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1. INTRODUCTION
In the mid-1950s Hanbury Brown and Twiss (HBT) deter-
mined the angular diameter of radio stars by analyzing their
correlation of intensity fluctuations [1,2]. Since then such cor-
relation measurements have proven to be a powerful tool that
can be applied across all branches of physics, see for example,
[3–6]. The original description of the HBT effect, which as-
sumes a scalar wave field and is described in [7], was later
generalized to electromagnetic beams, see [8] and [9–12].
One major class of partially coherent electromagnetic beams
are those generated by so-called Gaussian Schell-model
sources [13]. Quite recently two studies were dedicated to
the occurrence of the HBT effect in beams of this type
[14,15]. Another important class of partially coherent sources,
which partially overlaps with those of the Gaussian Schell-
model type, is formed by quasi-homogeneous sources. In
the space-frequency domain, scalar, secondary, planar
quasi-homogeneous sources are characterized by a correla-
tion function, the so-called spectral degree of coherence
μ�0��ρ1; ρ2;ω� that, at each frequency ω, depends on the source
points ρ1 and ρ2 only through their difference ρ2 − ρ1, see
Fig. 1. In addition, these sources have a spectral density
S�0��ρ;ω� that varies much slower with ρ than the modulus
of the spectral degree of coherence varies with ρ2 − ρ1. The
properties of quasi-homogeneous sources and those of the
far-zone fields they generate, are related by two reciprocity
relations. One connects the spectral density of the far field
to the spatial Fourier transform of the spectral degree of co-
herence in the source plane. The other connects the far-zone
spectral degree of coherence to the spatial Fourier transform
of the spectral density of the source [16–23]. Quite recently,
the notion of quasi-homogeneity has been extended to electro-
magnetic sources, and reciprocity relations have been derived

for the beams that they generate [24]. These relations were
then used to illustrate how fundamental field properties, such
as the spectrum, polarization, and state of coherence in the far
zone, typically differ from those in the source plane. In the
present paper we apply these novel reciprocity relations,
under the assumption of Gaussian statistics, to study the
HBT effect. We derive general expressions for the correlation
of intensity fluctuations of the far-zone field, and illustrate our
results with several examples. Quasi-homogeneous sources
can produce a radiant intensity that is rotationally symmetric,
even when the source distribution lacks any symmetry. We
demonstrate that the HBT correlations, in contrast to the ra-
diant intensity, provide information about the source shape.
For example, in certain cases the aspect ratio of the source
can be recovered. Since HBT correlations are obtained from
intensity measurements, rather than phase measurements,
this provides a reconstruction scheme that is relatively robust
to signal degrading factors such as turbulence.

2. CORRELATION OF INTENSITY
FLUCTUATIONS OF PARTIALLY
COHERENT ELECTROMAGNETIC BEAMS
Let us consider a stochastic, wide-sense stationary, electro-
magnetic beam propagating close to the z direction into the
half space z > 0 (see Fig. 1). The source is taken to be the
plane z � 0. The vector ρ � �x; y� denotes a position in a
transverse plane. Let Ex�ρ; z;ω� and Ey�ρ; z;ω� be the Carte-
sian components of the electric field at frequency ω along two
mutually orthogonal x and y directions, perpendicular to the
beam axis. The intensity of a single realization of the beam at a
point �ρ; z� at frequency ω can be expressed as

I�ρ; z;ω� � jEx�ρ; z;ω�j2 � jEy�ρ; z;ω�j2: (1)
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From now on, we suppress the dependence on the frequency
ω in our notation. The intensity is a random quantity, and its
variation from its mean value is

ΔI�ρ; z� � I�ρ; z� − hI�ρ; z�i; (2)

where the angular brackets denote an ensemble average. The
statistical properties of such a beam at a pair of points in a
cross-sectional plane z are described by the 2 × 2 cross-
spectral density matrix, which is defined as [25]

W�ρ1; ρ2; z� �
�
Wxx�ρ1; ρ2; z� Wxy�ρ1; ρ2; z�
Wyx�ρ1; ρ2; z� Wyy�ρ1; ρ2; z�

�
: �3�

It follows from this definition that the ensemble-averaged
intensity can be expressed as

hI�ρ; z�i � TrW�ρ; ρ; z�; (4)

where Tr denotes the trace. The correlation of intensity
fluctuations at points ρ1 and ρ2 in the same cross-sectional
plane z is defined as

C�ρ1; ρ2; z� � hΔI�ρ1; z�ΔI�ρ2; z�i: (5)

We assume that the random fluctuations of the source are
governed by a Gaussian process. It then follows, by use of
the Gaussian moment theorem, that the correlation of inten-
sity fluctuations may be expressed in terms of elements of the
cross-spectral density matrix as [8]

C�ρ1; ρ2; z� �
X
i;j

jWij�ρ1; ρ2; z�j2; �i; j � x; y�: (6)

3. QUASI-HOMOGENEOUS, SECONDARY
PLANAR ELECTROMAGNETIC SOURCES
In this section we establish our notation and briefly review
some recently derived reciprocity relations.

