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Abstract

The behavior of the degree of polarization of a Gaussian Schell-model beam propagating in free space is investigated. Contour dia-
grams for the degree of polarization, and for the spectral density (‘intensity’) of the polarized and the unpolarized portions of the beam
are presented.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

Until relatively recently the degree of polarization of a
stochastic electromagnetic beam (which in general is par-
tially coherent and partially polarized) was regarded as
one of its intrinsic properties. In 1994, it was shown by a
simple example that the degree of polarization can in fact
change, even on propagation in free space [1]. Since then
many different examples of this kind of behavior have been
found, (see for example [2–6]) and clarified from general
considerations [7, Ch. 9].

In this paper, we present a detailed analysis of the
behavior of the degree of polarization of a wide class of
beams, the so-called electromagnetic Gaussian Schell-
model beams, on propagation in free space. Specifically,
we obtain contour diagrams for:

(1) the degree of polarization of a typical beam of this
class;

(2) the total intensity of the beam;
(3) the intensity of the polarized part of the beam; and
(4) the intensity of the unpolarized part of the beam.
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Our analysis indicates the richness of polarization fea-
tures of stochastic electromagnetic beams.

2. Electromagnetic Gaussian Schell-model beams

Consider a planar, secondary source, located in the plane
z = 0, that generates a stochastic electromagnetic beam
which propagates into the half-space z > 0, in a direction
close to the positive z-axis. The source is assumed to be sta-
tistically stationary, at least in the wide sense. The electric

cross-spectral density matrix, which may be used to represent
both the state of coherence and the state of polarization of
the beam in the source plane is defined as [8–10]

Wð0Þðq1;q2; xÞ ¼
W ð0Þ

xx ðq1; q2; xÞ W ð0Þ
xy ðq1; q2; xÞ

W ð0Þ
yx ðq1; q2; xÞ W ð0Þ

yy ðq1; q2; xÞ

 !
;

ð1Þ
where

W ð0Þ
ij ðq1;q2; xÞ ¼ E�i ðq1;xÞEjðq2;xÞ

� �
; ði ¼ x; y; j ¼ x; yÞ:

ð2Þ
Here Ei (q,x) is a Cartesian component, at frequency x, of
the (complex) electric vector in two mutually orthogonal x-
and y directions, perpendicular to the direction of propaga-
tion of the beam (the z-direction), at a point in the source
plane specified by the two-dimensional transverse position
vector q, of a typical realization of the statistical ensemble
representing the field. The asterisk denotes the complex
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conjugate, and the angular brackets the ensemble average
in the sense of coherence theory in the space-frequency do-
main [11, Section 4.3]. For an electromagnetic Gaussian
Schell-model source, the elements of the cross-spectral den-
sity matrix are of the form

W ð0Þ
ij ðq1; q2; xÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð0Þi ðq1;xÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð0Þj ðq2;xÞ

q
lð0Þij

� ðq2 � q1; xÞ: ð3Þ

Here Sð0Þi ðq;xÞ represents the spectral density of the com-
ponent Ei of the electric vector at frequency x in the source
plane, and lð0Þij ðq2 � q1; xÞ is the coefficient characterizing
the correlation between the i- and the j components of
the electric field. Both these quantities are Gaussian func-
tions, i.e.

Sð0Þi ðq;xÞ ¼ A2
i expð�q2=2r2

i Þ; ð4Þ
lð0Þij ðq2 � q1; xÞ ¼ Bij exp½�ðq2 � q1Þ

2
=2d2

ij�: ð5Þ

The parameters Ai, Bij, ri and dij are independent of position,
but may depend on frequency. They have to satisfy certain
constraints due to the beam-like nature of the field, viz. [12],

1

4r2
i
þ 1

d2
ii

� 2p2

k2
ði ¼ x; yÞ; ð6Þ

where k = 2pc/x is the wavelength, c being the speed of
light in vacuum. Also, because the cross-spectral density
matrix is non-negative definite and Hermitian, it follows
that (see [2], and also [13])

