
Optics Communications 284 (2011) 5517–5522

Contents lists available at SciVerse ScienceDirect

Optics Communications

j ourna l homepage: www.e lsev ie r.com/ locate /optcom
Phase anomaly and phase singularities of the field in the focal region of
high-numerical aperture systems

Xiaoyan Pang a, Taco D. Visser a,b,⁎, Emil Wolf c

a Dept. of Electrical Engineering, Delft University of Technology, Delft, The Netherlands
b Dept. of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
c Dept. of Physics and Astronomy, and the Institute of Optics, University of Rochester, Rochester, NY, USA
⁎ Correspondingauthor at:Dept. of Electrical Engineering
Delft, The Netherlands.

E-mail address: tvisser@few.vu.nl (T.D. Visser).

0030-4018/$ – see front matter © 2011 Elsevier B.V. Al
doi:10.1016/j.optcom.2011.08.021
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 25 January 2011
Received in revised form 5 August 2011
Accepted 8 August 2011
Available online 24 August 2011

Keywords:
Phase anomaly
Gouy phase
Focusing
Diffraction
Electromagnetic waves
Phase singularities
The phase behavior of the three Cartesian components of the electric field in the focal region of a high-
numerical aperture focusing system is studied. The Gouy phase anomaly and the occurence of phase
singularities are examined in detail. It is found that the three field components exhibit different behaviors.
, Delft University of Technology,

l rights reserved.
© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In 1890 Gouy found that the phase in the region of focus of a
diffracted converging wave, compared to that of a plane wave of the
same frequency, undergoes a rapid change of 180∘ near the geometric
focus [1,2]. Since then many observations of this so-called phase
anomaly have been reported and many different explanations for its
origin have been presented [3–29]. Because of the importance of the
anomalous phase behavior in the focal region, for example, in mode
conversion [9], in coherence tomography [17] and in the tuning of the
resonance frequency of laser cavities [7,20], the Gouy phase continues
to attract a good deal of attention.

In a recent publication [30] it was pointed out that the phase
anomaly near focus can be understood by considering a converging
wave of a more general form, namely a converging wave exhibiting
astigmatism. As is well-known, a geometrical optics analysis of this
situation shows that the wavefront of such a field has, at each point,
two principal radii of curvature and two, mutually orthogonal, focal
lines ([31], Section 4.6). Geometrical optics may be regarded as the
asymptotic limit of physical optics as the wavenumber k=2π/λ, (λ
denoting the wavelength) tends to infinity ([31], Section 3.1). With
the help of the method of stationary phase it can be shown that in this
limit the field exhibits a phase discontinuity of an amount π/2 at each
focal line [32,33]. Geometrical optics is governed by the eikonal
equation, the actual wave field however, satisfies the Helmholtz
equation. The solutions of the latter are well known to be continuous.
Hence, according to physical optics, the two phase discontinuities
have to be “smoothed out”, and become continuous but rapid phase
changes. When the astigmatic wave aberration decreases to zero, i.e.,
when the field in the aperture becomes a converging spherical wave,
the two foci coincide and the sharp phase change in the focal region is
the Gouy phase change of an amount π. Hence the phase anomaly can
be understood from elementary properties of rays and from the
relation between geometrical optics and physical optics.

When the focusing geometry is such that the focal length of the
system is appreciably larger than the aperture size, treating the optical
field as a scalar (as is done in Ref. [30]) is usually justified. However,
when the system has a high angular aperture, the vector character of
the field can no longer be neglected and a scalar description becomes
inaccurate. Wolf et al. [34–38] derived expressions for the electric and
magnetic field vectors in the focal region of such a system. In the
present paper we use this formalism to analyze the phase behavior, in
particular the occurrence of phase singularities and the Gouy phase
anomaly. Restricting ourselves to the electric field, three phases–one for
each Cartesian component–rather than a single phase have to be
considered. As we will demonstrate, all the three phases exhibit
singularities, and their associated phase anomalies are markedly
different.
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2. Focusing systems with a high angular aperture

Let us consider an aplanatic focusing system L of focal length f and
with a semi-aperture angle α (see Fig. 1). We take the origin O of a
right-handed Cartesian coordinate system at the geometrical focus. A
monochromatic plane wave of angular frequency ω is incident upon
the system, with the electric field polarized along the x-direction. The
position of an observation point P is indicated by the dimensionless
Lommel variables u and v, together with the azimuthal angle ϕ,
defined as

u = kz sin2 α; ð1Þ

v = k x2 + y2
� �1=2

sin α: ð2Þ

Here the wavenumber k=ω/c, with c denoting the speed of light. The
electric and magnetic fields are of the form