The elements of the cross-spectral density matrix in the
source plane can be written in the form [7]

W �0�
ij �ρ1; ρ2� �

���������������������������������
S�0�
i �ρ1�S�0�

j �ρ2�
q

μ�0�ij �ρ2 − ρ1�; �i; j � x; y�;
(7)

where S�0�
i �ρ� � hjEi�ρ�j2i denotes the spectral density associ-

ated with the Cartesian component Ei of the electric field vec-
tor in the plane z � 0. Its two-dimensional spatial Fourier
transform is defined as

~S�0�
i �f� � 1

�2π�2
Z
z�0

S�0�
i �ρ� exp�−if · ρ�d2ρ: (8)

We also introduce the function

S�0�
xy �ρ� �

��������������
S�0�
x �ρ�

q ��������������
S�0�
y �ρ�

q
; (9)

and its Fourier transform

~S�0�
xy �f� �

1
�2π�2

Z
z�0

��������������
S�0�
x �ρ�

q ��������������
S�0�
y �ρ�

q
exp�−if · ρ�d2ρ: (10)

Similarly, the spatial Fourier transform of the four correlation
coefficients μ�0�ij �ρ� is given by the expression

~μ�0�ij �f� �
1

�2π�2
Z
z�0

μ�0�ij �ρ� exp�−if · ρ�d2ρ: (11)

In [24] it was derived that for a planar, secondary quasi-
homogenous source, the elements of the cross-spectral den-
sity matrix in the far zone, labeled by the superscript �∞�,
are connected to the source properties, labeled by the super-
script (0), through the reciprocity relations

W �∞�
xx �r1s1; r2s2� � �2πk�2 cos θ1 cos θ2

eik�r2−r1�

r2r1

× ~S�0�
x �k�s2⊥ − s1⊥�� ~μ�0�xx �k�s2⊥ � s1⊥�∕2�;

(12)

W �∞�
xy �r1s1; r2s2� � �2πk�2 cos θ1 cos θ2

eik�r2−r1�

r2r1

× ~S�0�
xy �k�s2⊥ − s1⊥�� ~μ�0�xy �k�s2⊥ � s1⊥�∕2�;

(13)

W �∞�
yx �r1s1; r2s2� � �2πk�2 cos θ1 cos θ2

eik�r2−r1�

r2r1

× ~S�0�
xy �k�s2⊥ − s1⊥�� ~μ�0��xy �k�s2⊥ � s1⊥�∕2�;

(14)

W �∞�
yy �r1s1; r2s2� � �2πk�2 cos θ1 cos θ2

eik�r2−r1�

r2r1

× ~S�0�
y �k�s2⊥ − s1⊥�� ~μ�0�yy �k�s2⊥ � s1⊥�∕2�;

(15)

where k � 2π∕λ is the wavenumber associated with wave-
length λ, and sα⊥ � �sin θα cos ϕα; sin θα sin ϕα� is the two-
dimensional projection of the directional unit vector sα onto
the xy plane �α � 1; 2�. Furthermore, θα is the angle between
sα and the positive z axis, and ϕα is the azimuthal angle in
the xy plane.

Fig. 1. Illustrating the notation. The origin O of a right-handed Car-
tesian coordinate system is taken in the source plane z � 0. The trans-
verse two-dimensional vector ρ � �x; y� indicates the position of a
source point. The position vector r of a point in the far zone makes
an angle θ with the positive z axis. Also, r � jrj, and s is a directional
unit vector.
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The radiant intensity of the beam is defined as [8]

J�rs� � r2 TrW�∞��rs; rs�; (16)

� �2πk cos θ�2� ~S�0�
x �0� ~μ�0�xx �ks⊥� � ~S�0�

y �0� ~μ�0�yy �ks⊥��: (17)

It is seen from Eq. (17) that if the functions ~μ�0�xx �ks⊥� and
~μ�0�yy �ks⊥� are both rotationally symmetric, i.e., if they only
depend on jks⊥j, then the radiant intensity is rotationally sym-
metric about the normal to the source plane, irrespective of
the spectral density distribution of the source. As we will see
in Section 6, it is possible to construct sources whose radiant
intensities have rotational symmetry, but whose correlation of
intensity fluctuations lack such symmetry.

