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We generalize the concept of Fraunhofer diffraction to par-
tially coherent electromagnetic beams and show how the
state of polarization is affected by a circular aperture. It is
illustrated that the far-zone properties of a random beam
can be tuned by varying the aperture radius. We find that
even an incident beam that is completely unpolarized can
sometimes produce a field that is highly polarized. ©2019
Optical Society of America

https://doi.org/10.1364/OL.44.003330

Fraunhofer diffraction describes the far-zone properties of a
field that has passed through an aperture in an opaque screen.
Among its many applications are optical computing, image
processing, and holography. In the classical description [1],
the incident field is assumed to be both scalar and spatially fully
coherent. The extension of Fraunhofer diffraction to partially
coherent scalar fields has been considered in, for example,
Refs. [2–5]. Those studies were all concerned with the effect
of coherence on the intensity distribution. The influence of
an aperture on the spectrum of the far-zone field was investi-
gated in Refs. [6,7]. More recently, an analysis of the role of
temporal coherence was presented in Ref. [8]. In many practical
circumstances the state of polarization cannot be neglected, and
a scalar description of the field does not suffice. Therefore, it is
useful to extend the notion of Fraunhofer diffraction to stochas-
tic electromagnetic beams. Here we present a theory that allows
us to investigate how the far-zone state of polarization of such
beams is affected by the diffraction process.

It is worth noting that when a random electromagnetic
beam propagates, both its spectrum [9] and state of polarization
may change [10], even if this propagation is through free space.
These effects are referred to as “coherence-induced changes.”

As we will demonstrate, placing an aperture in the path of
the beam will also change its far-zone properties.

Let us begin by considering a monochromatic, scalar wave
with wavelength λ. If this wave is diffracted by an aperture in a
plane, opaque screen, the resulting field in the far zone is pro-
portional to the truncated Fourier transform of the incident
field U �in� ([1], Eqs. (4)–(25)):

U �∞��x,y,z�� eikz

iλz
eik�x2�y2�∕2z

Z
A
U �in��ξ,η�e−i2π�xξ�yη�∕λzdξdη:

(1)

Here the screen is assumed to be in the xy plane, k � 2π∕λ is
the wavenumber, and A is the area of the aperture. The super-
script ∞ denotes the far zone. We now let U �in� represent a
Cartesian component of the incident electric field vector, i.e.,

U �in��ξ, η� � E �in�
j �ξ, η�, �j � x, y�: (2)

The second-order statistical properties, at frequency ω, of a
stochastic, electromagnetic beam at two positions r1 and r2
are characterized by the cross-spectral density matrix [11]

W �r1, r2� �
�
W xx W xy
W yx W yy

�
: (3)

The four matrix elements are given by the expression

W ij�r1, r2� � hE�
i �r1�Ej�r2�i �i, j � x, y�, (4)

where the angular brackets indicate the average taken over an
ensemble of beam realizations. On substituting from Eq. (1)
into Eq. (4), and interchanging the order of integration and
ensemble averaging, we find for the cross-spectral density
matrix in a far-zone plane z the formula
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�
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ij

�
−
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y2
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�
,

(5)

with the four-dimensional spatial Fourier transform defined as

W̃ �in�
ij �p1,q1,p2,q2� �

Z
A

Z
A
W �in�

ij �x1, y1,x2, y2�

× e−i2π�x1p1�y1q1�x2p2�y2q2�dx1dy1dx2dy2:

(6)

Equation (5) states that each element of the cross-spectral den-
sity matrix in the far zone is, up to a position-dependent phase
factor, related to its counterpart in the aperture by a Fourier
transform. This formula generalizes the notion of Fraunhofer
diffraction from monochromatic scalar fields to random
electromagnetic beams.

If we restrict our attention to a far-zone observation point
Z � �0, 0, z� on the z axis, then Eq. (5) for two coincident
points simplifies to

W �∞�
ij �Z ,Z � � 1

λ2z2

Z
A

Z
A
W �in�

ij �x1, y1, x2, y2�dx1dy1dx2dy2:

(7)

It is seen that W �∞�
ij �Z ,Z � is proportional to the double inte-

gral of the corresponding element in the aperture. Because, as
we will shortly discuss, the state of polarization depends only
on W at equal points, Eq. (7) has an important consequence.
For a very small aperture, over which the spatial variation of
the matrix elements may be neglected, we get that

W �∞�
ij �Z ,Z � ≈ dA2

λ2z2
W �in�

ij �0, 0, 0, 0�, as dA → 0, (8)

where dA denotes the aperture area. This means that the nor-
malized matrix elements at the far-zone point Z are identical to
their counterparts at the center of the aperture. Therefore, for a
small enough aperture, the state of polarization at a far-zone point
on the central axis is identical to the state of polarization of the field
at the center of the aperture.