E u;υ;ϕ; tð Þ = Re e u;υ;ϕð Þ exp −iωtð Þ½ �; ð3Þ

H u;υ;ϕ; tð Þ = Re h u;υ;ϕð Þ exp −iωtð Þ½ �; ð4Þ

respectively, where Re denotes the real part and t the time. The time-
independent parts, e and h, of the electric and magnetic fields at a
point P(u,v,ϕ) have been shown to be given by the expressions [36]:

ex u;υ;ϕð Þ = −iA I0 u;υð Þ + I2 u;υð Þ cos 2ϕ½ �; ð5aÞ

ey u;υ;ϕð Þ = −iAI2 u;υð Þ sin 2ϕ; ð5bÞ

ez u;υ;ϕð Þ = −2AI1 u;υð Þ cos ϕ; ð5cÞ

hx u;υ;ϕð Þ = −iAI2 u;υð Þ sin 2ϕ; ð6aÞ

hy u;υ;ϕð Þ = −iA I0 u;υð Þ−I2 u;υð Þ cos 2ϕ½ �; ð6bÞ

hz u;υ;ϕð Þ = −2AI1 u;υð Þ sin ϕ; ð6cÞ

where

I0 u;υð Þ = ∫ α

0
cos1=2 θ sin θ 1+cos θð Þ J0

υ sin θ
sin α

� �
exp

iu cos θ
sin2 α

� �
dθ;

ð7Þ

I1 u;υð Þ = ∫ α

0
cos1=2 θ sin2 θ J1

υ sin θ
sin α

� �
exp

iu cos θ
sin2 α

� �
dθ; ð8Þ

I2 u;υð Þ = ∫ α

0
cos1=2 θ sin θ 1− cos θð Þ J2

υ sin θ
sin α

� �
exp

iu cos θ
sin2 α

� �
dθ:

ð9Þ

In these integrals Jn(x) denotes the Bessel function of the first kind
and of order n. The amplitude Awill be taken to be unity from now on.
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Fig. 1. Illustrating the geometry.
It is to be noted that all the functions in Eqs. (5)–(9) depend on the
semi-aperture angle α (not explicitely shown).

The following symmetry relations follow immediately from
Eqs. (5) and (7)–(9):

ex −u;υ;ϕð Þ = −e⁎x u;υ;ϕð Þ; ð10aÞ

ey −u;υ;ϕð Þ = −e⁎y u;υ;ϕð Þ; ð10bÞ

ez −u;υ;ϕð Þ = e⁎z u;υ;ϕð Þ: ð10cÞ

By comparing Eqs. (5) and (6) it is clear that the behavior of the
magnetic field components is similar to that of the electric field
components. In particular, the magnetic field component hx is
identical to the electric field component ey; hy in a meridional plane
ϕ = constant is identical to ex in the plane ϕ→ϕ+π/2; and hz in the
meridional plane ϕ is identical to ez in the plane ϕ→ϕ+π/2. In view
of these relations we will restrict our analysis to the electric field only.

3. Phase singularities

The three components of the electric field, given by Eq. (5), are
complex-valued. At points at which both the real and the imaginary
parts of a component have the value zero, the amplitude is also zero
and consequently the phase ψ(r) is undetermined or “singular” at
these points. The study of the topology of phase singularities is the
subject of a relatively new subdiscipline, called singular optics [39–48].
Two of its key concepts are the topological charge and the topological
index. The topological charge s of a phase singularity is defined by the
expression

s ≡ 1
2π ∮C∇ψ rð Þ⋅ dr; ð11Þ

where C is a closed contour of winding number one that is traversed
counter-clockwise. The topological index is defined as the topological
charge of the field ∇ψ rð Þ.

According to Eq. (5a) the electric field component ex in the focal
plane (u=0) is purely imaginary. As noted by Richards andWolf [36],
this plane contains ring-shaped phase singularities of ex, centered on
the u-axis, at which Im[ex] changes sign. They also showed that in the
low aperture limit (α→0), ex is the only non-vanishing component of
the electric field, and these singularities form the well-known Airy
rings of classical scalar diffraction theory.

The phase behavior of ey is illustrated in Fig. 2. In this figure the
phase is color-coded, with phase singularities indicated by the
intersections of contour lines. A pair of singularities of opposite
topological charge can be seen along the line u=23. It follows from
Eq. (5b) that the phase singularities of ey form rings centered on the
z-axis.

The phase of the longitudinal field component ez is shown in Fig. 3.
Again, several ring-shaped phase singularities can be observed. As
shown in [49], a pair of these singularities merges with two phase
saddle points when the semi-aperture angle α is changed. In such an
annihilation process both the topological charge and the topological
index are conserved.

