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We derive expressions for the far-zone properties of electromagnetic beams generated by a broad class

of partially coherent sources, namely those of the quasi-homogeneous type. We use these reciprocity

relations to study the intensity distribution, the state of coherence and the polarization properties of

such beams.
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1. Introduction

The fully coherent, monochromatic beams that are often
encountered in the literature are idealizations. In practice, optical
fields are partially coherent. This may be due to several causes.
The source may emit several modes, or it may fluctuate due to
mechanical vibrations or quantum noise. In addition, if the field
propagates through a fluctuating random medium such as the
atmosphere, its coherence will degrade. Partially coherent beams
have some interesting properties. For example, they may have the
same directionality as nearly coherent laser beams, while not
giving rise to unwanted speckle [1, Section 5.4.2]. Equally impor-
tant, the state of coherence of a field can be controlled to optimize
it for certain applications such as propagation through atmo-
spheric turbulence [2], optical coherence tomography [3], and the
trapping of low refractive index particles [4]. Accounts of partially
coherent fields and their applications are given, for example,
in [1,5,6].

The majority of the studies dealing with partially coherent
beams is concerned with beams that are generated by so-called
Gaussian Schell model (GSM) sources, see for example [7–11].
ll rights reserved.
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Another important class of partially coherent sources, which
partially overlaps with those of the GSM type, is formed by so-
called quasi-homogeneous planar sources [1, Section 5.3.2]. Such
sources are characterized, at each frequency o, by (a) a spectral
degree of coherence that is homogeneous, meaning that it only
depends on the directional distance between two source points q01
and q02, i.e., mð0Þðq01,q02,oÞ � mð0Þðq02�q01,oÞ, and (b) by a spectral
density Sð0Þðq0,oÞ that varies much more slowly with q0 than
9mð0Þðq02�q01,oÞ9 varies with q02�q01. The properties of such sources
and the fields that they generate have been extensively studied. In
particular, several reciprocity relations, which express far-zone
properties of the field in terms of the Fourier transforms of source
properties, have been derived [12–18]. Most of these studies,
however, were limited to scalar fields. Notable exceptions are
[19,20], in which the far-zone properties of fields generated by
quasi-homogeneous, electromagnetic sources were studied. How-
ever, the analysis there was limited to sources with a uniform

state of polarization, i.e., sources whose state of polarization is the
same at every point. The fields produced by primary and isotropic

quasi-homogeneous electromagnetic sources were described in
[21]. In the present paper no restrictions on the symmetry, on the
state of coherence or on the state of polarization of the source are
assumed. Our results are, therefore, generally valid. We extend
the concept of quasi-homogeneity to sources that generate
electromagnetic beams. The source can have an arbitrary shape,
an arbitrary state of coherence or state of polarization. We derive
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new reciprocity relations which involve the spectral density and
the degree of coherence of the beams in the far-zone. These
results are then used to study the changes in the spectrum, in the
state of coherence and in the state of polarization that such beams
undergo on propagation.
z = 0

Fig. 1. Illustrating the notation. The vector q0 ¼ ðx,yÞ labels a point in the source

plane z¼0. The line from the origin O to an observation point r¼ rs, with 9s9¼ 1,

makes an angle y with the positive z-axis.
2. Partially coherent electromagnetic beams

The state of coherence and polarization of a random electro-
magnetic beam that propagates along the z-axis may be char-
acterized, in the space–frequency domain, by a 2�2 electric cross-

spectral density matrix [5, Chapter 9]

Wðr1,r2,oÞ ¼
Wxxðr1,r2,oÞ Wxyðr1,r2,oÞ
Wyxðr1,r2,oÞ Wyyðr1,r2,oÞ

 !
, ð1Þ

where

Wijðr1,r2,oÞ ¼/En

i ðr1,oÞEjðr2,oÞS ði,j¼ x,yÞ: ð2Þ

Here Eiðr,oÞ is a Cartesian component of the electric field, at a
point r at frequency o, of a typical realization of the statistical
ensemble representing the beam, and the angled brackets indi-
cate an ensemble average. From this matrix several important
quantities can be derived.

