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Generalization of Malus’ law and spatial coherence
relations for linear polarizers and non-uniform
polarizers
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We study the transmission of partially polarized, partially
coherent beams through linear polarizers and polarization
elements that are non-uniform. An expression for the trans-
mitted intensity, which reproduces Malus’ law for special
cases, is derived, as are formulas for the transformation of
spatial coherence properties. © 2022 Optica Publishing Group
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Introduction. The works of Étienne-Louis Malus [1] were foun-
dational for the development of physical optics in the early
nineteenth century. This is especially true for his discovery of the
law that now bears his name [2], which states that the transmis-
sion efficiency of horizontally polarized light through a polarizer
with transmission angle α equals cos2(α). An immediate con-
sequence of Malus’ law is that the transmission for unpolarized
light is 50% for any orientation of the transmission axis. A ques-
tion naturally arises: What is the transmission for beams that are
partially polarized and spatially partially coherent? Also, how
are the incident beam’s coherence properties affected? Our aim
is to answer these questions, not just for uniform linear polariz-
ers, but also for non-uniform polarizing devices. The latter can
be used to generate vector beams [3] that are now commonly
applied in, e.g., tight focusing [4] and single molecule imaging
[5]. We employ a generalized matrix formalism [6–8], which we
briefly review and cast in a different but otherwise equivalent
format. Our results provide insight into the relation between par-
tial coherence and the state of polarization of electromagnetic
beams.

Theory. Consider a linear system with input plane z′ = 0
(Fig. 1). Positions in this plane are denoted ρ′ = (x′, y′). A nor-
mally incident beam-like field E(i) at frequency ω produces an
electric field E(o) in the output plane of the form

E(o)
x (ρ,ω) =

∫
z′=0

[︁
Gxx (ρ

′, ρ,ω)E(i)
x (ρ′,ω)

+Gxy (ρ
′, ρ,ω)E(i)

y (ρ′,ω)
]︁

d2ρ′,
(1)

E(o)
y (ρ,ω) =

∫
z′=0

[︁
Gyx (ρ

′, ρ,ω)E(i)
x (ρ

′,ω)

+Gyy (ρ
′, ρ,ω)E(i)

y (ρ′,ω)
]︁

d2ρ′,
(2)

where Gij(ρ
′, ρ,ω), with i, j ∈ {x, y}, are the elements of the

Green tensor that characterizes the linear system.
Assuming beam-like propagation through a thin system, these

elements are proportional to a Dirac delta function, i.e.,

Gij(ρ
′, ρ,ω) = Gij(ρ

′,ω)δ2(ρ′ − ρ), (3)

with Gij(ρ
′,ω) ∈ C . Substitution from Eq. (3) into Eqs. (1) and

(2) leads to

E(o)
x (ρ,ω) = Gxx (ρ,ω)E(i)

x (ρ,ω) + Gxy (ρ,ω)E(i)
y (ρ,ω) ,

(4)

E(o)
y (ρ,ω) = Gyx (ρ,ω)E(i)

x (ρ,ω) + Gyy (ρ,ω)E(i)
y (ρ,ω) ,

(5)
which can be jointly expressed as

E(o)(ρ,ω) = G(ρ,ω)E(i)(ρ,ω), (6)

where

G(ρ,ω) =
(︃
Gxx(ρ,ω) Gxy(ρ,ω)
Gyx(ρ,ω) Gyy(ρ,ω)

)︃
(7)

and

E(ρ,ω) =
(︁
Ex(ρ,ω), Ey(ρ,ω)

)︁T . (8)

A partially coherent electromagnetic beam may be described by
a cross-spectral density (CSD) matrix [9]:

W (ρ1, ρ2,ω) =(︃⟨︁
E∗

x (ρ1,ω)Ex (ρ2,ω)
⟩︁ ⟨︁

E∗
x (ρ1,ω)Ey (ρ2,ω)

⟩︁⟨︁
E∗

y (ρ1,ω)Ex (ρ2,ω)
⟩︁ ⟨︁

E∗
y (ρ1,ω)Ey (ρ2,ω)

⟩︁)︃ ,
(9)

where the angular brackets indicate an ensemble average. We
can express the transformation of the CSD matrix by the linear
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Fig. 1. Illustrating the notation. Positions and azimuthal angles
in the input plane are denoted ρ′ and ϕ′, and those in the output
plane are denoted ρ and ϕ.

system, while no longer displaying theω dependence, by writing

E(o)
i (ρ) =

∑︂
m=x,y

Gim(ρ)E(i)
m (ρ), (10)

from which it follows that the CSD matrix of the beam in the
output plane equals

W (o)
ij (ρ1, ρ2) =

⟨︄∑︂
m=x,y

G∗

im (ρ1)E(i)∗
m (ρ1)

×
∑︂
p=x,y

Gjp (ρ2)E(i)
p (ρ2)

⟩︄
=
∑︂
m,p

G∗

im (ρ1)Gjp (ρ2)W (i)
mp (ρ1, ρ2) .

