Scintillation of electromagnetic beams generated by quasi-homogeneous sources

Ari T. Friberg a, Taco D. Visser b,c,*

a Institute of Photonics, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
b Department of Electrical Engineering, Delft University of Technology, Delft, The Netherlands
c Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands

ABSTRACT

We derive an expression for the far-zone scintillation index of electromagnetic beams that are generated by quasi-homogeneous sources. By examining different types of sources, we find conditions under which this index reaches its minimum or its maximum value. It is demonstrated that under certain circumstances two sources with different spectral densities can produce beams with identical scintillation indices.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

When a beam-like electromagnetic field propagates in space its coherence and polarization properties and its intensity typically vary owing to the randomness of the source or the randomness of the transmitting medium. In detection, the fluctuations of intensity at the detector site are of particular interest. The contrast of intensity fluctuations, or scintillation index, has been extensively studied for beams propagating through random media such as the turbulent atmosphere [1–4]. This is motivated by the fact that efficient control and tailoring of the fluctuating intensity leads to an improved performance (with a reduced noise level) of detection systems. However, much less attention has been devoted to intensity fluctuations that occur on free-space beam propagation. We are only aware of two studies in which the evolution of the scintillation index on free-space propagation was investigated [5,6]. In those papers the analysis was restricted to so-called Gaussian Schell-model beams [7, Chapter 9]. Because of applications such as coherence tomography and laser communication in space, it is desirable to investigate the scintillation of beams that arise from other types of sources.

A broad class of partially coherent beams are those that are generated by quasi-homogeneous sources [7, Chapter 5]. These sources are characterized by a spectral degree of coherence that is homogeneous, meaning that it depends only on the separation of the two spatial points at which it is evaluated, and by an intensity profile that is a slowly varying function compared to the degree of coherence. Scalar and electromagnetic quasi-homogeneous sources and the fields they produce have been studied extensively, see, for example [8–19].

In this work we study stochastic electromagnetic beams that are generated by planar, secondary quasi-homogeneous sources with Gaussian statistics. The assumption of Gaussian statistics is applicable to many types of practical sources and it allows the intensity fluctuations to be represented in terms of second-order coherence quantities. An expression for the scintillation index along the beam axis in the far zone is derived, and its consequences are discussed by examining different examples. We demonstrate, for instance, under which circumstances the scintillation index takes on its minimum or its maximum value. In addition, a connection is made between the scintillation index of beams with Gaussian statistics and an electromagnetic degree of coherence.

2. Quasi-homogeneous, planar electromagnetic sources

Consider a stochastic, statistically stationary, planar, secondary source which produces an electromagnetic beam that propagates...
closely along the z-axis (see Fig. 1). The state of coherence and polarization of the source field can be characterized, in the space-frequency domain, by a 2×2 electric cross-spectral density matrix \[\mathbf{W}_{ij}(\rho_1, \rho_2, \omega) = \begin{pmatrix} W_{xx}(\rho_1, \rho_2, \omega) & W_{xy}(\rho_1, \rho_2, \omega) \\ W_{yx}(\rho_1, \rho_2, \omega) & W_{yy}(\rho_1, \rho_2, \omega) \end{pmatrix}, \tag{1} \]

where
\[W_{ij}(\rho_1, \rho_2, \omega) = \langle E_i^*(\rho_1, \omega)E_j(\rho_2, \omega) \rangle. \tag{2} \]

Here $E_\rho(\rho, \omega)$ is a Cartesian component of the electric field vector, at a point ρ and at frequency ω, of a typical realization of the statistical ensemble representing the source, and the angled brackets denote the ensemble average. The superscript (0) indicates quantities in the source plane $z=0$. The spectral density of the source field, $S_{ij}(\rho, \omega)$, is given by the expression
\[S_{ij}(\rho, \omega) = \text{tr} \mathbf{W}_{ij}(\rho, \rho, \omega), \tag{3} \]

where tr denotes the trace. The four correlation coefficients of the source field are defined as
\[\mu_{ij}(\rho_1, \rho_2, \omega) = \frac{W_{ij}(\rho_1, \rho_2, \omega)}{\sqrt{W_{ii}(\rho_1, \rho_1, \omega)W_{jj}(\rho_2, \rho_2, \omega)}}. \tag{4} \]