The spectral density of the field is given by the expression

Sðr,oÞ ¼ Tr Wðr,r,oÞ, ð3Þ

where Tr denotes the trace.
The spectral degree of coherence of the field at two points r1 and

r2 is defined by the formula:

Zðr1,r2,oÞ ¼ Tr Wðr1,r2,oÞ
½Tr Wðr1,r1,oÞTr Wðr2,r2,oÞ�1=2

: ð4Þ

It can be shown that the modulus of the spectral degree of
coherence is bounded by zero and unity, i.e.,

0r9Zðr1,r2,oÞ9r1: ð5Þ

The upper bound represents full coherence, whereas the lower
bound indicates a complete absence of coherence.

The spectral degree of polarization, i.e., the ratio of the intensity
of the polarized portion of the beam to its total intensity, at a
point r can be shown to be [5, Chapter 9]

Pðr,oÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

4 Det Wðr,r,oÞ
½Tr Wðr,r,oÞ�2

s
, ð6Þ

where Det denotes the determinant. We will make use of the
definitions (3), (4) and (6) to study the far-zone behavior of beams
generated by quasi-homogeneous sources.
3. Quasi-homogeneous, planar electromagnetic sources

Let us consider a planar, secondary source that produces an
electromagnetic beam with its axis along the positive z-direction
(see Fig. 1). We first consider the two diagonal elements of its
electric cross-spectral density matrix Wð0Þ. They can be expressed
in the form [5, Section 9.4.2]

W ð0Þ
ii ðq

0
1,q02,oÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð0Þi ðq

0
1,oÞ Sð0Þi ðq

0
2,oÞ

q
mð0Þii ðq

0
1,q02,oÞ ði¼ x,yÞ:

ð7Þ

Here Sð0Þi ðq
0,oÞ is the spectral density associated with a Cartesian

component Ei of the electric field vector, and mð0Þii is the correlation
coefficient of Ei at the two positions q01 and q02. The superscript ð0Þ
refers to quantities in the source plane, taken to be the plane z¼0.
If the source is homogeneous, the correlation coefficients
miiðq

0
1,q02,oÞ depend only on the difference q02�q01, i.e.,

miiðq
0
1,q02,oÞ ¼ miiðq

0
2�q01,oÞ: ð8Þ

A source is said to be quasi-homogeneous if the modulus of the
correlation coefficient mð0Þii ðq

0
2�q01,oÞ varies much more rapidly

with its argument q02�q01, than the spectral density Sð0Þi ðq,oÞ
varies with q. Since both Sð0Þx ðq,oÞ and Sð0Þy ðq,oÞ are ‘‘slow’’
functions when compared to mð0Þxx ðq

0
2�q01,oÞ and mð0Þyy ðq

0
2�q01,oÞ,

respectively, we can write

W ð0Þ
ii ðq

0
1,q02Þ � Sð0Þi

q01þq02
2

� �
mð0Þii ðq

0
2�q01Þ, ð9Þ

where for brevity we have omitted the o-dependence of the
various quantities.

Next we make the change of variables

qðþ Þ ¼
q01þq02

2
, ð10Þ

qð�Þ ¼ q02�q01: ð11Þ

The Jacobian of this transformation is unity, and the inverse
transformation is given by the expressions

q01 ¼ qðþ Þ�qð�Þ=2, ð12Þ

q02 ¼ qðþ Þþqð�Þ=2: ð13Þ

For the purpose of later analysis we now derive an equation
for the four-dimensional, spatial Fourier transformation of
W ð0Þ

ij ðq
0
1,q02Þ, which is defined as

~W
ð0Þ

ij ðf1,f2Þ ¼
1

ð2pÞ4

ZZ
z ¼ 0

W ð0Þ
ij ðq

0
1,q02Þe

�i½f1 �q
0

1
þ f2 �q

0

2
� d2r01 d2r02:

ð14Þ

It is readily seen that ~W
ð0Þ

ii ðf1,f2Þ factorizes into the product of two
two-dimensional Fourier transforms, viz.,

