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a b s t r a c t

The scattering from a wide class of random scatterers, so-called quasi homogeneous scattering media, is

studied by the use of the Hanbury Brown–Twiss effect. In particular the two-point correlation of

intensity fluctuations and their variance in the far field are analyzed. A new reciprocity relation is

derived, and expressions for the correlation of intensity fluctuations for several different types of

scattering potentials are obtained. The results indicate the possibility of distinguishing, for example,

hollow scatterers from solid ones.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Up to now the only application of the famous Hanbury Brown–
Twiss effect [1–4] in the optical region of the electromagnetic
spectrum has been the determination of angular diameters of
stars. The effect is based on the surprising discovery that when a
light beam illuminates two photo-detectors, the photo-electrons
ejected from them are, in general, correlated and the correlation is
proportional to the correlation between the intensity fluctuations
of the light incident on them. In more recent years such intensity–
intensity correlation (or particle–particle correlation) experi-
ments have been successfully used in fields such as nuclear
physics [5], atomic physics [6], condensed matter physics [7],
and in the characterization of rough surfaces [8].

A novel use of the Hanbury Brown–Twiss effect in optics was
recently proposed by Xin et al. [9] who studied correlations between
the intensity fluctuations in light scattered by so-called quasi-homo-
geneous random media. Shortly afterwards, Jacks and Korotkova [10]
extended the analysis of [9] to a wider class of incident fields.

Quasi-homogeneous media are characterized by the property
that the strength of their scattering potential SF ðr,oÞ at a parti-
cular frequency o varies much more slowly with position than
ll rights reserved.
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the correlation coefficient mF ðr1,r2,oÞ ¼ mF ðr2�r1,oÞ varies with
the position difference r2�r1 [4, Section 6.3.3]. Examples of such
media are the atmosphere, and confined plasmas.

Quasi-homogeneous scatterers have been the subject of sev-
eral studies. It has been shown that, within the accuracy of the
first-order Born approximation, the spectral density of the scat-
tered field in the far zone is proportional to the Fourier transform
of the correlation coefficient of the scatterer; and that the spectral
degree of coherence of the scattered field in the far zone is
proportional to the Fourier transform of the strength of the
scattering potential [11]. These two reciprocity relations can be
applied to study certain inverse problems [12–15]. Reciprocity
relations pertaining to the scattering of light generated by quasi-
homogeneous sources by quasi-homogeneous media were pre-
sented in [16]. However, unlike Ref. [9] which deals with fourth-
order (intensity) correlations, all these studies are concerned with
second-order (field) correlations.

In the present paper we use the approach of Xin et al. to study
the scattering of a monochromatic, plane wave by a quasi-
homogeneous medium. We analyze the correlation between the
intensity fluctuations of the scattered field and their variance. We
derive a new reciprocity relation, and we also investigate the
correlation of intensity fluctuations produced by several types of
scattering potentials.

We begin, in Section 2, with a brief discussion of the intensity–
intensity correlations that occur when a monochromatic plane
wave is scattered by a quasi-homogeneous medium. In the third
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section two fourth-order reciprocity relations are discussed. In
the fourth section analytic expressions for the intensity correla-
tions for different types of scattering strengths are derived. We
find that for hollow scatterers such correlations differ signifi-
cantly from those for solid scatterers.
2. Scattering from quasi-homogeneous media

Consider a monochromatic, plane wave of frequency o, with
space-dependent part

UðiÞðr,oÞ ¼ aðoÞeiks0 �r ð1Þ

(a time-dependent part expð�iotÞ being understood) which is
incident on a quasi-homogeneous scatterer. Here r denotes a
position vector of a point in space, aðoÞ is a (generally complex-
valued) amplitude, s0 is a real unit vector in the direction of
incidence, and k¼ 9k9¼o=c, with c being the speed of light in
vacuum, is the wavenumber associated with frequency o. On
making use of the first-order Born approximation, the scattered
field is given by the expression [17, Section 13.1]

UðsÞðr,oÞ ¼
Z

D
UðiÞðr0,oÞFðr0,oÞGðr,r0,oÞ d3r0, ð2Þ

where D denotes the domain occupied by the scatterer (see
Fig. 1), and the scattering potential

Fðr,oÞ ¼ k2

4p ½n
2ðr,oÞ�1�, ð3Þ

with nðr,oÞ the index of refraction of the scattering medium.
Furthermore,

Gðr,r0,oÞ ¼ eik9r�r09

9r�r09
ð4Þ

is the outgoing free-space Green’s function of the Helmholtz
operator. Sufficiently far away from the scatterer:

Gðru,r0,oÞ � eikr

r
e�iku�r0 ðkr-1, with u kept fixedÞ ð5Þ

and 9u9¼ 1. From now on we no longer display the o-dependence
of the various quantities.