We illustrate the usefulness of the above formalism by con-
sidering the example of an aperture field that is produced by a
Gaussian Schell-model source [11]. If we assume the effective
width of the two electric field components to be equal, we
have that

W �in�
ij �ρ1,ρ2��AiAjBij exp

�
−

�
ρ21�ρ22
4σ2

��
exp

�
−
�ρ2 −ρ1�2

2δ2ij

�
,

(9)

where ρ � �x, y�. The factors Ai denote the spectral amplitude
of each Cartesian field component, Bij is the complex-valued
correlation coefficient between Ei and Ej, σ is the effective
beam width, and δij is a coherence radius. These parameters
cannot be chosen arbitrarily, but have to satisfy several con-
straints. These follow from the definition of W�in� (Sec. 9.4.2,
[11]), the realizability conditions [12], and the beam condi-
tions [13].

We take the aperture to be a circle with radius a. On chang-
ing variables to

ρ1�ρ1�cosϕ1, sinϕ1�, ρ2�ρ2�cosϕ2, sinϕ2�: (10)

Equation (7) can be re-written as

W �∞�
ij �Z ,Z ��AiAjBij

λ2z2

Z
a

0

Z
2π

0

Z
a

0

Z
2π

0

ρ1ρ2 exp

�
−
ρ21�ρ22
4σ2

�

×exp
�
−
ρ21�ρ22
2δ2ij

�

×exp
�
ρ1ρ2 cos�ϕ1 −ϕ2�

δ2ij

�
dϕ1dρ1dϕ2dρ2 (11)

� 4π2AiAjBij

λ2z2

Z
a

0

Z
a

0

exp

�
−
ρ21 � ρ22
2β2ij

�

× ρ1ρ2I 0

�
ρ1ρ2
δ2ij

�
dρ1dρ2, (12)

where I 0 denotes the modified Bessel function of order zero,
and where we introduced the new parameter

1

β2ij
� 1

δ2ij
� 1

2σ2
: (13)

The limit of this expression, as the aperture radius a → ∞, can
be derived by considering the identity [14]Z

∞

0

xe−x2∕�2b2�I 0�px�dx � b2eb2p2∕2: (14)

On making use of this in Eq. (12), we find that

W �∞�
ij �Z ,Z � � 4π2AiAjBij

λ2z2
β4ijδ

4
ij

δ4ij − β
4
ij
, as a → ∞: (15)

For a finite aperture radius, Eq. (12) is easily evaluated numeri-
cally. Having thus established the far-zone cross-spectral density
matrix, the polarization properties of the field there can be ex-
pressed in terms of the four spectral Stokes parameters, denoted
Sn�Z �, with n � 0, 1, 2, 3. Their expectation values are given
by the formulas [11]

S0�Z � � W xx�Z ,Z � �W yy�Z ,Z �, (16a)

S1�Z � � W xx�Z ,Z � −W yy�Z ,Z �, (16b)

S2�Z � � W xy�Z ,Z � �W yx�Z ,Z �, (16c)

S3�Z � � i�W yx�Z ,Z � −W xy�Z ,Z ��: (16d)

The normalized version of the Stokes parameters is defined as

sm�Z � � Sm�Z �∕S0�Z �, �m � 1, 2, 3�: (17)

The degree of polarization (DOP), the ratio of the spectral den-
sity of the fully polarized part of the beam, and its total spectral
density, follow from the relation (Sec. 6.3.3, [15])

DOP�Z � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21�Z � � s22�Z � � s23�Z �

q
: (18)

The DOP is bounded by zero and one. The lower bound
represents a completely unpolarized beam, whereas the upper
bound represents a fully polarized beam. We next investigate
how the state of polarization of the far-zone field, characterized
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by the DOP and the Stokes parameters, can be tuned by vary-
ing the size of the aperture.

The dependence of the three normalized Stokes parameters,
at the far-zone axial point Z , on the aperture radius a is shown
in Fig. 1. The first parameter, s1�Z �, remains constant at 0.6.
Its value does not depend on a, because we have set δxx � δyy.
The two other parameters, s2�Z � and s3�Z �, increase signifi-
cantly when the aperture radius a becomes larger. Notice that
this tendency persists, even when a is larger than the effective
beam width σ � 7 mm, idem dito for δxx, δyy, and δxy.
Eventually, the parameters s2�Z � and s3�Z � tend to their asymp-
totic value which can be calculated from Eq. (15) and which is
0.30 and 0.52, respectively. Furthermore, as remarked below
Eq. (8), in the limit a → 0, the Stokes parameters are equal
to their value at the center of the aperture. For example, it is
easily verified from Eq. (9) and definition (18) that everywhere
in the aperture s2 � 2AxAyjBxyj cos ϕ∕�A2

x � A2
y � � 0.08.

