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We discuss the fundamental role of correlation functions in optical wave fields. These functions
determine important properties such as the spectrum, the state of polarization, and the state of
coherence of light. These properties generally change on propagation, even when the field travels
through free space. Two sources which have the same spectrum and the same state of polarization
can produce fields whose spectrum and state of polarization are different. These effects can be
understood by considering certain correlation functions and the laws which govern their
propagation. © 2008 American Association of Physics Teachers.
�DOI: 10.1119/1.2805239�
I. INTRODUCTION

The monochromatic wave fields that are treated in many
textbooks are idealizations. All fields encountered in practice
have some randomness associated with them. This random-
ness can be a small effect, as in the output of a well-
stabilized, single-mode laser, or it can be large, as in the field
produced by a thermal source. In between these two ex-
tremes is the field generated by a multimode laser. The ran-
dom fluctuations can be characterized by means of correla-
tion functions. Coherence theory is concerned with these
functions and their many applications in diffraction, propa-
gation, and the scattering of light.

One of the surprising predictions of coherence theory is
that the spectrum of an optical field can change on propaga-
tion, even when the field travels through free space.1 Two
sources with identical spectra can generate fields whose
spectra are different. Likewise, the state of polarization of
light can also change as the field travels through free space.2

It was shown not long ago that two sources with the same
state of polarization �that is, with identical sets of Stokes
parameters� can generate fields whose polarization properties
are different.3 These effects, most of which have been con-
firmed experimentally, can be understood by analyzing cer-
tain correlation functions that characterize the source and
field fluctuations.

In this paper we review the role of correlation functions in
optical fields and explain how basic properties of the field
such as its spectral density, its state of polarization, and its
state of coherence are determined by these functions. As will
be discussed, the correlation functions satisfy precise propa-
gation laws. Their change on propagation implies that sec-
ondary field properties that are determined by them, such as
the spectrum, can also change as the field propagates.

Although several monographs4–10 and articles11–13 are de-
voted to optical coherence, the importance of correlation
functions in optics seems to be poorly appreciated by most
scientists. Our hope is that a summary of the principal results
of coherence theory will lead to its greater understanding.
We discuss scalar fields as well as electromagnetic beams.

II. CORRELATION FUNCTIONS FOR SCALAR
FIELDS

Consider a random, scalar wave field V�r , t�, where r is
the position vector of a point in space, and t the time. In free

space the field satisfies the wave equation

867 Am. J. Phys. 76 �9�, September 2008 http://aapt.org/ajp
��2 −
1

c2

�2

�t2�V�r,t� = 0, �1�

where c is the speed of light in vacuum. It follows from
Eq. �1� that the the Fourier transform with respect to time

U�r,�� = �
−�

�

V�r,t�ei�tdt , �2�

satisfies the Helmholtz equation,

��2 + k2�U�r,�� = 0, �3�

where k=� /c is the wavenumber associated with the angular
frequency �. The field is complex valued because we are
using the analytic signal representation �Ref. 9, Sec. 3.1�.

The lowest-order correlations of the field may be de-
scribed by the mutual coherence function, which, for station-
ary fields is defined as �Ref. 9, Sec. 4.3.1�

��r1,r2;�� = �V*�r1,t�V�r2,t + ��	 . �4�

The angular brackets denote an ensemble average, and the
asterisk denotes the complex conjugate. It is useful to nor-
malize the mutual coherence function by introducing the
complex degree of coherence

��r1,r2;�� =
��r1,r2;��

I�r1�I�r2�

, �5�

where

I�r� = ��r,r;0� = �V*�r,t�V�r,t�	 �6�

is the average intensity at position r. The meaning of the
function ��r1 ,r2 ;�� can be seen from the following
example.14–16 Consider Young’s experiment in which two
pinholes located at positions r1 and r2 in an opaque screen
are illuminated with light of equal intensity. The light ema-
nating from the pinholes interferes on an observation screen.
It can be shown that the visibility of the fringes that are
formed is equal to ���r1 ,r2 ;���, where � is the time differ-
ence between the light traveling from the two pinholes to a
particular fringe.