Bij ¼ 1 if i ¼ j; ð7Þ
jBijj 6 1 if i 6¼ j; ð8Þ
Bij ¼ B�ji; ð9Þ
dij ¼ dji; ð10Þ

maxfdxx; dyyg 6 dxy 6 min
dxxffiffiffiffiffiffiffiffiffi
jBxy j

p ;
dyyffiffiffiffiffiffiffiffiffi
jBxy j

p
( )

: ð11Þ

From Eqs. (3)–(5) it follows that

W ð0Þ
xx ðq1; q2; xÞ ¼ A2

x exp½�ðq2
1 þ q2

2Þ=4r2
x �

� exp½�ðq2 � q1Þ
2
=2d2

xx�; ð12Þ
W ð0Þ

xy ðq1; q2; xÞ ¼ AxAyBxy exp½�ðq2
1=4r2

x þ q2
2=4r2

yÞ�
� exp½�ðq2 � q1Þ

2
=2d2

xy �; ð13Þ
W ð0Þ

yx ðq1; q2; xÞ ¼ AxAyByx exp½�ðq2
1=4r2

y þ q2
2=4r2

xÞ�
� exp½�ðq2 � q1Þ

2
=2d2

xy �; ð14Þ
W ð0Þ

yy ðq1; q2; xÞ ¼ A2
y exp½�ðq2

1 þ q2
2Þ=4r2

y �
� exp½�ðq2 � q1Þ

2
=2d2

yy �: ð15Þ

We will assume that the variances of the two intensity dis-
tributions are equal, i.e.

rx ¼ ry ¼ r: ð16Þ
The electric cross-spectral density matrix of the beam in any
transverse plane z > 0 is given by the formula [9, Eq. (7)]
Wðq1; q2; z; xÞ ¼
Z Z

ðz¼0Þ
Wð0Þðq01; q02; xÞ

� Kðq1 � q01; q2 � q02; z; xÞd
2q01d2q02; ð17Þ

where

Kðq1 � q01; q2 � q02; z; xÞ ¼ G�ðq1 � q01; z; xÞ
� Gðq2 � q02; z; xÞ; ð18Þ

with G denoting the Green’s function for paraxial propaga-
tion from the point Q (q 0,0) in the source plane z = 0 to the
field point P (q,z) [11, Section 5.6.1], viz.,

Gðq� q0; z; xÞ ¼ � ik
2pz

expðikzÞ exp½ik q� q0j j2=2z�: ð19Þ

On substituting from Eq. (19) into Eq. (17) we obtain for
the matrix elements evaluated at ‘coincident points’
q1 = q2 � q the expressions

W ijðq; q; z; xÞ ¼
krcij

z

� �2

AiAjBij expð�k2q2c2
ij=2z2Þ; ð20Þ

where

1

c2
ij
¼ 1

d2
ij

þ 1

4r2
þ k2r2

z2
; ði ¼ x; yÞ: ð21Þ

This result can be expressed more concisely as

W ijðq; q; z; xÞ ¼
AiAjBij

D2
ijðz;xÞ

exp½�q2=2r2D2
ijðz;xÞ�; ð22Þ

where

D2
ijðz;xÞ ¼ 1þ z2

k2r2

1

4r2
þ 1

d2
ij

 !
; ði ¼ x; yÞ: ð23Þ

The spectral density (the ‘intensity at frequency x’) of the
beam at a point (q,z) is, apart from a proportionality factor
which depends on the choice of units, given by the trace of
the cross-spectral density matrix at that point, i.e.

Sðq; z; xÞ ¼ trWðq; q; z; xÞ; ð24Þ
¼ W xxðq; q; z; xÞ þ W yyðq; q; z; xÞ; ð25Þ
¼ Sxðq; z; xÞ þ Syðq; z; xÞ: ð26Þ

At each point the cross-spectral density matrix can be un-
iquely decomposed into a sum of two matrices, one of
which, W(p) say, represents a fully polarized field, whereas
the other, W(u) say, represents a completely unpolarized
field [15,16], i.e.