These coefficients obey the relations $0 \leq |\mu_{ij}(\rho_1, \rho_2, \omega)| \leq 1$ for all ρ_1 and ρ_2. Moreover, the equal-value points satisfy $\mu_{ij}(\rho, \rho, \omega) = 1$ when $i=j$, since $\mu_{xx}(\rho_1, \rho_2, \omega)$ and $\mu_{xx}(\rho_2, \rho_1, \omega)$ are auto-correlation functions, whereas for the cross-correlation functions $\mu_{ij}(\rho_1, \rho_2, \omega)$, with $i \neq j$, the relation $\mu_{ij}(\rho_1, \rho_2, \omega) = \mu_{ji}(\rho_2, \rho_1, \omega)$ holds and the quantities $\mu_{ij}(\rho, \rho, \omega)$ may take on any value between 0 and 1.

In order to introduce a quasi-homogeneous, planar electromagnetic source we first assume that, at each frequency ω, the source behaves as a Schell-model source (the concept of Schell’s model for scalar sources is discussed in [7, Section 5.3.1]). This means that the correlation coefficients depend only on the positions ρ_1 and ρ_2 through the difference $\rho_2 - \rho_1$, i.e.,
\[\mu_{ij}(\rho_1, \rho_2, \omega) = \mu_{ij}(\rho_2 - \rho_1, \omega). \tag{5} \]

In addition, the two spectral densities $S_{ij}(\rho, \omega) = W_{ij}(\rho, \rho, \omega)$, associated with each Cartesian component of the electric field, are assumed to change much more slowly with ρ than the moduli (absolute values) of the four correlation coefficients $\mu_{ij}(\rho_2 - \rho_1, \omega)$ vary with $\rho_2 - \rho_1$. If these two conditions are met, the electromagnetic source is said to be quasi-homogeneous.

It was recently shown that for such sources the elements of the cross-spectral density matrix in the far zone are related to those in the source plane by four so-called reciprocity relations [20]. Omitting the frequency-dependence for brevity, these relations read
\[W_{xx}^{(\infty)}(r_1, r_2) = (2\pi k)^2 \cos \theta_1 \cos \theta_2 \frac{e^{ik(r_1 - r_2)}}{r_1 r_2} \times \delta_x^{(0)}(k(r_2 - r_1)) \overbrace{\mu_{xx}^{(0)}(k(r_1 + r_2))}^2. \tag{6} \]

\[W_{xy}^{(\infty)}(r_1, r_2) = (2\pi k)^2 \cos \theta_1 \cos \theta_2 \frac{e^{ik(r_1 - r_2)}}{r_1 r_2} \times \delta_y^{(0)}(k(r_2 - r_1)) \overbrace{\mu_{xy}^{(0)}(k(r_1 + r_2))}^2. \tag{7} \]

\[W_{yx}^{(\infty)}(r_1, r_2) = (2\pi k)^2 \cos \theta_1 \cos \theta_2 \frac{e^{ik(r_1 - r_2)}}{r_1 r_2} \times \delta_y^{(0)}(k(r_2 - r_1)) \overbrace{\mu_{yx}^{(0)}(k(r_1 + r_2))}^2. \tag{8} \]

\[W_{yy}^{(\infty)}(r_1, r_2) = (2\pi k)^2 \cos \theta_1 \cos \theta_2 \frac{e^{ik(r_1 - r_2)}}{r_1 r_2} \times \delta_y^{(0)}(k(r_2 - r_1)) \overbrace{\mu_{yy}^{(0)}(k(r_1 + r_2))}^2. \tag{9} \]

Here $k = \omega / c$ is the wavenumber associated with frequency ω, with c being the speed of light, and $s_{\rho 1}$, with $p = 1, 2$, is the two-dimensional projection of the directional unit vector s_ρ onto the xy plane. In these expressions the superscript (∞) indicates quantities in the far zone of the source, and we have introduced the “off-diagonal” spectral density
\[S_{ij}^{(0)}(\rho) \equiv \sqrt{\delta_i^{(0)}(\rho) \delta_j^{(0)}(\rho)}. \tag{10} \]

