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Abstract: The Gouy phase, sometimes called the focal phase anomaly,
is the curious effect that in the vicinity of its focus a diffracted field,
compared to a non-diffracted, converging spherical wave of the same
frequency, undergoes a rapid phase change by an amount of π . We the-
oretically investigate the phase behavior and the polarization ellipse of
a strongly focused, radially polarized beam. We find that the significant
variation of the state of polarization in the focal region, is a manifestation
of the different Gouy phases that the two electric field components undergo.
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1. Introduction

The phase anomaly is a measure of how the phase of a monochromatic, focused wave field dif-
fers from that of a non-diffracted, converging spherical wave of the same frequency. Since its
first description by L.G. Gouy in the 1890s [1, 2], his namesake phase has been observed under a
wide variety of circumstances. Recently investigated systems range from vortex beams [3, 4] to
fields of surface plasmon polaritions [5]. Surprisingly many different explanations for the phys-
ical origin of this remarkable effect have been suggested (see [6] and the references therein).
Because of its crucial role in many applications such as mode conversion [7], coherence to-
mography [8], the tuning of the resonance frequency of laser cavities [9], and interference
microscopy [10], the Gouy phase continues to attract attention.

When a beam of light is focused by a high-aperture system, the usual scalar formalism no
longer suffices, and an analysis of the Gouy phase must then take the vector nature of the field
into account. This has recently been done for strongly focused, linearly polarized beams [11].
It was found that the Gouy phases of the three Cartesian components of the electric field ex-
hibit quite different behaviors. Another example which requires a vectorial description is the
focusing of radially polarized beams [12, 13]. Because of their intriguing properties, such as a
relatively small focal spot size [14], these beams are widely used in, for example, the probing
of the dipole moment of individual molecules [15], high-resolution microscopy [16], trapping
of strongly scattering particles [17, 18] and in dark-field imaging [19]. A review is presented
in [20].

A first indication of the complicated phase behavior of focused, radially polarized beams was
the observation that their wave spacing near focus is highly irregular [21]. This was followed
by a study of the Gouy phase of the longitudinal component of the electric field vector at
the focal plane [22]. In the present paper, the Gouy phase of the total electric field vector,
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consisting of a radial and longitudinal component, is examined in the entire focal region. It is
found that the strong changes in the shape and orientation of the polarization ellipse near focus
is a consequence of the different Gouy phases that these two components undergo.

2. Focused, radially polarized fields

Consider an aplanatic focusing system L of focal length f with a semi-aperture angle α . The

L

y

x

zO

αf P

E

Fig. 1. A high-numerical-aperture focusing system with an incident beam that is radially
polarized.

geometrical focus is indicated by O and is taken to be the origin of a Cartesian coordinate
system (see Fig. 1). A monochromatic, radially polarized beam with angular frequency ω is
incident upon the system. The electric and magnetic fields at time t at position r are given by
the expressions

E(r, t) = Re [e(r)exp(−iωt)] , (1)

H(r, t) = Re [h(r)exp(−iωt)] , (2)

respectively, where Re denotes the real part. Such a field may be generated, for example, by
the superposition of two, mutually orthogonally polarized, Hermite-Gaussian beams. In the
remainder we will only be concerned with the electric field. If we assume that the entrance
plane of the focusing system coincides with the waist plane of the beam, then the longitudinal
component ez and the radial component eρ of the electric field at a point P = (ρ ,z) in the focal
region are given by the equations (first derived in [12], but here we adopt the notation of [21])

ez(ρ ,z) = −ik f
∫ α

0
l(θ )sin2 θ cos1/2 θeikzcosθ J0(kρ sinθ ) dθ , (3)

eρ(ρ ,z) = −k f
∫ α

0
l(θ )sinθ cos3/2 θeikzcosθ J1(kρ sinθ ) dθ , (4)

where Ji is the Bessel function of the first kind of order i and k = ω/c, with c the speed of
light in vacuum, is the wavenumber associated with frequency ω . Furthermore, l(θ ) denotes
the angular amplitude function

l(θ )= f sinθ exp[− f 2 sin2 θ/ω2
0 ], (5)

where ω0 is the spot size of the beam in the waist plane. Note that since the incident electric
field has no azimuthal component and the configuration is invariant with respect to rotations
around the z-axis, there is no azimuthal component of the electric field in the focal region. The
position of an observation point may be indicated by the dimensionless Lommel variables u
and v [23], namely

u = kzsin2 α, (6)

v = kρ sinα. (7)
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Equations (3) and (4) can then be rewritten as

ez(u,v) = −ik f 2
∫ α

0
sin3 θ cos1/2 θ e−β 2 sin2 θ eiucosθ/ sin2 αJ0

(
vsinθ
sinα

)
dθ , (8)

eρ(u,v) = −k f 2
∫ α

0
sin2 θ cos3/2 θ e−β 2 sin2 θ eiucosθ/ sin2 αJ1

(
vsinθ
sinα

)
dθ , (9)

where

β = f/ω0, (10)

denotes the ratio of the focal length of the system and the spot size of the beam in the waist
plane.