The correlation function of the scattering potential is given by
the expression:

CF ðr1,r2Þ ¼/Fn
ðr1ÞFðr2ÞS, ð6Þ

where the angular brackets indicate the average, taken over an
ensemble of realizations of the scatterer. The normalized correla-
tion coefficient of the scattering potential is defined by the
formula:

mF ðr1,r2Þ ¼
CF ðr1,r2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SF ðr1ÞSF ðr2Þ

p , ð7Þ

with the strength of the scattering potential

SF ðrÞ ¼ CF ðr,rÞ: ð8Þ

The spectral density (intensity at frequency o) of the scattered
field at a point r� ru in the far zone is given by the formula [18,
s0

D

ru

O

r

Fig. 1. A plane wave incident on a quasi-homogeneous scatterer occupying a

volume D. The unit vectors s0 and u indicate the directions of incidence and of

scattering, respectively.
Section 4.3.2]

SðsÞðruÞ ¼/UðsÞnðruÞUðsÞðruÞS: ð9Þ

The intensity fluctuation of the scattered field at a point specified
by the position vector ru is defined as

DIðsÞðruÞ ¼ IðsÞðruÞ�SðsÞðruÞ, ð10Þ

with IðsÞðruÞ denoting the intensity of the scattered field in the far
zone due to a single realization of the scatterer, i.e.,

IðsÞðruÞ ¼
9a92

r2

ZZ
D

e�ikðs0�uÞ�ðr0�r00 ÞFn
ðr0ÞFðr00Þ d3r0 d3r00: ð11Þ

Here we have made use of Eqs. (1), (2) and (5). The correlation of
the intensity fluctuations at a pair of points r1u1 and r2u2 in the
far zone is defined by the formula:

Dðr1u1,r2u2Þ ¼/DIðsÞðr1u1ÞDIðsÞðr2u2ÞS: ð12Þ

In the remainder we will examine the properties of this correla-
tion function.
3. Two reciprocity relations

In Appendix A it is shown that, under the assumption that the
fluctuations of the scattering potential are governed by Gaussian
statistics, the correlation of the intensity fluctuations of light
scattered by a quasi-homogeneous medium can be expressed as

Dðr1u1,r2u2Þ ¼
9a94

r2
1r2

2

9 ~SF ½kðu1�u2Þ� ~mF ½kðs0�ðu1þu2Þ=2Þ�92
, ð13Þ

where ~SF ½K� and ~mF ½K� denote the three-dimensional spatial
Fourier transforms of the strength and of the correlation coeffi-
cient of the scattering potential, respectively. We define the
normalized correlation function of the intensity correlations of
the scattered field in the far zone by the following expression:

I ðr1u1,r2u2Þ ¼
Dðr1u1,r2u2Þ

SðsÞðr1u1ÞS
ðsÞ
ðr2u2Þ

: ð14Þ

The spectral density of the scattered field and the normalized
correlation function of the scattering potential are related by a
second-order reciprocity relation [11,16], namely

SðsÞðruÞ ¼
9a92 ~SF ð0Þ

r2
~mF ½kðs0�uÞ�: ð15Þ

On making use of Eq. (15) it follows that

I ðr1u1,r2u2Þ ¼
9 ~SF ½kðu1�u2Þ�9

2

~S
2

F ð0Þ
�

~m2
F ½kðs0�ðu1þu2Þ=2Þ�

~mF ½kðs0�u1Þ� ~mF ½kðs0�u2Þ�
: ð16Þ

In deriving Eq. (16) we made use of the fact that ~mF ðKÞ is real-
valued (see Appendix A). For quasi-homogeneous scatterers mF ðrÞ
is a ‘‘fast’’ function of its argument, and hence its Fourier trans-
form ~mF ðKÞ is a ‘‘slow’’ function. We have, therefore, to a good
approximation

