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Abstract: The conventional scintillation, or intensity fluctuation, that occurs in random electro-
magnetic beams is just one member of a broader class of four interconnected, polarization-resolved
scintillations. We examine these generalized scintillations, called Stokes scintillations, that occur
when two stochastic electromagnetic beams are made to interfere in Young’s experiment. We find
that the magnitude of the conventional scintillation can be decreased, within certain limits, at the
expense of an increase of one or more of the other Stokes scintillations. For certain applications
however, it may be beneficial to suppress the latter.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Every random field displays intensity fluctuations or scintillations. Especially for the case of
laser beams that propagate through atmospheric turbulence these have been studied extensively
[1, Ch. 8]. However, even on free-space propagation an optical field can exhibit scintillation
when it is generated by a partially coherent source [2]. Scintillations are of obvious concern
in optical communications because they are a source of signal degradation, quantified by the
scintillation index. Understanding how scintillation arises and how it may be controlled is both
of fundamental and of practical importance.

The superposition of two scalar waves in Young’s experiment shows a direct relation between
their spatial coherence and the visibility of the ensuing intensity fringes [3]. Electromagnetic
two-beam interference is more complex and cannot be described just in terms of intensity fringes.
For example, the combination of two beams with orthogonal linear polarization and a fixed phase
difference does not produce a modulation of intensity. However, it does lead to a polarization
modulation because the superposition is elliptically polarized. An analysis of the changes in the
polarization state and the degree of polarization in Young’s experiment was reported in [4–6].
Further studies of the effect on the Stokes parameters caused by beam superposition are found in
[7–10]. In the context of quantum optics, polarization modulation has been examined in [11,12].
The evolution of the Stokes parameters in partially coherent Gaussian Schell-model beams has
been investigated in several studies, for example [13–15].

The four spectral Stokes parameters at position r at frequency ω and their fluctuations are
denoted Sj(r,ω) and ∆Sj(r,ω), respectively, with j ∈ {1, 2, 3, 4}. In [16] a generalization of the
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Hanbury Brown-Twiss (HBT) effect [17], namely the expectation value ⟨∆Si(r1,ω)∆Sj(r2,ω)⟩
was introduced. The conventional HBT effect is described by ⟨∆S0(r1,ω)∆S0(r2,ω)⟩, which is
therefore one of sixteen possible correlations of Stokes fluctuations. Setting the two observations
points equal then leads to the notion of Stokes scintillations ⟨[∆Sj(r,ω)]2⟩. Since the first Stokes
parameter represents the total spectral density (the intensity at frequencyω) of an electromagnetic
beam, the variance of S0(r,ω) is identical with its scintillation. Clearly then, the conventional
scintillation is just one of four different Stokes scintillations. Remarkably, these polarization-
resolved scintillations are not independent but were shown, under the assumption of Gaussian
statistics, to obey a sum rule. That means that an increase (decrease) of the traditional scintillation
is accompanied by a decrease (increase) of one or more of the other three Stokes scintillations
at the same point. This explains the observation, made several years ago, that scintillation and
polarization fluctuations occur simultaneously [18]. In [19] the generalized HBT effect and the
Stokes scintillations were examined in the far zone of Gaussian Schell-model sources. It was
found that the different correlations and scintillations have varying spatial distributions, and
that their dependence on the source parameters differs significantly. For the case of a random
electromagnetic beam that is focused by a thin paraxial lens [20], the distribution of the Stokes
scintillations across the focal plane has a complicated structure. Moreover, the generalized
Hanbury Brown–Twiss correlations are strongly influenced by the focusing process. Their
maximum value can be either lower or higher than that of the same correlation in the front focal
plane.