For many applications it is advantageous to work in the
space-frequency domain by using the cross-spectral density
function, the temporal Fourier transform of the mutual coher-

ence function:
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W�r1,r2;�� = �
−�

�

��r1,r2;��ei��d� . �7�

We can show that W�r1 ,r2 ;��, just like the mutual coher-
ence function, is a correlation function �Ref. 9, Sec. 4.7.2�,
that is,

W�r1,r2;�� = �U*�r1,��U�r2,��	 , �8�

where U�r ,�� is a member of an ensemble of monochro-
matic realizations of the field �which differ in phase and
amplitude�. Often it is useful to consider a normalized ver-
sion of W, the spectral degree of coherence, which is given
by

��r1,r2;�� =
W�r1,r2;��


S�r1,��S�r2,��
, �9�

where

S�r,�� = W�r,r;�� �10�

is the spectral density �or the intensity at frequency �� at
position r. It can be shown that the spectral degree of coher-
ence is bounded �Ref. 9, Sec. 4.3.2�:

0 � ���r1,r2;��� � 1. �11�

The lower bound occurs when the field at the points r1 and r2
is completely uncorrelated �at frequency ��. The upper
bound occurs when the field is fully correlated. For interme-
diate values the field is said to be partially coherent. Just like
the complex degree of coherence, the spectral degree of co-
herence can be determined by Young’s interference experi-
ment but now with filters in front of the pinholes.17

Modern coherence theory began in 1954 when Wolf found
that the mutual coherence function in free space satisfies the
wave equations:15,16

��1
2 −

1

c2

�2

�t2���r1,r2;�� = 0, �12a�

��2
2 −

1

c2

�2

�t2���r1,r2;�� = 0, �12b�

where �1
2 and �2

2 represent the Laplace operator acting on r1
and r2, respectively. Hence not only the field but also the
mutual coherence function satisfies rigorous propagation
laws. From Eq. �12� it follows that in free space the cross-
spectral density satisfies the Helmholtz equations

��1
2 + k2�W�r1,r2;�� = 0, �13a�

��2
2 + k2�W�r1,r2;�� = 0, �13b�

implying that this correlation function also has a wave-like
character. As will become evident, this observation has far-
reaching consequences. As an example, consider a planar,
secondary source located in the plane z=0 that radiates a
stochastic field into the half-space z�0. The source is
assumed to be stationary, at least in the wide sense �Ref. 9,
Sec. 2.2�. By using the first Rayleigh diffraction formula18

we obtain for the cross-spectral density at a pair of observa-

tion points the relation �Ref. 9, Sec. 4.4.2�
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W�r1,r2;�� =
1

�2	�2� � �z1�,z2�=0�W
�0��r1�,r2�;��


� �

�z1
� e−ikR11

R11
�


 � �

�z2
� eikR22

R22
�d2r1�d

2r2�, �14�

where R11= �r1−r1��, R22= �r2−r2��, and

W�0��r1�,r2�;�� = �U*�x1�,y1�,0;��U�x2�,y2�,0;��	 �15�

is the cross-spectral density across the source plane. Equa-
tion �14� shows that knowledge of W�0��r1� ,r2� ;��, the cross-
spectral density in the source plane which can be deduced
from Young’s experiment, allows in principle the calculation
of the cross-spectral density function everywhere in the half-
space z�0.

According to Eqs. �10� and �14� the spectral density of the
field in the half-space z�0 is given by

S�r,�� =
1

�2	�2� � �z1�,z2�=0�W
�0��r1�,r2�;��� �

�z1
� e−ikR1

R1
�


 � �

�z2
� eikR2

R2
�d2r1�d

2r2�, �16�

where R1= �r−r1�� and R2= �r−r2��.
We can now draw several important conclusions: �1� Ac-

cording to Eq. �14�, the cross-spectral density function gen-
erally changes on propagation, even through free space; �2�
As the cross-spectral density changes, the spectral density as
given by Eq. �16� will generally also change; �3� Two
sources with different cross-spectral densities can have iden-
tical spectra. However, the spectra of the fields that they
produce may be quite different.

