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We describe how Fourier signal processing techniques can be
generalized to partially coherent fields. Using standard coher-
ence theory, we first show that focusing of a partially coherent
beam by a lensmodifies its coherence properties.We then con-
sider a 4f imaging system composed of two lenses and discuss
how spatial filtering in the Fourier plane allows one to tune
the coherence properties of the beam. This, in turn, provides
control over the beam’s directionality, spectrum, and degree of
polarization. © 2017 Optical Society of America

OCIS codes: (070.0070) Fourier optics and signal processing;

(070.6110) Spatial filtering; (030.1640) Coherence.

https://doi.org/10.1364/OL.42.004600

Fourier processing of signals and images with coherent light is a
well-known technique discussed in several textbooks [1–3]. In
essence, it involves the manipulation or filtering of the spatial
Fourier components of a wave field. The field that results from
synthesizing the altered spectrum leads, for example, to images
that have less blur [3], or images in which phase differences are
rendered visible [4]. A commonly used setup to achieve this is
the 4f system, where the filtering takes place in the Fourier
plane of a lens. The field then passes through a second lens
in whose back focal plane the reconstituted field is imaged.

Here we describe an analogous process for fields that are not
fully coherent, but rather spatially partially coherent. The
correlation function that characterizes such fields in the space-
frequency domain is the so-called cross-spectral density [5]. As
we will show, focusing partially coherent fields produces the
four-dimensional spatial Fourier transform of this function
in the focal plane. Spatial filtering, followed by passage through
a second lens, produces a synthesized field with altered coher-
ence properties. Since the state of coherence of a beam governs
its directionality, spectrum, and state of polarization, this form
of Fourier processing has the potential to be a powerful tool to
tailor the properties of partially coherent fields.

Changes in the cross-spectral density function on propaga-
tion through free space [6] or through a linear system [7] have
been examined before. In addition, the use of ABCD systems
[8] or apertures [9] has been considered. In a study that is more
directly related to the present one, Indebetouw [10] analyzed

the tuning of far-field spectra by applying spatial filtering
techniques to quasi-homogeneous sources. More recently,
the effects of focusing on specific types of cross-spectral density
functions have been discussed [11,12].

In this Letter, we first show that focusing of a partially co-
herent beam by a lens modifies its coherence properties through
changes in the cross-spectral density function. We then con-
sider a 4f imaging system composed of two lenses and discuss
how spatial filtering in the Fourier plane allows one to tune the
coherence properties of the beam by tailoring the cross-spectral
density. More specifically, we derive two general expressions for
the effects of lenses on the statistical properties of wave fields
and discuss their potential applications.

We begin by recalling that the optical field in the focal plane
of a lens is proportional to the spatial Fourier transform of the
field in the entrance plane (Section 5.2, [1]):

U �f ��ρ;ω� � ejkρ2∕2f

jλf

Z
∞

−∞
U �in��ρ 0;ω�P�ρ 0�

× exp�−jkρ · ρ 0∕f �d2ρ 0: (1)

Here U �f ��ρ;ω� denotes the field in the focal plane at
frequency ω at a transverse position ρ � �x; y�; U �in��ρ 0;ω�
is the field in the entrance plane; the wavenumber is
k � 2π∕λ � ω∕c, with c being the speed of light. The lens,
with focal length f , is taken to have its central axis along
the z direction. P�ρ 0� is a pupil function, i.e., P�ρ 0� � 1 for
points within the lens aperture, and 0 elsewhere.

The statistical properties of a partially coherent field are
characterized by its cross-spectral density function [5]:

W �ρ1; ρ2;ω� � hU ��ρ1;ω�U �ρ2;ω�i; (2)

where the angular brackets indicate an average taken over an
ensemble of field realizations. Quite often, it is advantageous
to use a normalized correlation function, the spectral degree
of coherence, which is defined as

μ�ρ1; ρ2;ω� �
W �ρ1; ρ2;ω�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S�ρ1;ω�S�ρ2;ω�

p ; (3)

with the spectral density given by

S�ρ;ω� � W �ρ; ρ;ω�: (4)
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We can now easily calculate the cross-spectral density in the
focal plane of the lens. On substituting from Eq. (1) into
Eq. (2) and interchanging the order of integration and ensem-
ble averaging, we find that

W �f ��ρ1;ρ2;ω� �
ejk�ρ22−ρ21�∕2f

λ2f 2

ZZ
−∞

W �in��ρ 01;ρ 0
2;ω�

× P�ρ 0
1�P�ρ 0

2�
× exp�−jk�ρ2 · ρ 0

2 − ρ1 · ρ
0
1�∕f �d2ρ 0

1d
2ρ 0

2: (5)

Hence, the cross-spectral density of the field in the focal
plane is proportional to the four-dimensional (4D) Fourier
transform ofW �in��ρ 01; ρ 02;ω�, truncated by the two pupil func-
tions that account for the finite aperture of the lens. This gen-
eral result is quite powerful. It can readily be applied to obtain
both the cross-spectral density and the spectral density of
focused, partially coherent fields. We illustrate this with two
examples.