In the present study the fundamental problem of the superposition of two random electromag-
netic beams is analyzed. In particular, we examine the four Stokes scintillations in the context
of Young’s interference experiment. We study, for the case of far-zone points on the central
axis, how their magnitudes depend on the spatial correlation of the two beams. We show that a
trade-off between the relative strength of these generalized scintillations is possible. This means
that the classical scintillation can be reduced, but inevitably at the expense of an increase of the
fluctuations of the polarization states described by the Stokes parameters S1, S2 or S3. As we will
discuss, for certain applications it may be desirable to suppress not S0, but rather one of the other
three scintillations. We begin, in Section 2., with a brief review of the polarization-resolved
formalism that we employ. This section also introduces the notation that we use. This is followed
by a description of two-beam interference in Section 3., for the case of an electromagnetic
Gaussian Schell-model (GSM) source covered by a screen with two pinholes. From the analytic
expression that are obtained for the four Stokes scintillations several conclusions are drawn, and
possible applications are discussed.

2. Random beams and Stokes parameters

In the space-frequency domain, the state of coherence and polarization of a stochastic electromag-
netic beam-like field that propagates along the z axis may be characterized by the cross-spectral
density (CSD) matrix [3]

W(r1, r2,ω) = ⎛⎜⎝
Wxx Wxy

Wyx Wyy

⎞⎟⎠ , (1)

where all the matrix elements are functions of the same three variables and given by the expression

Wij(r1, r2,ω) = ⟨E∗
i (r1,ω)Ej(r2,ω)⟩, (i, j = x, y). (2)

Here Ei(r,ω) denotes a Cartesian component of the electric field at position r at frequency ω,
and the angled brackets indicate an average taken over an ensemble of beam realizations. For
brevity we will from now on no longer display the ω dependence.
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The 2 by 2 identity matrix, denoted σ0, and the three Pauli spin matrices are defined as

σ0 =
⎛⎜⎝

1 0

0 1
⎞⎟⎠ , σ1 =

⎛⎜⎝
1 0

0 −1
⎞⎟⎠ , σ2 =

⎛⎜⎝
0 1

1 0
⎞⎟⎠ , σ3 =

⎛⎜⎝
0 −i

i 0
⎞⎟⎠ , (3)

respectively. The Stokes parameters can be written as [21]

Sn(r) = E(r)†σnE(r), (4)

where † denotes the Hermitian conjugate and

E(r) = ⎛⎜⎝
Ex(r)
Ey(r)

⎞⎟⎠ . (5)

Hence their expectation values are

⟨Sn(r)⟩ =
∑︂
a,b
σn

abWab(r, r), (a, b = x, y). (6)

More explicitly,
⟨S0(r)⟩ = Wxx(r, r) +Wyy(r, r), (7)

⟨S1(r)⟩ = Wxx(r, r) − Wyy(r, r), (8)

⟨S2(r)⟩ = Wxy(r, r) +Wyx(r, r), (9)

⟨S3(r)⟩ = i[Wyx(r, r) − Wxy(r, r)]. (10)

In the case of a stochastic beam, the Stokes parameters are random quantities. The fluctuations
around their average value are

∆Sn(r) ≡ Sn(r) − ⟨Sn(r)⟩, (n = 0, 1, 2, 3), (11)

where Sn(r) is the Stokes parameter of a single realization. As mentioned above, the concept of
scintillation, measured as the variance of the spectral density at a point of observation, can be
generalized to the fluctuation of all four spectral Stokes parameters [16]. These are defined as

Dn(r) ≡ ⟨[∆Sn(r)]2⟩. (12)

Because S0(r,ω) represents the total spectral density, it follows that D0(r) is equivalent to the
traditional expression for the scintillation [1, Ch. 8]. The Dn(r) coefficients are described by
fourth-order statistical quantities. Under the assumption of Gaussian statistics one can employ the
Gaussian moment theorem [17, Sec. 1.6.1] to write them in terms of second-order correlations
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given by the CSD matrix (see Appendix A):

D0(r) = [Wxx(r, r)]2 + 2|Wxy(r, r)|2 + [Wyy(r, r)]2, (13)

D1(r) = [Wxx(r, r)]2 − 2|Wxy(r, r)|2 + [Wyy(r, r)]2, (14)

D2(r) = 2
[︁
Wxx(r, r)Wyy(r, r) + Re{[Wxy(r, r)]2}]︁ , (15)