An illustration of the second conclusion is shown in
Fig. 1. There the spectral density of two identical, correlated
point sources is plotted �curve �a��. This curve is also the
spectral density of the field that is observed when the two
sources are completely uncorrelated. If the two sources are
partially coherent, then, depending on how the spectral de-
gree of coherence varies with frequency, the spectral density

Fig. 1. The field spectrum generated by two identical, correlated point
sources. �a� The spectral density of each point source. �b� The observed
redshifted field spectrum. �c� The observed blueshifted field spectrum. For
details see Ref. 23.
of the field can, for example, be redshifted �curve �b��, or

868Hugo F. Schouten and Taco D. Visser



blueshifted �curve �c��. This prediction was verified in sev-
eral experiments.19,20 A review of such coherence-induced
spectral changes was given Ref. 21.

An illustration of the third conclusion is provided by pla-
nar Gaussian Schell-model sources �Ref. 9, Sec. 5.4.2�. Let
us represent the location of a point in the source plane z=0
by a two-dimensional position vector �. For Gaussian Schell-
model sources the spectral degree of coherence depends on
the positions �1 and �2 only through the difference �2−�1:

W�0���1,�2;�� = 
S�0���1,��S�0���2,����0���2 − �1;�� .

�17�

Also, the spectral density and the spectral degree of coher-
ence at each frequency both have a Gaussian dependence on
position:

S�0���,�� = C2e−�2/2�2
, �18�

��0���2 − �1;�� = e−��2 − �1�2/2�2
. �19�

Here C, �, and � are positive constants that may depend on
frequency. Consider two such sources, A and B, for which

WA
�0���1,�2;�� = C2e−��1

2+�2
2�/4�2

e−��2 − �1�2/2�A
2
, �20a�

WB
�0���1,�2;�� = C2e−��1

2+�2
2�/4�2

e−��2 − �1�2/2�B
2
. �20b�

We assume that �A��B. It is immediately seen from Eqs.
�10� and �20� that the spatial variations of the spectra across
the two sources are identical, that is, SA

�0��� ,��
=SB

�0��� ,��=C2e−�2/2�2
, even though their state of coherence

is different. It is evident from Eq. �16� that, therefore, these
two sources may produce fields whose spectra are quite dif-
ferent. Stated differently, knowledge of the source spectrum
does not suffice to determine the spectrum of the field in the
half space into which the source radiates.

III. CORRELATION FUNCTIONS
FOR ELECTROMAGNETIC BEAMS

Thus far we have considered scalar fields, but the concept
of correlation functions can be generalized to electromag-
netic beams. For such fields both the electric and the mag-
netic vector are, to a good approximation, perpendicular to
the direction of propagation.

Consider a planar, secondary source that generates a sto-
chastic, electromagnetic beam which propagates into the
half-space z�0 in a direction close to the positive z axis. We
assume that the source is statistically stationary, at least in
the wide sense. The electric cross-spectral density matrix,
which may be used to characterize the state of coherence and
the state of polarization of the beam in the source plane
z=0 is defined as

W�0���1,�2;�� = �Wxx
�0���1,�2;�� Wxy

�0���1,�2;��
Wyx

�0���1,�2;�� Wyy
�0���1,�2;��

� ,

�21�

where

Wij
�0���1,�2;�� = �E

i
*��1,��Ej��2,��	, �i, j = x,y� . �22�

Here Ei�� ,�� is a Cartesian component of the �complex�

electric field in the x or y direction of a typical member of
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the ensemble that represents the field. The cross-spectral
density matrix elements of the field at an arbitrary pair of
observation points in the half-space z�0 are given by a
similar expression:

Wij�r1,r2;�� = �E
i
*�r1,��Ej�r2,��	, �i, j = x,y� . �23�

The propagation of the electric field components is governed
by �Ref. 9, Sec. 5.6.1�

Ei�r,�� = �
�z�=0�

Ei���,0;��G�� − ��,z;��d2�, �24�

with G denoting the Green’s function for paraxial propaga-
tion from the point Q��� ,0� in the source plane z=0 to the
field point P�� ,z�:

G�� − ��,z;�� = −
ik

2	z
exp�ikz�exp�ik�� − ���2/2z� .