4. The Gouy phase anomaly

The only component of the electric field which does not vanish
along the optical axis (υ=0) is ex. The wavefront spacing of that
component is highly irregular (see for example [50,51] and the
references therein). This behavior is seen from a plot of the real and
the imaginary part, Re[ex(u,υ,ϕ)] and Im[ex(u,υ,ϕ)], with the
longitudinal Lommel variable u as the parameter. An example is
presented in Fig. 4.
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Fig. 2. Contours of the phase of the transverse electric field component ey(u,υ,ϕ) in the
u,υ-plane. Intersections of different contours (e.g. at u=20, υ=8) indicate phase
singularities. The semi-aperture angle α of the focusing system was taken to be 45∘.
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Fig. 4. Parametric plot of Re[ex] and Im[ex] along the optical axis. The dots correspond
with the values u=0,2,…,16. The semi-aperture angle α was taken to be 45∘.
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Alternatively, one can compare the phase ψ[ex(u,υ,ϕ)] of ex, with
that of a converging, non-diffracted spherical wave in the half-space
zb0, namely −kR, and with that of a diverging spherical wave in the
half space z≥0, namely +kR, where kR=k(x2+y2+z2)1/2=(υ2+
u2/sin2α)1/2/sin α. The Gouy phase anomaly for the x-component of
the electric field, δx(u,υ,ϕ), is then defined as (see ([31], Section 8.8.4)
or ([32], Ch. 8)):

δx u;υ;ϕð Þ =
ψ ex u;υ;ϕð Þ½ � + kR when z < 0;

ψ ex u;υ;ϕð Þ½ �− kR when z ≥ 0:

8<
: ð12Þ

From Eqs. (5a) and (12) one immediately finds that the phase
anomaly at two points that are symmetrically located with respect to
the geometrical focus, satisfies the relation

δx u;υ;ϕð Þ + δx −u;υ;ϕ + πð Þ = −π: ð13Þ
u

π
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v

Fig. 3. Contours of the phase of the longitudinal electric field component ez(u,υ,ϕ) in
the u,υ-plane. Intersections of different contours (e.g. at u=13, υ=3) indicate phase
singularities. The semi-aperture angle α was taken to be 45∘.
At the focus (u=v=0) one has, according to Eq. (5a),

δx 0;0ð Þ = ψ ex 0;0ð Þ½ � = −π = 2: ð14Þ

The on-axis phase anomaly δx(u,υ=0) is shown in Fig. 5 for
selected values of the semi-aperture angle α of the focusing system.
When α increases, the change in phase near focus is seen to become
more gradual and to decrease. Scalar theory ([31], Section 8.8.4)
predicts a linear behavior of the phase anomaly, with a discontinuity
of π at each phase singularity (panel a). It is seen that for smaller
values of the semi-aperture angle the phase behavior tends to that
given by scalar theory. In connection with Fig. 5 it is important to bear
in mind that the longitudinal coordinate u is, by virtue of Eq. (1),
dependent on the value of the semi-aperture angle α.

In Fig. 6 the behavior of the phase anomaly of ex is shown along
several rays through the geometrical focus O. As an oblique ray passes
through focus, the angle ϕ that defines the meridional plane in which
the ray lies, changes by π. It is seen that when the angle of inclination θ
of the ray (with θ= tan−1[υ sin α/|u|]) increases, the change in δx(u,υ,
ϕ) near focus decreases.

According to Eq. (5b) the y-component of the electric field
vanishes along the optical axis, and hence its phase ψ[ey(u,υ)] is
singular there. Along oblique rays through the geometric focus,
however, this phase is defined. In analogy with Eq. (12) we define the
phase anomaly δy(u,υ,ϕ) of ey as

δy u;υ;ϕð Þ =
ψ ey u;υ;ϕð Þ
h i

+ kR when z < 0;

ψ ey u;υ;ϕð Þ
h i

− kR when z > 0:

8><
>: ð15Þ

From Eqs. (5b) and (15) we find that the phase anomaly at two
points that are symmetrically located with respect to the geometrical
focus, satisfies the relation