The two-dimensional spatial Fourier transform $\tilde{S}_{ij}^{(0)}(\mathbf{f})$ of the spectral density is defined as
\[\tilde{S}_{ij}^{(0)}(\mathbf{f}) = \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} S_{ij}^{(0)}(\rho) e^{-i\mathbf{f} \cdot \mathbf{\rho}} d^2 \rho, \tag{11} \]

with strictly analogous definitions for $\tilde{S}_{ij}^{(0)}(\mathbf{f})$ and $\mu_{ij}^{(0)}(\mathbf{f})$. It is to be noted that these reciprocity relations are generally valid for electromagnetic beams generated by secondary, planar, quasi-homogeneous sources. We will make use of these expressions in the next sections.

3. Intensity fluctuations of stochastic electromagnetic beams

The fluctuation of the intensity of the field at an arbitrary point \mathbf{r} in the beam (at frequency ω) is defined as
\[\Delta I(\mathbf{r}) = I(\mathbf{r}) - \langle I(\mathbf{r}) \rangle, \tag{12} \]

where $\langle I(\mathbf{r}) \rangle$ stands for the (random) intensity due to a single realization of the field, and $\langle \cdot \rangle$ denotes the expectation value, or ensemble average, of the intensity, as defined by Eq. (3). On making use of Eq. (12) it follows at once that the correlation of the intensity fluctuations at two points r_1 and r_2 is given by the expression
\[\langle \Delta I(\mathbf{r}_1) \Delta I(\mathbf{r}_2) \rangle = \langle I(\mathbf{r}_1) I(\mathbf{r}_2) \rangle - \langle I(\mathbf{r}_1) \rangle \langle I(\mathbf{r}_2) \rangle. \tag{13} \]

The first term on the right-hand side of Eq. (13) contains a fourth-order correlation function of the field. Under the assumption that the fluctuations of the source are governed by Gaussian statistics, one can use the Gaussian moments theorem [21, Section 1.6.1] to derive that for random beams [21, Section 8.4]:
\[\langle \Delta I(\mathbf{r}_1) \Delta I(\mathbf{r}_2) \rangle = \sum_{ij} \left| W_{ij}(\mathbf{f}_1, \mathbf{f}_2) \right|^2 \tag{14} \]

Correlation of intensity fluctuations of this kind in beams generated by quasi-homogeneous sources has recently been examined [22]. It is further of interest to note that if the quantity on the right-hand side of Eq. (14) is normalized by the mean values of the intensities at points \mathbf{r}_1 and \mathbf{r}_2, one obtains the square of the...
electromagnetic degree of coherence, i.e.,
\[
\mu_{\Delta m}(\mathbf{r}_1, \mathbf{r}_2) = \frac{\sum_{ij} |W_{ij}(\mathbf{r}_1, \mathbf{r}_2)|^2}{\sum_{ij} |W_{ij}(\mathbf{r}_1, \mathbf{r}_2)| \sum_{ij} |W_{ij}(\mathbf{r}_2, \mathbf{r}_2)|}
\]
(15)
as introduced in [23] [see also [24,25]].

The scintillation of the field at a point \(\mathbf{r} \) is given by the correlation function of Eq. (14) with the two points taken to be equal, i.e.,
\[
\langle \Delta |(\mathbf{r}) \rangle = \sum_{ij} |W_{ij}(\mathbf{r}, \mathbf{r})|^2.
\]
(16)
The scintillation index \(\sigma^2(\mathbf{r}) \) is defined as the normalized version of Eq. (16), namely [4]
\[
\sigma^2(\mathbf{r}) = \frac{\langle \Delta |(\mathbf{r}) \rangle}{\langle \mathbf{r} \rangle} = \frac{\sum_{ij} |W_{ij}(\mathbf{r}, \mathbf{r})|^2}{|\sum_{ij} W_{ii}(\mathbf{r}, \mathbf{r})|^2}.
\]
(17)
We observe that for beams obeying Gaussian statistics the scintillation index is the square of the “diagonal” form of the electromagnetic degree of coherence, i.e., \(\sigma^2(\mathbf{r}) = \mu_{\Delta m}(\mathbf{r}, \mathbf{r}) \), and it is also related to the beam’s degree of polarization \(P(\mathbf{r}) \) through the formula [26,27]
\[
\sigma^2(r) = \frac{1}{2}(1 + P^2(\mathbf{r})).
\]
(18)
Since \(P(\mathbf{r}) \) is bounded by zero and unity, it readily follows that \(1/2 \leq \sigma^2(\mathbf{r}) \leq 1 \). The lower limit of 1/2 (as opposed to 0) originates from the fact that \(W_{xx}(\mathbf{r}, \mathbf{r}_1) \) and \(W_{yy}(\mathbf{r}, \mathbf{r}_2) \) are auto-correlation functions, which attain their maximum values (≠ 0) when \(\mathbf{r}_1 = \mathbf{r}_2 \). Expression (17) is valid for any partially coherent electromagnetic beam, provided it can be described by Gaussian statistics. We next apply this expression for the scintillation index to the case of beams generated by a secondary, planar quasi-homogeneous source.

