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An electromagnetic Gaussian Schell-model source that
produces a random beam may be characterized by eight
independent quantities. We show how far-zone measure-
ments of the Stokes parameters, together with the Hanbury
Brown–Twiss coefficient, allow one to determine all the
source parameters. This method provides, to the best of our
knowledge, a new tool to identify distant sources. © 2020
Optical Society of America

https://doi.org/10.1364/OL.385644

The inverse problem of determining the properties of a source
or a scatterer from field or intensity measurements rarely has a
unique solution [1]. One typically has to assume some a priori
knowledge. Reconstruction has been attempted, for example,
for delta-correlated thermal sources [2], illuminated apertures
[3], illuminated object transparencies [4], sources in the Fresnel
regime [5], and scalar quasi-homogeneous sources [6].

In the present study, we assume that we are dealing with a
planar, secondary source of the Gaussian Schell-model (GSM)
type that generates an electromagnetic beam [7]. Such sources,
together with their scalar counterparts, have been used in
numerous studies in the field of optical coherence [8]. Because
of their widespread use as a representation of a general source,
the question of how information can be obtained from beam
measurements is of practical interest.

In the space–frequency domain, GSM sources are charac-
terized by a spectral density distribution and a homogeneous
correlation function that are both of a Gaussian form. As we will
demonstrate, far-zone measurements of the Stokes parameters,
together with the Hanbury Brown–Twiss (HBT) coefficient,
allow one to recover the relevant source parameters. These
parameters describe not only the source shape but also its coher-
ence properties. Our approach uses intensity measurements,
rather than field measurements, which are generally less robust.

The second-order statistical properties of a partially coher-
ent electromagnetic beam that propagates along the z axis are
described by its cross-spectral density (CSD) matrix, which is
defined as [Ch. 9, 7]

W(r1, r2, ω)=

(
Wx x Wx y
Wy x Wy y

)
. (1)

The matrix elements are functions of three variables, and given
by the expression

Wi j (r1, r2, ω)= 〈E ∗i (r1, ω)E j (r2, ω)〉, (i, j = x , y ), (2)

where r1 and r2 are two points of observation, ω is the angular
frequency, E i is a Cartesian component of the electric field, and
the angled brackets indicate an average taken over an ensemble
of realizations. From now on, we now longer display the fre-
quency dependence in our notation. The CSD matrix elements
of an electromagnetic GSM source occupying the plane z= 0,
indicated by the superscript (0), are [Ch. 9, 7]

W (0)
i j (ρ1, ρ2)= Ai A j Bi j exp

[
−
ρ2

1

4σ 2
i

−
ρ2

2

4σ 2
j

−
(ρ1 − ρ2)

2

2δ2
i j

]
,

(3)
where ρ = (x , y ) denotes a transverse position vector.
Furthermore, Ai denotes the amplitude of E i , Bi j is the corre-
lation between E i and E j , and σi is the effective width of E i .
The factors δi j are transverse coherence radii. All parameters
in Eq. (3) are independent of position, but may depend on fre-
quency. They cannot be chosen freely, but have to satisfy several
constraints, i.e.,

Bx x = By y = 1, (4)

Bx y = B∗y x , (5)

Bx y = |Bx y |e iφ,with |Bxy| ≤ 1, and φ ∈R, (6)

δx y = δy x . (7)

Furthermore, the so-called realizability conditions are [9]√
δ2

x x + δ
2
y y

2
≤ δx y ≤

√
δx x δy y∣∣Bx y

∣∣ . (8)
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For the case σx = σy = σ , the source will generate a beam-like
field if [10]

1

4σ 2
+

1

δ2
x x
�

2π2

λ2
and

1

4σ 2
+

1

δ2
y y
�

2π2

λ2
, (9)

where λ denotes the wavelength. Under these constraints, the
source is described by eight independent parameters, namely,
Ax , A y , |Bx y |, φ, δx x , δy y , δx y , and σ , which we will attempt to
recover from far-zone intensity measurements. It is seen from
Eq. (3) that if Ax , A y , or Bx y is zero, then the number of source
parameters that describe the source is reduced. We will discuss
these special cases later on.

On propagation to a transverse plane z, the beam matrix ele-
ments evolve into ([Ch. 9, 7], notice that the next to last minus
sign in Eq. (10) on p. 184 should in fact be a plus sign)

Wi j (ρ1, ρ2, z)=
Ai A j Bi j

12
i j (z)

exp

[
−
(ρ1 + ρ2)

2

8σ 212
i j (z)

]

× exp

[
−
(ρ1 − ρ2)

2

2�2
i j1

2
i j (z)
+

ik(ρ2
2 − ρ

2
1)

2Ri j (z)

]
,

(10)

where k = 2π/λ, and

12
i j (z)= 1+ (z/σk�i j )

2, (11)

1

�2
i j

=
1

4σ 2
+

1

δ2
i j

, (12)

Ri j (z)=
[
1+ (σk�i j/z)2

]
z. (13)

When z tends to infinity, we have that

12
i j (z)∼

z2

(σk�i j )
2 , (14)

