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We study the Gouy phase of a scalar wavefield that is focused by a lens suffering from primary spherical aberration.
It is found that the Gouy phase has different behaviors at the two sides of the intensity maximum. This results in a
systematic increase of the successive wavefront spacings around the diffraction focus. Since all lenses have some
amount of spherical aberration, this observation has implications for optical calibration and metrology. © 2013
Optical Society of America
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Because of its importance in interference microscopy
and optical metrology, the wavefront spacing of focused
fields has been the subject of many studies. Linfoot
and Wolf [1] derived that the effective wavelength of a
scalar field near focus is given by the expression
λeff � λ∕�1 − a2∕4f 2�, where λ is the free-space wave-
length, a is the aperture radius, and f denotes the focal
length. A very qualitative explanation of this increase in
wavefront spacing is given by the observation that in a
focused field, the average wave vector is tilted, i.e., its
component along the central axis is smaller than that
of a plane wave. More recently, analyses of strongly
focused, linearly polarized [2], and radially polarized
beams [3] predicted a wavefront spacing that is highly
irregular. Experimental observations of fringe spacings
have been presented in, e.g., [4–6].
A measure of how an actual diffracted focused field

differs from an ideal spherical wave is provided by the
Gouy phase (sometimes called the “phase anomaly”).
This is the sudden π phase shift that a focused field
undergoes, compared to a nondiffracted spherical wave
of the same frequency [7,8]. Its physical origin has been
discussed in [9]. Recently, it has been theoretically
investigated in a variety of applications, such as high-
numerical aperture systems [10,11], nondiffracting
beams [12,13], and partially coherent focused fields
[14]. Experimental observations were reported in, e.g.,
[15–21]. A precise knowledge of the Gouy phase is crucial
in a wide variety of metrological techniques. Examples
are measurements of acceleration [22], distance [23],
refractive indices [24], and volumes [25].
In an actual focusing system aberrations are always

present, especially primary spherical aberration, perhaps
the most common of the classical Seidel aberrations [26].
It is of interest, therefore, to examine the restrictions that
a small amount of spherical aberration puts on the accu-
racy levels that can be achieved in optical metrology and
calibration. In this Letter, we analyze the influence of
primary spherical aberration on the Gouy phase and the

wavefront spacing. We derive expressions for the phase
behavior in terms of imaginary error functions that can
easily be evaluated numerically. Our main result is that
the Gouy phase at the two sides of the diffraction focus
(the point of maximum intensity) is markedly different.
This results in a systematic increase of the wavefront
spacing around the diffraction focus. We show by
numerical examples that even a small amount of spheri-
cal aberration (∼λ∕4) introduces a change in the wave-
front spacing that is significantly larger than is usually
assumed.

Let us then consider an aberrated, converging, mono-
chromatic wavefield of frequency ω that emerges from a
circular aperture with radius a (see Fig. 1). The geomet-
rical focus O is taken to be the origin of the coordinate
system, and f is the radius of a Gaussian reference sphere
S. The field in the focal region is given by the expression
[26, Section 9.1.1]
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where k � 2π∕λ represents the wavenumber, A is an
amplitude, Φ denotes the aberration function, and s is
the distance from a point of integration Q on S to the
observation point P. For a wavefront with spherical aber-
ration [26, Section 9.3, Eq. (7)],

Fig. 1. Illustrating the notation.
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Φ�ρ� � A0ρ
4; (2)

with A0 the wave aberration at the edge of the exit pupil
and 0 ≤ ρ ≤ 1 a scaled transverse distance. We notice
that the focused field is rotationally symmetric about
the optical axis. The position of an observation point
P is indicated by the dimensionless Lommel variables
u and v, i.e.,

u � kz
�
a
f

�
2
; (3)

v � k�x2 � y2�1∕2 a
f
: (4)

After approximating the factor 1∕s in Eq. (1) by 1∕f , and
applying the usual Debye approximation s − f ≈ −q · R,
where q denotes a unit vector in the direction OQ [26,
Section 8.8.1], [27, Section 12.1.2], we find that