�25�

We substitute from Eq. �24� into Eq. �23� and find that the
electric cross-spectral density matrix of the beam at a pair of
observation points is given by

W�r1,r2;�� =� � �z1�,z2�=0�W
�0���1�,�2�;��


K��1 − �1�,z1,�2 − �2�,z2;��d21�d
22�,

�26�

where

K��1 − �1�,z1,�2 − �2�,z2;��

= G*��1 − �1�,z1;��G��2 − �2�,z2;�� . �27�

From knowledge of the cross-spectral density matrix across
the plane z=0, as can be obtained from straightforward in-
terference experiments,22 the cross-spectral density matrix in
the half-space z�0 can be calculated by use of Eq. �26�. Just
as in the scalar case, the fundamental properties of the field
are all determined by the �propagated� electric cross-spectral
density matrix.

It is seen from Eq. �23� that the trace of the cross-spectral
density matrix, Tr W�r ,r ;��, is proportional to the electric
energy density at the point P�r�. The spectral density of the
field can therefore, apart from a prefactor, be identified as

S�r,�� = Tr W�r,r;�� . �28�

The spectral degree of polarization of the field at any
point is defined as the ratio of the intensity of the polarized
part of the beam to the total beam intensity and is given by
�Ref. 9, Sec. 6.3.3�

P�r,�� =
1 −
4 det W�r,r;��
�Tr W�r,r;���2 , �29�

where det denotes the determinant. It can be shown that 0
�P�r ,���1. The upper bound represents a completely po-
larized field, and the lower bound represents a completely
unpolarized field. For intermediate values the field is said to
be partially polarized.

The polarized part of the beam can also be characterized
by the spectral Stokes parameters �Ref. 10, Sec. 9.5�. These
parameters can be expressed as linear combinations of the

elements of the electric cross-spectral density matrix, that is,
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s0�r,�� = Wxx�r,r;�� + Wyy�r,r;�� , �30a�

s1�r,�� = Wxx�r,r;�� − Wyy�r,r;�� , �30b�

s2�r,�� = Wxy�r,r;�� + Wyx�r,r;�� , �30c�

s3�r,�� = i�Wyx�r,r;�� − Wxy�r,r;��� . �30d�

From these considerations we conclude: �4� according to Eq.
�26� the cross-spectral density matrix generally changes on
propagation, even if the beam propagates through free space.
�5� As the cross-spectral density matrix changes, we may
expect the quantities that are determined by it, namely the
spectral density, the state of coherence, the degree of polar-
ization, and the Stokes parameters of the beam �as given by
Eqs. �28�–�30�� to change as well as the beam propagates. �6�
Two sources with different cross-spectral density matrices
can have spectra, degrees of polarization, and sets of Stokes
parameters that are identical. However, the properties of the
fields that they generate may be different.

An illustration of the fifth conclusion is provided by
Fig. 2. It shows the changes in the state of polarization as the
beam propagates. In this example the degree of polarization
of the field on the axis of a stochastic beam first decreases to
zero, and then gradually increases to an asymptotic value
that is higher than the value at the source itself.