Let us first consider an incident field that is spatially partially
correlated and has a homogeneous spectral density, i.e.,

W �in��ρ 0
1; ρ

0
2;ω� � S�in��ω�μ�in��ρ 01; ρ 0

2�; (6)

with the spectral degree of coherence assumed to be constant
across the support of S�in��ω�. According to Eqs. (4) and (5),
the spectral density S�f ��ρ;ω� in the focal plane is then
given by

S�f ��ρ;ω� � S�in��ω� 1

λ2f 2

Z Z
−∞

μ�in��ρ 0
1; ρ

0
2�P�ρ 0

1�P�ρ 0
2�

× exp�−jkρ · �ρ 0
2 − ρ

0
1�∕f �d2ρ 0

1d
2ρ 0

2: (7)

Equation (7) states that the spectral density in the focal
plane is not equal to that of the incident field, but rather is
modified by two factors. The first factor, 1∕λ2f 2, may be said
to be diffraction-induced. The second factor, the integral, de-
scribes the effect of partial coherence. It is, in fact, the 4D
Fourier transform of the (truncated) spectral degree of coher-
ence, evaluated at spatial frequencies −ρ∕λf and ρ∕λf .

As a second example, we assume that the incident field has
an inhomogeneous spectral density and is δ-correlated, i.e.,

W �in��ρ 01; ρ 0
2;ω� � S�ρ 0

1;ω�δ2�kρ 0
2 − kρ

0
1�: (8)

Using this form in Eq. (5), we obtain

W �f ��ρ1; ρ2;ω� �
ejk�ρ22−ρ21�∕2f

4π2f 2

Z
∞

−∞
S�ρ 0;ω�P�ρ 0�

× exp�−jk�ρ2 − ρ1� · ρ 0∕f �d2ρ 0: (9)

Equation (9) states that the cross-spectral density in the focal
plane is proportional to the two-dimensional Fourier transform
of the spectral density distribution in the entrance pupil. This is
the analogue for focused fields of the far-zone form of the van
Cittert–Zernike theorem (Section 4.4.4, [5]).

We illustrate the use of Eq. (9) by considering an incident
beam with a spectral density of the form

S�ρ 0;ω� � s�ω� exp�−�ρ 02∕w2
0��; (10)

where s�ω� is the uniform spectral density of a Gaussian beam
with spot size w0. For simplicity, we assume that the beam is
much narrower than the lens radius a, and we may therefore
set P�ρ 0� � 1. The integration in Eq. (9) can be performed
analytically, with the result

W �f ��ρ1;ρ2;ω�� ejk�ρ22−ρ21�∕2f
s�ω�w2

0

4πf 2 exp

�
−
jρ2−ρ1j2

σ2c

�
;

(11)

where σc � λf ∕�πw0� is the coherence radius of the Gaussian
beam in the focal plane of the lens. It is evident that the initially
incoherent Gaussian beam becomes partially coherent and that
its degree of coherence can be controlled through the focal
length f of the lens.

Another application of Eq. (5) is in calculating the correla-
tion function in the entrance plane of a lens from knowledge of
the cross-spectral density in the focal plane. This is relevant for
experiments in which the field is focused onto two point
detectors from which then its correlation is determined from
visibility measurements (Section 4.3.2, [5]).

The Fourier relation expressed by Eq. (1) is modified when
the incident field is taken to be in the front focal plane of the
lens. In that case (Section 5.2, [1]),

U �f ��ρ;ω� � 1

jλf

Z
∞

−∞
U �in��ρ 0;ω�P�ρ 0� exp�−jkρ · ρ 0∕f �d2ρ 0:

(12)

In exactly the same way as before, we then find that the cross-
spectral density in the back focal plane of the lens is given by

W �f ��ρ1;ρ2;ω��
1

λ2f 2

ZZ
−∞

W �in��ρ 0
1;ρ

0
2;ω�P�ρ 0

1�P�ρ 0
2�

×exp�−jk�ρ2 ·ρ 02−ρ1 ·ρ 0
1�∕f �d2ρ 0

1d
2ρ 0

2: (13)

Equation (13) expresses a 4D Fourier-transform relationship
between the cross-spectral densities of the field at the front
and back focal planes of a lens.

Let us now consider a paraxial 4f setup consisting of two
lenses as sketched in Fig. 1. An incident beam that propagates
in the positive z direction has, in the front focal plane of lens
L1, a cross-spectral density W �in��ρ01; ρ02;ω�. The Fourier
transform of this function is spatially filtered in the back focal
plane of L1. This plane coincides with the front focal plane of
lens L2. The cross-spectral density W �f 2��ρ21; ρ22;ω� in its
back focal plane is controlled by the filtering process.

