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ABSTRACT
We study the correlation of intensity fluctuations in random electromagnetic beams, the so-called
Hanbury Brown–Twiss effect (HBT). We show that not just the state of coherence of the source, but
also its state of polarization has a strong influence on the far-zone correlations. Different types of
sources are found to have different upper bounds for the normalized HBT coefficient.
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1. Introduction

In their landmark experiment,HanburyBrownandTwiss
studied the correlation of intensity fluctuations at two
detectors with a variable separation distance, to deter-
mine the angular diameter of radio stars (1–3). Since then
the eponymous Hanbury Brown–Twiss effect (HBT) has
been applied inmany other fields, such as nuclear physics
(4) and atomic physics (5–7). In optics, it has been used
to study certain inverse problems (8, 9), and to determine
the mode index of vortex beams (10). It is also explored
in classical versions of ghost imaging (11).

In the original astronomical studies that were carried
out by Hanbury Brown and Twiss, polarization issues
could be ignored, and therefore a scalar description suf-
ficed (12, Ch. 7). A generalization to random electromag-
netic beams, as generated for example, by multi-mode
lasers, can be found in (13, Ch. 8). In recent years, sev-
eral studies were dedicated to the correlation of intensity
fluctuations in such beams, among them (14, 15), in
which the degree of cross-polarization was introduced.
The usefulness of this concept has been questioned in
(16). The evolution of the HBT effect during propagation
was studied in (17 , 18).

In the present study, we examine the far-zone HBT
effect that occurs in a wide class of partially coherent
beams, the so-called Electromagnetic Gaussian Schell-
Model (EGSM) beams (12). As we will demonstrate, not
just the state of coherence of the source, but also its state
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of polarization plays a major role. Also, different types of
sources are found to have different upper bounds for the
normalized HBT coefficient.

2. The HBT effect in random electromagnetic
beams

We consider a stochastic, wide-sense stationary, electro-
magnetic beam propagating close to the z axis into the
half-space z > 0 (see Figure 1). The vector ρ = (x, y)
denotes a transverse position. To simplify the notation,
we will from here on suppress the ω dependence of the
various quantities. In the space–frequency formulation of
coherence theory, the coherence and polarization prop-
erties of a beam at two points ρ1 and ρ2 in the same
transverse plane z can be described by its cross-spectral
density (CSD) matrix (12)

W(ρ1, ρ2, z) =
(
Wxx(ρ1, ρ2, z) Wxy(ρ1, ρ2, z)
Wyx(ρ1, ρ2, z) Wyy(ρ1, ρ2, z)

)
, (1)

with

Wij(ρ1, ρ2, z) = 〈E∗
i (ρ1, z)Ej(ρ2, z)〉, (i, j = x, y),

(2)
where the angled brackets denote an ensemble average.
The intensity of a single realization of the beam is
defined as
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Figure 1. Illustrating the Hanbury Brown–Twiss experiment. D1
and D2 are intensity detectors, located in the far zone at (ρ1, z)
and (ρ2, z), whose output is sent to a correlator that is connected
to a pc.

I(ρ, z) = |Ex(ρ, z)|2 + |Ey(ρ, z)|2, (3)

whereas its expectation value

〈I(ρ, z)〉 = 〈|Ex(ρ, z)|2〉 + 〈|Ey(ρ, z)|2〉 (4)
= TrW(ρ, ρ, z), (5)

where Tr denotes the trace. The intensity variation is
given by the expression

�I(ρ, z) = I(ρ, z) − 〈I(ρ, z)〉. (6)

We can introduce a measure of the correlation of in-
tensity fluctuations at two points by defining the HBT
coefficient as

C(ρ1, ρ2, z) = 〈�I(ρ1, z)�I(ρ2, z)〉. (7)

If the source fluctuations are governed byGaussian statis-
tics, one can use the Gaussianmoment theorem to derive
that (14, Equation (8))

C(ρ1, ρ2, z) =
∑
i,j

∣∣Wij(ρ1, ρ2, z)
∣∣2 . (8)

It is convenient to use a normalized correlation coeffi-
cient, indicated by the subscript N , namely

CN (ρ1, ρ2, z) = C0(ρ1, ρ2, z)
〈I(ρ1, z)〉〈I(ρ2, z)〉

(9)

=
∑

i,j
∣∣Wij(ρ1, ρ2, z)

∣∣2
TrW(ρ1, ρ1, z)TrW(ρ2, ρ2, z)

. (10)

It can be shown (16) that 0 ≤ CN (ρ1, ρ2, z) ≤ 1.