~mF ½kðs0�u1Þ� � ~mF ½kðs0�u2Þ�, ð17Þ

� ~mF ½kðs0�ðu1þu2Þ=2Þ�: ð18Þ

On making use of these approximations in Eq. (16) we find that
the normalized correlation coefficient of the intensity fluctuations
at the two points r1u1 and r2u2 is given by the expression:

I ðr1u1,r2u2Þ ¼
9 ~SF ½kðu1�u2Þ�9

2

~S
2

F ð0Þ
: ð19Þ

Eq. (19) is a reciprocity relation, in agreement with a result
derived by Xin et al. [9], which asserts that the normalized
correlation coefficient of the intensity fluctuations of the



1 2 3 4 5

0.2

0.4

0.6

0.8

1

SF(r)

a

b
c

r

Fig. 2. Examples of different forms of the strength of the scattering potential SF ðrÞ,
namely: a Gaussian function (a), an exponential function (b), and a shifted

Gaussian function (c).
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Fig. 3. Two directions of scattering, u1 and u2, that are located symmetrically with

respect to the direction of incidence s0.
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Fig. 4. The normalized correlation coefficient I ðru1 ,ru2Þ of the intensity fluctua-

tions for a scatterer with a Gaussian distribution of the scattering strength, as a

function of the angle y between the two directions of scattering.
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scattered field in the far zone of a quasi-homogeneous scatterer
with Gaussian statistics is proportional to the squared modulus of
the Fourier transform of the strength of the scattering potential.

Formula (19), which is a fourth-order result, can be cast in a
different form with the help of another of the aforementioned
second-order reciprocity relations, namely [11,16]

mðsÞðr1u1,r2u2Þ ¼
~SF ½kðu1�u2Þ�

~SF ð0Þ
exp½ikðr2�r1Þ�: ð20Þ

This formula shows that the spectral degree of coherence of the
scattered field in the far zone of a quasi-homogeneous scatterer
with Gaussian statistics is proportional to the Fourier transform of
the normalized strength of the scattering potential. On substitut-
ing from Eq. (20) into Eq. (19) one finds at once that

I ðr1u1,r2u2Þ ¼ 9mðsÞðr1u1,r2u2Þ9
2
: ð21Þ

Eq. (21) shows that the normalized correlation coefficient of the
intensity fluctuations of the scattered field in the far zone of a
quasi-homogeneous scatterer with Gaussian statistics is propor-
tional to the squared modulus of the spectral degree of coherence
of the scattered field. Also, since the modulus of the spectral
degree of coherence is bounded by zero and by unity [18, Section
4.3.2], it follows from Eq. (21) that

0rI ðr1u1,r2u2Þr1: ð22Þ

The variance VðruÞ of the intensity fluctuations at a point ru in
the far zone is given by the ‘‘diagonal elements’’ of the correlation
of the intensity fluctuations, viz.

VðruÞ �Dðru,ruÞ, ð23Þ

¼
9a94

r4
~S

2

F ð0Þ ~m
2
F ½kðs0�uÞ�, ð24Þ

where we have used Eq. (13). Expression (24) brings into evidence
a second reciprocity relation, which may be stated as follows: The
variance of the intensity fluctuations of the scattered field in the
far zone of a quasi-homogeneous scatterer with Gaussian statis-
tics is proportional to the square of the Fourier transform of the
correlation coefficient of the scattering potential.

One particular result that can be immediately obtained from
this reciprocity relation and from the expression for the spectral
density equation (15) is that the value of the scintillation index
[20] of the scattered field in the far zone is unity:

gðruÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðruÞ

½SðsÞðruÞ�2

s
¼ 1: ð25Þ

More generally, it can be shown from Eqs. (A.1)–(A.6) that the
assumption of quasi-homogeneity is not needed to obtain this
result. All that is needed is that the scatterer obeys Gaussian
statistics. Hence we find that the scintillation index of the far zone
field generated by weak scattering of a monochromatic plane
wave on a random medium with Gaussian statistics equals unity.
4. Examples of correlations of intensity fluctuations