As an example, let us choose an incident field with a uniform
spectral density, which is δ-correlated, i.e.,

W �in��ρ01; ρ02;ω� � S�ω�δ2�kρ01 − kρ02�: (14)

The first lens is taken to have a focal length f 1 and a radius
a1. According to Eq. (13), the cross-spectral density in the
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Fig. 1. 4f setup for Fourier processing consisting of two lenses of
focal lengths f 1 and f 2. A narrow slit is used for spatial filtering
in the back focal plane of the first lens. The object and image planes
are also shown.
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back focal plane, W �f 1��ρ11; ρ12;ω�, then becomes (see
Section 4.4.4, [5])

W �f 1��ρ11;ρ12;ω��
S�ω�
4π2f 2

1

Z
∞

−∞
P�ρ01�

×exp�−jk�ρ12 −ρ11� ·ρ01∕f 1�d2ρ01 (15)

� 2πa1S�ω�
4π2kf 1jρ12 − ρ11j

J1

�
ka1jρ12 − ρ11j

f 1

�
:

(16)

Here J1 denotes a Bessel function of the first kind of order 1.
Next, the field is spatially filtered by a narrow horizontal

slit of width h and length 2b. The slit is assumed to be narrow
enough to allow us to ignore the variation ofW �f 1��ρ11; ρ12;ω�
along the y1 direction. We choose the first reference point in
the back focal plane of lens L2 to be on the z axis, i.e.,
ρ21 � �0; 0�. Applying Eq. (13) while using Eq. (16) gives us

W �f 2��0; 0; x2;ω� �
a1S�ω�h2
4π2f 1f

2
2λ

Z
b

−b

Z
b

−b

1

jx12 − x11j

× J1

�
ka1jx12 − x11j

f 1

�

× cos�kx2x12∕f 2�dx11dx12; (17)

where f 2 denotes the focal length of lens L2. Clearly, the
cross-spectral density function is real-valued in this example.
We note that, there being no y2-dependence, the argument
ofW �f 2� is displayed as x2 rather than ρ22. Similarly, we obtain
for S�f 2��x2;ω�, the spectral density in the second back focal
plane, the expression

S�f 2��x2;ω� �
a1S�ω�h2
4π2f 1f

2
2λ

Z
b

−b

Z
b

−b

1

jx12 − x11j

× J1

�
ka1jx12 − x11j

f 1

�

× cos�kx2�x12 − x11�∕f 2�dx11dx12: (18)

A numerical evaluation of Eqs. (17) and (18) yields the spec-
tral degree of coherence, μ�f 2��0; 0; x2;ω�, as defined by

Eq. (3). An example is shown in Fig. 2, in which the spectral
degree of coherence is plotted for three selected values of the slit
length 2b. A measure of the transverse coherence length is the
distance at which the spectral degree of coherence drops to 0.5.
This distance is seen to be 65, 98, and 192 μm, respectively,
demonstrating that the transverse coherence length of the field
can be tuned by spatial filtering. Furthermore, at certain
positions, μ�f 2��0; 0; x2;ω� � 0. This indicates the presence
of so-called correlation singularities, i.e., pairs of points at
which the fields are completely uncorrelated [13,14].

In this Letter, we have discussed how the traditional Fourier
image processing techniques can be generalized to partially
coherent fields. Using standard coherence theory, we derived
a general expression that provides the cross-spectral density
in the focal plane of a lens in terms of a 4D Fourier transform
of the cross-spectral density at the entrance plane. We used this
general result to show that focusing of a partially coherent beam
by a lens modifies both its spectral density and its coherence
properties.

We then considered a 4f imaging system composed of two
lenses and discussed how spatial filtering of the cross-spectral
density in the Fourier plane allows one to tune the coherence
properties of the beam. As an example, we used a narrow slit
in the Fourier plane for spatial filtering and showed that an in-
coherent optical beam can be turned into a partially coherent
beam whose degree of spatial coherence is controllable by chang-
ing the slit length. This, in turn, provides control over the beam’s
directionality and its optical spectrum. The theory presented in
this Letter made use of scalar fields, justified by the assumption
of paraxiality. However, our approach can be easily extended
to vector fields using the concept of a coherency matrix.
This should allow control over a beam’s state of polarization.
Note: After submission of this article we learned that some related
results have been reported in [15].
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Fig. 2. Spectral degree of coherence μ�f 2��0; 0; x2;ω� in the back
focal plane of lens L2 for three different values of the slit width.
In these examples, the length 2b � 1 mm (blue curve), 2 mm
(orange curve), and 3 mm (green curve). The other parameters are
λ � 632.8 nm, a1 � 1 cm, and f 1 � f 2 � 50 cm.
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