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Abstract: We present a class of broadband electromagnetic Gaussian Schell-model sources
whose state of polarization is both uniform and identical for all frequencies, but whose far-zone
polarization properties strongly depend on wavelength. Also, these sources can produce beams
whose polarized portion is always linearly polarized but with a polarization angle that evolves on
propagation. Our results offer new insights into the behavior of broadband partially coherent
sources.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

One of the key insights of coherence theory is that field properties such as directionality, spectrum
and degree of polarization are dependent on the statistical properties of the source [1]. In many
researches Gaussian Schell-model (GSM) sources, either scalar or electromagnetic (EGSM), are
used to illustrate these findings. These are planar, secondary sources whose spectral density and
spectral degree of coherence both have a Gaussian form [2]. GSM sources can be divided into two
categories. The first one consists of sources with an rms width of the spectral density (denoted
σ) and an rms width of the spectral degree of coherence (denoted δ) that are independent of the
wavelength. Even in this restricted case a great variety of coherence-related phenomena like the
Wolf shift [3] and a propagation-dependent state of polarization [4,5] can occur. The second
category is formed by so-called spectral GSM sources for which σ and δ explicitely depend on
frequency [6–8]. (Non-Gaussian spectral sources were discussed in [9–12]). It is interesting to
note that the studies dealing with spectral EGSM sources consider their behavior at only a single
frequency. An exception is [13] in which the propagation of an EGSM beam through 2f and 4f
systems is described.
In this study we present a new class of broadband spectral EGSM sources whose state of

polarization is both uniform and the same at every frequency that is present in the source spectrum.
However, as will be shown, their far-zone Stokes parameters strongly depend on wavelength. In
particular, we investigate beam-generating sources and derive expressions for their on-axis state
of polarization. It is found that these sources can produce beams whose polarized part on the axis
is always linearly polarized, but with an angle that evolves differently for different frequencies.
In principle, all EGSM parameters can be taken to be frequency-dependent, with each one

having a different functional dependence on the source frequency. In order to provide physical
insight, we have chosen the simplest system that provides interesting polarization effects. In
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such a system only the coherence radius δxy, defined below, needs to vary with wavelength.
Furthermore, it will be seen that this parameter plays a central role in the so-called realizability
conditions that the source must satisfy.

2. Electromagnetic Gausian Schell-model sources

A planar, secondary EGSM source (see Fig. 1) is described by a cross-spectral density matrix [2,
Sec. 9.4.2]

W (0)ij (ρ1, ρ2;ω) =
√

S(0)i (ρ1;ω)
√

S(0)j (ρ2;ω)µ
(0)
ij (ρ2 − ρ1;ω), (i, j = x, y). (1)

Here ρ1 and ρ2 are two-dimensional position vectors in the source plane z = 0, S(0)i (ρ;ω)
denotes the spectral density of the ith component of the electric field vector E at frequency ω,
and µ(0)ij (ρ2 − ρ1;ω) represents the degree of correlation between Ei at ρ1 and Ej at ρ2. The
superscript (0) indicates quantities in the source plane. The spectral densities and the degrees of
correlation are assumed to have a Gaussian form, i.e.,

S(0)i (ρ;ω) = A2
i (ω)e

−ρ2/2σ2
i , (2)

µ
(0)
ij (ρ2 − ρ1;ω) = Bije−(ρ2−ρ1)

2/2δ2ij(ω). (3)

As our notation indicates, the spectral amplitudes Ai and the four coherence widths (or
coherence radii) δij are assumed to depend on the wavelength, but the rms widhts σi and the
correlation coefficient Bij do not. Furthermore, we take σx = σy = σ, and Ax(ω) = Ay(ω) = A(ω).
The source parameters must satisfy certain constraints [2], namely

Bxx = Byy = 1, (4)

|Bxy | ≤ 1, (5)

Bxy = B∗yx, (6)

δxy(ω) = δyx(ω). (7)

Additionally, the realizability conditions are [14],√
δ2xx(ω) + δ

2
yy(ω)

2
≤ δxy(ω) ≤

√
δxx(ω)δyy(ω)

|Bxy |
, (8)

and
|Bxy | ≤

2
δxx(ω)/δyy(ω) + δyy(ω)/δxx(ω)

. (9)

We note that expression (5) is implied by (9). An EGSM source will produce a beam-like field
if the inequality [15]

1
4σ2 +

1
δ2ii(ω)

�
ω2

2c2
, (i = x, y), (10)

with c the speed of light, holds true. Clearly, the above constraints must be satisfied for every
frequency that is present in the source spectrum.
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Fig. 1. A spectral electromagnetic, planar, secondary Gaussian Schell-model source
occupies the plane z = 0 and radiates a beam that propagates parallel to the z axis. The
vector ρ denotes a position in the xy plane.