4. BEAM CONDITIONS FOR QUASI-
HOMOGENEOUS SOURCES
In order that the field generated by a quasi-homogeneous
source is beam-like, the radiant intensity J�rs� must be neg-
ligible except when the unit vector s lies in a narrow solid
angle about the z axis. It follows from Eq. (17) that this will
be the case when both

j ~μ�0�xx �ks⊥�j ≈ 0; (18)

j ~μ�0�yy �ks⊥�j ≈ 0; (19)

unless s2⊥ ≪ 1. To illustrate these two conditions, we consider
a quasi-homogeneous source whose diagonal correlation
coefficients are both Gaussian, i.e.,

μ�0�xx �ρ� � exp
�
−

ρ2

2δ2xx

�
; (20)

μ�0�yy �ρ� � exp
�
−

ρ2

2δ2yy

�
: (21)

In that case,

~μ�0�xx �ks⊥� �
δ2xx
2π

exp
�
−

δ2xxk2s2⊥
2

�
; (22)

~μ�0�yy �ks⊥� �
δ2yy
2π

exp
�
−

δ2yyk2s2⊥
2

�
: (23)

Equations (18) and (19) are clearly satisfied if both

δxx ≫
λ

π
���
2

p ; (24)

δyy ≫
λ

π
���
2

p : (25)

These two beam conditions are a generalization of the result
for scalar fields that was derived in [8].

5. CORRELATION OF INTENSITY
FLUCTUATIONS
On substituting from Eqs. (12)–(15) into Eq. (6), we obtain for
the correlation of intensity fluctuations in the far zone the
expression

C�∞��r1s1; r2s2� �
��2πk�2 cos θ1 cos θ2

r1r2

�2
× fj ~S�0�

x �k�s2⊥ − s1⊥�� ~μ�0�xx �k�s2⊥ � s1⊥�∕2�j2

�2j ~S�0�
xy �k�s2⊥ − s1⊥�� ~μ�0�xy �k�s2⊥ � s1⊥�∕2�j2

� j ~S�0�
y �k�s2⊥ − s1⊥�� ~μ�0�yy �k�s2⊥ � s1⊥�∕2�j2g:

(26)

We introduce a normalized correlation of intensity fluctua-
tions, labeled by the subscript N , by defining

C�∞�
N �r1s1; r2s2� �

C�∞��r1s1; r2s2�
hI�∞��r1s1�ihI�∞��r2s2�i

; (27)

where

hI�∞��rαsα�i � TrW�∞��rαsα; rαsα�

�
�
2πk cos θα

rα

�
2
� ~S�0�

x �0� ~μ�0�xx �ksα⊥�

� ~S�0�
y �0� ~μ�0�yy �ksα⊥��; �α � 1; 2�: (28)

From now on we consider pairs of observation points that are
located symmetrically with respect to the z axis (see Fig. 2),
i.e., we set r1 � r2 � r; s1⊥ � −s2⊥ � −s⊥, and θ1 � θ2 � θ.

Since the four correlation coefficients μ�0�ij are “fast” func-
tions of their argument, their Fourier transforms ~μ�0�ij will be
“slow” functions. Hence, we may write

~μ�0�ij �ks1⊥� ≈ ~μ�0�ij �ks2⊥� ≈ ~μ�0�ij

�
k�s2⊥ � s1⊥�

2

�
� ~μ�0�ij �0�: (29)

Onmaking use of these approximations in Eq. (27), we find for
the normalized correlation of intensity fluctuations the
formula

C�∞�
N �rs1; rs2� � fj ~S�0�

x �2ks⊥� ~μ�0�xx �0�j2 � 2j ~S�0�
xy �2ks⊥� ~μ�0�xy �0�j2

� j ~S�0�
y �2ks⊥� ~μ�0�yy �0�j2g

× � ~S�0�
x �0� ~μ�0�xx �0� � ~S�0�

y �0� ~μ�0�yy �0��−2;
�r1 � r2 � r; s1⊥ � −s2⊥ � −s⊥�: (30)

We will employ Eq. (30) to investigate the HBT effect for
different kinds of sources.

