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When light that is spatially partially coherent, such as sunlight, is incident on a sphere, the scattered field exhibits
surprising coherence properties. The observed oscillatory behavior with deep minima means that the field in
certain pairs of directions is highly correlated, whereas in others, it is essentially uncorrelated, and can even have
correlation singularities. Because any subsequent scattering event is strongly affected by the state of coherence,
these results are particularly important for multiple scattering in discrete disordered media. © 2019 Optical Society

of America

https://doi.org/10.1364/JOSAA.36.002005

1. INTRODUCTION

The scattering of a monochromatic plane wave by a homo-
geneous sphere, as illustrated in Fig. 1(a), is a canonical problem
in physics [1–3]. Its many applications [4] in, e.g., astronomy,
climate studies, medicine, and technology, have warranted
the generalization of the classical theory to objects that are
non-spherical [5] or non-deterministic [6,7].

Under practical circumstances the incident light is not always
spatially fully coherent. This is the case, for example, for sunlight
and for light that is generated by a multi-mode laser. The same
holds for light that has been scattered more than once in random
or disordered media. A relatively new line of research deals with
scattering of such partially coherent fields. For example, the
influence of spatial coherence on the angular distribution of
the scattered intensity has been examined in [8–14], and strong
effects are predicted for the case when the transverse coherence
length is comparable to the sphere radius.

If the incident field is partially coherent, then so is the scat-
tered field [see Fig. 1(b)]. However, the topic of the present
study, the coherence properties of fields scattered by a sphere,
has until now received little attention. A notable exception is a
numerical study by Marasinghe et al. [15], who demonstrated
the existence of so-called coherence vortices, singularities of the
electromagnetic spectral degree of coherence, in the vicinity of a
scattering sphere. These vortices occur at pairs of points at which
the field is completely uncorrelated.

In this study, we formulate an analytic model for the coher-
ence properties of partially coherent light scattered by a sphere.

Of specific interest is the correlation of the far-zone field scat-
tered in a pair of directions u1 and u2. In view of the large
coherence effects on scattering that we just mentioned, this
is particularly relevant for cooperative single scattering from
two-dimensional structures. Examples of this are scattering in
the cornea [16] and by droplets on a glass pane [17]. It is also
relevant for multiple scattering in three-dimensional discrete
media for which phase is preserved and coherence effects are
important, including enhanced backscattering from disordered
media [18–21], as well as transport in media with short- or
long-range order [22–24]. Such media include discrete lattice
photonic structures [25] and biomedical tissue [26]. Our results
may have implications for atmospheric studies [27] because
the transverse coherence length of sunlight (approximately
50 µm [28,29]) is similar in size to many atmospheric aerosols.
Furthermore, spatial coherence plays a crucial role in light
management in solar cells [30].

In this paper, we use scalar Mie theory to investigate the
scattering of Gaussian-correlated light. We find that the spatial
coherence of the scattered field displays strong oscillations:
in certain pairs of directions, it can be quite large, whereas in
other directions, it can be very low or even singular. Until now,
correlation singularities [31–35] have been studied in the spatial
domain (r1, r2). Here, we report the occurence of correlation
singularities of the far-zone field in the angular domain (θ1, θ2).
While we have not considered the electromagnetic case here,
we expect our results to be valid when the incident field is either
unpolarized or linearly polarized.
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Fig. 1. Mie scattering: (a) a monochromatic plane wave travels in
a direction u0 and is incident on a homogeneous sphere. A part of the
field is scattered at an angle θ , in a direction u. (b) If the incident field is
spatially partially coherent, the field scattered in two directions u1 and
u2, at angles θ1 and θ2 with the z axis, will be partially correlated.