As the beam propagates to a transverse plane z, the cross-spectral density matrix at two
coincident points on the axis (ρ1 = ρ2 = 0) evolves into [2, p. 184]

Wij(z;ω) =
A2(ω)Bij

∆2ij(z;ω)
, (11)

where

∆
2
ij(z;ω) = 1 +

[
z

kσΩij(ω)

]2
, (12)

and
1

Ω2
ij(ω)

=
1

4σ2 +
1

δ2ij(ω)
, (13)

with the wavenumber k = ω/c. As explained by Wolf [2], the matrix elements expand at different
rates. This results in a change of the state of polarization as the beam propagates. Furthermore,
this change can become quite complex when the source parameters are allowed to vary with
frequency.

The state of polarization (SOP) of an electromagnetic beam is characterized by the four spectral
Stokes parameters, which can be expressed in terms of the cross-spectral density matrix as [2]

S0(ρ;ω) = Wxx(ρ, ρ;ω) +Wyy(ρ, ρ;ω), (14)

S1(ρ;ω) = Wxx(ρ, ρ;ω) −Wyy(ρ, ρ;ω), (15)
S2(ρ;ω) = Wxy(ρ, ρ;ω) +Wyx(ρ, ρ;ω), (16)

S3(ρ;ω) = i
[
Wyx(ρ, ρ;ω) −Wxy(ρ, ρ;ω)

]
. (17)

Their normalized versions are defined as sn(ρ;ω) = Sn(ρ;ω)/S0(ρ;ω) for n = 1, 2, 3. On
making use of Eqs. (1)–(3), together with the previously mentioned assumptions σx = σy = σ,
and Ax(ω) = Ay(ω) = A(ω), its readily found that in the source plane these parameters take on
the form

s(0)1 (ρ;ω) = 0, (18)

s(0)2 (ρ;ω) = Re[Bxy], (19)

s(0)3 (ρ;ω) = Im[Bxy]. (20)
We note that, since Bxy is assumed to be constant, this implies that the SOP of the field in the

plane z = 0 is both uniform and identical at all frequencies at which the source radiates. The
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same holds true for the degree of polarization (DOP), which is defined as

P(0)(ρ;ω) ≡
√[

s(0)1 (ρ;ω)
]2
+

[
s(0)2 (ρ;ω)

]2
+

[
s(0)3 (ρ;ω)

]2
(21)

=
��Bxy

�� . (22)
In the far-zone, indicated by the superscript (∞), the first term on the right-hand side of Eq. (12)

may be neglected, and the normalized Stokes parameters on the beam axis (ρ = 0) are seen to be

s(∞)1 (ω) =
Ω2

xx(ω) −Ω
2
yy(ω)

Ω2
xx(ω) +Ω

2
yy(ω)

, (23)

s(∞)2 (ω) = 2Re[Bxy]
Ω2

xy(ω)

Ω2
xx(ω) +Ω

2
yy(ω)

, (24)

s(∞)3 (ω) = 2Im[Bxy]
Ω2

xy(ω)

Ω2
xx(ω) +Ω

2
yy(ω)

. (25)

Hence the far-zone, on-axis DOP equals

P(∞)(ω) =

√
[Ω2

xx(ω) −Ω
2
yy(ω)]

2 + 4Ω4
xy(ω)|Bxy |2

Ω2
xx(ω) +Ω

2
yy(ω)

. (26)

Let us first consider the case δxx(ω) = δyy(ω) = δ(ω). It follows from the realizability condition
(8) that then δxy(ω) ≥ δ(ω), and hence

2Ω2
xy(ω) ≥ Ω

2
xx(ω) +Ω

2
yy(ω). (27)

On making use of (27) in Eqs. (23)–(26) we find that

s(∞)1 (ω) = s(0)1 (ρ;ω) = 0, (28)

s(∞)2 (ω) ≥ s(0)2 (ρ;ω), (29)

s(∞)3 (ω) ≥ s(0)3 (ρ;ω), (30)

P(∞)(ω) ≥ P(0)(ρ;ω). (31)
In words, the SOP of the field has changed on propagation to the far-zone: for every frequency

that is present in the source spectrum, the far-zone DOP is greater or equal than the DOP in the
source plane.