3. Electromagnetic Gaussian Schell-model
beams

The cross-spectral density matrix elements of an EGSM
beam in the source plane z = 0 read

Wij(ρ1, ρ2, 0)

= AiAjBij exp

[
− ρ2

1
4σ 2

i
− ρ2

2
4σ 2

j
− (ρ1 − ρ2)

2

2δ2ij

]
. (11)

The source parameters Ai, Bij, σi and δij are independent
of position, but may depend on frequency. For their
physical meaning, we refer to (19, 20). We will restrict
ourselves to the case where the width of the spectral
densities associated with Ex and Ey are equal, i.e. we
assume that σx = σy = σ . The parameters have to satisfy
several constraints, i.e. (12, Sec. 9.4.2)

Bxx = Byy = 1, (12)
Bxy = B∗

yx , (13)∣∣Bxy∣∣ ≤ 1, (14)
δxy = δyx. (15)

Furthermore, the two conditions for the source to gener-
ate a beam-like field are (21)

1
4σ 2 + 1

2δ2ii
� 2π2

λ2
. (16)

And finally, the non-negativeness of the cross-spectral
density matrix implies that (22)

√
δ2xx + δ2yy

2
≤ δxy ≤

√
δxxδyy∣∣Bxy∣∣ . (17)

After propagating a distance z through free space, the
CSDmatrix elements evolve into (see (12), where the one
but last minus sign in Equation (10) on p. 184 should be
a plus sign):

Wij(ρ1, ρ2, z) = AiAjBij
�2

ij(z)
exp

[
− (ρ1 + ρ2)

2

8σ 2�2
ij(z)

]

× exp

[
− (ρ1 − ρ2)

2

2�2
ij�

2
ij(z)

+ ik(ρ2
2 − ρ2

1)

2Rij(z)

]
,

(18)

where

1
�2

ij
= 1

4σ 2 + 1
δ2ij

, (19)

�2
ij(z) = 1 + (z

/
σk�ij)

2, (20)

Rij(z) = [1 + (σk�ij
/
z)2]z, (21)

and k = ω/c is the wavenumber, c being the speed of
light. Because we intend to study the HBT effect in the
far zone of the source, we note for future use that
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lim
z→∞ �2

ij(z) = z2

(σk�ij)2
, (22)

lim
z→∞Rij(z) = z. (23)

Wewill apply Equations (18), (22) and (23) to beams that
are generated by different types of sources.

4. Unpolarized beams

For a rotationally symmetric, unpolarized source that
generates an EGSM beam, we have that

Ax = Ay = A, (24)
δxx = δyy = δ, (25)
Bxy = Byx = 0, (26)
δxy = δyx = 0. (27)

The two non-zero matrix elements are equal, i.e.

Wxx(ρ1, ρ2, z) = Wyy(ρ1, ρ2, z) = W(ρ1, ρ2, z), (28)

with, in the far zone,

W(ρ1, ρ2, z) =
(
Akσ�

z

)2
exp

[
− (ρ1 + ρ2)

2k2�2

8z2

]

× exp
[
− (ρ2 − ρ1)

2k2σ 2

2z2

]

× exp

(
ik

ρ2
2 − ρ2

1
2z

)
, (29)

where

1
�2 = 1

4σ 2 + 1
δ2

. (30)

Ifwe take the first reference point to be on the z axis (ρ1 =
0), then it is seen from Equation (29) that W(0, ρ2, z) is
rotationally symmetric, i.e. it depends only on ρ2 = ∣∣ρ2

∣∣.
In the far-field, the polar angle θ ≈ tan θ = ρ2/z.Hence,
the matrix elements can be expressed as

W(0, θ , z) =
(
Akσ�

z

)2
exp

(
−θ2k2�2

8

)

× exp
(

−θ2k2σ 2

2

)
exp

(
ik

θ2z
2

)
. (31)

Using Equation (8), we obtain for theHBT coefficient the
formula

C(0, θ , z) = 2
(
Akσ�

z

)4
exp

(
−θ2k2�2

4

)
× exp

(−θ2k2σ 2) . (32)

From Equations (32) and (10), one readily finds that the
normalized HBT coefficent is given by the expression

CN (0, θ) = 1
2
exp

(
−θ2k2�2

4

)
exp

(−θ2k2σ 2) (33)
= 1

2
exp

(
− 4θ2k2σ 4

δ2 + 4σ 2

)
, (34)

where the z dependence has dropped out. It is evident
from Equation (34) that the far-zone HBT coefficient of
an unpolarized, rotationally symmetric beamdepends on
both the effective source size σ and the correlation length
δ. Also, it is seen that this coefficient has an upper bound
of 1/2.

5. Linearly polarized beams

Let us next consider a source that is linearly polarized
along the x direction. We then have

Ax = A, (35)
δxx = δ. (36)

The only non-zero matrix element,Wxx(ρ1, ρ2, z), takes
on the far-zone form

Wxx(ρ1, ρ2, z) =
(
Akσ�

z

)2
exp

[
− (ρ1 + ρ2)

2k2�2

8z2

]

× exp
[
− (ρ2 − ρ1)

2k2σ 2

2z2

]

× exp

(
ik

ρ2
2 − ρ2

1
2z

)
. (37)

Asbefore,we take thefirst referencepoint,ρ1, to be on the
z axis. Again expressing the relevant quantities in terms
of the polar angle θ , we obtain for the HBT coefficient the
expression

