Polarization properties of stochastic electromagnetic beams

O. Korotkova, T.D. Visser *, E. Wolf

Department of Physics and Astronomy, University of Rochester, River Campus Station, Rochester, NY 14627, USA

Received 8 July 2007; received in revised form 24 September 2007; accepted 3 October 2007

Abstract

The behavior of the degree of polarization of a Gaussian Schell-model beam propagating in free space is investigated. Contour diagrams for the degree of polarization, and for the spectral density ('intensity') of the polarized and the unpolarized portions of the beam are presented.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Until relatively recently the degree of polarization of a stochastic electromagnetic beam (which in general is partially coherent and partially polarized) was regarded as one of its intrinsic properties. In 1994, it was shown by a simple example that the degree of polarization can in fact change, even on propagation in free space [1]. Since then many different examples of this kind of behavior have been found, (see for example [2–6]) and clarified from general considerations [7, Ch. 9].

In this paper, we present a detailed analysis of the behavior of the degree of polarization of a wide class of beams, the so-called electromagnetic Gaussian Schell-model beams, on propagation in free space. Specifically, we obtain contour diagrams for:

(1) the degree of polarization of a typical beam of this class;
(2) the total intensity of the beam;
(3) the intensity of the polarized part of the beam; and
(4) the intensity of the unpolarized part of the beam.

Our analysis indicates the richness of polarization features of stochastic electromagnetic beams.

2. Electromagnetic Gaussian Schell-model beams

Consider a planar, secondary source, located in the plane \(z = 0 \), that generates a stochastic electromagnetic beam which propagates into the half-space \(z > 0 \), in a direction close to the positive \(z \)-axis. The source is assumed to be statistically stationary, at least in the wide sense. The electric cross-spectral density matrix, which may be used to represent both the state of coherence and the state of polarization of the beam in the source plane is defined as [8–10]

\[
W(0)_{ij}(\rho_1, \rho_2; \omega) = \begin{pmatrix}
W_{xx}(0)(\rho_1, \rho_2; \omega) & W_{xy}(0)(\rho_1, \rho_2; \omega) \\
W_{yx}(0)(\rho_1, \rho_2; \omega) & W_{yy}(0)(\rho_1, \rho_2; \omega)
\end{pmatrix},
\]

where

\[
W_{ij}(0)(\rho_1, \rho_2; \omega) = \langle E_i^*(\rho_1, \omega)E_j(\rho_2, \omega) \rangle, \quad (i = x, y; j = x, y).
\]

Here \(E_i(\rho, \omega) \) is a Cartesian component, at frequency \(\omega \), of the (complex) electric vector in two mutually orthogonal \(x \)- and \(y \)-directions, perpendicular to the direction of propagation of the beam (the \(z \)-direction), at a point in the source plane specified by the two-dimensional transverse position vector \(\rho \), of a typical realization of the statistical ensemble representing the field. The asterisk denotes the complex conjugate.
conjugate, and the angular brackets the ensemble average in the sense of coherence theory in the space-frequency domain [11, Section 4.3]. For an electromagnetic Gaussian Schell-model source, the elements of the cross-spectral density matrix are of the form

\[
W^{(0)}_{ij}(\rho_1, \rho_2; \omega) = \sqrt{S^{(0)}_i(\rho_1, \omega)} \sqrt{S^{(0)}_j(\rho_2, \omega)} \mu_{ij}(\rho_2 - \rho_1; \omega),
\]

Here \(S^{(0)}_i(\rho, \omega)\) represents the spectral density of the component \(E_i\) of the electric vector at frequency \(\omega\) in the source plane, and \(\mu_{ij}(\rho_2 - \rho_1; \omega)\) is the coefficient characterizing the correlation between the \(i\)-th and \(j\)-th components of the electric field. Both these quantities are Gaussian functions, i.e.

\[
S^{(0)}_i(\rho, \omega) = A^2_i \exp\left(-\rho^2/2\sigma^2_i\right),
\]

\[
\mu_{ij}(\rho_2 - \rho_1; \omega) = B_{ij} \exp\left(-\rho^2/2\delta^2_{ij}\right),
\]