U�u; v;A0� � C
Z

1

0
J0�ρv�ei�−uρ2∕2�kA0ρ

4�ρdρ; (5)

where C � −ikA�a∕f �2ei�f∕a�2u and J0 denotes the Bessel
function of the first kind of order 0. It follows from Eq. (5)
that

U��u; v;A0� � −U�−u; v;−A0�; (6)

which means that the axial intensity distribution obeys
the symmetry relation

jU�u; 0;A0�j2 � jU�−u; 0;−A0�j2; (7)

and that the phase of the field, arg�U�u; v;A0��, satisfies
the formula

arg�U�u; v;A0�� � arg�U�−u; v;−A0�� � −π: �mod 2π�:
(8)

Equation (8) is a generalization of the expression

arg�U�u; v�� � arg�U�−u; v�� � −π; (9)

for a focused field without spherical aberration [26,
Section 8.8.4].
For axial points (v � 0), Eq. (5) can be written (omit-

ting the v dependence from now on) as
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(10)

where erfi denotes the imaginary error function. It is seen
from Eq. (10) that the axial intensity distribution is sym-
metric about the position u � 2kA0 [26, Section 9.3].
When jA0j≲ λ, this point is also the intensity maximum

(“the diffraction focus”). For large values of A0, there
may be two peaks, as is illustrated in Fig. 2. It is also
seen that the distribution becomes wider with increas-
ing A0.

The Gouy phase is defined as the difference between
the actual phase (or “argument”) of the field and that
of a nondiffracted spherical wave that converges to the
geometrical focus in the half-space z < 0 and diverges
from it in the half-space z > 0 [26, Section 8.8.4], i.e.,

δ�u;A0� � arg�U�u;A0�� − sign�u�kR; (11)

with R the distance from the observation point to the
geometrical focus, i.e.,

kR � kjzj �
�
f
a

�
2
juj; (12)

and sign�x� denotes the sign function

sign�x� �
�
−1 if x < 0;
1 if x > 0:

(13)

From Eqs. (8) and (11), we find that the Gouy phase
satisfies the relation

δ�u;A0� � δ�−u;−A0� � −π �mod 2π�: (14)

The dependence of the Gouy phase on the amount of
spherical aberration is shown in Fig. 3. It is seen that the
oscillations of the Gouy phase in front of the diffraction
focus decrease when the parameter A0 increases.
Notice that the three curves are parallel at the respective
diffraction foci �u � 1.3; 3.1; 12.6�. This follows from
Eq. (10), from which we derive ∂ arg�U�2kA0;A0��∕∂u �
�f ∕a�2 − 1∕4, which is indeed independent of the value
the aberration parameter.

The field at geometrical focus can be calculated from
Eq. (10), which gives

U�0;A0� � ikA
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a
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4
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p
�: (15)

Fig. 2. Axial intensity distribution for different values of the
spherical aberration parameter, A0 � 0 (blue curve), A0 � λ
(red curve), and A0 � 3.5λ (olive curve). Here, and in all the
following examples, a∕f is taken to be 1∕2.
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This expression implies that the phase, and equivalently,
the Gouy phase, at �u; v� � �0; 0� depends on the aberra-
tion parameter A0. However, for practical purposes, the
diffraction focus (the position of maximum intensity,
when jA0j≲ λ) is more important than the geometrical
focus. It is therefore of interest to examine the Gouy
phase at u � 2kA0. The field there can be written as

U�2kA0;A0� � ikA
�
a
f

�
2 �−1�3∕4 ���

π
p

2
��������
kA0

p ei2kA0�f ∕a�2

× e−ikA0∕4erfi
� ����������

ikA0

p
∕2

�
; (16)

which shows that the phase of the field depends on A0
and also on a∕f . The Gouy phase at the geometrical focus
and at the diffraction focus are both shown in Fig. 4 as
functions of the aberration parameter A0. We note that
(a) the symmetry relation Eq. (14) is satisfied by the Gouy
phase at the geometrical focus, and (b) the Gouy phase at
the diffraction focus can attain any value.
As mentioned above, all these results are derived while

making use of the Debye approximation. However, if one
requires a high level of accuracy, as in metrology, this
may introduce a slight error in the calculated wavefront
spacings [28]. We therefore evaluate Eq. (1) for on-axis
points, without making use of the Debye approximation.
This yields the expression

