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Abstract: We explore the interference of two bichromatic vector beams in Young’s interference
experiment. Our analysis focuses on determining the conditions under which the superposition of
such beams, emerging from the pinholes, can give rise to Lissajous-type polarization singularities
on the observation screen. Two independent sufficiency conditions are derived. This analysis
aids in comprehending the inherent characteristics of Lissajous singularities. To the best of
our knowledge, this is the first demonstration of the singular behavior of polarization in a
two-frequency field in Young’s interference experiment.
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1. Introduction

Singularities in wavefields have become important objects of study, both for their unusual physical
properties and the use of those properties to improve optical systems. The classic singularities are
optical vortices in scalar wavefields, which are lines of zero intensity in three-dimensional space
around which the phase has a circulating or helical structure [1]. Beams with optical vortices
have been used for a variety of applications, including free-space optical communications [2],
super-resolved imaging [3], and coronagraphy [4].

In vector electromagnetic fields, optical vortices are not typically seen and instead the typical
singularities encountered are polarization singularities [5], which for paraxial fields include lines
of circular polarization (on which the orientation of the polarization ellipse is undefined) and
surfaces of linear polarization (on which the handedness of the polarization ellipse is undefined).
Polarization singularities have also been used for a number of applications, including imaging
[6,7] and light-matter manipulation [8].

Both optical vortices and polarization singularities are typically studied in monochromatic
fields. It is possible to generalize them further, however, and consider the types of singularities
that appear in bichromatic fields where the higher frequency is a harmonic of the lower. The
electric field vector then traces out a Lissajous figure instead of an ellipse; singularities of the
generalized orientation of this figure are called Lissajous singularities, and were first introduced
by Freund and Kessler [9,10]. These singularities, like polarization singularities and optical
vortices, have potential to be used in imaging and communications, and recently a class of beams
containing a single Lissajous singularity at their core was formulated [11].

Though the topology of Lissajous singularities has been well-formulated, the conditions under
which Lissajous singularities can be formed, for example through interference, are still unclear.
Young’s interference experiment provides a unique platform for exploring a rich variety of
phenomena in both classical optics and quantum optics [12]. In 2003, it was used to investigate
singularities of the correlation function that appear in partially coherent light [13]. In 2009, the
experiment was used to analyze the creation of polarization singularities [14]. It is natural, then,
to consider Young’s experiment for bichromatic fields in order to determine conditions under
which Lissajous singularities can be created in interference.

#510413 https://doi.org/10.1364/OE.510413
Journal © 2024 Received 7 Nov 2023; revised 8 Dec 2023; accepted 10 Dec 2023; published 21 Dec 2023

https://orcid.org/0000-0002-0446-0640
https://orcid.org/0000-0002-6269-1068
https://orcid.org/0000-0002-3100-5985
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.510413&amp;domain=pdf&amp;date_stamp=2023-12-21


Research Article Vol. 32, No. 1 / 1 Jan 2024 / Optics Express 814

In this study, we use Young’s interference experiment to investigate the superposition of two
vector beams, each possessing two frequency components, and we derive sufficiency conditions
under which the Lissajous-type polarization singularities are formed on the observation screen.
We give examples of the Lissajous patterns and singularities created under these conditions, and
demonstrate additional cases of singularity creation.

2. Lissajous singularities

Consider a beam-like electromagnetic field traveling along the z-direction, and containing
frequencies ωa and ωb. At position r and time t, its electric field can be expressed as

E(r) = Re
[︁
A(r)e−iωat + B(r)e−iωbt]︁ , (1)

where A and B are complex vectors with x and y-components. Because these vectors are complex,
a complete characterization of the electric field requires eight real numbers. In a circular
polarization basis with unit vectors

ϵ±=
1√
2
(x̂ ± iŷ), (2)

the electric field at each point and at each individual frequency can be written as

E = Elϵ++Erϵ−, (3)

with El and Er the complex amplitude of the left- and right-handed component, respectively. The
four Stokes parameters may be written as [15]

S0 = |El |2 + |Er |2, (4)

S1 = 2 Re[E∗
l Er], (5)

S2 = 2 Im[E∗
l Er], (6)

S3 = |El |2 − |Er |2. (7)
Using the circular basis allows us to take advantage of the simple relation between S1 and S2,

as we will see. Because the Stokes parameters are cycle-averaged, those of the total bichromatic
field are simply the sum of the parameters at each of the two frequencies, i.e.,

Sj = Sj,a + Sj,b, j ∈ {0, 1, 2, 3}. (8)

In analogy with polarization singularities in a monochromatic field, two types of singularities
can occur in a bichromatic field [10]: singularities of handedness and singularities of orientation.
Because the latter is a direct analogue of vortices, it has broad potential applications compared to
singularities of handedness which are surfaces in 3-D. Thus, this paper focuses exclusively on
Lissajous singularities of orientation, hereafter referred to as Lissajous singularities.

