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We investigate the spatial coherence properties in the focal region of a converging, spatially partially coherent
wave field. In particular, we find that, depending on the effective coherence length of the field in the aperture,
the longitudinal and transverse coherence lengths in the focal region can be either larger or smaller than the
corresponding width of the intensity distribution. Also, the correlation function is shown to exhibit phase
singularities. © 2004 Optical Society of America
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1. INTRODUCTION
The focusing of partially coherent light has recently been
the subject of several studies. Wang et al. generalized
the classical Debye theory to include the focusing of par-
tially coherent light by high-Fresnel-number systems.1

Friberg et al. analyzed the axial intensity distribution of
partially coherent wave fields focused by low-Fresnel-
number systems.2 Some related results were reported by
Lü et al.3 In addition, the effect of the state of coherence
on the three-dimensional intensity distribution near focus
was examined by Visser et al.4

The above-mentioned studies dealt exclusively with
field intensities. To the best of our knowledge, the corre-
lation properties of focused partially coherent fields have
not been examined. Because, for example, light that is
produced by a multimode laser or light that has traveled
through the atmosphere or biological tissue is partially
coherent, it is of prime importance to explore the correla-
tion properties of such focused wave fields.

In the present paper an important class of partially co-
herent fields, namely, Gaussian-Schell model fields, is ex-
amined. In particular, the spectral degree of coherence of
the field in the focal region is analyzed. It is shown that,
depending on the effective coherence length of the field in
the aperture, the coherence length in the focal region can
be either greater or smaller than the width of the inten-
sity distribution. Also, the spectral degree of coherence
is found to possess phase singularities. This implies that
the fields at certain pairs of points are completely uncor-
related.

2. PARTIALLY COHERENT FOCUSED
FIELDS
Consider a converging, monochromatic field of frequency
v that is exiting a circular aperture with radius a in a
plane screen (see Fig. 1). The origin O of the coordinate
system coincides with the geometrical focus. The ampli-
tude of the field is U (0)(r8, v), r8 being the position vector
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of a point Q(r8) in the aperture. The field at a point P(r)
in the focal region is, according to the Huygens–Fresnel
principle (Ref. 5, Chap. 8.2), given by the expression

U~r, v! 5 2
i

l
E E

S
U ~0 !~r8, v!

exp~ iks !

s
d2r8, (1)

where the integration extends over the spherical wave
front S that briefly fills the aperture, s 5 ur 2 r8u denotes
the distance QP, and we have suppressed a periodic time-
dependent factor exp(2ivt).

For a partially coherent wave field one must consider,
instead of the field U (0)(r8, v), the cross-spectral density
function (Ref. 6, Sec. 2.4.4) of the field at two points
Q1(r18) and Q2(r28), namely,

W ~0 !~r18 , r28 , v! 5 ^U ~0 !* ~r18 , v!U ~0 !~r28 , v!&. (2)

Here the angle brackets denote the average, taken over a
statistical ensemble of monochromatic realizations
$U (0)(r8)exp(2ivt)% (Ref. 6, Sec. 4.7), and the asterisk de-
notes the complex conjugate. The cross-spectral density
of the focused field

W~r1 , r2 , v! 5 ^U* ~r1 , v!U~r2 , v!& (3)

is given by the formula

W~r1 , r2 , v! 5
1

l2
E E

S
E E

S
W ~0 !~r8, r9, v!

3
exp@ik~s2 2 s1!#

s1s2
d2r8d2r9, (4)

where we have used Eqs. (1) and (3), with

s1 5 ur1 2 r8u, (5)

s2 5 ur2 2 r9u. (6)
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From now on we omit the explicit dependence of the vari-
ous quantities on the frequency v.