(11)

The transformation of the CSD matrix can be cast in a compact
form by considering W (ρ1, ρ2) as a column vector rather than
a 2 × 2 matrix, i.e.,

W(o) (ρ1, ρ2) =

⎛⎜⎜⎜⎝
T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
W (i)

xx (ρ1, ρ2)

W (i)
xy (ρ1, ρ2)

W (i)
yx (ρ1, ρ2)

W (i)
yy (ρ1, ρ2)

⎞⎟⎟⎟⎠ , (12)

where the transfer matrix T of the system is given by the tensor
product

T (ρ1, ρ2) = G (ρ1) ⊗ G (ρ2)

≡

(︃
G∗

xx (ρ1)G (ρ2) G∗
xy (ρ1)G (ρ2)

G∗
yx (ρ1)G (ρ2) G∗

yy (ρ1)G (ρ2)

)︃
.

(13)

The effect of the linear system can thus be written as

W(o) (ρ1, ρ2) = T (ρ1, ρ2)W(i) (ρ1, ρ2) . (14)

For a cascaded system in which the beam passes, with negligible
propagation effects, through a series of elements with transfer
matrices T1 , T2, . . . , TN , this generalizes to

W(o)(ρ1, ρ2) =TN(ρ1, ρ2)TN−1(ρ1, ρ2) . . .T1(ρ1, ρ2)W(i)(ρ1, ρ2) .
(15)

Unlike the Mueller matrix formalism, this generalized approach
can handle spatially partially coherent beams.

Generalizing Malus’ law. Consider the Green tensor, from
here on called the Jones matrix, for a uniform linear polarizer

fixed at an angle α to the x axis [10]:

Jlin α =

(︃
cos2 (α) cos (α) sin (α)

cos (α) sin (α) sin2 (α)

)︃
. (16)

On making use of Eq. (18) in Eq. (14), we obtain a symmetric
transfer matrix of the form

Tlin α =

⎛⎜⎜⎜⎝
C4 C3S C3S C2S2

C3S C2S2 C2S2 CS3

C3S C2S2 C2S2 CS3

C2S2 CS3 CS3 S4

⎞⎟⎟⎟⎠ , (17)

where C and S stand for cos (α) and sin (α), respectively.
We assume a partially polarized incident beam of the Gaus-

sian–Schell model type [9], with a spectral density that does not
vary over the area of the linear polarizer. In such a case, the CSD
matrix elements are of the form

W (i)
xx (ρ1, ρ2) = exp

[︁
−(ρ1 − ρ2)

2/(2δ2
xx)
]︁

,
W (i)

yy (ρ1, ρ2) = exp
[︁
−(ρ1 − ρ2)

2/(2δ2
yy)
]︁

,
W (i)

xy (ρ1, ρ2) = Bxy exp
[︁
−(ρ1 − ρ2)

2/(2δ2
xy)
]︁

,
W (i)

yx (ρ1, ρ2) = W (i)∗
xy (ρ1, ρ2),

(18)

where δij is one of three independent coherence radii (since δxy =

δyx) [11] and Bxy, with |Bxy | ≤ 1, denotes the correlation coef-
ficient between the two Cartesian components of the electric
field.

The spectral degree of polarization (DOP) equals [9]

P(ρ) =

√︄
1 −

4 Det W (ρ, ρ)
[Tr W (ρ, ρ)]2

, (19)

where Det and Tr indicate the determinant and trace, respec-
tively. It is seen that for this beam the DOP P(i)(ρ) = |Bxy |. On
using Eq. (18) in Eq. (14), it follows that the output beam has

W (o)
xx (ρ, ρ) = C2 + C3S[Bxy + B∗

xy],
W (o)

yy (ρ, ρ) = S2 + CS3[Bxy + B∗

xy].
(20)

The spectral density S(ρ) is given by the trace of the CSD matrix
[9] at two coincident points, namely

S(ρ) = Tr W(ρ, ρ). (21)

The transmission efficiency T is, therefore,

T =
Tr W(o)(ρ, ρ)
Tr W(i)(ρ, ρ)

=
1
2
+

1
2

sin(2α)ℜ(Bxy), (22)

where ℜ denotes the real part. Notice that the transmission
depends on both the orientation of the polarizer and the DOP of
the beam. This is illustrated in Fig. 2.