The sixth conclusion is exemplified in a manner that is
similar to the scalar case. For electromagnetic Gaussian
Schell-model sources each element of the cross-spectral den-
sity matrix can be expressed in the form

Wij
�0���1,�2;��

= 
Si
�0���1,��Sj

�0���2,���ij
�0���2 − �1;��,

�31�
�i, j = x,y� ,

where

Si
�0���,�� = Ci

2e−�2/2�2
, �32�

�ij
�0���2 − �1;�� = Dije

−��2 − �1�2/2�ij
2
. �33�

Here Ci, Dij, �, and �ij are positive constants that may de-
pend on frequency, and satisfy the constraints

Dij = 1 if i = j , �34a�

�Dij� � 1 if i � j . �34b�

z [m]

P ( = 0, z; )ωρ

25 50 75

0.1
0.2
0.3
0.4

0
0.0

Fig. 2. The on-axis spectral degree of polarization P��=0,z ;�� of a sto-
chastic electromagnetic beam as a function of the propagation distance z
�solid curve�. The asymptotic value is indicated by the horizontal dashed
line. For details see Ref. 24.
Additional constraints are mentioned in Ref. 10, Sec. 9.4.2.
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Consider two such sources, A and B, for which

�Wij
�0��A��1,�2;�� = CiCje

−��1
2+�2

2�/4�2
Dije

−��2 − �1�2/2�ij,A
2

,

�35a�

�Wij
�0��B��1,�2;�� = CiCje

−��1
2+�2

2�/4�2
Dije

−��2 − �1�2/2�ij,B
2

.

�35b�

Let us assume that �ij,A��ij,B. It is seen from Eqs. �28�–�30�
that the spectrum of these two sources and their state of
polarization are identical, even though their state of coher-
ence is different. However, these sources may produce beams
whose properties are different. An example of this kind of
behavior is presented in Ref. 3. Thus it follows that knowl-
edge of the spectrum and the state of polarization of a source
is not sufficient to determine these properties of the field in
the half space into which the source radiates.

IV. SUMMARY AND CONCLUSIONS

We have discussed the central role played by correlation
functions in optical wave fields. These functions can be mea-
sured by means of interference experiments. An indication of
their importance is that they cannot be derived from the
spectrum or the state of polarization of the field. Correlation
functions are two-point functions, that is, they characterize
the statistical similarity10 of the field at two points in space.
Because the spectrum, the state of polarization, and the de-
gree of polarization are all one-point functions, the correla-
tion functions can in general not be derived from them. In
other words, two sources with different coherence properties
may have identical spectra and identical polarization proper-
ties.

The correlation functions determine basic field properties
such as the spectrum, the state of coherence, and the state of
polarization. Because the correlation functions obey precise
propagation laws, the field properties that are derived from
them, generally all change on propagation, even when the
field travels through free space. Several examples of such
changes were presented. We noted that knowledge of the
source spectrum and of its state of polarization is not suffi-
cient to calculate these properties in the region into which
the source radiates. Only by calculating the correlation func-
tion of the propagated field in the region of observation can
the spectrum and the state of polarization there be deter-
mined.

ACKNOWLEDGMENT

The authors wish to thank Professor Emil Wolf for many
valuable discussions.

a�Electronic mail: tvisser@nat.vu.nl
1E. Wolf, “Non-cosmological redshifts of spectral lines,” Nature �London�

326, 363–365 �1987�.
2D. F. V. James, “Change of polarization of light beams on propagation in
free space,” J. Opt. Soc. Am. A 11, 1641–1643 �1994�.

3M. Salem, O. Korotkova, and E. Wolf, “Can two planar sources with the
same sets of Stokes parameters generate beams with different degrees of
polarization?,” Opt. Lett. 31, 3025–3027 �2006�.

4M. J. Beran and G. B. Parrent Jr., Theory of Partial Coherence �Prentice–
Hall, Englewood Cliffs, NJ, 1964�.

5G. J. Troup, Optical Coherence Theory—Recent Developments �Methuen,
London, 1967�.

6
A. S. Marathay, Elements of Optical Coherence Theory �Wiley, New

870Hugo F. Schouten and Taco D. Visser



York, 1982�.
7J. W. Goodman, Statistical Optics �Wiley, New York, 1985�.
8J. Perina, Coherence of Light �Reidel, Dordrecht, 1985�, 2nd ed.
9L. Mandel and E. Wolf, Optical Coherence and Quantum Optics �Cam-
brige U.P., Cambridge, 1995�.