The parameters \(A_i, B_{ij}, \sigma_i, \text{and} \, \delta_{ij}\) are independent of position, but may depend on frequency. They have to satisfy certain constraints due to the beam-like nature of the field, viz. [12],

\[
\frac{1}{4\sigma^2_i} + \frac{1}{\delta^2_{ij}} \leq \frac{2\pi^2}{\lambda^2} \quad (i = x, y),
\]

where \(\lambda = 2\pi c/\omega\) is the wavelength, \(c\) being the speed of light in vacuum. Also, because the cross-spectral density matrix is non-negative definite and Hermitian, it follows that (see [2], and also [13])

\[
B_{ij} = 1 \quad \text{if} \quad i = j,
\]

\[
|B_{ij}| \leq 1 \quad \text{if} \quad i \neq j,
\]

\[
B_{ij} = B^*_{ji},
\]

\[
\delta_{ij} = \delta_{ji},
\]

\[
\max\{\delta_{xx}, \delta_{yy}\} \leq \delta_{xy} \leq \min\left\{\frac{\delta_{xx}}{|B_{xx}|}, \frac{\delta_{yy}}{|B_{yy}|}\right\},
\]

From Eqs. (3)–(5) it follows that

\[
W^{(0)}_{xx}(\rho_1, \rho_2; \omega) = A^2_x \exp\left[-(\rho_1^2 + \rho_2^2)/4\sigma^2_x\right] \times \exp\left[-(\rho_1 - \rho_2)^2/2\delta^2_{xx}\right],
\]

\[
W^{(0)}_{xy}(\rho_1, \rho_2; \omega) = A_x A_y B_{xy} \exp\left[-(\rho_1^2/4\sigma^2_y + \rho_2^2/4\sigma^2_y + \rho_1^2/4\sigma^2_x + \rho_2^2/4\sigma^2_x)
ight] \times \exp\left[-(\rho_1 - \rho_2)^2/2\delta^2_{xy}\right],
\]

\[
W^{(0)}_{yy}(\rho_1, \rho_2; \omega) = A_x A_y B_{yy} \exp\left[-(\rho_1^2/4\sigma^2_y + \rho_2^2/4\sigma^2_y + \rho_1^2/4\sigma^2_x + \rho_2^2/4\sigma^2_x)
ight] \times \exp\left[-(\rho_1 - \rho_2)^2/2\delta^2_{yy}\right],
\]

\[
W^{(0)}_{yx}(\rho_1, \rho_2; \omega) = A^2_x \exp\left[-(\rho_1^2 + \rho_2^2)/4\sigma^2_x\right] \times \exp\left[-(\rho_1 - \rho_2)^2/2\delta^2_{xy}\right].
\]

We will assume that the variances of the two intensity distributions are equal, i.e.

\[
\sigma_x = \sigma_y = \sigma.
\]

The electric cross-spectral density matrix of the beam in any transverse plane \(z > 0\) is given by the formula [9, Eq. (7)]

\[
W(\rho_1, \rho_2, z; \omega) = \int_{(\omega)} W^{(0)}(\rho'_1, \rho'_2; \omega) \times K(\rho_1 - \rho'_1, \rho_2 - \rho'_2, z; \omega) d^2\rho'_1 d^2\rho'_2,
\]

where

\[
K(\rho_1 - \rho'_1, \rho_2 - \rho'_2, z; \omega) = G(\rho_1 - \rho'_1; z; \omega) \times G(\rho_2 - \rho'_2; z; \omega),
\]

with \(G\) denoting the Green’s function for paraxial propagation from the point \(Q(\rho', 0)\) in the source plane \(z = 0\) to the field point \(P(\rho, z)\) [11, Section 5.6.1], viz.,

\[
G(\rho - \rho'; z; \omega) = -\frac{ik}{2\pi^2} \exp(ikz) \exp[ik|\rho - \rho'|^2/2\zeta].
\]

On substituting from Eq. (19) into Eq. (17) we obtain for the matrix elements evaluated at ‘coincident points’ \(\rho_1 = \rho_2 = \rho\) the expressions

\[
W_{ij}(\rho, \rho, z; \omega) = \left(\frac{k\sigma^2_{ij}}{z}\right) A_x A_y B_{ij} \exp\left[-\rho^2/2\sigma^2 \Delta^2_{ij}(z, \omega)\right],
\]

where

\[
\Delta^2_{ij}(z, \omega) = 1 + \frac{z^2}{k^2 \sigma^2} \left(1 + \frac{1}{\delta^2_{ij}}\right), \quad (i = x, y).
\]

The spectral density (the ‘intensity at frequency’ \(\omega\)) of the beam at a point \((\rho, z)\) is, apart from a proportionality factor which depends on the choice of units, given by the trace of the cross-spectral density matrix at that point, i.e.

\[
S(\rho, z; \omega) = \text{tr} W(\rho, \rho, z; \omega),
\]

\[
=W_{xx}(\rho, \rho, z; \omega) + W_{yy}(\rho, \rho, z; \omega),
\]

\[
=S_x(\rho, z; \omega) + S_y(\rho, z; \omega).
\]