2. MIE SCATTERING WITH PARTIALLY
COHERENT FIELDS

Let us begin by considering a monochromatic, plane scalar wave
of frequency ω and with unit amplitude, which is propagating
in a direction specified by a unit vector u0 [see Fig. 1(a)]. We
express this wave as

V (i)(r, t)=U (i)(r, ω)e−iωt , (1)

where r denotes a point in space and t a moment in time, and

U (i)(r, ω)= e iku0·r, (2)

where k =ω/c is the wavenumber, c being the speed of light. If
this field is incident on a scatterer, then the time-independent
part U(r, ω) of the total field that results from the scatter-
ing process may be written as the sum of the incident field
U (i)(r, ω) and the scattered field U (s )(r, ω), i.e.,

U(r, ω)=U (i)(r, ω)+U (s )(r, ω). (3)

In the far zone of the medium, the field that is scattered in the
direction u takes the asymptotic form

U (s )(r u, ω)∼ f (u, u0, ω)
e ikr

r
(kr →∞), (4)

where f (u, u0, ω) is the scattering amplitude.
Let us next assume that the incident field is not a plane

wave, but is of a more general form. Its time-independent
part U (i)(r, ω) can then be written as an angular spectrum
(Section 3.2 36), i.e., as a superposition of plane wave modes,
each propagating along a direction specified by a unit vector u′

that points into the halfspace z> 0, viz.,

U (i)(r, ω)=
∫
|u′⊥|2≤1

a(u′
⊥
, ω)e iku′·rd2u ′

⊥
. (5)

Here, u′
⊥
= (u ′x , u ′y ) is the two-dimensional projection of

the vector u′ onto the x y plane, and a(u′
⊥
, ω) denotes an

amplitude. We then have that

U (s )(r u, ω)=
e ikr

r

∫
|u′
⊥
|2≤1

a(u′
⊥
, ω) f (u, u′, ω)d2u ′

⊥
. (6)

When, in addition, the field is partially coherent, we must take
into account its cross-spectral density function at a pair of points
r1 = r1u1 and r2 = r2u2, namely (Section 4.3.2 [36]),

W (i)(r1u1, r2u2, ω)= 〈U (i)∗(r1u1, ω)U (i)(r2u2, ω)〉, (7)

where the angular brackets represent the average over an ensem-
ble of field realizations. On substituting from Eq. (5) into
Eq. (7), we obtain the expression

W (i)(r1u1, r2u2)=

∫
|u′
⊥
|2≤1

∫
|u′′
⊥
|2≤1

A(u′
⊥
, u′′
⊥
)

× e ik(u′′
⊥
·r2−u′

⊥
·r1)d2u ′

⊥
d2u ′′
⊥
, (8)

where

A(u′
⊥
, u′′
⊥
)= 〈a∗(u′

⊥
)a(u′′

⊥
)〉 (9)

is the angular correlation function of the incident field
(Section 5.6.3 [36]) and where, for brevity, we have omited
theω dependence of the various quantities. In a similar fashion,
we find for the cross-spectral density of the scattered field the
formula

W (s )(r1u1, r2u2)= 〈U (s )∗(r1u1)U (s )(r2u2)〉, (10)

=
e ik(r2−r1)

r1r2

∫
|u′
⊥
|2≤1

∫
|u′′
⊥
|2≤1

A(u′
⊥
, u′′
⊥
)

× f ∗(u1, u′) f (u2, u′′)d2u ′
⊥

d2u ′′
⊥

. (11)

The spectral degree of coherence, the normalized version of this
correlation function, is defined as

µ(s )(r1u1, r2u2)≡
W (s )(r1u1, r2u2)

[S(s )(r1u1)S(s )(r2u2)]
1/2 , (12)

where the spectral density is given by the cross-spectral density
function evaluated at two coincident points, i.e.,

S(s )(r u)=W (s )(r u, r u). (13)

According to scalar Mie theory {Eq. (4.66) [37]}, the scatter-
ing amplitude for a dielectric sphere with radius a and refractive
index n is given by the expression

f (u, u0)=
1

k

∞∑
l=0

(2l + 1) exp(iδl ) sin δl Pl (u · u0), (14)

where u · u0 = cos θ , with θ the scattering angle, Pl is the
Legendre polynomial of order l , and the phase shifts δl (ω) are
{Eqs. (4.113b) and (4.153) [37]}

tan δl =
kn jl (ka) j ′l (kna)− k jl (kna) j ′l (ka)
kn j ′l (kna)nl (ka)− k jl (kna)n′l (ka)

. (15)

Here, jl denotes the spherical Bessel function of order l , and nl

the spherical Neumann function of order l .
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We will apply Eqs. (12) and (13) to the important class of
so-called Gaussian-correlated fields with an amplitude A0 that
is assumed to be constant across an area that is larger than the
sphere size (Section 5.6.4 [36]). The cross-spectral density
function of such fields in the plane z= 0, which is taken to pass
through the center O of the sphere (see Fig. 1), equals