It follows from Eqs. (8) and (9) that the field components obey the following symmetry
relations:

ez(−u,v) = −e∗z (u,v), (11)

eρ(−u,v) = e∗ρ(u,v). (12)

3. Two Gouy phases

The Gouy phase δ is defined as the difference between the actual phase of the field and that of
a (non-diffracted) spherical wave converging to the focus in the half-space z < 0 and diverging
from it in the half-space z > 0 ([24, Sec. 8.8, Eq. (48)]). For each individual component of the
electric field we therefore define a Gouy phase as

δz(u,v) = arg[ez(u,v)]− sign(u)kR, (13)

δρ(u,v) = arg[eρ(u,v)]− sign(u)kR, (14)

where R is the distance from the observation point to the geometrical focus, i.e.

kR = k
√

z2 +ρ2 =
1

sinα

√
u2

sin2 α
+ v2, (15)

and sign(x) denotes the sign function

sign(x) =

{ −1 if x < 0,
1 if x > 0.

(16)

For the longitudinal field component ez, one finds from Eqs. (8), (11) and (13) that the Gouy
phase at two points that are symmetrically located with respect to the focus satisfies the relation

δz(−u,v)+ δz(u,v) =−π (mod 2π). (17)

At the focus we have
δz(0,0) =−π/2 (mod 2π). (18)

For the radial field component eρ , it follows from Eqs. (9), (12) and (14) that the Gouy phase
satisfies the symmetry relations

δρ(−u,v)+ δρ(u,v) = 0 (mod 2π). (19)
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Even though eρ = 0 when v= 0, it is useful to study the behavior of δρ along a tilted ray through
focus; for such a ray v ∝ |u|. Using the fact that for small arguments Jn(x)∼ xn [25, p. 360] we
find from Eq. (9) that along a tilted ray eρ ∼−|u|. Hence

limu↓0 δρ(u,v) = limu↑0 δρ(u,v) = π (mod 2π). (20)

It is seen from Eqs. (8) and (9) that the electric field components are characterized by two
parameters, namely the semi-aperture angle α , and the beam-size parameter β . These two pa-
rameters have a different effect on the Gouy phase behavior as we will now demonstrate.

On the central axis of the system (v = 0) only the longitudinal field component e z is non-
zero. The Gouy phase pertaining to this component, δ z, is shown in Fig. 2 for various values
of the semi-aperture angle α . It is seen that the phase change of e z decreases as α increases.
Unlike the π phase jump of the longitudinal component in linearly polarized fields [11], the
Gouy phase here is continuous at focus. Note that the longitudinal coordinate u is dependent on
the value of the semi-aperture angle α [See Eq. (6)].

In Fig. 3 the Gouy phase δz is depicted for selected values of the beam-size parameter β . For
a decreasing beam waist-size (ω0) the Gouy phase decreases as well. In these two figures, the
negative or positive slope of the Gouy phase means that the wavefront spacings can be smaller
or bigger than λ . This effect has been discussed in [21].

20 10 10 20

δz(u,v = 0)

u

π/2

−π/2

−π

−3π/2 α = 40ο

50ο
60ο

Fig. 2. The Gouy phase δz along the optical axis (v = 0) of the electric field component ez

for selected values of the semi-aperture angle α (blue curve: α = 40◦, red curve: α = 50◦,
olive curve: α = 60◦). The beam-size parameter β = 3.

When v �= 0, it follows from Eqs. (8) and (9) that both the longitudinal component e z and the
radial component eρ contribute to the field. The two Gouy phases δ z and δρ along an oblique ray
through focus, which makes an angle θ = 35◦ with the z-axis, are shown in Fig. 4. It is clear that
their respective behaviors are quite different. For example, when −10< u<−5 the oscillations
of δz and δρ are out of phase. The implications of this effect for the state of polarization will be
discussed in the next section.

4. The Gouy phase and the state of polarization

It is convenient to characterize the state of polarization of a two-dimensional field by the four
Stokes parameters [24, Sec. 1.4]. For a beam propagating in the z-direction, these parameters
are defined in terms of ex and ey. For a focused, radially polarized field the two non-zero com-
ponents of the electric field are ez and eρ . It is natural, therefore, to define the Stokes parameters
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Fig. 3. The Gouy phase δz along the optical axis (v = 0) of the electric field component ez

for selected values of the beam-size parameter β = f/ω0 (green curve: β = 1, blue curve:
β = 2, red curve: β = 3, olive curve: β = 4). The semi-aperture angle α = 60◦.