At each point the cross-spectral density matrix can be uniquely decomposed into a sum of two matrices, one of which, \(W^{(p)}\) say, represents a fully polarized field, whereas the other, \(W^{(a)}\) say, represents a completely unpolarized field [15,16], i.e.

\[
W(\rho, \rho, z; \omega) = W^{(p)}(\rho, \rho, z; \omega) + W^{(a)}(\rho, z; \omega),
\]

with

\[
W^{(p)}(\rho, z; \omega) = \begin{pmatrix} B & D \\ D^* & C \end{pmatrix},
\]

and

\[
W^{(a)}(\rho, z; \omega) = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}.
\]
with $A, B, C \geq 0$, and D in general a complex number. The
dependence of the matrix elements A, B, C and D on position
and frequency is not displayed. These quantities can be
expressed in terms of the cross-spectral density matrix
$W(\rho, \rho; \omega)$ as
\[
A = \frac{1}{2} \left\{ W_{xx} + W_{yy} - \left[(W_{xx} - W_{xy})^2 + 4|W_{xy}|^2 \right]^{1/2} \right\},
\]
\[
B = \frac{1}{2} \left\{ W_{xx} - W_{yy} + \left[(W_{xx} - W_{xy})^2 + 4|W_{xy}|^2 \right]^{1/2} \right\},
\]
\[
C = \frac{1}{2} \left\{ W_{yy} - W_{xx} + \left[(W_{xx} - W_{xy})^2 + 4|W_{xy}|^2 \right]^{1/2} \right\},
\]
\[
D = W_{xy}.
\]
The decomposition (27) makes it possible to express the
spectral density at frequency ω at each point as the sum
of two contributions, namely that of a polarized portion
of the beam and that of an unpolarized portion, i.e.
\[
S(\rho, \omega; \omega) = S^{(p)}(\rho, \omega; \omega) + S^{(u)}(\rho, \omega; \omega),
\]
with
\[
S^{(p)}(\rho, \omega; \omega) = \text{tr} W^{(p)}(\rho, \omega; \omega) = B + C,
\]
\[
S^{(u)}(\rho, \omega; \omega) = \text{tr} W^{(u)}(\rho, \omega; \omega) = 2A.
\]
The spectral degree of polarization of the beam at a point in
the half-space $z \geq 0$, which is defined as the ratio of the
intensity of the polarized part of the beam and the total beam intensity at that point, is given by the expression
(see [11, Section 6.3.3] and Ref. [14])
\[
P(\rho, \omega; \omega) = \frac{S^{(p)}(\rho, \omega; \omega)}{S(\rho, \omega; \omega)},
\]
\[
= \sqrt{1 - \frac{4 \det W(\rho, \omega; \omega)}{[\text{tr} W(\rho, \omega; \omega)]^2}},
\]
where \det denotes the determinant and tr the trace. It can
be readily shown that $0 \leq P(\rho, \omega; \omega) \leq 1$. The upper bound
represents complete polarization, the lower bound represents a complete absence of polarization. For all intermedi-
ate values $0 < P(\rho, \omega; \omega) < 1$ the field is partially polarized.

3. Sources with a diagonal cross-spectral density matrix

The behavior of the beam on propagation can be studied
by numerical evaluation of Eqs. (22), (24), (35), (36) and
(38). We first consider beams generated by sources whose
cross-spectral density matrix has a diagonal form, i.e. for which
\[
W^{(0)}(\rho_1, \rho_2; \omega) = \begin{pmatrix}
W_{xx}^{(0)}(\rho_1, \rho_2; \omega) & 0 \\
0 & W_{yy}^{(0)}(\rho_1, \rho_2; \omega)
\end{pmatrix}.
\]
For sources of this kind, the x- and y components of the
electric vector are uncorrelated. In this case, some of the
preceding expressions become simpler. In particular, we
readily find on substituting from Eq. (1) into Eq. (38) while
using Eq. (16), that the spectral degree of polarization in
the source plane is now given by the formula
\[
P^{(0)}(\rho, \omega) = \frac{|A_1^2 - A_2^2|}{A_1^2 + A_2^2}.
\]
It is seen from Eq. (40) that, because of the simplifying
assumption (16), the spectral degree of polarization is con-
stant across the entire source plane. Also, the spectral de-
gree of polarization of the beam in a plane $z > 0$ is now
given by the simple formula
\[
P(\rho, z; \omega) = \frac{|S_z(\rho, z; \omega) - S_y(\rho, z; \omega)|}{S_z(\rho, z; \omega) + S_y(\rho, z; \omega)}.
\]
The formulas (30)–(33) now become
\[
A = \min \{W_{xx}, W_{yy} \},
\]
\[
B = \begin{cases} W_{xx} - W_{yy} & \text{if } W_{xx} > W_{yy}, \\ 0 & \text{otherwise}, \end{cases}
\]
\[
C = \begin{cases} W_{yy} - W_{xx} & \text{if } W_{yy} > W_{xx}, \\ 0 & \text{otherwise}, \end{cases}
\]
\[
D = 0.
\]
An example of the behavior of beam generated by an elec-
magnetic Gaussian Schell-model source, whose electric
cross-spectral density matrix has a diagonal form, is given
in Fig. 1a. We note that the on-axis value of the spectral
degree of polarization $P(0, z; \omega)$ decreases first to zero and
then increases gradually to its asymptotic value (dashed
line). Panel (b) shows the axial behavior of the total spec-
tral density $S(0, z; \omega)$, the spectral density $S^{(u)}(0, z; \omega)$
of the unpolarized part, and the spectral density $S^{(p)}(0, z; \omega)$
of the polarized part.