~W
ð0Þ

ii ðf1,f2Þ ¼
~S
ð0Þ

i ðf1þf2Þ ~mð0Þii

f2�f1

2

� �
, ð15Þ

where

~S
ð0Þ

i ðfÞ ¼
1

ð2pÞ2

Z
z ¼ 0

Sð0Þi ðq
0Þe�if�q0 d2r0 ð16Þ

and

~mð0Þii ðfÞ ¼
1

ð2pÞ2

Z
z ¼ 0

mð0Þii ðq
0Þe�if�q0 d2r0: ð17Þ

We note that the relation mð0Þii ðq
0Þ ¼ mð0Þnii ð�q0Þ implies that ~mð0Þii ðfÞ is

real-valued. We will make use of Eqs. (15)–(17) in the next
section.
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Fig. 2. Two symmetrically located observation points, with s1? ¼�s2? .
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4. Two reciprocity relations

The elements of the cross-spectral density matrix in the far-
zone, which we label by the superscript ð1Þ, are related to those
in the source plane, labeled by the superscript ð0Þ, by the formula

W ð1Þ

ij ðr1s1,r2s2Þ ¼ ð2pkÞ2 cos y1 cos y2
eikðr2�r1Þ

r1r2

~W
ð0Þ

ij ð�ks1? ,ks2? Þ,

ð18Þ

where si? is the two-dimensional projection, considered as a
vector, of si onto the xy-plane. Eq. (18) is a straightforward
generalization of a similar expression for scalar fields [1, Section
5.3.1]. A derivation of it is presented in Appendix A.

On substituting Eq. (15) into Eq. (18) we obtain the formulas

W ð1Þ

ii ðr1s1,r2s2Þ ¼ ð2pkÞ2 cos y1 cos y2
eikðr2�r1Þ

r1r2

� ~S
ð0Þ

i ½kðs2?�s1? Þ� ~m
ð0Þ
ii ½kðs1? þs2? Þ=2�: ð19Þ

On making use of Eqs. (19) in expression (3), we find the
following expression for the far-zone spectral density:

Sð1ÞðrsÞ ¼
2pk cos y

r

� �2

½ ~S
ð0Þ

x ð0Þ ~m
ð0Þ
xx ðks?Þþ ~S

ð0Þ

y ð0Þ ~m
ð0Þ
yy ðks?Þ�: ð20Þ

Eq. (20) is a reciprocity relation that shows that the far-zone
spectral density of an electromagnetic beam generated by a
planar, secondary, quasi-homogeneous source, is a linear combi-
nation of the two Fourier transforms of the correlation coeffi-
cients of the electric field components. This relation takes on a
particularly simple form for an on-axis observation point [i.e.,
s¼ ð0,0,1Þ], viz.,

Sð1Þð0,0,zÞ ¼
2pk

z

� �2

½ ~S
ð0Þ

x ð0Þ ~m
ð0Þ
xx ð0Þþ

~S
ð0Þ

y ð0Þ ~m
ð0Þ
yy ð0Þ�: ð21Þ

Next we derive a reciprocity relation for the spectral degree of
coherence. On substituting Eq. (19) into expression (4) that
defines this quantity, we find that

Zð1Þðr1s1,r2s2Þ ¼
~S
ð0Þ

x ½kðs2?�s1? Þ� ~m
ð0Þ
xx

k

2
ðs1? þs2? Þ

� ��

þ ~S
ð0Þ

y ½kðs2?�s1? Þ� ~m
ð0Þ
yy

k

2
ðs1? þs2? Þ

� ��

�½ ~S
ð0Þ

x ð0Þ ~m
ð0Þ
xx ðks1? Þþ

~S
ð0Þ

y ð0Þ ~m
ð0Þ
yy ðks1? Þ�

�1=2

�½ ~S
ð0Þ

x ð0Þ ~m
ð0Þ
xx ðks2? Þþ

~S
ð0Þ

y ð0Þ ~m
ð0Þ
yy ðks2? Þ�

�1=2eikðr2�r1Þ:

ð22Þ

Since mð0Þii is a ‘‘fast’’ function of its argument, its Fourier transform
~mð0Þii is a ‘‘slow’’ function. Hence