W (i)(ρ1, ρ2)= A2
0 exp[−(ρ2 − ρ1)

2/2σ 2
]. (16)

In this formula, ρ = (x , y ) denotes a two-dimensional position
vector of a point in the plane z= 0, and the transverse coher-
ence length σ is independent of position, but may depend on
frequency. The angular correlation function of the incident
field is related to its cross-spectral density by the expression
{Eq. (5.6)–(49) [36]}

A(u′
⊥
, u′′
⊥
)= k4W̃ (i)(−ku′

⊥
, ku′′

⊥
), (17)

with the four-dimensional spatial Fourier transform defined as

W̃ (i)(f1, f2)=
1

(2π)4

∫
∞

−∞

∫
∞

−∞

W (i)(ρ1, ρ2)

· e−i(f1·ρ1+f2·ρ2)d2ρ1d2ρ2. (18)

A calculation of the Fourier transform of Eq. (16) gives us

W̃ (i)(−ku′
⊥
, ku′′

⊥
)=

A2
0σ

2

2π
δ2
[k(u′′

⊥
− u′
⊥
)]

× exp

[
−
σ 2k2(u′

⊥
+ u′′
⊥
)

2

8

]
. (19)

On substituting from Eqs. (17) and (19) into Eq. (11), we find
for the cross-spectral density of the scattered field the formula

W (s )(r1u1, r2u2)=
e ik(r2−r1)

r1r2

A2
0k2σ 2

2π

∫
|u′
⊥
|2≤1

e−k2σ 2u′2
⊥
/2

× f ∗(u1, u′)f(u2, u′)d2u′
⊥
,

(20)

with the scattering amplitude f given by Eq. (14). A numerical
evaluation of this equation yields both the spectral density and
the spectral degree of coherence of the scattered Mie field in the
far zone.

3. RADIANT INTENSITY OF THE SCATTERED
FIELD

The radiant intensity of the scattered field is defined by

I (u)= r 2S(s )(r u), (kr →∞). (21)

A typical example of its angular distribution is shown in Fig. 2,
where the sphere radius a is taken to be 10λ, with λ the free-
space wavelength. As noted in Refs. [9,10], the deep intensity
minima that occur in the spatially coherent case are strongly
reduced when the transverse coherence length is comparable to
the size of the scatter. Here, as in the following examples, we take
the refractive index to be that of water droplets, i.e., n = 1.33.
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Fig. 2. Angular distribution of the radiant intensity of the scattered
field for (a) fully coherent plane wave (blue curve); (b), (c) Gaussian-
correlated field with transverse coherence length σ = 10λ (red) and
2λ (green), respectively. Notice that the vertical axis is logarithmic. In
these examples, the refractive index n = 1.33, and the sphere radius a is
taken to be 10λ.
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Fig. 3. Radiant intensity of the scattered field for (a) fully coherent
plane wave (blue curve); (b), (c) Gaussian-correlated field with trans-
verse coherence length σ = 100λ (red) and 20λ (green), respectively.
The vertical axis is logarithmic, and the horizontal axis is restricted
to the interval 70◦ ≤ θ ≤ 72◦. In these examples, the refractive index
n = 1.33, and the sphere radius a = 100λ.

When the size of the scatterer increases, the angular oscil-
lations of the scattered intensity become more rapid. This is
expected because for larger spheres, the accrued path difference
between waves varies quicker than for small spheres. This effect
is illustrated for a representative angular interval in Fig. 3, where
the particle radius is chosen as a = 100λ. Just as for the smaller
sphere shown in Fig. 2, the minima are strongly reduced as the
coherence lengthσ decreases.