Ri j (z)∼ z. (15)

We thus get for the four far-zone elements, denoted by the super-
script (∞), the formulas

W (∞)
i j (ρ1, ρ2, z)

=
Ai A j Bi j (kσ�i j )

2

z2
exp

[
−
(ρ1 + ρ2)

2(k�i j )
2

8z2

]

× exp

[
−
(ρ1 − ρ2)

2(kσ)2

2z2
+

ik(ρ2
2 − ρ

2
1)

2z

]
. (16)

In terms of the polar angle θ ≈ ρ/z, these can be expressed for
the two cases ρ1 = ρ2 and ρ1 =−ρ2 as

W (∞)
i j (θ, θ)= K 2 Ai A j Bi j�

2
i j exp

(
−
θ2k2�2

i j

2

)
(17)

and

W (∞)
i j (θ,−θ)= K 2 Ai A j Bi j�

2
i j exp

(
−2θ2k2σ 2) , (18)

respectively, where the z dependence is contained in the factor

K = kσ/z. (19)

In far-zone measurements, the distance z is usually unknown,
and therefore the precise value of K cannot be established.

The expectation values of the four spectral Stokes parameters
can be expressed in terms of the far-zone CSD matrix elements
as [7]

〈S0(θ)〉 =Wx x (θ, θ)+Wy y (θ, θ), (20)

〈S1(θ)〉 =Wx x (θ, θ)−Wy y (θ, θ), (21)

〈S2(θ)〉 =Wx y (θ, θ)+Wy x (θ, θ), (22)

〈S3(θ)〉 = i
[
Wy x (θ, θ)−Wx y (θ, θ)

]
. (23)

On substituting from Eq. (17), we obtain

〈S0(θ)〉 = K 2

[
A2

x�
2
x x exp

(
−
θ2k2�2

x x

2

)

+ A2
y�

2
y y exp

(
−
θ2k2�2

y y

2

)]
, (24)

〈S1(θ)〉 = K 2

[
A2

x�
2
x x exp

(
−
θ2k2�2

x x

2

)

− A2
y�

2
y y exp

(
−
θ2k2�2

y y

2

)]
, (25)

〈S2(θ)〉 = 2K 2 Ax A y |Bx y |�
2
x y exp

[
−
θ2k2�2

x y

2

]
cos φ,

(26)

〈S3(θ)〉 = 2K 2 Ax A y |Bx y |�
2
x y exp

[
−
θ2k2�2

x y

2

]
sin φ.

(27)

On the beam axis (θ = 0), these expressions simplify to

〈S0(0)〉 = K 2 (A2
x�

2
x x + A2

y�
2
y y

)
, (28)

〈S1(0)〉 = K 2 (A2
x�

2
x x − A2

y�
2
y y

)
, (29)

〈S2(0)〉 = 2K 2 Ax A y�
2
x y |Bx y | cos φ, (30)

〈S3(0)〉 = 2K 2 Ax A y�
2
x y |Bx y | sin φ. (31)

Measuring the Stokes parameters alone is not sufficient for
our purpose. We also need the correlation of intensity fluctu-
ations as described by the HBT coefficient. It turns out to be
useful to consider this correlation for a pair of angles (θ,−θ).
Under the assumption of Gaussian statistics, the HBT coef-
ficient can be expressed in terms of the CSD matrix as (Eq. 8,
[11])
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C(θ,−θ)=
∑

i, j={x ,y }

∣∣Wi j (θ,−θ)
∣∣2

=

[
(K Ax )

4�4
x x + (K A y )

4�4
y y (32)

+ 2(K Ax )
2(K A y )

2
|Bx y |

2�4
x y

]
exp(−4θ2k2σ 2), (33)

where we made use of Eq. (18). The merit of Eq. (33), as we will
see, lies in the fact that the source width σ appears explicitly in
the last factor.

The above results, if applied in a specific order, can be used
to establish the values of the eight source parameters as we now
show.

1. Adding the two formulas for 〈S0〉 and 〈S1〉 yields

〈S0(θ)〉 + 〈S1(θ)〉 = 2(K Ax )
2�2

x x exp
(
−θ2k2�2

x x/2
)
,

(34)

〈S0(0)〉 + 〈S1(0)〉 = 2(K Ax )
2�2

x x . (35)

The only way the left-hand side of Eq. (34) or Eq. (35) can
be zero is when Ax = 0. In that case, the only non-zero
matrix element is Wy y . This implies there are only three
parameters that describe the source, namely, A y , σ , and
δy y . We return to this particular case later, and for now
assume that both Ax and A y are non-zero. From the two
above equations, we find

exp(−θ2k2�2
x x/2)=

〈S0(θ)〉 + 〈S1(θ)〉

〈S0(0)〉 + 〈S1(0)〉
, (36)

and hence,

�2
x x =−

2

k2θ2
ln

[
〈S0(θ)〉 + 〈S1(θ)〉

〈S0(0)〉 + 〈S1(0)〉

]
. (37)

