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One of the most poorly understood subjects in physical optics is the origin of the Gouy phase (sometimes
called “the phase anomaly near focus”). This is evident from the large number of publications on the subject,
many of which attribute it to quite different causes. In this paper we show that the Gouy phase anomaly can
be clearly understood from elementary properties of normal congruences of light rays and from the
relationship between geometrical optics and physical optics. We also show that the Gouy phase anomaly
may be regarded as a degenerate case of a rapid π/2 phase change that is found to occur at each focal line of
an astigmatic pencil of rays. The intensity distribution in the region of the phase changes is also presented.
Furthermore, symmetry relations for both the phase anomaly and the intensity distribution are derived.
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1. Introduction

In two seminal papers L.G. Gouy [1,2] described an anomalous
behavior of the phase of a converging diffracted spherical wave as it
passes through a focus. He wrote (translated from French [1]):

If one considers a converging wave that has passed through a focus
and has then become divergent, a simple calculation shows that the
vibration of that wave has advanced half a period compared to what
it should be according to the distance traveled and the speed of light.

Gouy confirmed his theoretical analysis experimentally. By letting the
light from a point source impinge onto two mirrors, one concave, the
other plane, two beams were generated. The mirrors were positioned
so that the beams were nearly parallel to each other. In any
transverse plane of observation, their superposition yielded a circular
interference pattern, with ring-shaped fringes. The central disk was
found to change from dark to bright, or vice versa, when the obser-
vation plane was moved through the focus of the converging beam.
This transition demonstrated the predicted 180° phase change. Since
Gouy's original work, many observations of such a phase anomaly
have been reported. (See, for example, Refs. [3–13].)

The origin of the phase anomaly continues to be amatter of debate,
with different authors attributing it to widely differing causes. For
example, it has been associated with Heisenberg's uncertainty rela-
tions [14,15], with Berry's geometric phase [16,17], and with geo-
metrical properties of Gaussian beams [18]. It has even been
“explained, one might say somewhat esoterically,” by relating it to
the i/λ factor in front of the Kirchhoff diffraction integral [19]!

In the present paper we show that the origin of the Gouy phase
anomaly can be clearly understood from elementary properties of
normal congruences of light rays ([20], Sec. 3.2) and from the well-
known relationship between geometrical optics and physical optics
that is brought out by the principle of stationary phase (see ([20],
App. III) or ([21], Ch. 9)). We present curves that show the behavior of
the phase and of the intensity in the region of the anomaly.

One of the earliest treatments of the Gouy phase is due to Walker
[22], who used a forerunner of the principle of stationary phase to
demonstrate that when a ray associated with an astigmatic wavefront
(i.e., a wavefrontwith two unequal principle radii of curvature) passes
through the two centers of curvature, there is a phase discontinuity of
an amount of π/2 at each of them. Walker's analysis is in agreement
with the following remark of Gouy (again in translation [2]):

A similar calculation shows that when a wave passes through a focal
line, the phase advance is exactly half of that in the above case; non-
spherical converging waves pass through two successive focal lines,
the total phase advance is thus the same as for spherical waves.

A detailed analysis of the behavior of the phase and the intensity in
the focal region was made by Linfoot and Wolf [23]. They considered a
monochromatic, diffracted spherical converging wave (with time-de-
pendence exp[−iωt]) that emerges from a circular aperture with radius
a (see Fig. 1). Using the Huygens-Fresnel Principle, they expressed the
space-dependent part of the field as (see also Ref. ([20], Sec. 8.8))

Uðu; vÞ = −2πia2C
λf 2

eif
2u=a2∫1

0
J0ðvρÞe−iuρ2 =2ρdρ; ð1Þ
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Fig. 1. Illustrating the notation. The origin O of a Cartesian coordinate system is taken at
the geometrical focus of the converging spherical wave.

Fig. 2. The phase anomaly δ of a diffracted converging spherical wave along selected
geometrical rays through focus. The angle α denotes the inclination of the ray to the
u-axis. The dashed line indicates the value δ=−π. In this example f=35 cm,
a=5 cm, and λ=1 μm. After Ref. [23].

Fig. 3. An aberrated wavefront W, the Gaussian reference sphere S and the aberration
function Φ(ρ, θ).
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with λ denoting the wavelength and f the radius of the wave front.
Furthermore, C is a positive constant, and J0 denotes the Bessel
function of the first kind and zero order. The parameters u and v are
the so-called Lommel variables, representing the position of an
observation point in the focal region. They are defined as

u =
2π
λ

a
f

� �2
z; v =

2π
λ

a
f

� �
ðx2 + y2Þ1=2: ð2Þ

The conditions under which Eq. (1) is valid are discussed in [24]
and in ([21], Sec 12.1.2).