In any scattering process, two directions are of specific inter-
est, namely, the forward (θ= 0◦) and the backward direction
(θ= 180◦). The former is related to the transmittance of a
particulate medium, and the latter to its reflectance. In single
scattering, both directions display a maximum of intensity that,
as seen in Fig. 2, can be orders of magnitude larger than the field
scattered in other directions. These maxima are both drastically
reduced when the incident field becomes spatially partially
coherent. For the forward direction, which is associated with the
Poisson spot (Section 10.3.4 [38]), this is illustrated in Fig. 4.
For small values of the coherence length, the intensity I (θ= 0◦)
scales withσ 2, in agreement with Eq. (20). The radiant intensity
saturates when the coherence length is greater than the sphere
radius a .
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Fig. 4. Radiant intensity of the forward-scattered field, I (θ= 0◦),
as a function of the transverse coherence length σ , expressed in wave-
lengths, for spheres with different radii. Blue curve: sphere radius
a = 10λ; red curve: a = 50λ; orange curve: a = 150λ; purple curve:
a = 500λ. In these examples, the refractive index n = 1.33. Note that
both axes are on a logarithmic scale.
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Fig. 5. Radiant intensity of the back-scattered field, I (θ= 180◦),
as a function of the transverse coherence length σ for spheres with
different radii. Blue curve: sphere radius a = 10λ; red curve: a = 50λ;
orange curve: a = 150λ; purple curve: a = 500λ. In these examples,
the refractive index n = 1.33.

A similar dependence on the coherence length is shown by
the radiant intensity of the backscattered field, I (θ= 180◦).
This can be seen in Fig. 5, where the same sphere sizes as in Fig. 4
are examined. Large spheres are again seen to display a larger
variation in the scattered intensity than smaller spheres. We
next turn our attention to the state of coherence of the far-zone
scattered field.

4. COHERENCE PROPERTIES OF THE
SCATTERED FIELD

A first illustration of the behavior of the spectral degree of coher-
ence, µ(θ1, θ2), is presented in Fig. 6, where the correlation of
the field scattered in the direction θ1 with the forward-scattered
field (θ2= 0◦) is plotted for a representative interval. We note
that the angular coherence displays an oscillatory behavior
similar to the radiant intensity. It is interesting to compare this
correlation with the minimum value of the spectral degree of
coherence of the field that is incident on the sphere, denoted by
µ
(i)
min. According to Eq. (16), this occurs when the separation

between the two positions ρ1 and ρ2 reaches its maximum,
i.e., when (ρ1 − ρ2)

2
= 4a2. For the three curves plotted in

Fig. 6, we thus find that µ(i)min = 0.92, 0.14, and 2× 10−22,
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Fig. 6. Absolute value ofµ(θ1, 0◦): the spectral degree of coherence
between the field scattered in a direction θ1 and the forward scattered
field (θ= 0◦). The transverse coherence length σ = 50λ (blue curve),
10λ (red curve), and 2λ (green curve). For comparison, the spectral
density is also plotted (dashed purple curve). In all examples, n = 1.33
and a = 10λ. Notice that the horizontal axis is limited to the interval
30◦ ≤ θ1 ≤ 70◦.
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Fig. 7. Absolute value of µ(θ1, 0◦): the spectral degree of coher-
ence between the field scattered in a direction θ1 and the forward
scattered field. In this example, the particle radius a = 100λ, and
n = 1.33. Notice that the horizontal axis is limited to the interval
70◦ ≤ θ1 ≤ 72◦.

respectively. For the almost fully coherent case (i.e., the upper,
blue curve), |µ(θ1, 0◦)| is typically close to unity, as expected.
However, for a few angles, |µ(θ1, 0◦)|<µ(i)min. This happens,
for example, near θ1 = 47.3◦, where the modulus of µ is 0.79.
For the middle (red) curve we see that the correlation is strongly
oscillating. In this case, the maxima can be as high as 0.89. For
the lower, green curve, even though µ(i)min is only 2× 10−22, we
see that the scattered field is partially coherent, with |µ(θ1, 0◦)|
oscillating around 0.2. For all three curves, the minima are
approximately located at the same location. Remarkably, these
minima coincide with the angular minima of the scattered field
intensity. This is evident from comparing the dashed purple
curve with the three other ones. These results demonstrate that
the state of coherence of the field can be either increased or
decreased by Mie scattering.

This strong modification of the state of coherence also hap-
pens for larger spheres, as shown in Fig. 7 for the case a = 100λ.
It is seen that the oscillations become both larger and faster. It
is remarkable that even when the transverse coherence length is
much larger than the sphere size (upper, blue curve), the correla-
tion of the forward-scattered field and the field in a direction θ1

can be quite low. Again, this happens when θ1 is near the minima
of the field intensity shown in Fig. 3. Furthermore, just as in
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Fig. 8. Density plot of the modulus of the spectral degree of coher-
ence between pairs of scattering angles θ1 and θ2. The sphere radius is
taken to be a = 5λ, the refractive index n = 1.33, and the coherence
length of the incident field σ = 5λ.