When the two observation points in the far zone are taken to be equal (\(\mathbf{r}_1 = \mathbf{r}_2 = \mathbf{r} \)), and if we restrict ourselves to points on the beam axis, i.e., \(\mathbf{r} = (0, 0, z) \), the expressions for the matrix elements, Eqs. (6)–(9), take on the forms
\[
W_{xx}^{(0)}(0, 0, z, 0, 0, z) = \left(\frac{2\pi k}{z} \right)^2 \left[\hat{S}_x(0) \mu_{yy}^{(0)}(0) \right],
\]
(19)
\[
W_{yy}^{(0)}(0, 0, z, 0, 0, z) = \left(\frac{2\pi k}{z} \right)^2 \left[\hat{S}_y(0) \mu_{yy}^{(0)}(0) \right],
\]
(20)
\[
W_{yx}^{(0)}(0, 0, z, 0, 0, z) = \left(\frac{2\pi k}{z} \right)^2 \left[\hat{S}_y(0) \mu_{yy}^{(0)}(0) \right],
\]
(21)
\[
W_{xy}^{(0)}(0, 0, z, 0, 0, z) = \left(\frac{2\pi k}{z} \right)^2 \left[\hat{S}_x(0) \mu_{xy}^{(0)}(0) \right].
\]
(22)
On substituting from Eqs. (19)–(22) into Eq. (17) we find for the on-axis scintillation index of the beam in the far zone the expression
\[
\sigma^2(0, 0, z) = \frac{\left[\hat{S}_x(0) \mu_{yy}^{(0)}(0) \right]^2 + \left[\hat{S}_y(0) \mu_{yy}^{(0)}(0) \right]^2 + 2 \left(\hat{S}_y(0) \mu_{xy}^{(0)}(0) \right)^2}{\left[\hat{S}_x(0) \mu_{yy}^{(0)}(0) + \hat{S}_y(0) \mu_{xy}^{(0)}(0) \right]^2},
\]
(23)
where we have made use of the fact that \(\mu_{xx}^{(0)}(0) \) and \(\mu_{yy}^{(0)}(0) \) are both real-valued. We notice that the scintillation index does not depend on the specific form of the spectral densities or that of the correlation coefficients, but rather on their Fourier transform at zero frequency, i.e., on their spatial integrals. Moreover, the index depends only on the product of the Fourier transform of the spectral densities and their associated correlation coefficients. This implies that two sources with different spectral densities but with identical values of, e.g., \(\hat{S}_x(0) \mu_{yy}^{(0)}(0) \) produce beams with the same scintillation index. In the next section we will discuss the consequences of Eq. (23) for some special cases.

4. Examples

I: Let us first consider a source that produces a beam that is linearly polarized along the x-direction. In that case
\[
S_y^{(0)}(\mathbf{p}) = S_{xy}^{(0)}(\mathbf{p}) = 0,
\]
(24)
and
\[
\mu_{yy}^{(0)}(\mathbf{p}) = 0.
\]
(25)
It immediately follows from Eq. (23) that the scintillation index now attains its highest possible value, namely [28]
\[
\sigma^2(0, 0, z) = 1,
\]
(26)
irrespective of the form of the spectral density \(S_x^{(0)}(\mathbf{p}) \) or that of the correlation coefficient \(\mu_{xx}^{(0)}(\mathbf{p}) \).