~mð0Þii ðks1? Þ � ~mð0Þii ðks2? Þ � ~mð0Þii

kðs1? þs2? Þ

2

� �
: ð23Þ

On making use of these approximations in Eq. (22) we obtain the
formula

Zð1Þðr1s1,r2s2Þ ¼
~S
ð0Þ

x ½kðs2?�s1? Þ� ~m
ð0Þ
xx

k

2
ðs1? þs2? Þ

� ��

þ ~S
ð0Þ

y ½kðs2?�s1? Þ� ~m
ð0Þ
yy

k

2
ðs1? þs2? Þ

� ��

� ~S
ð0Þ

x ð0Þ ~m
ð0Þ
xx kðs1? þs2? Þ=2
	 


þ ~S
ð0Þ

y ð0Þ ~m
ð0Þ
yy kðs1? þs2? Þ=2
	 
�1

n o
�eikðr2�r1Þ: ð24Þ

Eq. (24) is another reciprocity relation. It shows that the far-field
spectral degree of coherence of an electromagnetic beam which is
generated by a planar, secondary, quasi-homogeneous source, is
related to the Fourier transforms of both the spectral densities
and of the correlation coefficients of the field in the source plane.
If we choose two observation points that are located symmetri-
cally opposite to each other with respect to the z-axis
(i.e., r1 ¼ r2 ¼ r; s1? ¼�s2? ), as is illustrated in Fig. 2, this relation
simplifies to the form

Zð1Þðrs1,rs2Þ ¼ ½
~S
ð0Þ

x ð2ks2? Þ ~m
ð0Þ
xx ð0Þþ

~S
ð0Þ

y ð2ks2? Þ ~m
ð0Þ
yy ð0Þ�

�½ ~S
ð0Þ

x ð0Þ ~m
ð0Þ
xx ð0Þþ

~S
ð0Þ

y ð0Þ ~m
ð0Þ
yy ð0Þ�

�1: ð25Þ

The two reciprocity relations (20) and (24) are generalizations of
well-known results for scalar fields, derived by Carter and
Wolf [12].
5. Off-diagonal matrix elements

In order to study the degree of polarization [given by Eq. (6)],
we must also consider the two off-diagonal elements of the cross-
spectral density matrix. The first one in the source plane reads

W ð0Þ
xy ðq

0
1,q02Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð0Þx ðq

0
1Þ Sð0Þy ðq

0
2

q
Þ mð0Þxy ðq

0
2�q01Þ: ð26Þ

In writing Eq. (26) the homogeneity of the source has been used.
Next we assume that both Sð0Þx ðq

0
1Þ and Sð0Þy ðq

0
2Þ vary much more

slowly with their arguments than mð0Þxy ðq
0
2�q01Þ varies with q02�q01.

We then have, to a good approximation, that

Sð0Þi ðq
0
1Þ � Sð0Þi ðq

0
2Þ � Sð0Þi

q01þq02
2

� �
: ð27Þ

In such a case we may introduce a new function

Sð0Þxy

q01þq02
2

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð0Þx

q01þq02
2

� �s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð0Þy

q01þq02
2

� �s
, ð28Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð0Þx ðq

0
1Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð0Þy ðq

0
2Þ

q
: ð29Þ

In terms of Sð0Þxy the matrix element of Eq. (26) may be expressed in
the form

W ð0Þ
xy ðq

0
1,q02Þ ¼ Sð0Þxy ½q

ðþ Þ� mð0Þxy ½q
ð�Þ�, ð30Þ

where the sum and difference variables defined by Eqs. (10) and
(11) have been used. In strict analogy with the derivation of
Eq. (15) we find that the Fourier transform of this matrix element
equals

~W
ð0Þ

xy ðf1,f2Þ ¼
~S
ð0Þ

xy ðf1þf2Þ ~mð0Þxy

f2�f1

2

� �
: ð31Þ

On substituting Eq. (31) into Eq. (18) we obtain the formula

W ð1Þ
xy ðr1s1,r2s2Þ ¼ ð2pkÞ2 cos y1 cos y2

~S
ð0Þ

xy ½kðs2?�s1? Þ�

� ~mð0Þxy ½kðs1? þs2? Þ=2�
eikðr2�r1Þ

r1r2
: ð32Þ

The second off-diagonal matrix element is given by the expres-
sion

W ð0Þ
yx ðq

0
1,q02Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð0Þy ðq

0
1Þ Sð0Þx ðq

0
2Þ

q
mð0Þyx ðq

0
2�q01Þ: ð33Þ
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It follows from the definition of the cross-spectral density matrix
that