Fig. 9. Density plot of the absolute value of the spectral degree of
coherence in the far field at a pair of directions, with one direction fixed
at θ2 = 10◦ and φ2 = 0◦, and the other direction (θ1, φ1) varied. The
parameters are taken as σ = a = 10λ and n = 1.33.

Fig. 6, the minima of the three curves are approximately at the
same positions. Just as with the radiant intensity, the oscillations
of |µ(θ1, 0◦)| become sharper when the transverse coherence
length increases.

In Fig. 8, the two scattering angles θ1 and θ2 are both varied.
The modulus of the spectral degree of coherence displays a more
or less diagonal pattern. The two dashed white lines each corre-
spond to pairs of nearby directions, with 1θ = θ2 − θ1 = 3.0◦

and 12.1◦, respectively. Along the upper line, the correlation
is relatively low, whereas along the lower line, the correlation is
typically high.

Up till now, we have considered scattering angles in the same
azimuthal plane (φ1 = φ2). The φ dependence of the spectral
degree of coherence is shown in Fig. 9. Notice that the variation
of |µ(θ1, φ1; θ2, φ2)| is considerably faster in the θ1 direction
as compared to that in the φ1 direction. The deep minima (dark
blue areas) contain zeros, as we will show in the next section.

5. COHERENCE SINGULARITIES

Coherence singularities are phase singularities of the corre-
lation function. They occur at pairs of points where the field
is completely uncorrelated [31–35]. Here, we investigate the
occurence of a new class of objects that may be called angular

Fig. 10. Combination of two plots: above a three-dimensional,
color-coded plot of |µ(θ1, φ1; 10◦, 0◦)|, the modulus of the spectral
degree of coherence of the far-zone field in a pair of directions, with
one direction kept fixed at θ2= 10◦ and φ2= 0◦ and with the other
direction (θ1, φ1) being varied. Below, the blue and red curves are con-
tours of Re[µ(θ1, φ1; 10◦, 0◦)] = 0 and Im[µ(θ1, φ1; 10◦, 0◦)] = 0,
respectively. At the intersection of these two curves, the spectral degree
is exactly zero, indicating a coherence singularity. Note that the φ1 axis
is reversed to create a better viewpoint. The parameters are taken as
σ = a = 10λ and n = 1.33.

Fig. 11. Three-dimensional plot of |µ(θ1, θ2)|, the modulus
of the spectral degree of coherence of the field scattered in a pair of
directions θ1 and θ2. The blue and red curves on the bottom plane are
contours of Re[µ(θ1, θ2)] = 0 and Im[µ(θ1, θ2)] = 0, respectively.
The intersections of these curves indicate coherence singularities. The
intersection of the two red curves represents a phase saddle. In this
example, a = 10λ, n = 1.33, and σ = 10λ.

coherence singularities, i.e., pairs of directions (rather than posi-
tions) for which µ(θ1, φ1; θ2, φ2)= 0. It turns out that such
topological objects occur generically in Mie scattering.

In Fig. 10, the modulus of the spectral degree of coherence
µ(θ1, φ1; 10◦, 0◦) and the contours of the zeros of its real and
imaginary parts are shown for the same parameter settings as in
the previous figure. One scattering direction, (θ2, φ2), is kept
fixed, whereas the other is varied in the vicinity of (θ2, φ2). It
is seen that the modulus of the degree of coherence attains all
values between zero and one. The value one occurs only when
the two scattering directions coincide. The value zero occurs
at directions where both the real and the imaginary part of the
degree of coherence are zero, i.e., at the intersections of the red
and blue curves. These points are so-called coherence singu-
larities: the modulus of µ there is zero, and hence its phase is
undefined. Two such singularities are visible, but there are many
more outside of the plotted domain.

A second example is shown in Fig. 11. Here the two scat-
tering directions are chosen to have the same azimuthal angle
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(φ1 = φ2). It is seen from the color-coded surface that the
modulus of the spectral degree of coherence again ranges from
zero to unity as θ1 and θ2 are varied. The two contour intersec-
tions in the bottom plane are angular coherence singularities.
The intersection of two red curves represents a phase saddle
where, since Im[µ(θ1, θ2)] = 0 there, the phase is either 0 orπ .