An example is shown in Fig. 2 in which the parameters s(∞)2 (ω), s(∞)3 (ω) and the far zone DOP
are plotted as a function of δxy. It is seen that if the coherence radius δxy increases then so do the
two normalized Stokes parameters, and hence the degree of polarization.
When δxx(ω) , δyy(ω), the inequalities (29)–(31) are still valid. The proof of this is

straightforward but somewhat tedious and is not presented here. It is readily seen from Eq. (23)
that in this case s(∞)1 (ω) , 0. However, this quantity does not depend on the coherence radius
δxy. An example is presented in Fig. 3. It is again seen that the DOP increases with incresasing
δxy. This tendency can be understood by considering the quasi-homogeneous limit of σ2 � δ2ij

for all i, j = x, y [2]. In that case Ω2
ij ≈ δ

2
ij, and both s(∞)2 (ω) and s(∞)3 (ω) are seen to increase

with increasing δxy. Furthermore, it then follows that if δxy nears its maximum value as given
by Eq. (8), then P(∞)(ω) tends to 1. Although the sources in Figs. 2 and 3 are stricly speaking
not quasi-homogeneous, their far-zone DOPs do display this behavior. Note that at optical
frequencies (∼ 1015 Hz) these sources satisfy the beam condition (10).
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Fig. 2. The two non-zero normalized Stokes parameters in the far zone, s(∞)2 (blue curve)
and s(∞)3 (green), together with the far-zone DOP P(∞) (red) as a function of the coherence
radius δxy. When we set δxx = δyy = 2mm, σ = 1 cm, and Bxy = 0.2 + i0.25, the parameter
δxy is, according to Eq. (8), restricted to the interval [2.0, 3.5]mm.

Fig. 3. The three normalized Stokes parameters in the far zone: s(∞)1 (dashed black curve),
s(∞)2 (blue) and s(∞)3 (green), together with the far-zone DOP P(∞) (red) as a function of the
coherence radius δxy. For δxx = 3.5mm, δyy = 2mm, σ = 1 cm, and Bxy = 0.2 + i0.25, the
parameter δxy is, according to Eq. (8), restricted to the interval [2.8, 4.6]mm.

3. Spectral behavior of the degree of polarization

It follows from Eqs. (23)–(26) that in general the state of polarization of the far-zone field is
wavelength dependent, even though this is not the case for the source field [as evidenced by
Eqs. (18)–(22)]. We illustrate this spectral dependence of the SOP with several examples.
We begin with the case δxx = δyy = C, with C a constant that does not depend on frequency.

Furthermore, it is assumed that δxy has a frequency dependence given by

δxy(ω) = C + D exp
[
−
(ω − ω0)

2

F2

]
, (D>0), (32)
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for all frequencies present in the source spectrum. This choice for δxy satisfies the realizability
conditions (8) provided that

D ≤ C

(
1√
|Bxy |

− 1

)
. (33)

An example of the frequency dependence of the far-zone DOP is shown in Fig. 4. It is seen
that, eventhough the degree of polarization of the source P(0) does not depend on frequency, P(∞)
strongly varies with wavelength. Near ω = ω0 the beam is highly polarized, at other frequencies
it is weakly polarized with P(∞)<0.4. However, at all frequencies P(∞) ≥ P(0).

Fig. 4. The on-axis, far-zone DOP P(∞)(ω) as a function of frequency. In this example
δxx = δyy = 2mm, σ = 1 cm, Bxy = 0.2 + i0.25. The frequency-dependent parameter δxy is
given by Eq. (32), with D = 1.5mm, ω0 = 1.0 × 1015s−1, and F = 0.05 × 1015s−1. The
dashed line indicates P(0), the degree of polarization of the source.