Wðq; q; z; xÞ ¼WðpÞðq; z; xÞ þWðuÞðq; z; xÞ; ð27Þ
with

WðpÞðq; z; xÞ ¼
B D

D� C

� �
; ð28Þ

and

WðuÞðq; z; xÞ ¼
A 0

0 A

� �
; ð29Þ
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with A, B, C P 0, and D in general a complex number. The
dependence of the matrix elements A, B, C and D on posi-
tion and frequency is not displayed. These quantities can be
expressed in terms of the cross-spectral density matrix
W (q,q,z;x) as

A ¼ 1

2
W xx þ W yy � ðW xx � W yyÞ2 þ 4 W xy

�� ��2h i1=2
� 	

; ð30Þ

B ¼ 1

2
W xx � W yy þ ðW xx � W yyÞ2 þ 4jW xy j2

h i1=2
� 	

; ð31Þ

C ¼ 1

2
W yy � W xx þ ðW xx � W yyÞ2 þ 4 W xy

�� ��2h i1=2
� 	

; ð32Þ

D ¼ W xy : ð33Þ

The decomposition (27) makes it possible to express the
spectral density at frequency x at each point as the sum
of two contributions, namely that of a polarized portion
of the beam and that of an unpolarized portion, i.e.

Sðq; z; xÞ ¼ SðpÞðq; z; xÞ þ SðuÞðq; z; xÞ; ð34Þ
with

SðpÞðq; z; xÞ ¼ trWðpÞðq; z; xÞ ¼ Bþ C; ð35Þ
SðuÞðq; z; xÞ ¼ trWðuÞðq; z; xÞ ¼ 2A: ð36Þ

The spectral degree of polarization of the beam at a point in
the half-space z P 0, which is defined as the ratio of the
intensity of the polarized part of the beam and the total
beam intensity at that point, is given by the expression
(see [11, Section 6.3.3] and Ref. [14])

P ðq; z; xÞ ¼ SðpÞðq; z; xÞ
Sðq; z; xÞ ; ð37Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 det Wðq; q; z; xÞ
½trWðq; q; z; xÞ�2

s
; ð38Þ

where det denotes the determinant and tr the trace. It can
be readily shown that 0 6 P (q,z;x) 6 1. The upper bound
represents complete polarization, the lower bound repre-
sents a complete absence of polarization. For all intermedi-
ate values 0 < P (q,z; x) < 1 the field is partially polarized.
3. Sources with a diagonal cross-spectral density matrix

The behavior of the beam on propagation can be studied
by numerical evaluation of Eqs. (22), (24), (35), (36) and
(38). We first consider beams generated by sources whose
cross-spectral density matrix has a diagonal form, i.e. for
which

Wð0Þðq1; q2; xÞ ¼
W ð0Þ

xx ðq1; q2; xÞ 0

0 W ð0Þ
yy ðq1; q2; xÞ

 !
:

ð39Þ
For sources of this kind, the x- and y components of the
electric vector are uncorrelated. In this case, some of the
preceeding expressions become simpler. In particular, we
readily find on substituting from Eq. (1) into Eq. (38) while
using Eq. (16), that the spectral degree of polarization in
the source plane is now given by the formula

P ð0Þðq;xÞ ¼
jA2

x � A2
y j

A2
x þ A2

y

: ð40Þ

It is seen from Eq. (40) that, because of the simplifying
assumption (16), the spectral degree of polarization is con-
stant across the entire source plane. Also, the spectral de-
gree of polarization of the beam in a plane z > 0 is now
given by the simple formula

