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Phase singularities of the longitudinal field
components in the focal region
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We study the behavior of the longitudinal components of strongly focused electromagnetic fields. These com-
ponents possess phase singularities and phase saddles that can be annihilated when the aperture angle of the
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1. INTRODUCTION
When a beam of light is focused by a high-angular-
aperture system, the vectorial character of the field can
no longer be neglected.1 In the germinal work of Rich-
ards and Wolf,2–4 and also Boivin and Wolf,5,6 expressions
were derived for the field components in the focal region
of such a system. For the case of a monochromatic, lin-
early polarized plane wave, they found that near focus,
the field components were nonzero in the two directions
perpendicular to the polarization of the incident field.
This is of interest because a precise knowledge of the
structure of the focused field is necessary for many appli-
cations. For example, it has been suggested that the lon-
gitudinal field component (i.e., the component along the
direction of propagation of the incident field) might be
used in a table-top accelerator for charged particles7 or as
a probe for examining the absorption dipole moments of
individual molecules.8 In recent experiments, Novotny
et al. succeeded in measuring the longitudinal field com-
ponents for an incident field that was radially polarized.9

In the present paper the longitudinal field components
in the focal region of a linearly polarized incident field are
studied. It is demonstrated that these components ex-
hibit phase singularities and phase saddles.10–12 In ad-
dition, it is shown that when the semiaperture angle of
the focusing system is increased in a continuous manner,
such singularities can annihilate each another via a pro-
cess in which topological charge and index are conserved.

2. BASIC EQUATIONS
Consider an aplanatic focusing system L, as illustrated in
Fig. 1. The system has a focal length f and a semiaper-
ture angle a. The geometrical focus is indicated by O and
is chosen to be the origin of the coordinate system. A
monochromatic plane wave with angular frequency v is
incident on the lens with the electric field polarized in the
x direction. The notation for the problem is greatly sim-
plified by introducing longitudinal and transverse optical
coordinates that are defined as follows:

u 5 kz sin2 a, (1)

v 5 k~x2 1 y2!1/2 sin a, (2)
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where k 5 v/c 5 2p/l, with c and l being, respectively,
the speed and wavelength of light in vacuum. The so-
called Lommel variables, u and v, together with the angle
f, specify the position of an observation point P in the fo-
cal region. The electric and magnetic fields are given by

E~u, v, f, t ! 5 Re@e~u, v, f !exp~2ivt !#, (3)

H~u, v, f, t ! 5 Re@h~u, v, f !exp~2ivt !#, (4)

respectively, where Re denotes the real part. It has been
shown by Richards and Wolf that the time-independent
parts, e and h, of the electric and magnetic fields at the
point P(u, v, f ) are given by the following expressions4:

ex~u, v, f ! 5 2iA~I0 1 I2 cos 2f !, (5a)

ey~u, v, f ! 5 2iAI2 sin 2f, (5b)

ez~u, v, f ! 5 22AI1 cos f, (5c)

hx~u, v, f ! 5 2iAI2 sin 2f, (6a)

hy~u, v, f ! 5 2iA~I0 2 I2 cos 2f !, (6b)

hz~u, v, f ! 5 22AI1 sin f, (6c)

where

I0~u, v ! 5 E
0

a

cos1/2 u sin u~1 1 cos u!J0S v sin u

sin a
D

3 expS iu cos u

sin2 a
D du, (7)

I1~u, v ! 5 E
0

a

cos1/2 u sin2 uJ1S v sin u

sin a
D

3 expS iu cos u

sin2 a
D du, (8)

I2~u, v ! 5 E
0

a

cos1/2 u sin u~1 2 cos u!J2S v sin u

sin a
D

3 expS iu cos u

sin2 a
D du. (9)
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Here Jn(x) denotes the Bessel function of the first kind of
order n, and the coefficient A is defined as

A 5 pfl/l. (10)

Fig. 1. Illustration of a high-numerical-aperture focusing sys-
tem.