We will now examine the implications of Eq. (19) for scatter-
ing from several different kinds of the strength SF ðrÞ of the
scattering potential. Three examples will be discussed, namely
(a) a scattering strength given by a Gaussian function, (b) one
given by an exponential function, and (c) one described by a
shifted Gaussian function (see Fig. 2). Whilst the first two
examples represent solid media, the last one, the shifted Gaussian
distribution, represents a hollow scatterer.
4.1. Gaussian function

Let us first assume that the strength of the scattering potential
SF ðrÞ is given by a Gaussian function, i.e.,

SF ðrÞ ¼ A1e�r2=2a2

, ð26Þ

with A1 and a being positive constants that may depend on the
frequency. Its three-dimensional spatial Fourier transform is then
given by the expression:

~SF ðKÞ ¼ A1

Z 1
0

Z 2p

0

Z p

0
e�r2=a2

eiKr cos yr2 sin y dy df dr, ð27Þ

¼ A1a3ð2pÞ3=2e�K2a2=2, ð28Þ

where K ¼ 9K9. In this example, and in the following ones, we
consider two symmetrically located points of observation whose
position vectors, r1 and r2, each make an angle y=2 with the
direction of incidence (see Fig. 3). In this case

9u2�u19
2
¼ 4 sin2

ðy=2Þ: ð29Þ

On substituting from Eqs. (28) and (29) into Eq. (19) we find that

I ðr1u1,r2u2Þ ¼ e�4k2a2 sin2
ðy=2Þ: ð30Þ

The behavior of the correlation coefficient of the intensity
fluctuations for this case is shown in Fig. 4 for several values of
the parameter ka, the normalized effective range of the scattering
strength. It is seen that the angular width of the correlation
coefficient decreases when the width of the scattering strength
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Fig. 6. The normalized correlation coefficient I ðru1 ,ru2Þ of the intensity fluctua-

tions for a scatterer with a shifted Gaussian distribution of the scattering strength,

as function of the angle y between the two directions of observation. In these

examples k¼ 107 m�1, s¼ 10�6 m, and D¼ 15� 10�6 m (a) and 30� 10�6 m (b).
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increases. This is in agreement with the reciprocity relation given
by Eq. (19).

4.2. Exponential function

Let us next assume that the strength of the scattering potential
SF ðrÞ is given by an exponential function, i.e.,

SF ðrÞ ¼ A2e�r=b, ð31Þ

with A2 and b being positive constants that may depend on the
frequency. Then

~SF ðKÞ ¼ A2

ZZZ
e�r=beiKr cos yr2 sin y dy df dr, ð32Þ

¼
4pA2

K

Z 1
0

e�r=br sin ðKrÞ dr, ð33Þ

¼
8pA2b

3

ð1þK2b2
Þ
2
: ð34Þ

On substituting from Eqs. (34) and (29) into Eq. (19) we find that

I ðr1u1,r2u2Þ ¼
1

½1þ4k2b2 sin2
ðy=2Þ�4

: ð35Þ

The behavior of the correlation coefficient of the intensity
fluctuations for selected values of the parameter kb, the normal-
ized width of the scattering strength, is shown in Fig. 5. A
comparison with Fig. 4 shows the same general trends, but the
angular half-width of the correlation coefficient is significantly
smaller for the exponential distribution.

4.3. Shifted Gaussian function

So far we have examined solid scatterers. A hollow scatterer
can be modeled by assuming that the scattering strength is given
by a shifted Gaussian function, i.e.,

SF ðrÞ ¼ A4e�ðr�DÞ
2=2s2

, ð36Þ

with Dbs. This represents a hollow-shell scatterer with radius D
and with thickness s, see Fig. 2. We now have that

~SF ðKÞ ¼ A4

ZZZ
e�ðr�DÞ

2=2s2

eiKr cos yr2 sin y dy df dr, ð37Þ

¼
4pA4

K

Z 1
0

e�ðr�DÞ
2=2s2

r sin ðKrÞ dr, ð38Þ

¼
4pA4

K

ffiffiffiffi
p
2

r
se�K2s2=2

� Im eiKDðDþ iKs2Þ erf
Dffiffiffi
2
p

s
þ

iKsffiffiffi
2
p

� �
þ1

� �� �
: ð39Þ

A derivation of Eq. (39) is given in Appendix B. The normalized
correlation coefficient I ðru1,ru2Þ can be obtained by substituting
Eqs. (39) and (29) into Eq. (19). The result is plotted in Fig. 6. It is
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Fig. 5. The normalized correlation coefficient I ðru1 ,ru2Þ of the intensity fluctua-

tions for a scatterer with an exponential distribution of the scattering strength, as

function of the angle y between the two directions of scattering.
seen that, in contrast to the solid scatterers considered in the
previous examples, the hollow sphere shows a different behavior.
Rather than being a monotonically decreasing function of the
separation angle y, the correlation coefficient is now a damped
oscillating function.
5. Summary and conclusions