W ð0Þ
yx ðq

0
1,q02Þ ¼ ½W

ð0Þ
xy ðq

0
2,q01Þ�

n, ð34Þ

¼ Sð0Þxy ½q
ðþ Þ�mð0Þnxy ½�qð�Þ�, ð35Þ

where Eq. (30) has been used. Since

1

ð2pÞ2

Z
mð0Þnxy ½�qð�Þ�e�if�qð�Þd2rð�Þ ¼ ½ ~mð0Þxy ðfÞ�

n, ð36Þ

we find that

W ð1Þ
yx ðr1s1,r2s2Þ ¼ ð2pkÞ2 cos y1 cos y2

~S
ð0Þ

xy ½kðs2?�s1? Þ�

� ~mð0Þnxy ½kðs1? þs2? Þ=2�
eikðr2�r1Þ

r1r2
: ð37Þ

Expressions for all the four elements of the cross-spectral density
matrix of the far-zone beam have now been derived. On sub-
stituting Eqs. (19), (32), and (37) into Eq. (6) we obtain for the
degree of polarization of the beam at axial points ðs? ¼ 0Þ in the
far-zone the expression

Pð1Þð0,0,zÞ ¼ f½ ~S
ð0Þ

x ð0Þ ~m
ð0Þ
xx ð0Þ�

~S
ð0Þ

y ð0Þ ~m
ð0Þ
yy ð0Þ�

2þ4½ ~S
ð0Þ

xy ð0Þ9 ~m
ð0Þ
xy ð0Þ9�

2g1=2

� 9 ~S
ð0Þ

x ð0Þ ~m
ð0Þ
xx ð0Þþ

~S
ð0Þ

y ð0Þ ~m
ð0Þ
yy ð0Þ9

�1
: ð38Þ

We see from this formula that in this case the degree of
polarization does not depend on the specific forms of the spectral
densities or of the correlation coefficients, but rather on their
Fourier transform at zero frequency, i.e., on their spatial integrals.
6. Examples

We will now make use of the two reciprocity relations, given
by Eqs. (21) and (25), and of Eq. (38) to investigate changes in the
spectrum, in the degree of coherence, and in the degree of
polarization that occur on propagation from the source to the
far-zone.

6.1. The far-field spectrum

Coherence-induced spectral changes have been examined for
several years now. A review of this subject was given by Wolf and
James [22]. As mentioned before, in contrast to the present work,
most studies have dealt with scalar fields. To see how the
vectorial nature of the beam influences the far-zone spectrum,
we first recall Eq. (21),

Sð1Þð0,0,z;oÞ ¼ 2pk

z

� �2

½ ~S
ð0Þ

x ð0;oÞ ~m
ð0Þ
xx ð0;oÞþ ~S

ð0Þ

y ð0;oÞ ~m
ð0Þ
yy ð0;oÞ�,

ð39Þ

where, for clarity, we again display the frequency-dependence of
the various quantities.

Let us now investigate the incoherent superposition of two laser
beams, each with constant intensity A, and with an identical
Gaussian spectrum, with central frequency o0. One beam is
assumed to be x-polarized and to have a radius a, whereas the
other beam is assumed to be y-polarized and to have a radius b.
In that case the two spectral densities are given by the expressions

Sð0Þx ðq
0;oÞ ¼

Ae�ðo�o0Þ
2=D2

if 9q09ra,

0 if 9q094a,

8<
: ð40Þ

Sð0Þy ðq
0;oÞ ¼

Ae�ðo�o0Þ
2=D2

if 9q09rb,

0 if 9q094b,

8<
: ð41Þ
with D the effective width of the two spectra. The two-dimen-
sional spatial Fourier transforms of these spectra are given by the
expressions

~S
ð0Þ

x ðf;oÞ ¼
a2A

2p e�ðo�o0Þ
2=D2 J1ðfaÞ

fa
, ð42Þ

~S
ð0Þ

y ðf;oÞ ¼
b2A

2p e�ðo�o0Þ
2=D2 J1ðfbÞ

fb
, ð43Þ

where J1 denotes the first order Bessel function of the first kind,
and f ¼ 9f9. It follows that