6. EXAMPLES
Let us first consider an unpolarized, quasi-homogeneous
source with an arbitrary shape. In that case we have

Fig. 2. Two far-zone observation points r1 and r2 that are symmet-
rically located with respect to the z axis.
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S�0�
x �ρ� � S�0�

y �ρ� � S�0��ρ�; (31)

μ�0�xy �ρ� � 0: (32)

We note that for an unpolarized source it is not necessary to
have μ�0�xx �ρ� � μ�0�yy �ρ�, see also the discussion in [26]. Substi-
tution from Eqs. (31) and (32) into Eq. (30) yields the
expression

C�∞�
N �rs1; rs2� �

j ~μ�0�xx �0�j2 � j ~μ�0�yy �0�j2
� ~S�0��0��2� ~μ�0�xx �0� � ~μ�0�yy �0��2

j ~S�0��2ks⊥�j2: (33)

This result shows that for any planar, secondary quasi-
homogeneous, unpolarized source the normalized correlation
of intensity fluctuations between two symmetrically located
far-zone points is proportional to j ~S�0��2ks⊥�j2, i.e., to the
squared modulus of the Fourier transform of the source
spectral density at spatial frequency 2ks⊥.

Next, we consider the case of a disk-shaped source of ra-
dius awith two (possibly different) uniform spectral densities,
and with Gaussian correlation coefficients, i.e.,

S�0�
i �ρ� � A2

i circ�ρ∕a�; (34)

where the circle function

circ�ρ� �
�
1 ifjρj ≤ 1;
0 ifjρj > 1;

(35)

and

μ�0�ij �ρ� � Bij exp
�
−

ρ2

2δ2ij

�
; �i; j � x; y�: (36)

The assumption of quasi-homogeneity implies that a ≫ δij , for
all i; j. The parameters Ai, Bij , and δij are independent of
position, but may depend on the frequency ω. They cannot
be chosen arbitrarily. In particular [7],

Bxx � Byy � 1; (37)

Bxy � B�
yx; (38)

jBxyj ≤ 1; (39)

δxy � δyx: (40)

To ensure that the source generates a beam-like field, the two
correlation lengths δxx and δyy must satisfy the conditions (24)
and (25). Finally, in order for the source to be physically
realizable, its cross-spectral density matrix must be positive
definite. This implies that [27]��������������������

δ2xx � δ2yy
2

s
≤ δxy ≤

��������������
δxxδyy
jBxyj

s
: (41)

[Note that although Eq. (41) is derived in [27] in the context of
Gaussian Schell-model sources, it only depends on the proper-
ties of the correlation coefficients and not on those of the

spectral density of the source. It therefore applies to our ex-
ample.] In the present case the relevant Fourier transforms
are

~S�0�
i �f� � A2

i a
2

2π
J1�af �
af

; (42)

~S�0�
xy �f� �

AxAya2

2π
J1�af �
af

; (43)

~μ�0�ij �f� �
Bijδ

2
ij

2π
exp

�
−

δ2ijf
2

2

�
; (44)

where f � jfj and J1 is the Bessel function of the first kind
and first order. On substituting from Eqs. (42)–(44) into
Eq. (30), we find that

C�∞�
N �rs1; rs2� � 4D

�
J1�2ka sin θ�
2ka sin θ

�
2

(45)

with

D �
P

i;jA
2
iA

2
j jBijj2δ4ij

�A2
xδ

2
xx � A2

yδ
2
yy�2

; (46)

and where we have made the use of the fact that js⊥j � sin θ.
From Eqs. (45) and (46) it is seen that C�∞�

N �rs1; rs2� is
rotationally symmetric about the z axis. We notice that the
off-diagonal coefficient Bxy only appears in the numerator
of the function D. That means that an unpolarized, quasi-
homogeneous source with jBxyj � 0 has a weaker correlation
of its intensity fluctuations than a partially polarized source
with jBxyj ≠ 0. This is shown in Fig. 3 where C�∞�

N �rs1; rs2�
is plotted for selected values of jBxyj. When this parameter
is nearing its upper value (blue curve), which can be calcu-
lated from Eq. (41), the maximum value of C�∞�

N �rs1; rs2� al-
most reaches unity.