6. CONCLUSION

We have studied Mie scattering of a partially coherent, scalar
beam. The influence of the state of coherence on the forward-
and backward-scattered intensity was found to be significant.
Also, the correlation properties of the far-zone scattered field
were seen to display a surprisingly rich behavior, with Mie-like
oscillations of the spectral degree of coherence. Whereas in
certain pairs of directions the coherence of the scattered field
can be quite high, in other directions, it can be very low or even
singular. Coherence singularities, pairs of directions that are
completely uncorrelated, are found to occur generically. Because
Mie scattering is highly sensitive to the state of coherence, our
results are relevant for the analysis of radiation transport through
systems in which multiple scattering of partially coherent fields
takes place.

Funding. Air Force Office of Scientific Research
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REFERENCES
1. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler

Metallösungen,” Ann. Phys. 25, 377–445 (1908).
2. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
3. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge

University, 1995).
4. W. Hergert and T. Wriedt, eds., The Mie Theory—Basics and

Applications (Springer, 2012).
5. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds., Light

Scattering by Nonspherical Particles (Academic, 2000).
6. T. D. Visser, D. G. Fischer, and E.Wolf, “Scattering of light from quasi-

homogeneous sources by quasi-homogeneous media,” J. Opt. Soc.
Am. A 23, 1631–1638 (2006).

7. O. Korotkova, “Design of weak scattering media for controllable light
scattering,” Opt. Lett. 40, 284–287 (2015).

8. D. Cabaret, S. Rossano, and C. Brouder, “Mie scattering of a partially
coherent beam,” Opt. Commun. 150, 239–250 (1998).

9. T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial
coherence on the angular distribution of radiant intensity generated
by scattering on a sphere,” Phys. Rev. Lett. 104, 173902 (2010).

10. D. G. Fischer, T. van Dijk, T. D. Visser, and E.Wolf, “Coherence effects
in Mie scattering,” J. Opt. Soc. Am. A 29, 78–84 (2012).

11. J. Liu, L. Bi, P. Yang, and G. W. Kattawar, “Scattering of partially
coherent electromagnetic beams by water droplets and ice crystals,”
J. Quant. Spectrosc. Radiat. Transfer 134, 74–84 (2014).

12. Y. Wang, H. F. Schouten, and T. D. Visser, “Tunable, anomalous Mie
scattering using spatial coherence,” Opt. Lett. 40, 4779–4782 (2015).

13. Y. Wang, H. F. Schouten, and T. D. Visser, “Strong suppression of

forward or backward Mie scattering by using spatial coherence,” J.
Opt. Soc. Am. A 33, 513–518 (2016).

14. J. A. Gonzaga-Galeana and J. R. Zurita-Sanchez, “Mie scatter-
ing of partially coherent light: controlling absorption with spatial
coherence,” Opt. Express 26, 2928–2943 (2018).

15. M. L. Marasinghe, M. Premaratne, and D. M. Paganin, “Coherence
vortices in Mie scattering of statistically stationary partially coherent
fields,” Opt. Express 18, 6628–6641 (2010).

16. R. W. Hart and R. A. Farrell, “Light scattering in the cornea,” J. Opt.
Soc. Am. 59, 766–774 (1969).

17. J. A. Lock and C.-L. Chiu, “Correlated light scattering by a dense dis-
tribution of condensation droplets on a window pane,” Appl. Opt. 33,
4663–4671 (1994).

18. M. P. V. Albada and A. Lagendijk, “Observation of weak localization of
light in a randommedium,” Phys. Rev. Lett. 55, 2692–2695 (1985).

19. P. E.Wolf and G.Maret, “Weak localization and coherent backscatter-
ing of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699
(1985).

20. T. Okamoto and T. Asakura, “Enhanced backscattering of partially
coherent light,” Opt. Lett. 21, 369–371 (1996).

21. E. Akkermans andG.Montambaux,Mesoscopic Physics of Electrons
and Photons (Cambridge University, 2007).

22. V. Gaind, D. Lin, and K. J. Webb, “Solution of the Bethe-Salpeter
equation in a nondiffusive random medium having large scatterers,”
J. Opt. Soc. Am. B 30, 2199–2205 (2013).