A Lissajous singularity is a polarization singularity in a bichromatic field where the total
complex Stokes field S12 equals zero, i.e.

S12 ≡ S1 + iS2 = 0, (9)

which means a Lissajous singularity only appears when S1 and S2 both equal 0. At a singularity,
the pattern’s orientation angle with respect to the x-axis is undefined; this orientation angle is
given by [9]

tan(2ψ) = S2
S1

. (10)

In a bichromatic field, a singularity of orientation is not a simple figure like circular polarization
in the monochromatic case, but is generally a Lissajous figure.
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3. Bichromatic version of Young’s experiment

Let us consider Young’s setup, as sketched in Fig. 1, in which a bichromatic beam, with
frequencies ωa and ωb and corresponding wavenumbers ka and kb, is normally incident on a
screen A that contains two identical pinholes separated by a distance d. The polarization state at
the two frequencies need not be equal, and may be different at each pinhole. The superposition
of the fields emanating from the apertures Q1 and Q2 is observed at a point P = (x, 0,∆z) on a
second, parallel screen B.

𝑧

𝑥

𝑑

Bichromatic
beam A B

𝑃𝑅1

𝑅2

Δ𝑧

𝑄1

𝑄2

Fig. 1. Young’s experiment with two frequencies. A bichromatic beam is incident on screen
A in the plane z = 0, which contains two identical pinholes, Q1 at (d/2, 0, 0), and Q2 at
(−d/2, 0, 0). The observation screen B is located in the plane z = ∆z. The two distances
(dashed lines) are R1 = Q1P and R2 = Q2P.

At frequency β (with β = a, b), the transverse field at P has the form

Eβ(P) = A1,βK1,β ê1,βeikβR1 + A2,βK2,β ê2,βeikβR2 . (11)

Here, Ai,β represents the amplitude of the field at the βth frequency emanating from the
aperture Qi, and êi,β , with i = 1, 2, is a unit polarization vector expressed in the circular basis, as
indicated in Eq. (2), that characterizes the polarization state at the aperture Qi. Explicitly,

êi,β = pi,βϵ++mi,βϵ−, (12)

with |pi,β |2 + |mi,β |2 = 1. We shall take pi,β to be complex while mi,β is assumed to be real. The
propagator Ki,β is given by the expression [16]

Ki,β =
dA

iλβRi
, (13)

where dA is the pinhole area, and λβ = 2π/kβ . Under typical circumstances the two distances x
and d are much smaller than the screen separation ∆z. We then have to a good approximation

R2 − R1 ≈ xd
∆z

, (14)

and
K1,β ≈ K2,β = Kβ . (15)

In our derivation we make use of these two approximations, but in the simulations the exact
form of the expressions will be used.

Because the propagator depends on λβ , as seen in Eq. (13) the apertures will preferentially
transmit more light of the smaller wavelength component. This will cause the smaller wavelength
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to dominate on the observation screen and wash out any Lissajous singularities. To eliminate
the difference in amplitude at the two frequencies caused by their respective propagators, we let
Ai,β = 1/Kβ , to obtain a normalized vector field

Ēβ(P) = ê1,βeikβR1 + ê2,βeikβR2 . (16)

This could be done experimentally by placing appropriate spectral filters in front of the pinholes
Qi.

The resulting normalized Stokes parameters at frequency β on the observation screen are thus

S̄1,β(P) = 2 Re[Ē∗
l,β(P)Ēr,β(P)], (17)

S̄2,β(P) = 2 Im[Ē∗
l,β(P)Ēr,β(P)], (18)

where
Ēl,β(P) = Ēβ(P) · ϵ∗+, (19)

Ēr,β(P) = Ēβ(P) · ϵ∗−. (20)

For brevity we omit, from now on, the dependence on the position P. At frequency a we thus
have

S̄1,a = 2 Re
[︂(︂

p∗1,ae−ikaR1 + p∗2,ae−ikaR2
)︂ (︂

m1,aeikaR1 + m2,aeikaR2
)︂]︂

, (21)