Another parameter that significantly influences the far-zone
correlations is the ratio of the two spectral amplitudes Ax and
Ay. Examples are shown in Fig. 4. When Ay ≫ Ax, i.e., ap-
proaching the case of a y-polarized source, the correlation

2. 10-6

0.2

0.4

0.6

0.8

1.0

4. 10-6 6. 10-6 8. 10-6 1. 10-5
θ

C
N   

( r s
1
, r s

2 
) (       )8

Fig. 3. Variation of the normalized correlation of intensity fluctua-
tions in the far zone, as a function of the observation angle θ for differ-
ent values of jBxyj. From top to bottom: jBxyj � 0.9 (blue), 0.6
(purple), 0.3 (olive), 0 (green). In this example a � 3 cm,
δxx � 0.4 mm, δxy � 0.51 mm, δyy � 0.6 mm, Ax � 2, Ay � 1, and
λ � 632.8 nm.
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reaches its maximum value of unity at θ � 0°. The curve de-
creases with decreasing Ay until this spectral amplitude
reaches about 0.7. For lower values the correlation of inten-
sity fluctuations rises again, as the source becomes more and
more like a linear polarized source, but now with its main
polarization along x.

Let us next consider a source with a rectangular shape,
with sides a and b, with two uniform spectral densities,
and with Gaussian correlation coefficients. In that case we
have

S�0�
i �ρ� � A2

i rect�x∕a�rect�y∕b�; (47)

with the rectangle function

rect�x� �
�
1 if jxj ≤ 1∕2;
0 if jxj > 1∕2; (48)

and

μ�0�ij �ρ� � Bij exp
�
−

ρ2

2δ2ij

�
: (49)

The assumption of quasi-homogeneity implies that a ≫ δij and
b ≫ δij , for all i; j. The parameters Ai, Bij , and δij satisfy the
same constraints as in the previous example. The pertinent
Fourier transforms are now

~S�0�
i �f� � ab

�
Ai

2π

�
2
sinc

�
f xa
2

�
sinc

�
f yb
2

�
; (50)

0.2

0.4

0.6

0.8

1.0

2. 10-6 4. 10-6 6. 10-6 8. 10-6 1. 10-5
θ

C
N   

( r s
1
, r s

2 
) (       )8

Fig. 4. Variation of the normalized correlation of intensity fluctua-
tions in the far zone as a function of θ for different values of the spec-
tral amplitudeAy, withAx kept fixed at 1. From top to bottom:Ay � 20
(blue), 2 (purple), 1 (olive), 0.7 (green). In this example, Ax � 1,
a � 3 cm, δxx � 0.4 mm, δxy � 0.51 mm, δyy � 0.6 mm, jBxyj � 0.6,
and λ � 632.8 nm.
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Fig. 5. Contours of the normalized correlation of intensity fluctuations of beams generated by rectangular sources with sides a and b. The sides are
chosen as (a) b � a, (b) b � 2a, (c) b � 4a, and (d) b � 8a. In these examples Ax � 2, Ay � 1, Bxy � 0.2, δxx � 0.4 mm, δyy � 0.6 mm,
δxy � 0.75 mm, a � 2 cm, and λ � 632.8 nm.
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~S�0�
xy �f� � ab

AxAy

�2π�2 sinc
�
f xa
2

�
sinc

�
f yb
2

�
; (51)

~μ�0�ij �f� �
Bijδ

2
ij

2π
exp

�
−

δ2ijf
2

2

�
; (52)

where f � �f x; f y�. On substituting from Eqs. (50)–(52) into
Eq. (30), we find for the far-zone correlation of intensity
fluctuations of a rectangular source the expression

C�∞�
N �rs1; rs2� � D sinc2�kasx�sinc2�kbsy�; (53)

with the function D defined by Eq. (46), and with the two
directions of observation set to s1 � �sx; sy; sz�,
s2 � �−sx;−sy; sz�. Examples of the correlation function for
rectangular sources with different aspect ratios a∕b are shown
in Fig. 5. Clearly, these patterns indicate the symmetry proper-
ties of the four sources along the sx and sy axes.