C(0, θ , z) =
(
Akσ�

z

)4
exp

(
−θ2k2�2

4

)
× exp

(−θ2k2σ 2) . (38)

Hence, its normalized version

CN (0, θ) = exp
(

− 4θ2k2σ 4

δ2 + 4σ 2

)
. (39)

It is seen that the far-zone HBT coefficient for a linearly
polarized EGSM beam does not depend on the direction
of polarization. Furthermore, it is twice as large as the
coefficient for unpolarized light, as given by Equation
(34), the upper bound now being unity.
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6. Partially polarized beams

As a third example, we study a partially polarized, rota-
tionally symmetric source. In that case,

Ax = Ay = A, (40)
δxx = δyy = δ. (41)

It immediately follows that

�xx = �yy = � 
= �xy , (42)
�xx = �yy = � 
= �xy. (43)

The two inequalities follow from the fact that, in general,
δxy 
= δ. For the four matrix elements, we now have the
far-zone formulas

Wxx(ρ1, ρ2, z) = Wyy(ρ1, ρ2, z) (44)

=
(
Akσ�

z

)2
exp

[
− (ρ1 + ρ2)

2k2�2

8z2

]

× exp
[
− (ρ2 − ρ1)

2k2σ 2

2z2

]

× exp

(
ik

ρ2
2 − ρ2

1
2z

)
, (45)

Wxy(ρ1, ρ2, z) = Bxy
(
Akσ�xy

z

)2

× exp

[
− (ρ1 + ρ2)

2k2�2
xy

8z2

]

× exp
[
− (ρ2 − ρ1)

2k2σ 2

2z2

]

× exp

(
ik

ρ2
2 − ρ2

1
2z

)
, (46)

Wyx(ρ1, ρ2, z) = B∗
xy

(
Akσ�xy

z

)2

× exp

[
− (ρ1 + ρ2)

2k2�2
xy

8z2

]

× exp
[
− (ρ2 − ρ1)

2k2σ 2

2z2

]

× exp

(
ik

ρ2
2 − ρ2

1
2z

)
, (47)

where in the last expression we made use of the fact that
Byx = B∗

xy and �yx = �xy . Taking the first reference
point ρ1 on axis and expressing the relevant quantities in
terms of the angle θ , we thus find for the HBT coefficient
the formula

C(0, θ , z) = 2
(
Akσ
z

)4
exp

(−θ2k2σ 2)

×
[
�4 exp

(
−θ2k2�2

4

)

+ |Bxy|2�4
xy exp

(
−θ2k2�2

xy

4

)]
. (48)

A straightforward calculation then yields the equations

CN (0, θ) = 1
2
exp

[
−θ2k2

(
σ 2 − �2

2

)]

×
{
exp

[
−
(

θk�
2

)2
]

+
(

�xy

�

)4
|Bxy|2 exp

[
−
(

θk�xy

2

)2
]}

(49)

= 1
2
exp

(
− 4θ2k2σ 4

δ2 + 4σ 2

)

×
{
1 + |Bxy|2

(
�xy

�

)4

× exp

[
−θ2k2(�2

xy − �2)

4

]}
. (50)

Equation (50) shows that the normalized far-zone HBT
coefficient of a rotationally symmetric, partially polarized
source depends on its effective size σ , the two coherence
lengths δ and δxy , and theparameterBxy . Compared to the
unpolarized case, given by Equation (34), the coefficient
is now larger, due to the presence of the factor between
curly brackets that is always greater than unity. The upper
bound now exceeds 1/2 due to the fact that |Bxy| > 0
for partially polarized sources. Clearly, a non-zero cor-
relation between the two Cartesian components of the
electric field in the source plane increases the correlation
of the intensity fluctuations in the far zone. It is worth
pointing out that the constraint expressed by (17) defines
an upper limit for the value of |Bxy|.

We illustrate our results in Figure 2 in which the far-
zone normalized HBT coefficient is plotted for three dif-
ferent kinds of EGSM sources, i.e. an unpolarized source,
a linearly polarized source andapartially polarized source.
The coefficient for the linearly polarized case is the only
onewith a unit upper bound, and its value always exceeds
that of the other cases. The partially coherent source
produces anHBTcoefficent that, at all observation angles,
is larger than that of its unpolarized counterpart.
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Figure 2. The normalized far-zone Hanbury Brown–Twiss
coefficient for three EGSM sources with different states of
polarization: linearly polarized (green curve), partially polarized
(red curve) and unpolarized (blue curve). In these examples, the
parameters are: λ = 632.8 nm, σ = 4 mm, δ = 2 mm, δxy = 2.3
mm and Bxy = 0.5.

7. Conclusions

Wehave examined theHanbury Brown–Twiss effect that
occurs in random beams generated by electromagnetic
Gaussian Schell-model sources. Expressions for the nor-
malized far-zone HBT coefficient were derived in terms
of the source parameters. This coefficient was shown to
have anupper limit that depends on the state of coherence
and polarization in the source plane. Our results show
that the far-zone HBT effect coefficient can be used to
obtain properties of the source.
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