D3(r) = 2
[︁
Wxx(r, r)Wyy(r, r) − Re{[Wxy(r, r)]2}]︁ . (16)

It is easily verified that
3∑︂

n=0
Dn(r) = 2

[︁
Wxx(r, r) +Wyy(r, r)]︁2 . (17)

A normalized version of these four quantities is

dn(r) ≡ ⟨[∆Sn(r)]2⟩
⟨S0(r)⟩2 . (18)

It immediately follows from Eqs. (7) and (17) that the four Stokes scintillations are not
independent but satisfy the sum rule

3∑︂
n=0

dn(r) = 2. (19)

This expression shows that, at least in principle, one can tailor a beam such that one particular
Stokes scintillation is optimized, albeit at the expense of the others. We note that d0(r) is the
square of the scintillation index [1]. It is bounded by the inequalities [2]

1/2 ≤ d0(r) ≤ 1. (20)

From the definitions (13)–(16) and (18) it follows that

0 ≤ dp(r) ≤ 1, (p = 1, 2, 3). (21)

3. Two-beam interference

Let us examine the behavior of the Stokes scintillations that are produced in Young’s experiment,
as sketched in Fig. 1. We take the observation point P to be far away from the two apertures
and close to the z axis, i.e., in the paraxial region. In that case the field at P has a negligible
longitudinal component and is of the form

E(P) = K1E(r1) + K2E(r2), (22)

with the propagators

Km = − idS
λ

eikRm

Rm
, (m = 1, 2), (23)

where dS denotes the area of the two pinholes, λ and k are the free-space wavelength and the
wavenumber corresponding to frequency ω, and the distance Rm = |rmP| [22, Sec. 8.2]. From
Eq. (22) it is found that

Wij(P, P) = |K1 |2W (0)
ij (r1, r1) + K∗

1K2W (0)
ij (r1, r2)

+ K∗
2K1W (0)

ij (r2, r1) + |K2 |2W (0)
ij (r2, r2),

(24)

where W(0) denotes the CSD matrix at the two pinholes. Since P = (x, 0, L) is in the far zone,
and because of the assumption of paraxiality, 1/R1 ≈ 1/R2 ≈ 1/L. Likewise, R2 − R1 ≈ 2xd/L.
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Hence

Wij(P, P) =
(︃

dS
λL

)︃2 [︂
W (0)

ij (r1, r1) +W (0)
ij (r1, r2)eik∆

+ W (0)
ij (r2, r1)e−ik∆ +W (0)

ij (r2, r2)
]︂

,
(25)

where ∆ = 2xd/L.

𝑧

𝑥

2𝑑

r1

r2

𝑂

A B
𝐿

𝑃

𝑅1

𝑅2

Fig. 1. The superposition of the fields radiated by two identical pinholes at r1 = (d, 0, 0)
and r2 = (−d, 0, 0) in an opaque screen A is observed at P = (x, 0, L) on a parallel screen B.
The origin O is located midway between the apertures. The two distances are R1 = |r1P|,
and R2 = |r2P|.

We illustrate the consequences of Eq. (25) by assuming the field at the pinholes to be that of a
Gaussian Schell-model (GSM) source that is centered on the z axis [3]. When the effective width
of both Cartesian field components is taken to be σ, then

W (0)
ij (ρ1, ρ2) = AiAjBije−(ρ

2
1+ρ

2
2)/(4σ2)e−(ρ2−ρ1)2/(2δ2

ij). (26)

Here ρ = (x, y) is a 2D vector in the plane z = 0, Ai is the amplitude of Ei, Bij is the
polarization correlation coefficient, and the δij denote coherence radii. The parameters Bij and δij
are independent of position, but may depend on frequency. The conditions they must satisfy are
listed in Appendix B. A GSM source may be characterized by eight parameters [23]. In order to
simplify the analysis, we introduce two assumptions. We take the spectral amplitudes to be equal
(Ax = Ay = A), just as two of the coherence radii, i.e., δxx = δyy = δ. In that case

