ1 + ρ2)

2

8σ2(k)∆2(z; k)

]
× exp

[
−
(ρ2 − ρ1)

2

2Ω2(k)∆2(z; k)

]
exp

[
ik(ρ22 − ρ

2
1)

2R(z; k)

]
,

(9)

where the beam expansion coefficient equals(
z

kσ(k)Ω(k)

)2
, (10)

with
1
Ω2(k)

=
1

4σ2(k)
+

1
δ2(k)

, (11)

and
R(z; k) = z

[
1 +

k2σ2(k)
z2

Ω
2(k)

]
. (12)

The spectral density of the propagated beam is then, according to Eq. (7), given by the expression

S(ρ, z; k) =
S0(k)
∆2(z; k)

exp
[
−

ρ2

2σ2(k)∆2(z; k)

]
. (13)

Spectral invariance in the z ≥ 0 half space – Let us first restrict our attention to points on the
beam axis (ρ = 0). For these points Eq. (13) reduces to

S(0, z; k) = S0(k)
∆2(z; k)

, (14)

and hence the normalized spectral density equals

s(0, z; k) = S0(k)/∆2(z; k)∫ ∞
0 S0(k′)/∆2(z; k′) dk′

. (15)

If the expansion coefficient ∆2(z; k) is independent of the wavenumber k, this simplifies to

s(0, z; k) = S0(k)∫ ∞
0 S0(k′) dk′

, for all z ≥ 0. (16)

Clearly, this expression has no z dependence. In other words, the normalized spectral density
along the entire beam axis is invariant provided that ∆2(z; k) has no frequency dependence. It
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can be shown that this condition is not just sufficient but also necessary (see Appendix 1). It is
seen from Eq. (10) that this condition is fulfilled if

1
k2σ2(k)

[
1

4σ2(k)
+

1
δ2(k)

]
= C2, (17)

where C is some frequency-independent constant with dimension [m−1]. Solving for δ2(k) we
find that

δ2(k) =
4σ2(k)

4C2k2σ4(k) − 1
. (18)

On using this in Eq. (5) it follows that, in general, this does not describe a source whose spectral
degree of coherence satisfies the scaling law (2).
The constant C cannot be chosen arbitrarily. The left-hand side of Eq. (18), being positive,

implies that

C2>
1

4k2σ4(k)
, (19)

for all wavenumbers k that are present in the source spectrum. Together with the beam condition (6)
we thus find two constraints for C2, namely

1
4k2σ4(k)

<C2 �
1

2σ2(k)
. (20)

It is possible to construct a GSM source that generates a beam with an invariant normalized
spectrum not just on the axis, but in the entire half-space z ≥ 0. This only happens when Eq. (18)
is satisfied, and in addition the source width σ2(k) does not depend on the wavenumber, i.e.,
when

σ2(k) = B2, (21)
with B a constant length. Only in that case, namely, the exponential in Eq. (13), and therefore
the entire right-hand side of that equation, is independent of frequency. On substituting from
Eq. (21) into Eq. (18) we obtain

δ2(k) =
4B2

4C2k2B4 − 1
. (22)

On using this result in Eq. (3) we thus find that a secondary, planar GSM source will generate a
beam whose normalized spectrum everywhere in the half-space z ≥ 0 is invariant if and only if
its cross-spectral density function is of the form

W (0)(ρ1, ρ2; k) = S0(k) exp

[
−
(ρ21 + ρ

2
2)

4B2

]
exp

[
−
(ρ2 − ρ1)

2

2δ2(k)

]
, (23)

with B a constant length, and with the coherence radius δ2(k) given by Eq. (22).
As mentioned above, a source described by (23) does not necessarily satisfy the scaling law

(2), and furthermore it need not be quasi-homogeneous. The latter can be seen as follows. The
inequalities (19) must hold for all wavenumbers present in the source spectrum S0(k). If we
denote the lowest of them by kmin, then

C2>
1

4k2minB4
. (24)

Let us now choose a value for C2 such that

C2 =
1

4k20B4
, (25)

with k0<kmin. We can then use Eq. (22) to plot δ(k) as a function of the wavenumber k. An
example is shown in Fig. 2 for a band-limited source with kmin<k<kmax. It is seen that the
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coherence radius δ(k) and the source width σ = B are comparable in magnitude across the
entire spectral range. Therefore the source is clearly not quasi-homogeneous, but it nevertheless
generates a beam that is spectrally invariant in the entire half space into which the source radiates.

Fig. 2. The coherence radius δ(k) as function of the wavenumber k (solid blue curve). For
comparison’s sake the effective source width B is also shown (horizontal dashed line). In
this example k0 = 5.4 × 106 m−1, kmin = 1.20 × 107 m−1, kmax = 1.22 × 107 m−1, and
σ = B = 1 cm. The horizontal axis is restricted to the band-limited source spectrum.