II: Next we assume that the two Cartesian field components in the source plane are uncorrelated, i.e., \(\mu_{xy}^{(0)}(\mathbf{p}) = 0 \). Note that this condition by itself does not imply that the source is unpolarized, as will be discussed shortly. We now have that
\[
\sigma^2(0, 0, z) = \frac{\left[\hat{S}_x(0) \mu_{yy}^{(0)}(0) \right]^2 + \left[\hat{S}_y(0) \mu_{yy}^{(0)}(0) \right]^2}{\left[\hat{S}_x(0) \mu_{yy}^{(0)}(0) + \hat{S}_y(0) \mu_{xy}^{(0)}(0) \right]^2},
\]
(27)
We consider three different examples of beams created by such a source:

1. If the two spectral densities are equal, i.e., \(S_x^{(0)}(\mathbf{p}) = S_y^{(0)}(\mathbf{p}) \), then the source is unpolarized. This does not imply that the beam in the far zone is unpolarized, since the degree of polarization may change on propagation, see [20]. In this case Eq. (27) simplifies to the form
\[
\sigma^2(0, 0, z) = \left[\hat{S}_x(0) \mu_{yy}^{(0)}(0) \right]^2 + \left[\hat{S}_y(0) \mu_{yy}^{(0)}(0) \right]^2,
\]
(28)
irrespective of the form of the two spectral densities.

2. If the two correlation coefficients are equal, i.e., \(\mu_{xx}^{(0)}(\mathbf{p}) = \mu_{yy}^{(0)}(\mathbf{p}) \), Eq. (27) reduces to
\[
\sigma^2(0, 0, z) = \frac{\left[\hat{S}_x(0) \right]^2 + \left[\hat{S}_y(0) \right]^2}{\left[\hat{S}_x(0) + \hat{S}_y(0) \right]^2}.
\]
(29)
irrespective of the form of the two correlation coefficients.

3. If both the two spectral densities and the two correlation coefficients are equal, i.e., \(S_x^{(0)}(\mathbf{p}) = S_y^{(0)}(\mathbf{p}) \) and \(\mu_{xx}^{(0)}(\mathbf{p}) = \mu_{yy}^{(0)}(\mathbf{p}) \), we find from Eq. (27) that
\[
\sigma^2(0, 0, z) = 1/2.
\]
(30)
In other words, a source with uncorrelated field components, and whose two spectral densities and auto-correlation functions are identical, produces a beam that is everywhere unpolarized. Consequently, in agreement with Eq. (18), the scintillation index takes on its minimum value, irrespective of the precise form of the two correlation coefficients, or the precise form of the two spectral densities.

III: Next, consider a beam with two identical spectral densities. This implies that
\[
\hat{S}_x(0) = \hat{S}_y(0) = \hat{S}_{xy}(0).
\]
(31)
Sources of this type include those whose spectral density is rotationally invariant. Equation (23) now simplifies to

\[
\sigma^2(0,0,z) = \frac{\mu_{xx}^{(0)}(0)^2 + \mu_{yy}^{(0)}(0)^2 + 2|\mu_{xy}^{(0)}(0)|^2}{\mu_{xx}^{(0)}(0) + \mu_{yy}^{(0)}(0)},
\]

Equation (32) shows for a beam with two identical spectral densities that the presence of a non-zero cross-correlation of the two Cartesian components of the electric field increases the scintillation index.

5. Conclusions

We have examined the far-zone scintillation index of electromagnetic beams that are generated by quasi-homogeneous sources. The assumption of Gaussian statistics allowed the derivation of expressions in terms of second-order correlation quantities. A condition under which two sources with different spectral densities can produce beams with identical scintillation indices was derived. From different examples sufficiency conditions were found for which the scintillation index reaches its maximum or its minimum value.

Acknowledgments

Part of this work was done while TDV visited the Department of Applied Physics of Aalto University in Espoo, and the Institute of Photonics of the University of Eastern Finland in Joensuu. Financial support from the Aalto Science Institute and the Joensuu University Foundation is gratefully acknowledged. T.D.V.’s research is also supported by the FOM project “Plasmonics”. A.T.F. thanks the Academy of Finland (Project 268480) for support.

References