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We derive expressions that allow us to examine the influence of different source parameters on the correlation of
intensity fluctuations (the Hanbury Brown–Twiss effect) at two points in the same cross section of a random electro-
magnetic beam. It is found that these higher-order correlations behave quite differently than the lower-order
amplitude-phase correlations that are described by the spectral degree of coherence. © 2014 Optical Society of
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Ever since Hanbury Brown–Twiss (HBT) determined the
angular diameter of radio stars by analyzing the correla-
tion of intensity fluctuations of their radiation [1,2], the
eponymous “HBT effect” has been applied to many
branches of physics [3–8]. In many cases a scalar analysis
as given in [9, Chap. 7] turns out to be sufficient. How-
ever, since the formulation of the unified theory of coher-
ence and polarization [10–12], several studies have been
devoted to the question of how the HBT effect in random
electromagnetic beams can be analyzed [13–17]. It is well
known that the fundamental properties of these beams,
such as their spectrum, degree of polarization, state of
polarization, and degree of coherence, can all change sig-
nificantly on propagation, even when the propagation is
through free space [18–24]. However, until now a de-
tailed investigation of the evolution of the HBT effect
in random electromagnetic beams has been lacking. In
this Letter, we intend to fill this void by examining the
correlation of intensity fluctuations occurring in a wide
class of partially coherent beams, namely those of the
Gaussian Schell-model (GSM) type [20]. We derive ex-
pressions that allow us to examine the influence of differ-
ent source parameters on the HBT effect at two points in
the same cross-sectional plane.
Let us consider a stochastic, wide-sense stationary,

electromagnetic beam propagating close to the z direc-
tion into the half-space z > 0 (see Fig. 1). The source
plane is defined as the plane z � 0. The vector ρ �
�x; y� indicates a position in a transverse plane.
Ex�ρ; z;ω� and Ey�ρ; z;ω� are the Cartesian components
of the electric field at frequency ω along two mutually
orthogonal x and y directions, perpendicular to the beam
axis. The intensity of a single realization of the beam at a
point �ρ; z� at frequency ω can be expressed as

I�ρ; z;ω� � jEx�ρ; z;ω�j2 � jEy�ρ; z;ω�j2: (1)

From now on we will suppress the dependence on the
frequency ω in our notation. The intensity I�ρ; z;ω�

is a random quantity and its variation from its mean
value is

ΔI�ρ; z� � I�ρ; z� − hI�ρ; z�i; (2)

where the angular brackets denote the ensemble average.
The statistical properties of the beam at a pair of points in
cross-section z are described by the electric cross-
spectral density matrix W�ρ1; ρ2; z�, whose elements are
defined as

Wij�ρ1; ρ2; z� � hE�
i �ρ1; z�Ej�ρ2; z�i; �i; j � x; y�:

(3)

It follows from this definition that the ensemble-averaged
intensity can be expressed as

hI�ρ; z�i � Tr W�ρ; ρ; z�; (4)

where Tr denotes the trace.
The correlation of the intensity fluctuations at two

points, ρ1 and ρ2, in the same cross-section z is
defined as

C�ρ1; ρ2; z� � hΔI�ρ1; z�ΔI�ρ2; z�i: (5)

We assume that the statistical properties of the beam are
Gaussian. It then follows, by use of the Gaussian moment
theorem for complex random processes, that the corre-
lation of the intensity fluctuations at two positions may
be expressed as [25, Chap. 8]

z

ρ
z = 0

source plane

Fig. 1. Illustrating the notation.

May 1, 2014 / Vol. 39, No. 9 / OPTICS LETTERS 2561

0146-9592/14/092561-04$15.00/0 © 2014 Optical Society of America

http://dx.doi.org/10.1364/OL.39.002561


C�ρ1; ρ2; z� �
X
i;j

jWij�ρ1; ρ2; z�j2: (6)

We will study the correlation properties of a wide class
of random beams, namely, those of the GSM type [20].
For these beams the elements of the cross-spectral den-
sity matrix in the source plane z � 0 read

Wij�ρ1; ρ2; 0� �
��������������������������
Si�ρ1�Sj�ρ2�

q
μij�ρ2 − ρ1�; (7)

with the spectral densities Si�ρ� � Wii�ρ; ρ� and the cor-
relation coefficients μij�ρ2 − ρ1� both Gaussian functions;
i.e.,

Si�ρ� � A2
i exp�−ρ2∕2σ2i �; (8)