P ðq; z; xÞ ¼ jSxðq; z; xÞ � Syðq; z; xÞj
Sxðq; z; xÞ þ Syðq; z; xÞ

: ð41Þ

The formulas (30)–(33) now become

A ¼ minfW xx;W yyg; ð42Þ

B ¼
W xx � W yy if W xx > W yy ;

0 otherwise;

�
ð43Þ

C ¼
W yy � W xx if W yy > W xx;

0 otherwise;

�
ð44Þ

D ¼ 0: ð45Þ

An example of the behavior of beam generated by an elec-
tromagnetic Gaussian Schell-model source, whose electric
cross-spectral density matrix has a diagonal form, is given
in Fig. 1a. We note that the on-axis value of the spectral
degree of polarization P (0,z;x) decreases first to zero and
then increases gradually to its asymptotic value (dashed
line). Panel (b) shows the axial behavior of the total spec-
tral density S (0,z;x), the spectral density S(u) (0,z;x) of
the unpolarized part, and the spectral density S(p) (0,z;x)
of the polarized part.

Fig. 2 depicts the total spectral density S (q,z;x), the
spectral density S(u) (q,z;x) of the unpolarized part, and
the spectral density S(p) (q,z;x) of the polarized part, in a
cross-section of the beam. It is seen that whereas
S (q,z;x) decreases monotonically with increasing distance
from the beam-axis, the spectral density of the polarized
part first decreases to zero and then rises again, eventually
surpassing the spectral density of the unpolarized part.
Also shown in the figure is the degree of polarization
P (q,z; x) (dotted curve).

The behavior of the spectral degree of polarization of
the same beam is shown in Fig. 3a, where the vertical scale
is in centimeters, and the horizontal scale is in meters. The
spectral degree of polarization P(0) (q,z = 0;x) in the source
plane has the constant value 0.18. In the far zone P (q,z;x)
first decreases to zero with increasing q, and then increases
to unity. This behavior is quite different from that of the
normalized spectral density S (q,z;x)/S (0,z;x) which, as is
seen from Fig. 3b, decreases monotonically with increasing
distance from the beam-axis. A comparison of Fig. 3a and
b also shows that the contour representing the case
P (q,z;x) = 0 lies closer to the propagation direction than
the contour S (q,z; x)/S (0,z;x) = 0.4. In the far zone, the
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Fig. 1. (a) The on-axis spectral degree of polarization P (q = 0,z;x) of a
stochastic electromagnetic Gaussian Schell-model beam as a function of
the propagation distance z (solid curve). The asymptotic value (0.32) is
indicated by the horizontal dashed line. The beam is generated by a source
whose cross-spectral density matrix is of the form (39). In this example
Ax = 1.2, Ay = 1, r = 1 cm, dxx = 0.15 mm, dyy = 0.25 mm,
k = 0.6328 lm. For these parameter values the spectral degree of
polarization across the source plane P(0) (q,x) = 0.18. Panel (b) The on-
axis total spectral density S (0,z;x) of the beam, the spectral density of its
unpolarized portion, S(u) (0,z;x) (dashed curve), and its polarized portion,
S(p) (0,z;x), with all three curves divided by S (0,0;x).
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Fig. 2. The total spectral density S (q,z;x) of a beam, the spectral density
S(u) (q,z;x) of its unpolarized portion (dashed curve), the spectral density
S(p) (q,z;x) of its polarized portion, and the degree of polarization
P (q,z;x) (dotted curve), in the transverse plane z = 100 m. All parameters
are the same as in Fig. 1, with all three spectral density curves divided by
S (0,z;x).

Fig. 3. (a) Contours of the spectral degree of polarization P (q,z;x) of a
stochastic electromagnetic Gaussian Schell-model beam. The successive
contour levels are chosen with increments of 0.1, with only the levels that
are multiples of 0.2 being labeled. The parameters are the same as in
Fig. 1. Panel (b) Contours of the normalized spectral density S (q,z; x)/
S (0,z;x) of the beam. All contour levels are chosen with increments of 0.1,
with only the levels that are multiples of 0.2 being labeled.