W (0)
ij (rn, rn) = A2Bije−d2/(2σ2), (27)

W (0)
ij (r1, r2) = A2Bije−d2/(2σ2)e−2d2/δ2

ij , (28)

from which it follows that at the observation point P

Wij(P, P) = 2
(︃
AdS
λL

)︃2
e−d2/(2σ2)Bij

[︂
1 + e−2d2/δ2

ij cos(k∆)
]︂

. (29)

On substituting from Eq. (29) into the expressions (13)–(16) we obtain the Stokes scintillations
at P. Restricting our attention to observation points on the central axis (x = 0), we find that

d0(P) = 1
2

⎡⎢⎢⎢⎢⎣1 + |Bxy |2
(︄
1 + e−2d2/δ2

xy

1 + e−2d2/δ2

)︄2⎤⎥⎥⎥⎥⎦ , (30)
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d1(P) = 1
2

⎡⎢⎢⎢⎢⎣1 − |Bxy |2
(︄
1 + e−2d2/δ2

xy

1 + e−2d2/δ2

)︄2⎤⎥⎥⎥⎥⎦ , (31)

d2(P) = 1
2

⎡⎢⎢⎢⎢⎣1 + |Bxy |2 cos(2ϕ)
(︄
1 + e−2d2/δ2

xy

1 + e−2d2/δ2

)︄2⎤⎥⎥⎥⎥⎦ , (32)

d3(P) = 1
2

⎡⎢⎢⎢⎢⎣1 − |Bxy |2 cos(2ϕ)
(︄
1 + e−2d2/δ2

xy

1 + e−2d2/δ2

)︄2⎤⎥⎥⎥⎥⎦ . (33)

Here ϕ denotes the phase of Bxy. It is readily verified that these four quantities satisfy the sum
rule (19). We note that the far-zone, on-axis polarization-resolved scintillations depend on the
scaled coherence radii δ/d, δxy/d, and the correlation coefficient Bxy. These three quantities are
interrelated through the inequalities (see Appendix B)

δ ≤ δxy ≤ δ√︁|Bxy |
, (34)

Fig. 2. The spectrally-resolved scintillations d0(P) (upper green curve) and d1(P) (lower red
curve) when δxy is varied between its bounds given by Eq. (34). In this example Bxy = 0.57,
d = 1 cm, and δ = 1.1 cm.

From the expressions for the four Stokes scintillations we infer that

• The traditional scintillation, d0(P), reaches its minimum value of 1/2 when the correlation
coefficient |Bxy | = 0, i.e., when the field at both pinholes is unpolarized. In that case all
four Stokes scintillations are 1/2.

• For a non-zero Bxy coefficient the value of d0(P) attains its maximum when the coherence
radius δxy equals its upper bound. The second Stokes scintillation, d1(P), then reaches its
minimum. This behavior is illustrated in Fig. 2. We note that in this example δxy is varied
over the entire range of possible values given by the bounds (34).

• The extrema of the first two scintillations coincide with those of d2(P) and d3(P).
• The presence of the cosine term in Eqs. (32) and (33) means that unless Bxy is real-valued

(ϕ = 0 or π), the modulations of d2(P) and d3(P) will be less than those of the other two
scintillations.
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• For fields with a high spatial corrrelation, i.e., both δ/d and δxy/d much larger than one,
the factor in round brackets in Eqs. (30)–(33) reduces to unity. The four scintillations are
then solely governed by the correlation coefficient Bxy. An example is shown in Fig. 3. It
is seen, at least in this specific example, that d0 and d2 are correlated, and anti-correlated
with d1 and d3.