It is interesting to compare the contours of C�∞�
N �rs1; rs2�

with those of the radiant intensity. From Eq. (17) we have that

J�rs� � abk2

2π
�1 − s2x − s2y��A2

xδ
2
xxe−δ

2
xxk

2�s2x�s2y�∕2

� A2
yδ

2
yye−δ

2
yyk

2�s2x�s2y�∕2�: (54)

The normalized radiant intensity J�rs�∕J�0� is plotted in Fig. 6.
This far-field radiation pattern has rotational symmetry, and is
independent of the aspect ratio a∕b of the rectangular source:
it contains no information about the shape of the source or
its spectral density distribution. This is in contrast to the

−5 10−4 0 5 10−4

s
x

−5 10−4

0

5 10−4

s
y

0

0.2

0.4

0.6

0.8

1.0

Fig. 6. Contours of the normalized radiant intensity of beams gener-
ated by rectangular sources. The parameters are the same as in Fig. 5.

Fig. 7. Retrieval of a simulated spectral density from its normalized correlation of intensity fluctuations in the far-zone. (a) The spectral density of
a partially coherent Laguerre–Gauss beam in the source plane. In this example λ � 632.8 nm and σx � 15 mm. (b) The normalized correlation of
intensity fluctuations in the far zone. (c) The initial guess for the source spectral density that is used to start the algorithm: a completely random
pattern with rotational symmetry and with values between 0 and 1. (d) The result of the reconstructed source spectral density after 80 iterations.
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correlation of intensity fluctuations C�∞�
N �rs1; rs2�, which, as

can be seen from Eq. (30), provides the modulus of the spatial
Fourier transform of the spectral density distribution in the
source plane in this particular case. There is a large body
of literature devoted to phase retrieval, i.e., the reconstruction
of an object by knowledge of the modulus of its Fourier trans-
form, see [28] and the references therein. We demonstrate the
feasibility of using the correlation of intensity fluctuations for
this purpose with a simple example. Consider a partially co-
herent Laguerre–Gauss beam, with Gaussian correlation
coefficients. Let two linear polarizers that only transmit
x-polarized fields cover the intensity detectors. The relevant
spectral density and the autocorrelation coefficient are then

S�0�
x �ρ� � A2

xρ
2 exp�−ρ2∕2σ2x�; (55)

μ�0�xx �ρ� � exp�−ρ2∕2δ2xx�; (56)

with σx the effective width of the spectral density, and δxx
the effective correlation length. The assumption of quasi-
homogeneity implies that σx ≫ δxx. Under these assumptions
Eq. (30) reduces to the form

C�∞�
N �rs1; rs2� �

j ~S�0�
x �2ks⊥�j2
� ~S�0�

x �0��2
;

�r1 � r2 � r; s1⊥ � −s2⊥ � −s⊥�: (57)

Since

~S�0�
x �f� � �2 − f 2σ2x�σ4xA2

x exp�−f 2σ2x∕2�∕2π; (58)

we obtain the expression

C�∞�
N �rs1; rs2� � �1–2k2σ2x sin2 θ�2 exp�−4k2σ2x sin2 θ�: (59)

The iterative method proposed in [29] was used to reconstruct
the spectral density distribution across the source plane from
Eq. (59). The principal constraint for each iteration being that
the object is nonnegative. The contours of the spectral density
S�0�
x �ρ� and those of the correlation of intensity fluctuations

C�∞�
N �rs1; rs2� are plotted in panels (a) and (b) of Fig. 7. From

the shape of the correlation function it is seen that the source
is rotationally symmetric. The initial “guess” that is used to
start the iteration process is therefore taken as a random
pattern with rotational symmetry, shown in panel c. The re-
constructed source spectral density after 80 iterations is
shown in panel d. It is seen to be very similar to the original
spectral density of panel a. By rotating the two linear
polarizers that cover the detectors, the distribution of
S�0�
y �ρ� can be reconstructed in a completely similar way.
Previously proposed methods to reconstruct the source

spectral density of quasi-homogeneous sources rely on far-
zone measurements of the spectral degree of coherence,
see [8]. However, such interference experiments are quite
difficult to carry out. On the other hand, measuring the
correlation function C�∞�

N �rs1; rs2� involves intensity measure-
ments that are typically more robust to noise. The inversion
scheme as described above may therefore offer a more prac-
tical approach for inverse imaging problems.

7. CONCLUSION
We have studied the correlation of intensity fluctuations in the
far zone that occurs in electromagnetic beams generated by
quasi-homogeneous sources. The influence of the different
source parameters was investigated numerically. We found
that the aspect ratio of rectangular sources with a homo-
geneous intensity may be determined from the correlation
of intensity fluctuations. We also showed that the spectral
density distribution in the source plane can be reconstructed
frommeasurements of the HBT effect. This approachmay find
application in remote sensing and imaging.
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