Fig. 2. Contours of ez in the focal plane (u 5 0) for a semiap-
erture angle of a 5 45°. In this plane, ez is strictly real.
For this paper we have chosen a value of A
5 141.20 statV/cm. For this choice of A, the electric-
energy density, defined as ^we& 5 ^E2&/16p, will have a
value of 100 statV2/cm2 at the geometrical focus. It
should be noted that, although not explicitly stated in the
list of arguments, all of the functions in Eqs. (5)–(9) are
dependent on the value of the semi-aperture angle a.
The following symmetry relations follow from Eqs. (5)–
(9):

ex~2u, v, f ! 5 2ex* ~u, v, f !,

ey~2u, v, f ! 5 2ey* ~u, v, f !,

ez~2u, v, f ! 5 ez* ~u, v, f !,

hx~2u, v, f ! 5 2hx* ~u, v, f !,

hy~2u, v, f ! 5 2hy* ~u, v, f !,

hz~2u, v, f ! 5 hz* ~u, v, f !, (11)

From the above symmetry relations, it follows that the
phase behavior of the longitudinal components differs
from that of the transverse components in the focal re-
gion. This behavior will be studied in more detail in the
next section.

3. LONGITUDINAL FIELD COMPONENTS
By comparing Eqs. (5c) and (6c) we can see clearly that
the behavior of the longitudinal component of the electric
field ez in any meridional plane f 5 constant is identical
to that of the longitudinal component of the magnetic field
hz in the meridional plane f 5 constant 1 p/2. It there-
fore suffices to restrict the analysis to ez , as we will
henceforth do.
Fig. 3. Contours of uezu in the meridional plane f 5 0 for a semiaperture angle of a 5 45°.
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We notice from Eqs. (5c) and (8) that in the focal plane
(u 5 0), ez is strictly real-valued. In Fig. 2 contour lines
of ez in this plane are shown. This plot is in agreement
with previously published data.5 It is interesting to note
that the values for ez on the right-hand side of the plot are
the negatives of the values on the left-hand side. This is
due to the cosine dependence of ez on f. Within the
plane f 5 6p/2, ez is identically zero. Crossing this
plane switches the sign of the field, which is equivalent to
a p phase jump. This will be discussed further in Section
4. Another consequence of the dependence of ez on the
cosine of f is a series of circular contours of zero ampli-
tude. In Fig. 2 these can be seen as rings with radii of
v 5 5.07, 8.37, 11.58, and 14.76.

It has been noted by Boivin and Wolf that there are
points along the f 5 0 axis of the focal plane where the
transverse components, ex and ey , vanish but ez remains
nonzero.5 In Fig. 2 these points occur at v 5 3.99, 7.13,
10.26, and 13.39. At these locations the electric field is
strictly longitudinal.

In Fig. 3 contours of uezu are plotted in the meridional
plane f 5 0. In this plane ez is, in general, complex-
valued. From considering Eqs. (5c) and (8) it follows that
ez is strictly zero along the u axis (v 5 0). In the previ-
ous discussion of Fig. 2, it was remarked that uezu van-
ishes for particular values of v along the v axis as well.
It is worthwhile to note that, in addition to these zeros
along the u axis and in the focal plane, there are regions
off-axis where uezu appears to have minima. If uezu 5 0 in
any of these regions, then the phase Fez

, as defined by the
expression

ez~u, v, f ! 5 uez~u, v, f !uexp@iFez
~u, v !#, (12)

is indeterminate, resulting in a phase singularity. We re-
mark that the phase Fez

is independent of the angle f, be-
cause the cos f term in Eq. (5c) is strictly real and thus
affects only the amplitude of the field.

It is of interest to study how the phase of ez changes as
the point of observation moves along a ray through the
geometrical focus. It is convenient to compare this phase
with that of a converging wave in the half-space z , 0,
namely, 2kR, and with that of a diverging wave in the
half space z . 0, namely, 1kR. Here R 5 (x2 1 y2

1 z2)1/2. The phase anomaly of the longitudinal electric
field component can be defined as follows13:

d ~u, v ! 5 Fez
~u, v ! 1 kR when z , 0,

(13a)

d ~u, v ! 5 Fez
~u, v ! 2 kR when z . 0.

(13b)

The plots in Fig. 4 show the phase anomaly for a selection
of rays of various angles of inclination, each passing
through the geometrical focus. When a ray passes
through the focus, where the phase is indeterminate, ez
undergoes a p phase jump, as can be inferred from Eqs.
(5c) and (8).
4. PHASE SINGULARITIES OF THE
LONGITUDINAL FIELD COMPONENTS
To identify regions where uezu is identically zero, it is use-
ful to study the zero contours of the real and imaginary
parts of ez . The amplitude of ez vanishes if and only if
the zero contours of the real and imaginary parts inter-
sect at that point. Figure 5 is a color-coded plot of the
phase Fez

. Overlaid on this plot are the zero contours of
Re(ez) and Im(ez).