23. S. John, G. Peng, and Y. Yang, “Optical coherence propagation and
imaging in amultiple scatteringmedium,” J. Biomed. Opt. 1, 180–191
(1996).

24. R. Pierrat, J.-J. Greffet, R. Carminati, and R. Elaloufi, “Spatial coher-
ence in strongly scattering media,” J. Opt. Soc. Am. A 22, 2329–2337
(2005).

25. H. E. Kondakci, A. F. Abouraddy, and B. E. A. Saleh, “Discrete
Anderson speckle,” Optica 2, 201–209 (2015).

26. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, and V. Backman, “Lowcoherent
backscattering spectroscopy for tissue characterization,” Appl. Opt.
44, 366–377 (2005).

27. K. Stamnes, G. E. Thomas, and J. J. Stamnes, Radiative Transfer in
the Atmosphere and Ocean, 2nd ed. (Cambridge University, 2017).

28. G. S. Agarwal, G. Gbur, and E. Wolf, “Coherence properties of sun-
light,” Opt. Lett. 29, 459–461 (2004).

29. H. Mashaal, A. Goldstein, D. Feuermann, and J. M. Gordon, “First
direct measurement of the spatial coherence of sunlight,” Opt. Lett.
37, 3516–3518 (2012).

30. S. Divitt and L. Novotny, “Spatial coherence of sunlight and its impli-
cations for light management in photovoltaics,” Optica 2, 95–103
(2015).

31. H. F. Schouten, G. Gbur, T. D. Visser, and E.Wolf, “Phase singularities
of the coherence functions in Young’s interference pattern,” Opt.
Lett. 28, 968–970 (2003).

32. G. Gbur and T. D. Visser, “Coherence vortices in partially coherent
beams,” Opt. Commun. 222, 117–125 (2003).

33. S. B. Raghunathan, H. F. Schouten, and T. D. Visser, “Correlation sin-
gularities in partially coherent electromagnetic beams,” Opt. Lett. 37,
4179–4181 (2012).

34. S. B. Raghunathan, H. F. Schouten, and T. D. Visser, “Topological
reactions of correlation functions in partially coherent electromag-
netic beams,” J. Opt. Soc. Am. A 30, 582–588 (2013).

35. G. J. Gbur, Singular Optics (CRC Press, 2017).
36. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics

(Cambridge University, 1995).
37. C. J. Joachain,QuantumCollision Theory, 3rd ed. (Elsevier, 1987).
38. E. Hecht,Optics, 5th ed. (Pearson, 2017).

https://doi.org/10.1002/(ISSN)1521-3889
https://doi.org/10.1364/JOSAA.23.001631
https://doi.org/10.1364/JOSAA.23.001631
https://doi.org/10.1364/OL.40.000284
https://doi.org/10.1016/S0030-4018(98)00053-4
https://doi.org/10.1103/PhysRevLett.104.173902
https://doi.org/10.1364/JOSAA.29.000078
https://doi.org/10.1016/j.jqsrt.2013.11.002
https://doi.org/10.1364/OL.40.004779
https://doi.org/10.1364/JOSAA.33.000513
https://doi.org/10.1364/JOSAA.33.000513
https://doi.org/10.1364/OE.26.002928
https://doi.org/10.1364/OE.18.006628
https://doi.org/10.1364/JOSA.59.000766
https://doi.org/10.1364/JOSA.59.000766
https://doi.org/10.1364/AO.33.004663
https://doi.org/10.1103/PhysRevLett.55.2692
https://doi.org/10.1103/PhysRevLett.55.2696
https://doi.org/10.1364/OL.21.000369
https://doi.org/10.1364/JOSAB.30.002199
https://doi.org/10.1117/12.231369
https://doi.org/10.1364/JOSAA.22.002329
https://doi.org/10.1364/OPTICA.2.000201
https://doi.org/10.1364/AO.44.000366
https://doi.org/10.1364/OL.29.000459
https://doi.org/10.1364/OL.37.003516
https://doi.org/10.1364/OPTICA.2.000095
https://doi.org/10.1364/OL.28.000968
https://doi.org/10.1364/OL.28.000968
https://doi.org/10.1016/S0030-4018(03)01606-7
https://doi.org/10.1364/OL.37.004179
https://doi.org/10.1364/JOSAA.30.000582