Fig. 4. (a) Contours of the normalized spectral density S(u) (q,z;x)/
S (0,z;x) of the unpolarized part of the beam. All contour levels are chosen
with increments of 0.1, with only the levels that are multiples of 0.2 being
labeled. Panel (b) Contours of the normalized spectral density S(p) (q,z; x)/
S (0,z;x) of the polarized part of the beam.
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latter contour makes an angle of 0.04 degrees with the
beam-axis. This indicates that the spectral degree of polar-
ization has zero values occuring at points well within the
paraxial regime.
In Fig. 4, the spectral density S(u) (q,z;x) of the unpolar-
ized part is shown in panel (a), and the spectral density
S(p) (q,z;x) of the polarized part is shown in panel (b).

It is emphasized that the decomposition of the cross-
spectral density matrix into a polarized and an unpolarized
part is a local decomposition, i.e. it pertains to the beam
behavior at a single point in space. Our results do, there-
fore, not imply that the two parts represent beams (i.e. sat-
isfy the paraxial time-independent wave equation),
contrary to the impression given in the literature.
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4. Sources with a non-diagonal cross-spectral density matrix

Let us now consider a broader class of sources, namely
Gaussian Schell-model sources whose electric cross-spec-
tral density matrix is of the general form given by Eq.
(1), i.e. with non-vanishing off-diagonal elements. This
implies that the two components of the electric vector are
correlated. An example of the beam behavior in a cross-
section of such a beam is shown in Fig. 5. In contrast to
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Fig. 5. The total spectral density S (q,z;x) of a beam, the spectral density
S(u) (q,z;x) of its unpolarized portion (dashed curve), the spectral density
S(p) (q,z;x) of its polarized portion, and the degree of polarization
P (q,z;x) (dotted curve), in the transverse plane z = 125 m. The beam is
generated by a source whose cross-spectral density matrix is of the form
(1). In this example Ax = 1.0, Ay = 1.5, Bxy = 0.09, r = 1 cm,
dxx = 0.15 mm, dyy = 0.25 mm, dxy = 0.40 mm, k = 0.6328 lm, with all
three spectral density curves divided by S (0,z;x).

Fig. 6. (a) Contours of the spectral degree of polarization P (q,z;x) of a
stochastic electromagnetic Gaussian Schell-model beam. The successive
contour levels are chosen with increments of 0.1, with only the levels that
are multiples of 0.2 being labeled. The parameters are the same as in
Fig. 5. Panel (b) Contours of the normalized spectral density S (q,z; x)/
S (0,z;x) of the beam. All contour levels are chosen with increments of 0.1,
with only the levels that are multiples of 0.2 being labeled.

Fig. 7. (a) Contours of the normalized spectral density S(u) (q,z;x)/
S (0,z;x) of the unpolarized part of the beam. All contour levels are chosen
with increments of 0.1, with only the levels that are multiples of 0.2 being
labeled. The parameters are the same as in Fig. 5. Panel (b) Contours of
the normalized spectral density S(p) (q,z;x)/S (0,z;x) of the polarized part
of the beam.
the case presented in Fig. 2, the intensity S(p) (q,z;x) of
the polarized part of the field does not reach zero value
before increasing again, i.e. the degree of polarization (dot-
ted curve) does now not become zero.

In Fig. 6, contours of the spectral degree of polarization
P (q,z;x) of the same beam as in Fig. 5 are shown, together
with contours of the normalized spectral density S (q,z;x)/
S (0,z;x).

In Fig. 7, the spectral density S(u) (q,z;x) of the unpolar-
ized part is shown in panel (a), and the spectral density
S(p) (q,z;x) of the polarized part is shown in panel (b). Just
as in the previous case, illustrated in Fig. 4, S(u) (q,z;x), and
S(p) (q,z;x) are seen to have a more complicated structure
than the normalized total spectral density S (q,z;x)/
S (0,z;x).
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