We assume that the field in the aperture is a Gaussian
Schell-model field with uniform intensity (Ref. 6, Sec.
5.3.2); i.e.,

W ~0 !~r8, r9! 5 W ~0 !~r8, r9! 5 exp@2~r9 2 r8!2/2sg
2#,

(7)

where r 5 (x, y) is the two-dimensional transverse vec-
tor that specifies the position of a point Q on S, and sg is
a positive constant that is a measure of the effective spec-
tral coherence length of the field in the aperture. On
substituting from Eq. (7) into Eq. (4) and approximating
the factors si (i 5 1,2) in the denominator by the focal
length f, we find that

W~r1 , r2! 5
1

~lf !2
E E

S
E E

S
exp@2~r9 2 r8!2/2sg

2#

3 exp@ik~s2 2 s1!#d2r8d2r9. (8)

The distances si appearing in the exponent may be ap-
proximated by the expressions

s1 ' f 2 q8–r1 , (9)

s2 ' f 2 q9–r2 , (10)

where q8 and q9 are unit vectors in the directions Or8 and
Or9, respectively. Hence we obtain the expression

W~r1 , r2! 5
1

~lf !2
E E

S
E E

S
exp@2~r9 2 r8!2/2sg

2#

3 exp@ik~q8–r1 2 q9–r2!#d2r8d2r9. (11)

A quantitative measure of the strength of the field cor-
relations at a pair of points P1(r1), P2(r2) in the focal re-
gion is given by the spectral degree of coherence (Ref. 6,
Sec. 4.3.2), which is defined as

m~r1 , r2! 5
W~r1 , r2!

@S~r1!S~r2!#1/2
, (12)

with the spectral density at position ri given by the diag-
onal elements of the cross-spectral density; i.e.,

S~ri! 5 W~ri , ri!. (13)

Let us now examine the spectral degree of coherence of
the focused fields for pairs of points on the z axis and for
pairs of points in the focal plane.

Fig. 1. Illustration of the notation.
3. AXIAL POINTS
We temporarily restrict ourselves to pairs of points on the
z axis, i.e.,

r1 5 ~0, 0, z1!, (14)

r2 5 ~0, 0, z2!. (15)
On introducing cylindrical coordinates r and f, while us-
ing the approximations

q8–r1 ' 2z1~1 2 r82/2f 2!, (16)

q9–r2 ' 2z2~1 2 r92/2f 2!, (17)
in Eq. (11), we obtain for the cross-spectral density the ex-
pression

W~0, 0, z1 ; 0, 0, z2! 5 S 1

lf D
2E

0

2pE
0

aE
0

2pE
0

a

3 exp$2@r82 1 r92

2 2r8r9 cos~f 8 2 f 9!#/2sg
2%

3 exp$ik@2z1~1 2 r82/2f 2!

1 z2~1 2 r92/2f 2!#%

3 r8r9df 8dr8df 9dr9, (18)
where we have used the relation dxdy 5 rdrdf. We
note that in Eq. (18) only one factor depends on the vari-
ables f 8 and f 9. Since7

E
0

2pE
0

2p

exp@r8r9 cos~f 8 2 f 9!/sg
2#df 8df 9

5 4p2I0S r8r9

sg
2 D , (19)

with I0 denoting the modified Bessel function of order
zero, we find for the cross-spectral density the formula

W~0, 0, z1 ; 0, 0, z2! 5 S 2p

lf D 2E
0

aE
0

a

exp@2~r82

1 r92!/2sg
2#I0S r8r9

sg
2 D

3 exp$ik@2z1~1 2 r82/2f 2!

1 z2~1 2 r92/2f 2!#%

3 r8r9dr8dr9. (20)
The axial spectral density distribution is given by the ex-
pression

S~0, 0, z ! 5 W~0, 0, z; 0, 0, z ! (21)

5 S 2p

lf D 2E
0

aE
0

a

exp@2~r82

1 r92!/2sg
2#I0S r8r9

sg
2 D

3 exp$ik@z~r82 2 r92!/2f 2#%

3 r8r9dr8dr9. (22)
Since the spectral density is real-valued, it can be simpli-
fied to the form
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Fig. 2. Real part (solid curve) and imaginary part (dashed
curve) of the spectral degree of coherence m(0, 0, 0; 0, 0, z). In
this example a 5 1 cm, f 5 2 cm, sg 5 0.5 cm, and l
5 0.6328 mm.

Fig. 3. Modulus of the spectral degree of coherence,
um(0, 0, z1 ; 0, 0, z2)u. In this example a 5 1 cm, f 5 2 cm, sg
5 0.4 cm, and l 5 0.6328 mm.