~S
ð0Þ

x ð0;oÞ ¼
a2A

4p e�ðo�o0Þ
2=D2

, ð44Þ

~S
ð0Þ

y ð0;oÞ ¼
b2A

4p e�ðo�o0Þ
2=D2

: ð45Þ

We also assume that the correlation coefficients mð0Þxx and mð0Þyy are
both represented by Gaussian functions, but with different spatial
and different spectral widths, i.e.,

mð0Þxx ðq
0;oÞ ¼ e�q0=2d2

xx e�ðo�o0Þ
2=D2

xx , ð46Þ

mð0Þyy ðq
0;oÞ ¼ e�q0=2d2

yy e�ðo�o0Þ
2=D2

yy : ð47Þ

It thus follows that

~mð0Þxx ð0;oÞ ¼
d2

xx

2p
e�ðo�o0Þ

2=D2
xx , ð48Þ

~mð0Þyy ð0;oÞ ¼
d2

yy

2p e�ðo�o0Þ
2=D2

yy : ð49Þ

On substituting Eqs. (44), (45), (48) and (49) into Eq. (39), we
obtain for the on-axis spectral density in the far-zone the formula

Sð1Þð0,0,z;oÞ ¼ A

2

k

z

� �2

e�ðo�o0Þ
2=D2

� fa2d2
xxe�ðo�o0Þ

2=D2
xxþb2d2

yye�ðo�o0Þ
2=D2

yy g: ð50Þ

Using the fact that the on-axis spectral density in the source plane
is given by the expression

Sð0Þð0,0,0;oÞ ¼ Sð0Þx ð0,0,0;oÞþSð0Þy ð0,0,0;oÞ, ð51Þ

¼ 2Ae�ðo�o0Þ
2=D2

, ð52Þ

we can write the on-axis far-zone spectral density in the form

Sð1Þð0,0,z;oÞ ¼MðoÞSð0Þð0,0,0;oÞ, ð53Þ

where the spectral modifier function M is given by the expression

MðoÞ ¼ 1

4

o
zc

� �2

fa2d2
xxe�ðo�o0Þ

2=D2
xxþb2d2

yye�ðo�o0Þ
2=D2

yyg: ð54Þ

Eq. (53) shows that the on-axis spectrum in the far-zone equals the
on-axis spectrum in the source plane times the modifier function
MðoÞ. We note that the function MðoÞ contains several para-
meters: the beam sizes a and b, the coherence lengths dxx and dyy

and the spectral widths Dxx and Dyy. Each of these parameters can
give rise to changes of the spectrum on propagation. An example of
the far-zone spectrum is shown in Fig. 3. It is seen the far-zone
spectrum can be significantly narrower than that in the source
plane (case a). Also, the maximum of the far-zone spectrum can be
shifted to higher frequencies (case b).

6.2. The far-field spectral degree of coherence

Let us next consider a source with two equal diagonal
correlation coefficients, i.e., mð0Þxx ðqÞ ¼ mð0Þyy ðqÞ. We assume that the
two spectral densities are Gaussian functions with the same
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example a¼1, b¼ 2a, dxx ¼ 1, dyy ¼ 2, D¼o0=10, Dxx ¼ 0:1 and Dyy ¼ 0:04
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Fig. 5. The spectral degree of polarization of a beam generated by a quasi-
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coherence length is taken to be dxx ¼ 0:5 cm, whereas dyy varies from 0 to 3 cm.

The two spectral densities, Sð0Þx and Sð0Þy , are assumed to be equal.
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maxima, but with different widths, viz.,

Sð0Þx ðq
0Þ ¼ Ae�r

02=2s2
x , ð55Þ

Sð0Þy ðq
0Þ ¼ Ae�r

02=2s2
y : ð56Þ

From Eq. (25) it follows that in this case the spectral degree of
coherence of the field at two far field points located symmetri-
cally with respect to the beam axis is given by the formula

Zð1Þðrs1,rs2Þ ¼
s2

x e�2ðksx sin yÞ2þs2
y e�2ðksy sin yÞ2

s2
xþs2

y

ðs1? ¼�s2? Þ: ð57Þ

An example of the angular dependence of Zð1Þðrs1,rs2Þ for this
case is shown in Fig. 4 for various values of the scaled transverse
coherence length ksy. It is seen that the width of the spectral
degree of coherence decreases when the width of the spectral
density ksy increases.