Fig. 5. The far-zone DOP P(∞)(ω) (blue curve), and the Stokes parameters s(∞)1 (ω) (orange),
s(∞)2 (ω) (red) and s(∞)3 (ω) (green) as a function of frequency. In this example δxx = 3mm,
δyy = 2mm, σ = 1 cm, Bxy = 0.2 + i0.25. The parameter δxy is given by Eq. (32), with
D = 1.5mm, ω0 = 1.0 × 1015 s−1, and F = 0.05 × 1015 s−1.

We next consider the case that δxx and δyy are both constants, but not necessarily equal. Also,
δxy is still given by (32), but with C replaced by the left-most term of (8). An example is shown
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in Fig. 5. Although s(∞)1 is independent of frequency, it is, unlike its counterpart in the source
plane, non-zero. The two other Stokes parameters and the far-zone DOP reach their maximum
value at ω = ω0.

An interesting polarization effect occurs when Im [Bxy] = 0. In that case s(0)3 (ω) = 0, i.e.,
the polarized portion of the field in the source plane is linearly polarized. Since s(0)1 = 0, and
s(0)2 = Re[Bxy] [see Eqs. (18) and (19)], this polarization is under an angle of 45◦ with the x axis.
As the beam propagates s3(ω) remains zero. However, this is not so for s1(ω) which will, in
general, become non-zero. This means that, although the polarized part of the field remains
linearly polarized, the angle of vibration of the electric field φ(ω), defined by [2, p. 170],

tan[2φ(ω)] =
s2(ω)
s1(ω)

, (34)

rotates on propagation to the far zone, in a way that depends on frequency. Moreover, we find
that this behavior is non-trivial. By using Eq. (11) without applying the far-zone approximation
we can track the polarization angle φ(ω) as the beam propagates. This is shown in Fig. 6.
Although the polarized part of the beam remains lineraly polarized, the direction of vibration
of the electric field is seen to rotate on propagation, with an angle that strongly depends on
frequency. Furthermore, the angle of polarization does not always change monotonically, e.g.,
it can first decrease and then increase again (green curve). Also, φ(ω) at infinity can either be
larger or smaller than in the source plane. We note that φ(ω) is also the orientation angle for
which a linear polarizer inserted in the beam yields a maximum transmission. Finally, also the
evolution of the degree of polarization strongly depends on wavelength. This is illustrated in
Fig. 7. The red curve, corresponding to frequency ω0, is seen to rise considerably faster than the
blue curve, which represents 0.8ω0.

Fig. 6. Evolution of the angle of polarization φ(ω) of the (linearly) polarized part of the field
as the beam propagates. In this example σ = 1 cm, Bxy = 0.1. δxx = 2.0mm, δyy = 3.5mm,
(red and blue curves); and δxx = 3.5mm, δyy = 2.0mm, (green and purple curves). The
parameter δxy is given by Eq. (32), with C = 2.85 mm, D = 5.5mm, ω0 = 1.0 × 1015 s−1,
and F = 0.05× 1015 s−1. The coherence radius δxy is evaluated at ω0 (red and green curves),
and at 0.8ω0 (blue and purple curves).
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Fig. 7. Evolution of the degree of polarization on propagation for two different frequencies.
The red curve is for ω0, the blue curve is for 0.8ω0. All other parameters are as in Fig. 6.

4. Conclusions

Spectral electromagnetic Gaussian Schell-model sources are characterized by parameters that are
frequency dependent. Remarkably, to the best of our knowledge, the wavelength dependence of
their state of polarization has up till now not been examined. We have presented a new class
of broadband spectral EGSM sources whose state of polarization is the same at every source
point, and the same at every wavelength. However, the Stokes parameters of the far-zone beams
that they produce are shown to strongly vary with frequency. In particular the on-axis degree
of polarization can be quite low (P(∞)<0.4) at certain frequencies and very high (P(∞)>0.9) at
others. Examples were presented of beams whose polarized part is always linearly polarized,
but with an angle of polarization that rotates non-trivially on propagation. Again, the precise
nature of this behavior was seen to be frequency dependent. We have shown that the behavior of
broadband partially coherent sources is more complicated than previously known. These results
are relevant for the design of such sources with prescribed spectral polarization properties.
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