10 5 5 10
u

−π/2

−π

−3π/2

−2π

δz,  (u,    = 35o) ρ Θ

δz

δρ

Fig. 4. The Gouy phase of the longitudinal component ez (red curve) and that of the radial
component eρ (blue curve) along an oblique ray through focus under an angle θ = 35◦.
Here α = 40◦ and β = 1.

in this case in terms of these components rather than ex and ey [26, 27]. We thus define

S0 = |ez|2 + |eρ |2, (21)

S1 = |ez|2 −|eρ |2, (22)

S2 = 2|ez||eρ |cosδ , (23)

S3 = 2|ez||eρ |sinδ , (24)

where δ = arg[ez]− arg[eρ ] = δz − δρ . The normalized form of these Stokes parameters, s1 =
S1/S0, s2 = S2/S0, s3 = S3/S0, represents a point on the Poincaré sphere [28, p. 316], as shown
in Fig. 5. On the northern hemisphere (s3 > 0), the polarization is right-handed (clockwise),
whereas on the southern hemisphere it is left-handed (counter-clockwise). On both poles (s 3 =
±1), the polarization is circular. On the equator (s3 = 0), the field is linearly polarized.

Along a ray through focus, which makes an angle θ with the z-axis, we have

v = |u| tanθ/sinα. (25)
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s3 

 

 

z

ρ

Fig. 5. The Poincaré sphere with Cartesian axes (s1,s2,s3) adapted for focused, radially
polarized fields.

From Eqs. (11) and (12) it immediately follows that

|ez(−u,v)| = |ez(u,v)|, (26)

|eρ(−u,v)| = |eρ(u,v)|. (27)

These two relations are illustrated in Fig. 6. They also imply that the first Stokes parameter S 0

is an even function in u. Using Eqs. (17) and (19), it is seen that

[δz(u,v)− δρ(u,v)]+ [δz(−u,v)− δρ(−u,v)] = π (mod 2π), (28)

for the quantity δ , which is defined below Eq. (24), this implies that cos[δ (−u,v)] =
−cos[δ (u,v)] and sin[δ (−u,v)] = sin[δ (u,v)]. Thus we find the following symmetry relations
for the normalized Stokes parameters along a ray through focus:

s1(−u,v) = s1(u,v), (29)

s2(−u,v) = −s2(u,v), (30)

s3(−u,v) = s3(u,v). (31)

An example is presented in Fig. 7. It is seen that S0, S1 and S3 are even, whereas S2 is odd.
The polarization ellipse may be characterized by two angular parameters (see Fig. 8). One is

the orientation angle, ψ (0 ≤ ψ < π), which is the angle between the z-axis and the major axis
of the polarization ellipse. The other is the ellipticity angle, χ (−π/4 ≤ χ < π/4). | tan χ | rep-
resents the ratio of the axes of the ellipse. The values ±π/4 correspond to circular polarization;
whereas the value 0 indicates linear polarization. The sign of χ distinguishes the two senses of
handedness, i.e., it is right-handed when χ > 0, and left-handed when χ < 0, see [24, Sec. 1.4].
The two angular parameters can be expressed in terms of the normalized Stokes parameters, as

ψ =
1
2

arctan

(
s2

s1

)
, (32)

χ =
1
2

arcsin(s3). (33)
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Fig. 6. The normalized moduli of the longitudinal component ez (red curve) and that of the
radial component eρ (blue curve) of the electric field along an oblique ray under an angle
θ = 35◦ with the z-axis. Here we have chosen α = 40◦ and β = 1.

-10 -5 5 10

-1

-0.5

0.5

Stokes parameters

u

1

s1

s2

s3

Fig. 7. The Stokes parameters along an oblique ray through focus which makes an angle
θ = 35◦ with the z-axis (s1: blue curve, s2: red curve, s3: olive curve). Here α = 40◦ and
β = 1.

From the symmetry relations of s1, s2 and s3, it is seen that

ψ(−u,v) = π −ψ(u,v), (34)

χ(−u,v) = χ(u,v). (35)

Two kinds of polarization singularities can occur. When the polarization ellipse is circular,
the orientation angle ψ is undefined. This happens at so-called C-points. When the polarization
is linear, the handedness is undefined. This occurs at so-called L-points. When a system pa-
rameter, such as the semi-aperture angle α , is varied in a continuous manner, these polarization
singularities can be created or annihilated. This has been described in [26, 29].