Fig. 2 depicts the total spectral density $S(\rho, z; \omega)$, the spectral density $S^{(u)}(\rho, z; \omega)$ of the unpolarized part, and the spectral density $S^{(p)}(\rho, z; \omega)$ of the polarized part.

The behavior of the spectral degree of polarization of the
same beam is shown in Fig. 3a, where the vertical scale
is in centimeters, and the horizontal scale is in meters. The
spectral degree of polarization $P^{(0)}(\rho, z; \omega)$ in the source
plane has the constant value 0.18. In the far zone $P(\rho, z; \omega)$
first decreases to zero with increasing ρ, and then increases
to unity. This behavior is quite different from that of the
normalized spectral density $S(\rho, z; \omega)/S(0, z; \omega)$ which, as is
seen from Fig. 3b, decreases monotonically with increasing
distance from the beam-axis. A comparison of Fig. 3a and
b also shows that the contour representing the case
$P(\rho, z; \omega) = 0$ lies closer to the propagation direction than
the contour $S(\rho, z; \omega)/S(0, z; \omega) = 0.4$. In the far zone, the
latter contour makes an angle of 0.04 degrees with the beam-axis. This indicates that the spectral degree of polarization has zero values occurring at points well within the paraxial regime.

In Fig. 4, the spectral density $S^0(q, z; x)$ of the unpolarized part is shown in panel (a), and the spectral density $S^P(q, z; x)$ of the polarized part is shown in panel (b).

It is emphasized that the decomposition of the cross-spectral density matrix into a polarized and an unpolarized part is a local decomposition, i.e. it pertains to the beam behavior at a single point in space. Our results do, therefore, not imply that the two parts represent beams (i.e. satisfy the paraxial time-independent wave equation), contrary to the impression given in the literature.
4. Sources with a non-diagonal cross-spectral density matrix

Let us now consider a broader class of sources, namely Gaussian Schell-model sources whose electric cross-spectral density matrix is of the general form given by Eq. (1), i.e. with non-vanishing off-diagonal elements. This implies that the two components of the electric vector are correlated. An example of the beam behavior in a cross-section of such a beam is shown in Fig. 5. In contrast to the case presented in Fig. 2, the intensity $S^{(p)}(\rho, z; \omega)$ of the polarized part of the field does not reach zero value before increasing again, i.e. the degree of polarization (dotted curve) does now not become zero.

In Fig. 6, contours of the spectral degree of polarization $P(\rho, z; \omega)$ of the same beam as in Fig. 5 are shown, together with contours of the normalized spectral density $S(\rho, z; \omega)/S(0, z; \omega)$ of the polarized part of the beam.

In Fig. 7, the spectral density $S^{(o)}(\rho, z; \omega)$ of the unpolarized part is shown in panel (a), and the spectral density $S^{(p)}(\rho, z; \omega)$ of the polarized part is shown in panel (b). Just as in the previous case, illustrated in Fig. 4, $S^{(o)}(\rho, z; \omega)$ and $S^{(p)}(\rho, z; \omega)$ are seen to have a more complicated structure than the normalized total spectral density $S(\rho, z; \omega)/S(0, z; \omega)$.

Acknowledgements

This research was supported by the US Air Force Office of Scientific Research under Grants F49260-03-1-0138 and FA 9451-04-C-0296, and by the Air Force Research Laboratory (AFRC) under contract FA 9451-04-C-0296. T.D.V. acknowledges support from the Dutch Technology Foundation (STW).

References