In previous studies concerning the scattering of a monochro-
matic plane wave by a quasi-homogeneous random scatterer two
second-order reciprocity relations have been derived, namely

mðsÞðr1u1,r2u2Þ ¼
~SF ½kðu1�u2Þ�

~SF ð0Þ
exp½ikðr2�r1Þ�, ð40Þ

SðsÞðruÞ ¼
9a92 ~SF ð0Þ

r2
~mF ½kðs0�uÞ�: ð41Þ

The strength of the scattering potential SF ðrÞ can be reconstructed
with the help of Eq. (40), by measuring the spectral degree of
coherence mðsÞðr1u1,r2u2Þ in the far zone.

In this paper two fourth-order reciprocity relations for the
scattered field in the far zone of a quasi-homogeneous random
scatterer with Gaussian statistics were discussed, namely

I ðr1u1,r2u2Þ ¼

~SF ½kðu1�u2Þ�

			 			2
~S

2

F ð0Þ
, ð42Þ

VðruÞ ¼
9a94

r4
~S

2

F ð0Þ ~m
2
F ½kðs0�uÞ�: ð43Þ

We note that the fourth-order relations appear to be the ‘‘squared
versions’’ of the second-order expressions. Just like Eq. (40),
Eq. (42) can also be used to reconstruct the scattering potential
SF ðrÞ. The latter case, however, requires relatively simple intensity
correlation experiments. Both approaches yield the Fourier trans-
form of SF ðrÞ. Therefore, in either approach there is the usual loss
of information because of the well-known restrictions imposed by
the Ewald sphere [17, Section 13.1].

We have used Eq. (42) to investigate the intensity fluctuations
correlations for different forms of the scattering strength. It was
found that a hollow sphere can be distinguished from solid
spherical scatterers by examining the angular dependence of
the correlation coefficient. We also showed that spherical scat-
terers with an exponential form of the scattering strength display
a behavior that differs from scatterers with a scattering strength
that is Gaussian.
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Appendix A. Derivation of Eq. (13)

On substituting from Eqs. (1), (2), (5) and (6) into Eq. (9) we
find the following expression for the spectral density of the
scattered field in the far zone:

SðsÞðruÞ ¼
9a92

r2

ZZ
D

e�ikðs0�uÞ�ðr0�r00 ÞCF ðr
0,r00Þ d3r0 d3r00: ðA:1Þ

On making use of Eqs. (A.1), (10) and (11) in the definition of the
correlation of the intensity fluctuations [Eq. (12)], it follows that

Dðr1u1,r2u2Þ ¼
9a94

r2
1r2

2

ZZZ Z
D
/½Fn
ðr0ÞFðr00Þ�CF ðr

0,r00Þ�

�½Fn
ðp0ÞFðp00Þ�CF ðp

0,p00Þ�S

�e�ikðs0�u1Þ�ðr0�r00 Þe�ikðs0�u2Þ�ðp0�p00 Þ d3r0 d3r00d3p0 d3p00:

ðA:2Þ

Under the assumption that the fluctuations of the scattering
potential are governed by Gaussian statistics, the fourth-order
correlations occurring in Eq. (A.2) may be expressed in terms of
second-order correlations with the help of the Gaussian moments
theorem [19]. The expression for the correlation of the intensity
fluctuations then factorizes, and one finds that

Dðr1u1,r2u2Þ ¼ Aðr1u1,r2u2ÞBðr1u1,r2u2Þ, ðA:3Þ

where

Aðr1u1,r2u2Þ ¼
9a92

r1r2

ZZ
D

CF ðr
0,p00Þe�ikðs0�u1Þ�r

0

eikðs0�u2Þ�p
00

d3r0 d3p00

ðA:4Þ

and

Bðr1u1,r2u2Þ ¼
9a92

r1r2

ZZ
D

CF ðp
0,r00Þeikðs0�u1Þ�r00e�ikðs0�u2Þ�p0 d3r00d3p0:

ðA:5Þ

Since CF ðp0,r00Þ ¼ ½CF ðr00,p0Þ�
n it is seen that

Bðr1u1,r2u2Þ ¼ ½Aðr1u1,r2u2Þ�
n: ðA:6Þ

The integral A in Eq. (A.4) can be calculated by invoking the quasi-
homogeneous character of the scatterer, which implies that

CF ðr
0,p00Þ � SF ½ðr

0 þp00Þ=2�mF ðp
00�r0Þ: ðA:7Þ

On changing to sum and difference variables Rþ ¼ ðr0 þp00Þ=2 and
R� ¼ r0�p00, the integral A factorizes into two integrals. Extending
the limits of integration in each variable formally to minus and
plus infinity one finds that

Aðr1u1,r2u2Þ ¼
9a92

r1r2

Z
D

SF ðR
þ
Þeikðu1�u2Þ�R

þ

d3Rþ

�

Z
D
mF ð�R�Þe�ik½s0�ðu1þu2Þ=2��R� d3R�, ðA:8Þ

¼
9a92

r1r2

~SF ½kðu1�u2Þ� ~mF ½kðs0�ðu1þu2Þ=2Þ�, ðA:9Þ

with ~SF ½K� and ~mF ½K� being the three-dimensional spatial Fourier
transforms of the strength of the scattering potential and of the
correlation coefficient of the scatterer, respectively. In the last
step we used the fact that mF ð�KÞ ¼ ½mF ðKÞ�

n and consequently
~mF ½K� is real-valued. On making use of Eq. (A.9), together with Eqs.
(A.3) and (A.6), we obtain for the correlation of the intensity
fluctuations the expression:

Dðr1u1,r2u2Þ ¼
9a94

r2
1r2

2

~SF ½kðu1�u2Þ� ~mF ½kðs0�ðu1þu2Þ=2Þ�
			 			2, ðA:10Þ

which is Eq. (13).
Appendix B. Derivation of Eq. (39)

Eq. (38) can be re-written in the form:

~SF ðKÞ ¼ B Im

Z 1
0

e�ðr�DÞ
2=2s2

reiKr dr

� �
, ðB:1Þ

where B¼ 4pA4=K. On making the change of variables x¼ r�D,
one finds that

~SF ðKÞ ¼ B Im eiKD
Z 1
�D

e�x2=2s2

x eiKx dx

�
þeiKDD

Z 1
�D

e�x2=2s2

eiKx dx

�
:

ðB:2Þ

The first term of Eq. (B.2), Q say, can be transformed by partial
integration into

Q ¼ B Im eiKD
Z 1
�D

e�x2=2s2

x eiKx dx

� �
, ðB:3Þ

¼ B Im eiKDiKs2

Z 1
�D

e�x2=2s2

eiKx dx

� �
: ðB:4Þ

Completing the square, the right-hand side of Eq. (B.4) can be
expressed in the form

Q ¼ B Im eiKDiKs3
ffiffiffi
2
p

e�K2s2=2

Z 1�iKs=
ffiffi
2
p

�D=ð
ffiffi
2
p

sÞ�iKs=
ffiffi
2
p e�y2

dy

( )
, ðB:5Þ

¼ B Im eiKDiKs3e�K2s2=2

ffiffiffiffi
p
2

r
erf

Dffiffiffi
2
p

s
þ

iKsffiffiffi
2
p

� �
þ1

� �� �
, ðB:6Þ

with erfðzÞ denoting the error function:

erfðzÞ ¼
2ffiffiffiffi
p
p

Z z

0
e�t2

dt ðB:7Þ

and where the fact that erfð1Þ ¼ 1 has been used. Similarly, the
second term of Eq. (B.2), T say, can be re-written as

T ¼ B Im eiKDD
Z 1
�D

e�x2=2s2

eiKx dx

� �
, ðB:8Þ

¼ B Im eiKDDse�K2s2=2

ffiffiffiffi
p
2

r
erf

Dffiffiffi
2
p

s
þ

iKsffiffiffi
2
p

� �
þ1

� �� �
: ðB:9Þ

Adding Eqs. (B.6) and (B.9) yields Eq. (39).
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