From the generalized transmission expression [Eq. (22)],
we retrieve the two classical results of Malus for unpolarized
light and fully polarized light as two special cases. First, when
ℜ(Bxy) = ±1, the field is linearly polarized under an angle±π/4.
Equation (22) then reduces to Malus’ law, i.e.,

T = cos2(α ∓ π/4). (23)

Second, when ℜ(Bxy) = 0, the incident field is completely
unpolarized and Eq. (22) becomes

T = 0.5. (24)

It is readily verified that the output beam is fully polarized,
i.e., P(o)(ρ) = 1, as expected. We next turn our attention to the
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Fig. 2. Transmission efficiency T of a linear polarizer, for an
incident beam that is partially polarized.

effect on the degree of spatial coherence (DOC) produced by a
linear polarizer. The DOC is a measure of visibility in Young’s
interference experiment, and equals [9]

η (ρ1, ρ2) ≡
Tr W (ρ1, ρ2)√︁

Tr W (ρ1, ρ1)
√︁

Tr W (ρ2, ρ2)
. (25)

From Eq. (14), we find that a polarizer produces an output CSD
matrix with, in general, four non-zero elements; hence

η(o)lin α (ρ1, ρ2) =
C2W (i)

xx + CS[W (i)
xy +W (i)

yx ] + S2W (i)
yy

2CSℜ(Bxy)
, (26)

with the matrix elements evaluated at (ρ1, ρ2). It is seen that
the polarizer transforms the spatial degree of coherence in a
complicated way. Although, according to Eq. (25), the DOC
of the input beam does not depend on the off diagonal CSD
elements (and hence not on the correlation coefficient Bxy), the
spatial coherence of the output beam η(o)lin α clearly does.

Vector beams. It is instructive to compare these results with
the action of a non-uniform polarizer that performs a local rota-
tion of the electric field based on the azimuthal angle ϕ. Such a
device with Jones matrix,

J(ϕ) =
(︃
cos (ϕ) −sin (ϕ)
sin (ϕ) cos (ϕ)

)︃
, (27)

acting on an incident field that is horizontally or vertically polar-
ized, produces a radial or azimuthal vector beam, respectively.
In both cases, the transmission is seen to be unity. The matrix
defined in Eq. (27) is typically an effective matrix describing
the action of a series of elements [3]. Consider an incident field
that is x-polarized, meaning that only the element W (i)

xx is non-
zero. On using Eq. (27) in Eq. (13) for the T matrix, we obtain
expressions for the CSD elements of the radially polarized output
beam, from which it follows that

η(o)rad (ρ1, ρ2) = cos (ϕ1 − ϕ2) η
(i) (ρ1, ρ2) . (28)

In words, the non-uniform polarizer transforms a linear cor-
relation for Ex into a correlation for the radial field that is of
the same form multiplied by a geometrical factor. Specifically,
opposite points ρ1 = −ρ2 are anti-correlated. Equation (28) is

Fig. 3. Contours of a spectral DOC of radial vector beam. In this
example, ρ2 is kept fixed at (9, 4)mm (indicated by the black circle),
while ρ1 is varied. Coherence radius δxx = 15 mm.

a generalization of a similar result for spatially fully coherent
light reported by Brown et al. [12]. In Fig. 3, the spatial degree
of coherence η(o)rad (ρ1, ρ2) is shown for a fixed reference point
ρ2 (black circle). The dashed white circle indicates points at the
same distance from the beam axis. The coherence is mirror sym-
metric about the line through the beam axis and ρ2. A second line
perpendicular to this, and also passing through the beam axis,
separates the regions where η(o)rad (ρ1, ρ2) has an opposite sign.
This means that, for all points ρ on this line, η(o)rad (ρ, ρ2) = 0, and
hence (ρ, ρ2) are coherence singularities [13,14]. Such singu-
larities are not present in the incident beam, but are created by
the polarizing device.

For an input with vertical polarization, which generates
an azimuthally polarized beam, the same relation between
η(o)az (ρ1, ρ2), the DOC in the output plane, and η(i) (ρ1, ρ2) is
found. For both input polarizations it is readily found that
Det W(o)(ρ, ρ) = 0, and hence P(o)(ρ) = 1.

Conclusions. We have studied the transmission properties of
linear polarizers and non-uniform polarizers. For the first type,
a generalization of Malus’ law, which is also valid for partially
polarized beams, was derived. Both devices were found to affect
the spatial coherence properties of a beam in a non-trivial way. In
particular, coherence singularities may be created. In all cases,
the output beam is fully polarized but spatially partially coherent.
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