U�u;A0� � −ikA
�
a
f

�
2
e−ikf

Z
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0
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4�ρdρ; (17)
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: (18)

The Gouy phase and the intensity distribution of the
field along axis calculated from Eq. (17) are shown in
Figs. 5 and 6 for two opposite values of the aberration
parameter A0. These two figures illustrate the symmetry
relation (14). But more importantly, they show that
the Gouy phase is highly asymmetric with respect to the
diffraction focus. From this observation we may expect
that the wavefront spacing before and after the diffrac-
tion focus will be different.

We define the wavefront spacings as the distance
between the successive roots of the expression
R�U�u;A0�� � 0. The axial wavefront spacings for three
cases (A0 � 0, A0 � λ∕4 and A0 � −λ∕4) are listed in
Table 1. The spacings are labeled by the index N , with
N � 1 indicating the distance between the first zero
for which u > 2kA0, and the nearest zero at a smaller
value of u. From the table, several trends can be
deduced:

• For the case of an aberration-free lens (A0 � 0),
the wavefront spacings are somewhat irregular, but
consistently larger than the effective wavelength λeff �
λ∕�1 − a2∕4f 2� � 1.0667λ derived in [1] on the basis of
the Debye approximation.

• For a small amount of spherical aberration
(A0 � λ∕4), the wavefront spacings increase with

Fig. 3. Gouy phase of the field along the axis for different
values of the aberration parameter A0.

Fig. 4. Gouy phase δ�0; A0� at the geometrical focus (red
curve) and the Gouy phase δ�2kA0; A0� at the diffraction focus
(blue curve) as functions of the aberration parameter A0.

Fig. 5. Gouy phase and the intensity distribution of the field
along the axis for the case A0 � −λ∕4.

Fig. 6. Gouy phase and the intensity distribution of the field
along the axis for the case A0 � λ∕4.
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increasing N . This means that the spacings to the right of
the diffraction focus (N ≥ 1) are systematically larger
than those to the left of the diffraction focus (N ≤ −1).
The difference between the smallest and the largest spac-
ing (N � −4 and N � 4) is more than 1%. This is consid-
erably larger than the typically aspired metrological
accuracy levels.

• When the aberration parameter is slightly increased
(not shown) the systematic increase in wavefront
spacing with increasing N gets larger.

• For negative values of the aberration parameter
(A0 � −λ∕4), the wavefront spacings decrease with
increasing N . This is in agreement with the symmetry
expressed by Eq. (6), and Figs. 5 and 6.
In summary, we have derived expressions for the Gouy

phase of a focused field in the presence of primary
spherical aberration. Its behavior around the diffraction
focus is found to be highly asymmetric. This coincides
with a wavefront spacing that is systematically larger
on one side of the intensity maximum than on the other
side. The distance between successive wavefronts is
found to increase with increasing spherical aberration
and is typically larger than predicted by previous analy-
ses that relied on the Debye approximation. Since even
for a small amount of spherical aberration like λ∕4 the
difference in fringe spacing can exceed 1%, these results
may put restrictions on the accuracy that can be
achieved in optical metrology and calibration.
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Table 1. Wavefront Spacings (in Free-Space
Wavelengths λ) near the Diffraction Focus for
Different Amounts of Spherical Aberration, for

the Case a∕f � 1∕2

N A0 � 0 A0 � λ∕4 A0 � −λ∕4

−4 1.06683 1.06087 1.08080
−3 1.06871 1.06530 1.07540
−2 1.06948 1.06767 1.07304
−1 1.06982 1.06918 1.07162
1 1.06995 1.07034 1.07050
2 1.06991 1.07144 1.06935
3 1.06971 1.07279 1.06789
4 1.06923 1.07495 1.06567
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