The phase anomaly δ is defined as the difference between the
actual phase of the wave, arg[U(u, v)], and that of a (non-diffracted)
spherical wave converging to the focus in the half-space ub0 and
diverging from it in the halfspace uN0, (cf. ([20], Sec. 8.8, Eq. (48))), i.e.,

δðu; vÞ = arg½Uðu; vÞ�−sign ðuÞkR; ð3Þ

where k=2π/λ and

R = x2 + y2 + z2
� �1=2

= ðf =akÞ2 v2 + ðfu=aÞ2
h in o1=2≥0; ð4Þ

is the distance from the observation point to the geometrical focus
(see Fig. 1). The function δ(u, v) represents the difference between the
actual phase of the wave and of the phase given by geometrical optics.
In Ref. [23] the phase anomaly was calculated along geometrical rays
that pass through the focus (see Fig. 2). As the angle of inclination
between the ray and the axis of rotational symmetry (the u-axis)
decreases, the π phase change becomes more gradual. Also, in agree-
ment with the predictions of Gouy, it was found that half of the ad-
vance takes place in front of the geometrical focus and the other half
behind it. The discontinuous behavior of the phase anomaly along the
u-axis (α=0°) occurs at zeros of intensity. Since at these zeros the
field has also zero value, therefore its phase is undetermined. The
behavior of the phase in the vicinity of such points has been
intensively studied in recent years in the field of singular optics (see
([20], Sec. 8.8.4) and [25,26]).

2. The diffraction integral in the presence of aberrations

When an aberrated converging, monochromatic wave is focused,
the field in the focal region is given by the expression ([20], Sec. 9.1.1)

UðPÞ = − i
λ
Ce−ikf

f
∬

S

eik½Φ + s�

f
dS; ð5Þ

whereΦ denotes thewave aberration function (see Fig. 3), and s is the
distance from a point of integration Q to the observation point P (see
Fig. 1). The integration extends over the Gaussian reference sphere S
that approximately fills the aperture. For a wavefront suffering from
astigmatism, the aberration function, expressed in spherical polar
coordinates, is ([20], Sec. 9.3)

Φðρ; θÞ = A0ρ
2cos2θ; ð0≤ρ≤1;0≤θ≤2πÞ; ð6Þ



Fig. 5. The on-axis intensity of a diffracted, converging spherical wave in the presence of
astigmatic aberration with Φmax=1λ, as given by Eq. (9). Furthermore, f=2 m,
a=3 cm, λ=1 μm. The two focal lines are at us=0 and ut=4π.

3373T.D. Visser, E. Wolf / Optics Communications 283 (2010) 3371–3375
where A0 is a real number. It is to be noticed that the maximum value
that the aberration function can attain on the reference sphere,
Φmax=A0. For observation points on the axis of symmetry (the u-
axis), we find from Eqs. (5) and (6) that

Uðu;0Þ = − iCa2

λf 2
eif

2u=a2∫1
0

∫2π
0

ρeiðkA0ρ
2cos2θ−uρ2 =2Þdρdθ; ð7Þ

= − i2πCa2

λf 2
eif

2u=a2∫1
0
ei½ðkA0−uÞρ2 �=2ρJ0 kA0ρ

2
= 2

� �
dρ: ð8Þ

Let us define the normalized on-axis intensity by the formula

Iðu;0Þ = Uðu;0Þj j2 = I0; ð9Þ

with

I0 =
πCa2

λf 2

 !2

ð10Þ

being the intensity at the geometrical focus of the aberration-free
wave. When the astigmatism is sufficiently large (i.e., when the
coefficient A0 is large compared to the wavelength λ), one might
expect that the on-axis intensity distribution will exhibit a peak at
each of the two focal lines. The intersections of these focal lines with
the u-axis are given by the equations (cf. ([20], Sec. 9.3, Eq. (17)))

us = 0; ut = 2kA0; ð11Þ

where the indices s and t denote the sagittal and tangential focus,
respectively. It follows from Eqs. (8), (9) and (11) that the on-axis
intensity is symmetric about the midpoint of the two focal lines, that
is to say the point labeled by the Lommel variable u= u̅≡(us+ut)/
2=kA0, i.e.,

Ið �u + Δ;0Þ = Ið �u−Δ;0Þ: ð12Þ

The on-axis phase anomaly δ(u, 0) may again be defined as in
Eq. (3), but with the axial field U(u, 0) now given by Eq. (8) and with
sign(u)kR= f2u/a2. Hence

δðu;0Þ = arg ∫1
0
ei½ðkA0−uÞρ2 �=2ρJ0 kA0ρ

2
= 2

� �
dρ

� �
−π

2
: ð13Þ

It follows from Eq. (11) that the integral on the right-hand side of
Eq. (13) is real-valued when u=u ̅. We verified numerically for wave
aberrations for which |Φmax|b100λ, that the integral is always
positive. Hence we conclude that the on-axis phase anomaly halfway
between the two focal lines (u=u ̅) equals −π/2, i.e.,

δ½ �u;0� = −π = 2; ð Φmaxj jb100λÞ: ð14Þ
Fig. 4. A wavefront W is orthogonal to two rays at points Q and Q′. The arc length QQ′ is
denoted by ds. The distances between the astigmatic foci P1, P'1 and P2, P'2 are of the
order (ds)2. For details see ([20], Sec. 3.2).
Eq. (13) also brings into evidence the “symmetry relation”

δ �u + Δ;0
h i

+ δ �u−Δ;0
h i

= −π: ð15Þ

In the next two sections Eqs. (8) and (13) will be used and their
implications will be compared with the predictions of geometrical
optics.