S̄2,a = 2 Im
[︂(︂

p∗1,ae−ikaR1 + p∗2,ae−ikaR2
)︂ (︂

m1,aeikaR1 + m2,aeikaR2
)︂]︂

. (22)

Similar expressions are obtained for S̄1,b and S̄2,b. Using their additive property, the Stokes
parameters for the total field on the observation screen are thus

S̄1 = S̄1,a + S̄1,b, (23)

S̄2 = S̄2,a + S̄2,b. (24)

It is to be noted that the there are two ways to get a Lissajous singularity at a point: the Stokes
vectors can be identically zero at each frequency, or the different frequency components can
cancel each other out.

4. Lissajous singularities in Young’s experiment

Lissajous singularities appear at points where the zeros of S̄1 and S̄2 coincide. Since these two
parameters are the real and imaginary part of the same expression, it readily follows that these
joint zeros imply a single condition, i.e.,

p∗1,a

[︂
m1,a + m2,aeika(R2−R1)

]︂
+ p∗2,a

[︂
m2,a + m1,ae−ika(R2−R1)

]︂
+ p∗1,b

[︂
m1,b + m2,beikb(R2−R1)

]︂
+ p∗2,b

[︂
m2,b + m1,be−ikb(R2−R1)

]︂
= 0.

(25)

Equation (25) can be rewritten in a compact matrix form as

⟨A|M|A⟩† = 0. (26)

Here
⟨A| =

[︂
e−ikaR1 e−ikaR2 e−ikbR1 e−ikbR2

]︂
, (27)
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|A⟩† is the adjoint of ⟨A|, and

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p∗1,am1,a p∗1,am2,a 0 0

p∗2,am1,a p∗2,am2,a 0 0

0 0 p∗1,bm1,b p∗1,bm2,b

0 0 p∗2,bm1,b p∗2,bm2,b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (28)

This matrix is non-Hermitian, which indicates the possible solutions of Eq. (26) are more
complicated than those of a Hermitian matrix. A necessary condition for Eq. (26) to be satisfied
is Det M = 0, and this can be shown through direct calculation to be automatically satisfied. A
more involved calculation shows that of the four eigenvalues of the matrix, two of them are zero
and two are non-zero.

Because the matrix M is non-Hermitian, it has distinct right and left eigenvectors and these
represent distinct situations when Lissajous singularities will form. Thus,

⟨A|M = ⟨0| (29)

and
M|A⟩† = |0⟩ (30)

are two independent sufficiency conditions to satisfy Eq. (26).
The formulation of the bichromatic interference problem in the matrix form of Eq. (26) is the

most significant finding of this paper. It provides a clear method for determining the conditions
under which the incident bichromatic fields on the pinholes will produce Lissajous singularities.
In the next section, we will delve into the exploration of the two categories of solutions to generate
Lissajous singularities on the observation plane. Since both conditions are only sufficient, it is
possible to find Lissajous singularities in some situations without necessarily satisfying these
sufficiency criteria. We will provide an illustrative example of such a case as well.

5. Examples and discussions

We now look at the conditions of Eqs. (29) and (30) in turn. The condition ⟨A|M = ⟨0| represents
the pair of equations

p∗1,ae−ikaR1 + p∗2,ae−ikaR2 = 0, (31)

p∗1,be−ikbR1 + p∗2,be−ikbR2 = 0. (32)

Because R1 and R2 represent quasi-independent distances, and ka and kb are very large at
optical frequencies, kaR1 and kaR2 will produce every combination of phases over the observation
plane. We write kaR1 as ϕ1, and kaR2 as ϕ2. Since kb = nka, with n = 2, 3, . . ., Eqs. (31) and
(32) can be rewritten as

p∗1,ae−iφ1 + p∗2,ae−iφ2 = 0, (33)

p∗1,be−inφ1 + p∗2,be−inφ2 = 0. (34)

Thus
p1,a = Ae−iφ1 , p2,a = −Ae−iφ2 ,
p1,b = Be−inφ1 , p2,b = −Be−inφ2 ,

(35)

with A, B ∈ R. Figures 2–4 illustrate solutions of Eq. (35) for different ratios of wavenumber and
polarization states of the incident vector beams. We choose mi,β = (1 − |pi,β |2)1/2 in all these
examples, with little loss of generality.
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/2

(b)

(a)

Fig. 2. (a) Intensity [a.u.] (red) and the Stokes parameters S̄1 (green) and S̄2 (blue) along the
x-axis on the observation screen. (b) Lissajous singularities (orange), non-singular Lissajous
patterns (cyan) and the orientation angle ψ (purple) along the x-axis on the observation
screen. In this example n = 2, λa = 800 nm, λb = 400 nm. p1,a = (

√
2/3) exp(i3π/5),

p2,a = −(
√

2/3) exp(iπ/2), p1,b = (1/2) exp(i6π/5), and p2,b = (−1/2) exp(iπ).