The curves of the orientation angle ψ and the ellipticity angle χ along an oblique ray under
angle θ = 35◦ are displayed in Figs. 9 and 10. In Fig. 9 it is seen that the orientation angle of
the ellipse oscillates somewhat along the ray. Also, a C-point is seen near u = ±1.2, where the
orientation angle ψ is singular. To the left of the C-point at u = −1.2, the polarization ellipse
is slightly larger in the ρ-direction than it is in the z-direction. This situation is reversed to the
right of that C-point. This coincides with a π/2 jump of the angle ψ . In Fig. 10, these C-points
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ρ

zψ

χ

Fig. 8. Defining the angles ψ and χ of a polarization ellipse.

occur when the ellipticity angle χ takes on the value π/4. When χ equals 0, an L-point occurs,
which happens near points such as u =±2.9.

In Fig. 11 the polarization ellipse is shown for different positions along an oblique ray. The
ellipses at (u,v) and (u,−v) have the same ellipticity and handedness, whereas their orientations
are mirror-symmetric. The changes in the polarization ellipse are closely related to the two
Gouy phases, as we will now discuss. When u=−4, it is seen from Fig. 4 that δ = δ z−δρ < 0,
according to Eq. (24) the polarization is then counter-clockwise which corresponds to a point on
the southern half of the Poincaré sphere. Near the point u=−2.87, δ z = δρ , and hence the field
is linearly polarized with its handedness undefined, corresponding to a point on the equator. In
the vicinity of the focus, the Gouy phase difference, δ z − δρ , is approximately π/2 (see Fig. 4)
and when u =−1.2 the moduli of the two components attain the same magnitude (see Fig. 6),
therefore the field there is circularly polarized, corresponding to a point on the North pole.
The field is linearly polarized at focus due to the zero amplitude of the field component e ρ .
We also find that from u = −4 to u = −1.2 the handedness of the polarization changes from
counter-clockwise, to undefined, to clockwise.

10 5 5 100
u

Ψ

π
2

π

3π/4

π/4

  (u,    = 35o)Θ

C-point

C-point

Fig. 9. The orientation angle ψ of the polarization ellipse along an oblique ray through
focus under an angle θ = 35◦. Here we have chosen α = 40◦ and β = 1.

It is seen from Figs. 12, 13, and 14 that the evolution of the polarization ellipse can be quite
different along different rays through focus. This behavior mirrors the different Gouy phases
that the two components of the electric field vector undergo along these rays. In Fig. 12 (with
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χ (u,v)

u

π/4

π/8

−π/8

C-pointC-point

L-pointL-point

Fig. 10. The ellipticity angle χ of the polarization ellipse along an oblique ray through
focus under an angle θ = 35◦. Here we have chosen α = 40◦ and β = 1.

θ = 10◦) the handedness is clockwise at all observation points. This means that the Stokes
parameter s3 > 0, i.e. δz−δρ > 0. From Eq. (24) we see that this implies that the relative change
of the two Gouy phases is limited along this ray. This is also the case for θ = 20 ◦, as can be seen
from Fig. 13. In that case, however, the ellipticity is considerably larger. If the obliquity angle
θ is further increased to 30◦ (see Fig. 14), the polarization ellipses becomes even narrower. In
addition, the handedness evolves from counter-clockwise to clockwise, reflecting the fact that
δz −δρ changes sign along the ray. Finally, the change in the orientation angle of the ellipses is
seen to decrease significantly when the angle θ is increased.

z

ρ

-4 -2.87 -1.2 0 1.2 2.87 4
u

Fig. 11. Illustration of the symmetry properties of the polarization ellipse. The electric field
ellipse is shown at selected points along an oblique ray through focus. The ray is under an
angle θ = 35◦. Also, α = 40◦ and β = 1.

4 8 12 16 20
u

Fig. 12. Polarization ellipse of the field at selected points along an oblique ray through
focus. The ray is under an angle θ = 10◦. Also, α = 40◦ and β = 1.
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4 8 12 16 20
u

Fig. 13. Polarization ellipse of the field at selected points along an oblique ray through
focus. The ray is under an angle θ = 20◦. Also, α = 40◦ and β = 1.

4 8 12 16 20
u

Fig. 14. Polarization ellipse of the field at selected points along an oblique ray through
focus. The ray is under an angle θ = 30◦. Also, α = 40◦ and β = 1.

5. Conclusions

We have analyzed the phase behavior of strongly focused, radially polarized fields. We found
that the Gouy phase of the two components of the electric field are quite different, and have
different symmetries. Our results show that the semi-aperture angle α and the beam-size pa-
rameter β can both influence the Gouy phase. If we follow the polarization ellipse along a tilted
ray through focus, it is seen to “tumble”, i.e., it changes its orientation, its shape and its handed-
ness. This behavior is due to the different Gouy phases that the two components of the electric
field undergo.
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