3. Behavior of the field in the focal region

3.1. Geometrical optics

Wewill now discuss the phase anomaly on the basis of geometrical
optics. It will be useful to begin by recalling some basic results relating
to families of geometrical wavefronts and of the associated light rays.

A system of curves that fills a portion of space in such a way that a
single curve passes through each point in the region, is called a
congruence (see ([20], Sec. 3.2) or ([27], Ch. 10)). If there exists a
family of surfaces which intersects each of the curves orthogonally,
the congruence is said to be normal. If each of the curves is a straight
line, the congruence is said to be rectilinear. In the context of optics, a
congruence of curves is a bundle of light rays, and the surfaces which
intersect them orthogonally represent the wavefronts.

Let us now consider a wavefront W in free space, and let us
consider two rays passing through two closely-separated points Q and
Q′ on W, with a small distance ds between them (see Fig. 4). If we
choose a point on each of these two rays, say P and P′, the distance
Fig. 6. The on-axis phase anomaly δ(u, 0) of a diffracted, converging spherical wave in
the presence of astigmatic aberration with Φmax=1λ, as given by Eq. (13). The
parameters f, a and λ are the same as in Fig. 5. The levels δ(u, 0)=−π/2 and−π are also
indicated.



Fig. 7. The on-axis intensity of a diffracted, converging spherical wave in the presence of
astigmatic aberration with Φmax=2λ. The parameters f, a and λ are the same as in
Fig. 5. The two focal lines are at us=0 and ut=8π.

Fig. 9. The on-axis intensity of a diffracted, converging spherical wave in the presence of
astigmatic aberration with Φmax=5λ. The parameters f, a and λ are the same as in
Fig. 5. The two focal lines are at us=0 and ut=20π.
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between them will be of order ds or greater. However, one can show
([20], Sec. 3.2) that there are two points P1 and P2 on one ray and P1′
and P2′ on the other ray, whose separation is of order (ds)2. These
special points are known as astigmatic foci, and their locus when the
points Q and Q′ are varied, are two line elements known as astigmatic
focal lines. They may be shown to be mutually orthogonal.

3.2. Physical optics

As is well known, geometrical optics may be regarded as the
asymptotic limit of physical optics as the wavenumber k=2π/λ tends
to infinity ([20], Sec. 3.1). It can be shown by the use of the two-
dimensional principle of stationary phase that in this limit the field
associated with astigmatism exhibits a phase discontinuity of π/2 at each
focal line [28]. Now the actual time-independent field obeys the
Helmholtz equation rather than the eikonal equation that governs
geometrical optics. TheHelmholtz equation belongs to the class of elliptic
differential equations, and it is well known that solutions of such
equations are boundary values of on the real axis of functions that are
analytic and regular in any closed domain, see, for example ([29], pp. 42–
43). Hence the actual field, in contrast to the geometrical optics field, is
necessarily continuous, and, consequently, so is its phase except at points
where the field has zero value and consequently the phase is singular
there. The actual field in the region of the astigmatic focal lines may be
expected to exhibit the same features as the geometrical optics field, but
thediscontinuities at the focal lineswill be ‘smoothedout’. Put differently,
the actual physical optics field will have sharp variations in the region of
the focal lines, butwill have nodiscontinuities. This situation is illustrated
Fig. 8. The on-axis phase anomaly δ(u, 0) of a diffracted, converging spherical wave in
the presence of astigmatic aberration withΦmax=2λ. The parameters f, a and λ are the
same as in Fig. 5.
in Figs. 5–10 inwhich the intensity and the phase anomaly are shown for
different amounts of astigmatism. It canbe seenhow for a relatively small
amount of astigmatism, viz.Φmax=1λ, the on-axis intensity is still single-
peaked, and the phase changes continuously by an amount of π at the
peak. When the aberration is increased, say to Φmax=2λ, an intensity
peak is present at each focal line. The phase change now takes place in
two π/2 steps. For an even larger amount of astigmatic aberration,
Φmax=5λ say, the two intensity peaks are separated by a greater dis-
tance, in accordancewith Eq. (11). Also, the phase changes by an amount
of π/2 around each focal line. We note that the two symmetry properties
expressed by Eqs. (12) and (15) are clearly visible in Figs. 5–10.

We summarize our analysis by saying that the geometrical optics
behavior of focused fields and the relation between geometrical optics
and physical optics, make it clear that the field at each astigmatic focal
line undergoes a rapid π/2 phase change. In the limiting case when the
astigmatic wave aberration tends to zero, i.e., when the field in the
aperture becomes a converging spherical wave, the two foci coincide
and the sharp change in the focal region is the Gouy phase change by
an amount π.

Thus we have shown that the Gouy phase is due to 1) the asymp-
totic behavior of the wavefield in the focal region as the wavenumber
k→∞, and 2) the well-understood relation between geometrical
optics and physical optics.
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