3. Spectral invariance only along the beam axis

We saw above that a necessary and sufficient condition for spectral invariance along the beam
axis is given by Eq. (17). One possible alternative solution (not the most general) can be found by
assuming that the effective source width and the transverse coherence length have a k dependence
that is of the form

σ2(k) = akα, (26)

δ2(k) = bkβ , (27)

respectively, with a and b two positive constants that are independent of frequency, and with
the powers α and β to be determined. On using these two Ansätze in Eq. (18) and collecting
identical powers in k it follows that ∆(z; k) will be k-independent if

α = β, (28)

2 + 2α = 0. (29)

Thus we readily find that
α = β = −1, (30)

b =
4a

4C2a2 − 1
. (31)

and hence
σ2(k) = a/k, (32)

δ2(k) = b/k, (33)

with a and b two constant lengths related by Eq. (31). When the source width σ and the coherence
radius δ satisfy Eqs. (32) and (33) the expansion coefficient ∆(z; k) is again independent of
frequency, ensuring that the normalized spectrum along the beam axis is invariant. On making
use of Eq. (3) we thus conclude that a sufficient condition for a secondary, planar GSM source to
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generate a beam whose normalized spectrum everywhere on the propagation axis is the same is
for its cross-spectral density function to be of the form

W (0)(ρ1, ρ2; k) = S0(k) exp

[
−
k(ρ2

1 + ρ2
2)

4a

]
× exp

[
−
k(ρ2 − ρ1)

2

2b

]
,

(34)

with the lengths a and b related by Eq. (31). The presence of a factor k rather than k2 in the last
exponent shows that such sources do not satisfy the scaling law (2).
It is interesting to note that for the case of GSM sources the beam expansion factor ∆2 is

equivalent to the transverse scale factor M that is used in [13] to discuss the so-called shape
invariance of polychromatic fields. It can be shown that for such sources the concept of shape
invariance is equivalent with spectral invariance on the beam axis.
The spectral density of the field at off-axis points is described by Eq. (13). Even when

the expansion coefficient ∆2 is independent of the wavenumber, the normalized spectrum at
those points will not be invariant, due to the k-dependence of the product σ2(k)∆2(z; k) in the
exponential. The presence of this factor gives rise to a red-shifted spectrum. The magnitude of
this shift can be remarkably small as we now show. As z tends to infinity, the first term on the
right-hand side of Eq. (10) may be be neglected, and the exponential in Eq. (13) becomes

exp
[
−

ρ2

2σ2(k)∆2(z; k)

]
= exp

{
−
ρ2

z2
k2

2

[
1

4σ2(k)
+

1
δ2(k)

]−1}
. (35)

On introducing the polar angle θ ≈ tan θ = ρ/z and making use of Eqs. (32) and (33), we get for
the spectral density the expression

S(θ; k) =
S0(k)
∆2(z; k)

exp
(
−
2θ2kab
b + 4a

)
, as z→∞, (36)

and hence the normalized spectrum given by Eq. (8) equals

s(θ; k) =
S0(k) exp

[
−2θ2kab/(b + 4a)

]∫ ∞
0 S0(k′) exp

[
−2θ2k′ab/(b + 4a)

]
dk′

, as z→∞. (37)

As an example, we choose a Gaussian spectrum centered around k, with a width δk, i.e.,

S0(k) = A2
0 exp

[
−
(k − k)2

2δ2k

]
, (38)

with A0 a positive constant. Clearly, this spectrum reaches its maximum at wavenumber kmax = k.
The relative shift of this maximum

∆max(θ) =
kmax(θ) − k

k
(39)

of the far-zone normalized spectral density is illustrated in Fig. 3. It is seen that the shift is indeed
always negative, i.e., it is red-shifted, and increases when the polar angle θ increases. Also, the
shift is less than 1 part per million over the entire width of the beam. This is orders of magnitude
less than the spectral changes reported in, for example, [11].
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Fig. 3. The shift ∆max(θ) of the maximum of the far-zone normalized spectrum for selected
values of the observation angle θ. In this example k = 1.50 × 107m−1 (corresponding to
a peak wavelength λ = 419 nm), δk = 1 × 104m−1, a = 1 mm, C = 700m−1, and hence
b = 4.16 mm. The angular half-width of the spectral density distribution is 6 mrad.

4. Concluding remarks

Although in general the field that is generated by a Gausian Schell-model source will have a
spectrum that changes on propagation, we have derived two conditions under which such a source
generates a beam that is spectrally invariant. Both conditions prescribe a certain frequency
dependence of the source width and its spatial correlation length. The first condition describes a
source with a normalized spectral density that is the same in the entire half space into which the
source radiates. The second condition describes a source that produces an invariant normalized
spectral density along the beam axis. Such sources do not necessarily belong to the previously
studied class of quasi-homogeneous sources that satisfy the scaling law.
Our results may be useful in applications where the advantages of partial coherence, such as

reduced speckle and increased robustness with respect to atmospheric turbulence, are required
but where the Wolf effect is detrimental.

Appendix 1

Consider a source that produces a field whose normalized spectral density, as defined by Eq. (15),
is invariant along the beam axis. If we then equate s(r; k) at r = (0, 0) and r = (0, z), we obtain

S0(k)∫ ∞
0 S0(k′) dk′

=
S0(k)/∆2(z; k)∫ ∞

0 S0(k′′)/∆2(z; k′′) dk′′
, (40)

where we made use of the fact that
∆
2(0; k) = 1. (41)

We thus get that

∆
2(z; k) =

∫ ∞
0 S0(k′) dk′∫ ∞

0 S0(k′′)/∆2(z; k′′) dk′′
. (42)

The right-hand side of Eq. (42) does not depend on the wavenumber k, and therefore the left-hand
side does not either. In other words, spectral invariance along the z axis implies that the expansion
coefficient ∆2 must be independent of the wavenumber.
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