Clearly, the experimental uncertainty in the value of �x x
can be reduced by repeating the measurements for different
values of the angle θ . This also pertains, as we will see, to
�y y ,�x y , and σ . Having thus established the value of�2

x x ,
we can use it in Eq. (35) to obtain

K Ax =
1

√
2�x x

√
[〈S0(0)〉 + 〈S1(0)〉]. (38)

2. A strictly similar procedure results in the values of�y y and
K A y . Subtracting the expressions for 〈S0〉 and 〈S1〉 leads to

�2
y y =−

2

k2θ2
ln

[
〈S0(θ)〉 − 〈S1(θ)〉

〈S0(0)〉 − 〈S1(0)〉

]
(39)

σ 2
=−

1

4k2θ2
ln

[
C(θ,−θ)

(K Ax )
4�4

x x + (K A y )
4�4

y y + 2(K Ax )2(K A y )
2
|Bx y |

2�4
x y

]
. (47)

and

K A y =
1

√
2�y y

√
[〈S0(0)〉 − 〈S1(0)〉]. (40)

Notice that, due to the presence of the factor K , Eqs. (38) and
(40) allow us to determine the ratio of the amplitudes Ax and
A y , but not their individual values.
3. The values of the off-diagonal quantities �x y and |Bx y |

can be found as follows. First the trigonometry factors in
the expressions for 〈S2(θ)〉 and 〈S3(θ)〉 are eliminated by
squaring and summing, leading to the results√
〈S2(θ)〉

2
+ 〈S3(θ)〉

2
= 2(K Ax )(K A y )|Bx y |�

2
x y

× exp
(
−θ2k2�2

x y/2
)

(41)

and√
〈S2(0)〉

2
+ 〈S3(0)〉

2
= 2(K Ax )(K A y )|Bx y |�

2
x y .
(42)

Because of our previous assumption of Ax and A y both
being non-zero, the only way the left-hand sides of Eqs. (41)
and (42) can vanish is for |Bx y | to be zero. Under that con-
dition, Wx y =Wy x = 0, and δx y and �x y are undefined.
We will return to this case later. When Bx y 6= 0, we get

exp
(
−θ2k2�2

x y /2
)
=

√
〈S2(θ)〉

2
+ 〈S3(θ)〉

2

〈S2(0)〉
2
+ 〈S3(0)〉

2 , (43)

from which

�2
x y =−

1

k2θ2
ln

[
〈S2(θ)〉

2
+ 〈S3(θ)〉

2

〈S2(0)〉
2
+ 〈S3(0)〉

2

]
. (44)

With the factors K Ax , K A y , and�2
x y now known, we can

substitute their values into Eq. (42) to obtain for |Bx y | the
expression

|Bx y | =
1

2(K Ax )(K A y )�2
x y

√
〈S2(0)〉

2
+ 〈S3(0)〉

2.

(45)
4. It is readily seen that the angle φ, which represents the aver-

age phase difference between E x and E y , can be obtained
by dividing Eq. (27) by Eq. (26), i.e.,

tan φ =
〈S3(θ)〉

〈S2(θ)〉
, (46)

for any observation angle θ . The signs of the Stokes parame-
ters in Eq. (46) determine in which quadrantφ is located.

5. The parameters K Ax , K A y , |Bx y |, φ,�x x ,�y y , and�x y
are now all determined, and we can next use the expression
for the HBT coefficient (33) to calculate the value of the
effective source widthσ , namely,

6. The three remaining source parameters are the coher-
ence lengths δx x , δy y , and δx y = δy x . Using the previously
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established values of σ 2 and �2
i j , these lengths can all be

determined by rewriting Eq. (12) as

δ2
i j =

4σ 2�2
i j

4σ 2 −�2
i j

. (48)

We note that in the procedure outlined above, the parameters
are recovered in a certain order, the value of established parame-
ters being used to obtain subsequent ones.

When one of the Cartesian components is zero, e.g., Ax = 0,
the only non-zero matrix element is Wy y . This contains three
parameters, namely, A y , σ , and δy y . These can be determined
using Eqs. (39), (40), (47), and (48). The case in which A y = 0
is completely analogous.

If Bx y = 0, as happens when the beam is unpolarized,
the angle φ is undetermined. The remaining parameters are
then Ax , δx x , A y , δy y and, σ . These can be determined using
Eqs. (37)–(40), (47), and (48).

In conclusion, we have presented a procedure by which the
source parameters of an electromagnetic GSM source can be
determined from far-zone measurements. The observed quan-
tities involve intensities that are less sensitive to perturbations
than the amplitude and phase.

The expression for the HBT coefficient relies on the assump-
tion of Gaussian statistics. Two further assumptions are that the
source produces a beam-like field, and that the effective widths
of E x and E y are equal. This implies that the source is specified
by eight independent parameters. We find that all of them
can be recovered, with the exception of the two perpendicular
amplitudes of which only the ratio can be obtained.

Our approach involves measuring the Stokes parameters,
both on-axis and for non-zero values of the polar angle θ . For
this, there are well-established methods [12–14]. Techniques to
determine the HBT coefficient are described in [15,16].

The results presented here may be applied to the characteriza-
tion and identification of distant sources.
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