Similarly, the DOP is also strongly affected by the aperture
size. This is illustrated in Fig. 2 in whichDOP�Z � is plotted for
selected values of the amplitude Ax . Just as the Stokes param-
eters, the DOP on the far-zone axis is seen to be very sensitive
to the aperture radius. As noted in connection with Fig. 1, this
influence persists, even when a > σ. In addition, in agreement
with the statement below Eq. (8), when the aperture radius is
very small, i.e., a < σ, δij, we find that DOP�Z � is equal to its
value at the center of the aperture.

Next, we consider an incident field that is completely
unpolarized. One possible example (see also Ref. [16]) is a
beam given by Eq. (9) while setting Ax � Ay � A, and
Bxy � Byx � 0. In that case,

W �in�
xx �ρ, ρ� � W �in�

yy �ρ, ρ� ≠ 0, (19)

W �in�
xy �ρ, ρ� � W �in�

yx �ρ, ρ� � 0: (20)

From Eq. (12), it readily follows that the far-zone elements
W �∞�

xy �Z ,Z � � W �∞�
yx �Z ,Z � � 0, and hence s2�Z � �

s3�Z � � 0. However, if δxx ≠ δyy, the two diagonal matrix
elements,W xx and W yy, will evolve differently on propagation
and, thus, give rise to a field that is partially polarized. An ex-
ample is presented in Fig. 3. The larger the difference between

δxx and δyy, the more W �∞�
xx and W �∞�

yy will diverge. This then
causes the value of s1 to increase, leading to a growing DOP.
We emphasize that this effect does not occur for all unpolarized
aperture fields, but hinges on the fact that the two Cartesian
components of the electric field have different coherence radii,
i.e., δxx ≠ δyy.

We have restricted our analysis to the field on the far-zone
axis. For non-axial points the more general expression Eq. (5)
must be used. From the reciprocity between a function and its
Fourier transform, we can get a qualitative idea of the off-axis
field. As the width of the elementsW �in�

ij gets less, their far-field
counterparts will become broader, and the off-axis and the
on-axis state of polarization will be more similar.

In conclusion, we have extended the concept of Fraunhofer
diffraction from scalar fields to stochastic electromagnetic
beams. This allowed us to study the polarization properties
of the on-axis field in the far zone. The Stokes parameters
and the DOP were both found to be quite sensitive to the

s(Z)

a [cm]

s (Z)

s  (Z)

s  (Z)

Fig. 1. Three normalized Stokes parameters on the far-zone axis as a
function of the aperture radius a. The red curve corresponds to s1�Z �,
the blue curve � s2�Z �, and the green curve � s3�Z �. In this example
Ax � 2.0, Ay � 1.0, σ � 7 mm, λ � 632.8 nm, Bxy � 0.2eiπ∕3,
δxx � δyy � 2 mm, and δxy � 4 mm.

a [cm]

DOP (Z)

A
x
 = 1

A
x
 = 3

A
x
 = 2

Fig. 2. DOP on the far-zone axis as a function of the aperture
radius a, for selected values of Ax , the amplitude of Ex . The red curve
is for Ax � 1, the blue curve is for Ax � 2, and the green curve is for
Ax � 3. The amplitude Ay is kept fixed at 1, and all other parameters
are as in Fig. 1.

DOP (Z)

a [cm]

Fig. 3. Far-zone DOP produced by a completely unpolarized inci-
dent beam, as a function of the aperture radius a, for selected values of
δxx , the coherence radius of Ex . The lower (red) curve is for
δxx � 3 mm, the middle (green) curve is for δxx � 4 mm, and the
top (blue) curve is for δxx � 5 mm. Here Ax � Ay , σ � 7 mm,
δyy � 2 mm, and λ � 632.8 nm.
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aperture size. An example was given in which an incident beam
that is completely unpolarized becomes highly polarized in the
far zone. The enhancement of the DOP is due to the fact that,
in general, the four elements of the cross-spectral density matrix
evolve differently on propagation. If, for example, W xx be-
comes dominant, the beam will become essentially x polarized.
This enhancement of the DOP will be useful for applications
that use incoherent illumination, but require some coherence
in the far field. An example would be where the x and y po-
larized components are forced to interfere after passing them
through a polarizer oriented at 45 deg.
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