μij�ρ2 − ρ1� � Bij exp�−�ρ2 − ρ1�2∕2δ2ij �: (9)

The parameters Ai, Bij, σi and δij are independent of po-
sition, but may depend on the frequency ω. They cannot
be chosen arbitrarily. In particular, it follows from the
definition of the cross-spectral density matrix that

Bxx � Byy � 1; (10)

Bxy � B�
yx; (11)

jBxyj; jByxj ≤ 1; (12)

δxy � δyx: (13)

In addition, the source parameters must satisfy certain
constraints to ensure that, for the choice σx � σy � σ,
the field is beam-like at wavelength λ [26], and that
the cross-spectral density matrix is definitely positive,
viz. [27]

1

4σ2
� 1

δ2ii
≪

2π2

λ2
; (14)

��������������������
δ2xx � δ2yy

2

s
≤ δxy ≤

�������������
δxxδyy
jBxyj

s
; (15)

and

jBxyj ≤
2

δyy∕δxx � δxx∕δyy
: (16)

The matrix elements of the propagated beam in a plane z
read (see [9], where the last minus sign of Eq. (10) on
p. 184 should be a plus sign)

Wij�ρ1; ρ2; z� �
AiAjBij

Δ2
ij�z�

exp
�
−

�ρ1 � ρ2�2
8σ2Δ2

ij�z�

�

× exp
�
−

�ρ1 − ρ2�2
2Ω2

ijΔ2
ij�z�

� ik�ρ22 − ρ21�
2Rij�z�

�
; (17)

where

Δ2
ij�z� � 1� �z∕σkΩij�2; (18)

1

Ω2
ij

� 1

4σ2
� 1

δ2ij
; (19)

Rij�z� � �1� �σkΩij∕z�2�z; (20)

and the wave number k � 2π∕λ. In the following we take
the reference point ρ1 to be on the z axis, i.e., ρ1 � 0. On
substituting from Eq. (16) into Eq. (6), we obtain the
expression

C�0; ρ2; z� �
X
i;j

A2
iA

2
j jBijj2

Δ4
ij�z�

× exp
�
−

ρ22
4σ2Δ2

ij�z�
−

ρ22
Ω2

ijΔ2
ij�z�

�
: (21)

Notice that Eq. (21) implies that C�0; ρ2; z� is rotationally
symmetric about the z axis, i.e., it only depends on
ρ2 � jρ2j. We define the normalized correlation
function as

CN�0; ρ2; z� �
C�0; ρ2; z�

hI�0; z�ihI�ρ2; z�i
; (22)

where

hI�0; z�i � A2
x

Δ2
xx�z�

� A2
y

Δ2
yy�z�

; (23)

and

hI�ρ2; z�i �
A2
x

Δ2
xx�z�

exp
�
−

ρ22
2σ2Δ2

xx�z�

�

� A2
y

Δ2
yy�z�

exp
�
−

ρ22
2σ2Δ2

yy�z�

�
: (24)

It can be shown that CN�0; ρ2; z� is bounded by zero and
unity [16]. It is easily derived that

lim
z→∞

CN�0; ρ2; z� �
P

i;jA
2
iA

2
j jBijj2Ω4

ij

�A2
xΩ2

xx � A2
yΩ2

yy�2
: (25)

Notice that this asymptotic value is independent of the
choice of the point ρ2. Equation (25) is generally valid, in
contrast to the much more restricted analysis presented
in [17]. We will compare the fourth-order correlation
function CN�0; ρ2; z� with the second-order spectral
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degree of coherence. The latter is defined as ([9],
Section 9.2)

η�0; ρ2; z� �
Tr W�0; ρ2; z�������������������

hI�0; z�i
p ��������������������

hI�ρ2; z�i
p ; (26)

and is a direct measure of the visibility of the fringe
pattern produced in Young’s experiment. Note that, in
contrast to Eq. (25),

lim
z→∞

η�0; ρ2; z� � 1: (27)