δy u;υ;ϕð Þ + δy −u;υ;ϕ + πð Þ = −π: ð16Þ
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Fig. 5. The phase anomaly along the optical axis according to scalar theory (a), and the
phase anomaly δx(u,υ=0) of the electric field component ex for selected values of the
semi-aperture angle α, (b) α=25∘, (c) α=50∘, and (d) α=75∘.
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Fig. 6. The phase anomaly δx(u,υ,ϕ) of the electric field component ex along several rays
in the meridional plane ϕ=0∘ through the geometric focus. The angle of inclination of
each ray is denoted by θ, with (a) θ=10∘, (b) θ=20∘, and (c) θ=30∘. In this example
the semi-aperture angle α was taken to be 45∘.
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Fig. 7. The phase anomaly δy(u,υ,ϕ) of the electric field component ey along two rays in
the meridional plane ϕ=45∘ through the geometric focus. The angle of inclination of
each ray is denoted by θ. In this example the semi-aperture angle α=50∘.
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A ray with υ∝ |u| runs through the geometrical focus. On using the
fact that for small arguments Jn(x)∼xn, we find from Eq. (5b) that
along such a ray ey∼− iu2 sin 2ϕ. Hence

limu↓0δy u;υ;ϕ + πð Þ = limu↑0δy u;υ;ϕð Þ = −π
2

× sign sin 2ϕ½ �: ð17Þ

Here the subscripts u↓0 and u↑0 indicate that the quantity u
approaches the limiting value 0 from above and from below,
respectively. Further, sign(x) denotes the sign function

sign xð Þ = −1 if x < 0;
1 if x > 0:

�
ð18Þ

Although both limits in Eq. (17) are equal, the phase anomaly
δy(u,υ,ϕ) is undefined at the geometric focus because ey vanishes there.
An example of this behavior is shown in Fig. 7. The two discontinuities
near u=1 and u=3 are a consequence of the fact that the phase is
defined up to an integral number of 2π.

Next we define, again in analogy with Eq. (12), the phase anomaly
δz(u,υ,ϕ) of the longitudinal component of the electric field as

δz u;υ;ϕð Þ =
ψ ez u;υ;ϕð Þ½ � + kR when z < 0;

ψ ez u;υ;ϕð Þ½ �− kR when z > 0:

(
ð19Þ



5521X. Pang et al. / Optics Communications 284 (2011) 5517–5522
It is seen from Eq. (10) that the phase behavior of the longitudinal
component ez of the electric field in the focal region differs from that
of the two transverse components. From Eqs. (5c) and (19) it follows
that the phase anomaly at two points that are symmetrically located
with respect to the geometrical focus, satisfies the relation

δz u;υ;ϕð Þ + δz −u;υ;ϕ + πð Þ = π: ð20Þ

Just as the y-component, the longitudinal component ez equals
zero along the optical axis. On using the small argument approxima-
tion for the Bessel function in Eq. (5c), one finds that along an oblique
ray through the geometrical focus ez∼− |u| cosϕ, and hence

limu↑0 δz u;υ;ϕð Þ = π × Θ cosϕ½ �; ð21aÞ

limu↓0 δz u;υ;ϕ + πð Þ� = π × Θ − cosϕ½ �; ð21bÞ

with Θ(x) being the Heaviside stepfunction

Θ xð Þ = 0 if x < 0;
1 if x > 0:

�
ð22Þ

The π phase discontinuity in ez as the ray passes through focus is
related to the fact that the angle ϕ, which defines the orientation of
themeridional plane that contains the ray, has a discontinuity there of
an amount π. (It is to be noted that the ϕ-dependence of ex and ey is
such that this jump does not affect these two field components.)
Examples of the phase anomaly of the longitudinal electric field are
shown in Fig. 8. It is seen that when the angle that the ray makes with
the axis becomes larger, the oscillations of the phase anomaly become
more damped. A comparison of Eqs. (13), (16) and (20) shows that
the phases of the three Cartesian components of the electric field have
different symmetry relations. Furthermore, Eqs. (14), (17) and (21)
show that their behavior at the geometrical focus is also different.

5. Conclusions

We have examined the phase behavior of the electric field in the
vicinity of the geometric focus of an aplanatic, high-numerical
aperture system. All three Cartesian components were found to
-10-20 10
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Fig. 8. The phase anomaly δz(u,υ,ϕ) of the electric field component ez along two rays
through the geometric focus in the meridional plane ϕ=180∘. The angle of inclination
of each ray is denoted by θ. In this example the semi-aperture angle α=45∘.
posses phase singularities. We also showed that the phase anomalies
associated with each of the phases are markedly different. The x-
component, along the direction of polarization of the incident field,
shows the classical Gouy phase behavior expressed by Eqs. (13) and
(14). Its precise behavior depends on the semi-aperture angle α of the
focusing system. In contrast to the x-component of the electric field,
the other transverse component, ey, is singular at the geometric focus.
Eq. (17) shows that its phase anomaly at the focus depends on the
orientation of the meridional plane (i.e., on the angle ϕ), but behaves
in a similar manner. The phase anomaly of the longitudinal
component ez is the only one which does not tend to ±π/2 at the
focus. Instead this phase undergoes a phase discontinuity there, by an
amount π .
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