Fig. 4. Modulus of the spectral degree of coherence,
um(0, 0, 2z; 0, 0, z)u for several values of the scaled coherence
length sg /a. In this example a 5 1 cm, f 5 2 cm, and l
5 0.6328 mm.
S~0, 0, z ! 5 S 2p

lf D 2E
0

aE
0

a

exp@2~r82

1 r92!/2sg
2#I0S r8r9

sg
2 D

3 cos@kz~r82 2 r92!/2f 2#r8r9dr8dr9.

(23)
Several symmetry properties readily follow from Eqs. (20)
and (23), viz.,

W~0, 0, 2z1 ; 0, 0, 2z2! 5 W~0, 0, z1 ; 0, 0, z2!* ,
(24)

S~0, 0, 2z ! 5 S~0, 0, z !. (25)

On using Eqs. (24) and (25) together with the definition of
the spectral degree of coherence [Eq. (12)], we obtain the
symmetry relation

m~0, 0, z1 ; 0, 0, z2! 5 m~0, 0, 2z1 ; 0, 0, 2z2!* . (26)

It follows from Eq. (20) that for z1 kept fixed,
m(0, 0, z1 ; 0, 0, z2) is an oscillating function of z2 , with a
period that is somewhat larger than the wavelength l.
An example is shown in Fig. 2, in which both the real part
and the imaginary part of m(0, 0, 0; 0, 0, z) are depicted.

For a converging field that is spatially fully coherent,
the first and second axial zeros of intensity are located at
(Ref. 5, Sec. 8.8.2)

z01 5 62l~ f/a !2, (27)

z02 5 64l~ f/a !2, (28)

respectively. For partially coherent fields, such zeros are
absent. In Fig. 3 the modulus of the spectral degree of
coherence, calculated by numerically integrating Eqs. (20)
and (23), is shown for pairs of axial points z1 , z2 up to the
point z02 . It is seen that, contrary to what one might ex-
pect, um(0, 0, z1 ; 0, 0, z2)u is not a decreasing function of
the distance uz1 2 z2u but rather has an oscillatory behav-
ior.

The function um(0, 0, 2z; 0, 0, z)u is shown for selected
values of the normalized coherence length sg /a in Fig. 4.
For comparison’s sake the normalized axial intensity dis-
tribution, S(0, 0, z)/S(0, 0, 0), is also plotted in Fig. 5.
It is striking that for sg /a * 0.5 [as in Figs. 5(a)–5(c)] the
effective coherence length in the focal region is found to
be greater than the width of the axial intensity distribu-
tion. For sg /a & 0.5 [as in Figs. 5(d)–5(f)] the effective
coherence length in the focal region is seen to be less than
the width of the intensity distribution.

4. FOCAL PLANE
We next study pairs of points that lie in the focal plane.
One observation point is taken to be at the geometrical fo-
cus O and the other in the focal plane at a given distance
from the z axis. Because of rotational symmetry we may,
without loss of generality, assume that the latter point
lies on the x axis, i.e.,

r1 5 ~0, 0, 0 !, (29)

r2 5 ~x, 0, 0 !. (30)

We then have

s1 5 f. (31)
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Fig. 5. Modulus of the spectral degree of coherence, um(0, 0, 2z; 0, 0, z)u and the normalized axial spectral density S(0, 0, z)/S(0, 0, 0)
for different values of sg /a. (a) sg /a 5 2, (b) sg /a 5 1, (c) sg /a 5 0.6, (d) sg /a 5 0.4, (e) sg /a 5 0.2, (f) sg /a 5 0.1. In all examples
a 5 1 cm, f 5 2 cm, and l 5 0.6328 mm.
Fig. 6. Spectral degree of coherence, m(0, 0, 0; x, 0, 0) for sev-
eral values of the scaled coherence length sg /a. Notice that
m(0, 0, 0; x, 0, 0) is strictly real. In all examples a 5 1 cm, f
5 2 cm, and l 5 0.6328 mm.
Also, since

q9 5 @r9 cos f 9/f, r9 sin f 9/f, 2~1 2 r92/f 2!1/2#,
(32)

we obtain from Eq. (10) that

s2 ' f 2 r9x cos f 9/f. (33)

On substituting from Eqs. (31) and (33) into Eq. (8) and
again using cylindrical coordinates, we find that

W~0, 0, 0; x, 0, 0 !