We now employ the above theoretical development to
study the evolution of the second- and fourth-order
correlations of a GSM beam when propagated in free
space. In the examples we set λ � 0.6328 μm,
σ � 4 mm, Ax � 1, Ay � 3, jBxyj � 0.2, δxx � 3 mm,
δxy � 2.7 mm, and δyy � 1 mm, unless specified other-
wise. For these values, the conditions (14)–(16) are all
satisfied. A comparison of the contours of CN�0; ρ2; z�
and those of jη�0; ρ2; z�j in the zρ2-plane (Figs. 2 and
3) indicates that the evolution of the correlation of inten-
sity fluctuations is more complicated than that of the
spectral degree of coherence. This is further illustrated
by Fig. 4, which shows that jη�0; ρ2; z�j increases mono-
tonically to the value 1, whereas CN�0; ρ2; z� quickly rises
to its maximum value, then decreases, after which it
slowly rises to its asymptotic limit.
An essential difference between the spectral degree of

coherence and the correlation of intensity fluctuations is
that η�0; ρ2; z� only depends on the diagonal elements of

the cross-spectral density matrix, whereas the definition
of CN�0; ρ2; z� contains all four matrix elements. A direct
consequence is that the spectral degree of coherence is
unaffected by changes in the coherence length δxy.
(Notice, however, that this not the case for an alternative
definition as proposed in Ref. [28]). The correlation of
intensity fluctuations, on the other hand, is quite sensi-
tive to changes in this parameter, as Fig. 5 shows. The
influence of the coherence length δxx at a fixed point
in the beam is shown in Fig. 6. It is seen that, jη�0; ρ2; z�j
is less sensitive than CN�0; ρ2; z�. A similar result is ob-
tained when the amplitude Ay is varied. This is illustrated
in Fig. 7.

We noted before that the asymptotic value of
CN�0; ρ2; z� is independent of the choice of the point
ρ2. In Fig. 8(a) the variation of the correlation of intensity
fluctuations is plotted for several values of ρ2. Although
these curves are quite distinct as z < 100 m, they
eventually all approach the limiting value indicated by

Fig. 2. Contours of the normalized correlation of intensity
fluctuations CN �0; ρ2; z� in the z ρ2 plane.

Fig. 3. Contours of the modulus of the spectral degree of co-
herence jη�0; ρ2; z�j in the z ρ2 plane.
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Fig. 4. Evolution of (a) the normalized correlation of intensity
fluctuations and (b) the modulus of the spectral degree of co-
herence when ρ2 � 0.65 mm. The dashed lines are the asymp-
totic values given by Eqs. (25) and (27), respectively.
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Fig. 5. Evolution of the normalized correlation of intensity
fluctuations as a function of z for different values of the param-
eter δxy. From bottom to top: δxy � 2.3 mm (blue), 2.6 mm
(red), 2.9 mm (green), and 3.2 mm (purple). As in Fig. 4,
ρ2 � 2 mm.
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Fig. 6. Variation of (a) the normalized correlation of intensity
fluctuations and (b) the modulus of the spectral degree of co-
herence as a function of δxx at the point ρ2 � 2 mm, z � 200 m.
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the dashed line. For comparison’s sake the evolution of
jη�0; ρ2; z�j is shown in Fig. 8(b).
It is interesting to note that expression Eq. (25) offers

several options to tailor the correlation of the intensity
fluctuations in the far-field. One possibility is to
change the ratio of the two spectral densities Ax
and Ay. It immediately follows from Eq. (25) that
limz→∞CN�0; ρ2; z� � 1 if one of the spectral densities
is zero, i.e., if the beam is linearly polarized. As Fig. 9
shows, the asymptotic value of CN�0; ρ2; z� can be varied

from its maximum value of 1 down to a value of 0.5.
In this example σ � 1 mm, jBxyj � 0.1, δxx � 3 mm,
δxy � 2.5 mm and δyy � 3 mm.

In conclusion, we have studied the evolution of the
HBT effect on propagation of a electromagnetic GSM
beam. The influence of the different source parameters
was explored numerically. We found that the correlation
of intensity fluctuations in the far-field can be tuned by
adjusting, for example, the ratio of the amplitudes of the
two components of the electric field.
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Fig. 7. Variation of (a) the normalized correlation of intensity
fluctuations and (b) the modulus of the spectral degree of co-
herence as a function of Ay at the point ρ2 � 2 mm, z � 200 m.
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Fig. 8. Evolution of (a) the normalized correlation of intensity
fluctuations and (b) the modulus of the spectral degree of
coherence for different choices of ρ2. From bottom to top,
ρ2 � 1.5 mm (blue), 1 mm (red), 0.5 mm (green), and 0.2 mm
(purple); the dashed lines are the asymptotic values given by
Eqs. (24) and (26), respectively.
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Fig. 9. Variation of the far-zone value of CN �0; ρ2; z� as a func-
tion of the ratio Ay∕Ax.
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