6.3. The far-field spectral degree of polarization

As our last example, we consider a source in which the two
components of the electric field have an identical spectral density,
but are uncorrelated, i.e.,

Sð0Þx ðq
0Þ ¼ Sð0Þy ðq

0Þ,

mð0Þxy ðq
0Þ ¼ mð0Þyx ðq

0Þ ¼ 0: ð58Þ

We also assume that both the non-zero correlation coefficients
have a Gaussian form

mð0Þii ðq
0Þ ¼ e�r

02=2d2
ii , ði¼ x,yÞ: ð59Þ

It immediately follows from Eq. (6) that everywhere in the source
plane the field is completely unpolarized, i.e., the degree of
polarization Pð0Þðq0Þ ¼ 0. However, in the far-zone that is generally
not the case (see also [7]). We have from Eq. (59) that

~mð0Þii ð0Þ ¼
1

2p
d2

ii: ð60Þ

Under these circumstances, the expression for the degree of
polarization at points in the far-zone on the axis, Eq. (38), reduces
to a function of the two effective correlation lengths only, namely

Pð1Þð0,0,zÞ ¼
9d2

xx�d
2
yy9

d2
xxþd

2
yy

: ð61Þ

An example of the behavior of Pð1Þð0,0,zÞ is shown in Fig. 5. It is
seen that the degree of polarization in the far-zone varies strongly
with the ratio between the two correlation lengths dxx and dyy,
and can take on any value between zero and unity.
7. Conclusions

We have studied the far-zone properties of electromagnetic
beams that are generated by planar, secondary quasi-homogeneous
sources. No assumptions regarding the shape of the source, it
symmetries or its state of polarization were made. Two recipro-
city relations were derived. The first one relates the spectral
density in the far-zone to the Fourier transforms of the correlation
coefficients in the source plane. The second one relates the
spectral degree of coherence in the far-zone to the Fourier trans-
forms of both the spectral densities and of the correlation
coefficients of the source field. We applied these two relations
to demonstrate that the spectral density, the coherence properties
and the state of polarization of a beam that originates from
a quasi-homogeneous source can all drastically change on
propagation.

While this paper was being finalized, two papers [23,24]
appeared in which some related results were reported.
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Appendix A. Derivation of Eq. (18)

For a beam-like field generated by a planar, secondary source,
we have, according to the first Rayleigh diffraction formula
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[1, Section 3.2.5]

EiðrÞ ¼
�1

2p

Z
z ¼ 0

Eð0Þi ðq
0Þ
@

@z

eikR

R

� �
d2r0, ðA:1Þ

where R¼ 9ðq0,0Þ�r9. If r¼ rs with 9s9¼ 1 represents a point in the
far-zone, we have, to a good approximation, that

R� r�q0 � s?, ðA:2Þ

where si? is the two-dimensional projection, considered as a vector,
of si onto the xy-plane. Hence,

eikR � eikre�ikq0 �s? : ðA:3Þ

It then follows that

@

@z

eikR

R

� �
¼
@r

@z

@

@r

eikR

R

� �
, ðA:4Þ

�
ik

r
cos y eikre�ikq0 �s? , ðA:5Þ

where we have made use of the facts that in the far-zone rbl,
together with z¼ r cos y. On making use of Eq. (A.5) in Eq. (A.1) we
find that

Eð1Þi ðrÞ ¼
�ik

2p cos y
eikr

r

Z
z ¼ 0

Eð0Þi ðq
0Þ e�ikq0 �s?d2r0, ðA:6Þ

¼�2pik cos y
eikr

r
~E
ð0Þ

i ðks?Þ, ðA:7Þ

where we used the definition of the Fourier transform, Eq. (16). On
substituting Eq. (A.7) into Eqs. (1) and (14) we obtain the result

W ð1Þ

ij ðr1s1,r2s2Þ ¼/Eð1Þni ðr1s1ÞE
ð1Þ

j ðr2s2ÞS, ðA:8Þ

¼ ð2pkÞ2 cos y1 cos y2/ ~E
ð0Þn

i ðks1? Þ
~E
ð0Þ

j ðks2? ÞS
eikðr2�r1Þ

r1r2
,

ðA:9Þ

¼ ð2pkÞ2 cos y1 cos y2
~W
ð0Þ

ij ð�ks1? ,ks2? Þ
eikðr2�r1Þ

r1r2
,

ðA:10Þ

which is Eq. (18).
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