In Fig. 2(a), with n = 2, the intensity (solid red curve) exhibits periodic fluctuations and
remains non-zero throughout. Lissajous singularities occur at the intersections of S̄1 = 0 and
S̄2 = 0. In panel Fig. 2(b) it is seen that the orientation angle undergoes a π/2 jump across
each singularity; an analogous π/2 change in orientation occurs when crossing a polarization
singularity in a monochromatic field, regardless of whether the type of generic polarization
singularity is a lemon, star or monstar [1]. Along the x-axis, a recurring array of identical
“crescent” Lissajous singularities (orange curves) forms, interspersed with non-singular Lissajous
patterns of diverse shapes (cyan curves).

In Fig. 3, the frequency ratio n is changed to 3, and we vary the choices of pi,β . It is seen
that the Lissajous singularities take on varied orientations compared to the identical orientations
observed in Fig. 2. A video demonstrating the continuous evolution of Lissajous patterns along
the x-axis can be found in Visualization 1.

In the previous examples, the change in polarization state was accompanied by significant
changes in intensity. Figure 4 shows that this need not be the case: for an appropriate choice of
parameters, Lissajous patterns can manifest along the x-axis while the overall intensity remains

https://doi.org/10.6084/m9.figshare.24520660
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(b)

(a)

/2

Fig. 3. (a) Intensity [a.u.] (red) and the Stokes parameters S̄1 (green) and S̄2 (blue) along
the x-axis on the observation screen. (b) Lissajous singularities (orange), non-singular
Lissajous patterns (cyan) and the orientation angle ψ (purple) along the x-axis on the
observation screen. Here, n = 3, λa = 1200 nm, λb = 400 nm. p1,a = (

√
2/4) exp(i3π/2),

p2,a = −(
√

2/4) exp(iπ/8), p1,b = (1/2) exp(i9π/2), and p2,b = −(1/2) exp(i3π/8) (see
Visualization 1).

effectively constant. In Fig. 4(a), the intensity is essentially constant over the range of interest; the
intensity for each frequency is essentially constant as well. Though there is no observed pattern in
intensity on the observation plane, periodic Lissajous singularities do appear at the intersections
of S̄1 and S̄2 with the x-axis, as evidenced by the π/2 jumps in Fig. 4(b). In this case, Lissajous
singularities are not only of crescent shape. Instead, trefoils and crescents appear alternately.
This suggests a broader range of possible Lissajous singularity shapes on the observation screen.
A video depicting the variation of Lissajous patterns along the x-axis in this scenario is included
in Visualization 2.

We may also consider the second sufficiency condition, M|A⟩† = |0⟩, which yields a pair of
equations

m1,aeikaR1 + m2,aeikaR2 = 0, (36)

m1,beikbR1 + m2,beikbR2 = 0. (37)

https://doi.org/10.6084/m9.figshare.24520660
https://doi.org/10.6084/m9.figshare.24520663
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(b)

(a)

/2

Fig. 4. (a) Intensity [a.u.] (red) and the Stokes parameters S̄1 (green) and S̄2 (blue) along the
x-axis on the observation screen. (b) Lissajous singularities (orange) and the orientation angle
ψ (purple) along the x-axis on the observation screen. Here, n = 2, λa = 800 nm, λb = 400
nm. p1,a = (

√
2/2) exp(i3π/2), p2,a = −(

√
2/2) exp(i3π/2), p1,b = (

√
2/2) exp(i3π), and

p2,b = −(
√

2/2) exp(i3π) (see Visualization 2).

Using a similar notation as for the previous case, we find that

m1,a = Ce−iφ1 , m2,a = −Ce−iφ2 ,
m1,b = De−inφ1 , m2,b = −De−inφ2 ,

(38)

with C, D ∈ R. Because mi,β are all real as we defined in Section 3, the phases ϕ1 and ϕ2 can
only be multiples of 2π. Thus Eqs. (38) reduce to

m1,a = C, m2,a = −C,
m1,b = D, m2,b = −D.