10E. Wolf, Introduction to the Theory of Coherence and Polarization of
Light �Cambridge U.P., Cambridge, 2007�.

11 B. W. Jones, “Coherence: A simulation experiment,” Am. J. Phys. 46,
705–709 �1978�.

12B. T. King and W. Tobin, “Charge-coupled device detection of two-beam
interference with partially coherent light,” Am. J. Phys. 62, 133–137
�1994�.

13L. Basano, C. Pontiggia, and E. Piano, “Simple demonstrations for intro-
ducing spatial coherence,” Am. J. Phys. 64, 1257–1261 �1996�.

14F. Zernike, “The concept of degree of coherence and its application to
optical problems,” Physica �Amsterdam� 5, 785–795 �1938�.

15E. Wolf, “Optics in terms of observable quantities,” Nuovo Cimento XII,
884–888 �1954�.

16E. Wolf, “A macroscopic theory of interference and diffraction of light
from finite sources. II. Fields with a spectral range of arbitrary width,”
871 Am. J. Phys., Vol. 76, No. 9, September 2008
Proc. R. Soc. London, Ser. A 230, 246–265 �1955�.
17E. Wolf, “Young’s interference fringes with narrow-band light,” Opt.

Lett. 8, 250–252 �1983�.
18M. Born and E. Wolf, Principles of Optics �Cambridge U. P., Cambridge,

1999�, 7th �expanded� ed., Sec. 8.11.
19M. F. Bocko, D. H. Douglass, and R. S. Knox, “Observation of frequency

shifts of spectral lines due to source correlations,” Phys. Rev. Lett. 58,
2649–2651 �1987�.

20G. M. Morris and D. Faklis, “Effects of source correlations on the spec-
trum of light,” Opt. Commun. 62, 5–11 �1987�.

21E. Wolf and D. F. V. James, “Correlation-induced spectral changes,” Rep.
Prog. Phys. 59, 771–818 �1996�.

22H. Roychowdhury and E. Wolf, “Determination of the electric cross-
spectral density matrix of a random electromagnetic beam,” Opt.
Commun. 226, 57–60 �2003�.

23E. Wolf, “Red shifts and blue shifts of spectral lines emitted by two
correlated sources,” Phys. Rev. Lett. 58, 2646–2648 �1987�.

24O. Korotkova, T. D. Visser, and E. Wolf, “Polarization properties of
stochastic electromagnetic beams,” Opt. Commun. 281, 515–520 �2008�.
YOU JUST LOOK AT THE THING!

What are the most central and fundamental problems of biology today? They are questions like:
What is the sequence of bases in the DNA? What happens when you have a mutation? How is the
base order in the DNA connected to the order of amino acids in the protein? What is the structure
of the RNA; is it single-chain or double-chain, and how is it related in its order of bases to the
DNA? What is the organization of the microsomes? How are proteins synthesized? Where does
the RNA go? How does it sit? Where do the proteins sit? Where do the amino acids go in? In
photosynthesis, where is the chlorophyll; how is it arranged; where are the carotenoids involved in
this thing? What is the system of the conversion of light into chemical energy?

It is very easy to answer many of these fundamental biological questions; you just look at the
thing! You will see the order of bases in the chain; you will see the structure of the microsome.
Unfortunately, the present microscope sees at a scale which is just a bit too crude. Make the
microscope one hundred times more powerful, and many problems of biology would be made
very much easier. I exaggerate, of course, but the biologists would surely be very thankful to
you—and they would prefer that to the criticism that they should use more mathematics.

Richard P. Feynman, “There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics,” Engineering
& Science, February 1960. Presented at the annual meeting of the American Physical Society, 29 December 1959. Full
transcript available at �www.zyvex.com/nanotech/feynman.html�.
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