5
1

~lf !2
E

0

2pE
0

aE
0

2pE
0

a

exp$2@r82 1 r92

2 2r8r9 cos~f 8 2 f 9!#/2sg
2%

3 exp@2ik~r9x cos f 9!/f #r8r9df 8dr8df 9dr9 (34)
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5
2p

~lf !2
E

0

aE
0

2pE
0

a

exp@2~r82 1 r92!/2sg
2#I0S r8r9

sg
2 D

3 exp@2ik~r9x cos f 9!/f #r8r9dr8df 9dr9, (35)

5 S 2p

lf D 2E
0

aE
0

a

exp@2~r82 1 r92!/2sg
2#I0S r8r9

sg
2 D

3 J0S kr9x

f D r8r9dr8dr9, (36)

with J0 the Bessel function of the first kind of order zero.
We notice from Eq. (36) that W(0, 0, 0; x, 0, 0), and
hence also m(0, 0, 0; x, 0, 0), is real-valued.

In order to obtain the spectral density, we note from Eq.
(8) that

W~x, 0, 0; x, 0, 0 !

5
1

~lf !2
E

0

2pE
0

aE
0

2pE
0

a

exp$2@r82 1 r92 2 2r8r9

3 cos~f 8 2 f 9!#/2sg
2%

3 exp@ikx~r8 cos f 8
2 r9 cos f 9!/f #r8r9df 8dr8df 9dr9 (37)
5
1

~lf !2
E

0

2pE
0

aE
0

2pE
0

a

exp$2@r82 1 r92

2 2r8r9 cos~f 8 2 f 9!#/2sg
2%

3 cos@kx~r8 cos f 8 2 r9 cos f 9!/f #

3 r8r9df 8dr8df 9dr9, (38)

where we used the fact that the spectral density is real-
valued.

Examples of the spectral degree of coherence
m(0, 0, 0; x, 0, 0) are shown in Fig. 6 for selected values
of the normalized effective coherence length sg /a. An
oscillatory behavior can be observed, with the damping
increasing with decreasing sg . It can be seen that for
the case sg /a 5 5 two different regions can be discerned:
regions where the fields at the points (0, 0, 0) and
(x, 0, 0) are essentially coherent and co-phasal and re-
gions where the fields are essentially coherent and have
opposite phases. In addition, all depicted curves inter-
sect the line m(0, 0, 0; x, 0, 0) 5 0. At these points the
field is completely incoherent with the field at (0, 0, 0).
Such phase singularities of the spectral degree of coher-
ence have recently been discussed in different
contexts.8–10

It is interesting to compare the spectral degree of co-
herence with the intensity (or ‘‘spectral density’’)
S(x, 0, 0)/S(0, 0, 0). In Figs. 7(a)–(f) several examples
are presented. We notice that when s /a * 0.5, the
g
width of the spectral density distribution is less than that
Fig. 7. Spectral degree of coherence, m(0, 0, 0; x, 0, 0) and the normalized spectral density S(x, 0, 0)/S(0, 0, 0) for different values of
sg /a. (a) sg /a 5 5, (b) sg /a 5 0.8, (c) sg /a 5 0.6, (d) sg /a 5 0.4, (e) sg /a 5 0.2. In all examples a 5 1 cm, f 5 2 cm, and l
5 0.6328 mm.
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of the spectral degree of coherence. However, when
sg /a & 0.5, the width of the spectral density distribution
exceeds that of the spectral degree of coherence. It can
also be seen from Figs. 5(a) and 7(a) that as sg /a gets
large, we recover the spectral density distribution for the
fully coherent case. In Fig. 7(a), the zeros of the spectral
density occur at x/l 5 1.21 and 2.23, as in the coherent
case.

5. CONCLUSIONS
We have studied the spectral degree of coherence in the
focal region of a converging, partially coherent wave field.
Expressions were derived for pairs of points on the axis of
symmetry and for pairs of points in the focal plane. For
both cases it was found that, depending on the effective
coherence length of the field in the aperture, the width of
the spectral degree of coherence can be either larger or
smaller than that of the spectral density distribution. In
addition, the spectral degree of coherence was shown to
possess phase singularities.
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