(39)

Since |pi,β | = (1 − |mi,β |2)1/2, there is now no restriction on the phases of pi,β , only on their
amplitude. Thus, in the following examples these four phases are randomly chosen.

In Figs. 5 and 6 two examples are presented for which Eqs. (39) are satisfied. Irrespective of
the pi,β , there is always a Lissajous singularity created at x = 0. This is because on the z-axis,

https://doi.org/10.6084/m9.figshare.24520663
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R1 − R2 = 0 and hence the conditions (36) and (37) are automatically satisfied. Notice that in
Fig. 5, with frequency ratio n = 2, again an array of identical Lissajous singularities is formed.

(b)

(a)

/2

Fig. 5. (a) Intensity [a.u.] (red) and the Stokes parameters S̄1 (green) and S̄2 (blue) along the
x-axis on the observation screen. (b) Lissajous singularities (orange), non-singular Lissajous
patterns (cyan) and the orientation angle ψ (purple) along the x-axis on the observation screen.
Here, n = 2, λa = 800 nm, λb = 400 nm. m1,a =

√
2/2, m2,a = −

√
2/2, m1,b = 1/3, m2,b =

−1/3, p1,a = (
√

2/2) exp(i3π/5), p2,a = (
√

2/2) exp(iπ/3), p1,b = (
√

8/3) exp(i2π/3), and
p2,b = (

√
8/3) exp(iπ/2).

In Figs. 5(b) and 6(b), the blank spots in the continuous interval of the orientation angle plots
appear as S1 = 0 while at those points S2 does not equal 0. The mathematical software encounters
challenges when calculating the Arctan function with an undefined value, resulting in gaps where
we expect continuity.

Because Eqs. (29) and (30) are only sufficient conditions, and not necessary ones, it should
be possible to find cases where Lissajous singularities appear even though neither condition is
satisfied. An example of this is shown in Fig. 7.

We set mi,β = (1 − |pi,β |2)1/2, n = 3, |pi,β | = mi,β =
√

2/2, and the phases of pi,β are randomly
chosen. Lissajous singularities appear with the same shape but different orientations. This
illustrates that the two independent conditions we derived are indeed sufficient, but not necessary.
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(b)

(a)

/2

Fig. 6. (a) Intensity [a.u.] (red) and the Stokes parameters S̄1 (green) and S̄2 (blue) along the
x-axis on the observation screen. (b) Lissajous singularities (orange), non-singular Lissajous
patterns (cyan) and the orientation angle ψ (purple) along the x-axis on the observation screen.
Here, n = 4, λa = 1600 nm, λb = 400 nm. m1,a =

√
3/5, m2,a = −

√
3/5, m1,b = 1/2, m2,b =

−1/2, p1,a = (
√

22/5) exp(i3π/2), p2,a = (
√

22/5) exp(iπ/8), p1,b = (
√

3/2) exp(iπ), and
p2,b = (

√
3/2) exp(i5π/3).
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(b)

(a)

/4

/4

Fig. 7. (a) Intensity [a.u.] (red) and the Stokes parameters S̄1 (green) and S̄2 (blue) along
the x-axis on the observation screen. (b) Lissajous singularities (orange), non-singular
Lissajous patterns (cyan) and the orientation angle ψ (purple) along the x-axis on the
observation screen. Here, n = 3, λa = 1200 nm, λb = 400 nm. p1,a = (

√
2/2) exp(i3π/5),

p2,a = (
√

2/2) exp(iπ/3), p1,b = (
√

2/2) exp(i4π/3), and p2,b = (
√

2/2).

6. Conclusions

We have examined the superposition of two bichromatic beams in Young’s interference experiment,
with the goal of finding conditions under which Lissajous singularities appear in interference.
Two independent sufficiency conditions for the generation of Lissajous singularities were derived.
Several examples, in which either of these conditions is satisfied, were presented, all showing a
variety of Lissajous patterns, both singular and non-singular. Furthermore, it was demonstrated
that, when neither of the two sufficiency conditions is satisfied, it is nevertheless possible to
create singular polarization figures.

Though Lissajous singularities have been relatively unexplored to date, there is increasing
interest in them, for example in studying unusual topological knots and Möbius strips in light
waves [17]. The conditions presented in this paper should serve as a guide for future studies of
such singularities.
Funding. Air Force Office of Scientific Research (FA9550-21-1-0171).
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