As has been previously noted in this paper, uezu is iden-
tically zero along the u axis and for certain values of v in
the focal plane. As Fig. 5 illustrates, all of these points
correspond to regions where the zero contours of Re(ez)
and Im(ez) coincide. Furthermore, in the upper-right
quadrant, three intersections can be seen, one near

Fig. 4. Phase anomaly d (u, v) along different rays passing
through the geometrical focus. u indicates the angle of inclina-
tion. For all cases a 5 45°.
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(u, v) 5 (13, 3.25) and a pair near (u, v) 5 (17, 5).
These intersections are independent of the angle f, and
thus each intersection actually represents a ring-shaped
singularity about the u axis. A corresponding set of sin-
gular points exist on the opposite side of the u axis, where
the ring singularities again intersect the plane. Further-
more, because of the symmetry relations given in Eq. (11),
a similar set of ring singularities exist for negative values
of u.

In the study of singular optical phenomena, it is useful
to consider the topological charge and index of the fea-
tures. The topological charge s of a phase singularity is
defined as

s [
1

2p
R

C
¹Fez

• dr, (14)

where C is a closed contour of winding number one that is
traversed counterclockwise. The topological index t is
defined as the topological charge of the field ¹Fez

. It is
well known from previous studies14–17 that phase singu-
larities can be created or annihilated when a system pa-
rameter is changed in a continuous manner. In the focal
plane u 5 0, all of the ring-shaped singularities have to-
pological charge s 5 11, reminiscent of the Airy rings in
scalar focusing theory (see, for example, Ref. 13, Sec. 8.8).
Saddle points lie between the singularities. Annihilation
of these structures cannot occur because topological
charge would not be conserved. This is not true, how-
ever, for the pair of singularities near (u, v) 5 (17, 5).
The upper phase singularity is a negative vortex with to-
pological charge s 5 21 and topological index t 5 11;
the lower phase singularity is a positive vortex with topo-
logical charge s 5 11 and topological index t 5 11. For
annihilation to occur, two phase saddles, each with s
5 0 and t 5 21, are also needed, (see Ref. 11, Sec. 5.5.2),
so that topological index is also conserved. Figure 6 il-
lustrates the existence of the phase singularities and
phase saddles. As the semiaperture angle increases, the
pair of singularities and the pair of saddle points move to-
gether until they annihilate each other. This progression
is illustrated in Fig. 7, where the contours of Im(ez) 5 0
(dotted curves) and Re(ez) 5 0 (solid lines) are shown for
selected values of the semiaperture angle a. As a in-
creases, the two phase singularities move closer to each
other and eventually annihilate, meaning that the zero
contours of the real and imaginary parts of ez no longer
intersect. This can be seen in Fig. 7(f). It is interesting
to note that before annihilation occurs, the different con-
tour lines in the vicinity of the phase singularities change
shape, splitting and joining.
Fig. 5. Phase of the longitudinal electric field component, plotted as a color spectrum ranging from red for 0 through violet for 2p.
Overlaid onto the phase plots are lines corresponding to zero contours for the real and imaginary parts of ez . The solid lines are zeros
of the real part, and the dashed lines are zeros of the imaginary part. The intersection of these contours indicate phase singularities.
For this example a 5 45°.
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5. CONCLUSIONS
In this paper we have studied the longitudinal field com-
ponents of a linearly polarized beam focused by a high-
angular-aperture system. In the focal plane, the longitu-
dinal component is strictly real. In this plane, there
exist rings where the amplitude of the longitudinal com-
ponent is identically zero. In addition to these phase sin-
gularities, phase saddles are present in the focal plane.
Ring singularities and saddle points also exist outside the
focal plane. Of special interest are a pair of singularities
with opposite topological charge, located near a pair of
saddle points. Because these four elements have a total
topological charge and topological index of zero, mutual
annihilation is possible. Indeed, as was shown, the two
singularities and two saddle points merge and annihilate
as the semiaperture angle is increased.

Our results are relevant for all applications in which
electromagnetic fields are strongly focused.
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Fig. 6. Phase of the longitudinal electric field component, plot-
ted as a color spectrum ranging from red for 0 through violet for
2p. Overlaid onto the plot are lines corresponding to contours of
equal phase. The solid lines indicate contours of phase Fez

5 0.074p, and the dashed lines indicate contours of phase Fez

5 0.516p. The two X-shaped intersections are saddle points.
The dashed and dotted contour lines intersect at the singular
points, where the phase is undefined. In this example the
semiaperture angle a 5 45°.
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