• On making use of Eq. (27) it follows that at the two pinholes

d0(rm) = 1
2

(︂
1 + |Bxy |2

)︂
, (m = 1, 2). (35)

We can compare this with Eq. (30). Because, according to Eq. (34), δxy ≥ δ, it is seen
that the traditional scintillation of the superposed fields at P is greater than or equal to the
scintillation of the individual fields at the two pinholes:

d0(P) ≥ d0(rm), (m = 1, 2). (36)

The sum rule (19) allows the suppression of one type of scintillation at the expense of an increase
of the other scintillations. For example, minimizing the traditional scintillation d0 by reducing
|Bxy | (as in Fig. 3) may be used to suppress unwanted speckle. However, one can also envision
applications, see [24] and the references therein, where a field interacts with a chiral structure.
In that case, optimizing the stability of S3 by minimizing d3 may be preferable. This can be
achieved by increasing |Bxy |. Similarly, when the two combined fields are made to pass through
a birefringent medium as, for example, certain types of optical fibers [25], it may be useful to
stabilize the linear polarization by reducing d1.

Fig. 3. The four polarization-resolved scintillations as a function of the modulus of the
polarization correlation coefficient Bxy. From top to bottom: d0(P) (green), d2(P) (blue),
d3(P) (black), and d1(P) (red). In this example ϕ = 0.4, d = 1 cm, and δ = δxy = 2 cm.

It is worth noting that the different Stokes scintillations can be measured using a narrow-band
spectral filter together with a division-of-amplitude photopolarimeter (see, for example, [26] and
the references therein).

4. Conclusions

In summary, we have examined the paraxial far-zone, polarization-resolved scintillations that
occur when random beams are combined in Young’s interference experiment. The assumption
of Gaussian statistics allows the derivation of expressions in terms of second-order correlation
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quantities. As illustrated by two examples, the sum rule that relates the four spectral Stokes
scintillations allows a trade-off between them. Depending on the application at hand, the stability
of one particular Stokes parameter can be increased at the expense of an increase of the variance
of one or more of the others.

Appendix A

From the definition (12) we have that

Dn(r) = ⟨[∆Sn(r)]2⟩ (37)

= ⟨Sn(r)Sn(r)⟩ − ⟨Sn(r)⟩2. (38)
The first term on the right-hand side is a fourth-order correlation. The assumption of Gaussian

statistics allows us to use the Gaussian moment theorem [17, Sec. 1.6.1] to write this in terms of
the CSD matrix, namely

⟨Sn(r)Sn(r)⟩ =
∑︂
a,b

∑︂
c,d
σn

abσ
n
cd ⟨E∗

a(r)Eb(r)E∗
c(r)Ed(r)⟩ (39)

=
∑︂
a,b

∑︂
c,d
σn

abσ
n
cd

[︁⟨E∗
a(r)Eb(r)⟩⟨E∗

c(r)Ed(r)⟩

+ ⟨E∗
a(r)Ed(r)⟩⟨E∗

c(r)Eb(r)⟩
]︁ (40)

=
∑︂
a,b

∑︂
c,d
σn

abσ
n
cd [Wab(r, r)Wcd(r, r) +Wad(r, r)Wcb(r, r)] . (41)

Applying this for the case n = 0 while noticing that the quadruple summation yields only four
non-zero terms, gives us

D0(r) = [Wxx(r, r)]2 + [︁
Wyy(r, r)]︁2

+ 2
|︁|︁Wxy(r, r)

|︁|︁2 , (42)

which is Eq. (13). The derivation of the other three Stokes fluctuations is completely similar.

Appendix B

The source parameters cannot be chosen arbitrarily, but must satisfy certain constraints. Specifi-
cally, it follows from the definition of the CSD matrix that [3, Chap. 9]

Bxx = Byy = 1, (43)

Bxy = B∗
yx, (44)

|Bxy | ≤ 1, (45)
δxy = δyx. (46)

Realizability conditions have been derived in [27], namely√︄
δ2xx + δ

2
yy

2
≤ δxy ≤

√︄
δxxδyy

|Bxy | , (47)

and
|Bxy | ≤ 2

δxx/δyy + δyy/δxx
. (48)

For the case that we consider, δxx = δyy = δ, the last two constraints reduce to

δ ≤ δxy ≤ δ√︁|Bxy |
, (49)

which is Eq. (34), and
|Bxy | ≤ 1. (50)
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