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A B S T R A C T

We demonstrate analytically and numerically that the transverse spatial coherence (the spectral degree of
coherence) of the field radiated by two partially correlated electromagnetic sources oscillates as a function
of propagation distance in free space. In particular, it is possible for its magnitude to completely collapse to
zero on propagation, and then return again to unity at a further distance. Our results are a direct demonstration
of the wave character of the optical correlation functions. A similar oscillatory effect occurs for the degree of
polarization.
One of the key results of optical coherence theory is the insight that
wo-point correlation functions satisfy a pair of wave equations or, in
he space–frequency domain, two Helmholtz equations. These relations,
amed after their discoverer Emil Wolf [1,2], allow one to study how
he state of coherence of an optical field evolves on propagation, while
sing the tools of diffraction theory. This state of coherence determines
he field’s evolution in space and time [3] and its interaction with
aterial structures [4]. The many predictions of coherence theory,

ased on the Wolf equations, have been tested successfully under a
ide variety of circumstances [5–10]. However, these are all indirect
erifications of the wave nature of correlation functions. To the best
f our knowledge, a direct demonstration of the Wolf equations has
ot been provided yet. Here we report that two partially correlated
lectromagnetic point sources give rise to a field whose spectral degree
f coherence, denoted 𝜂(𝐫1, 𝐫2, 𝜔), oscillates on propagation, and indeed
ndergoes the same interference process as the field itself. In particular,
t is possible for |𝜂(𝐫1, 𝐫2, 𝜔)| to become zero, corresponding to complete
ncoherence, and then increase again to unity, meaning that the field
as become spatially fully coherent. This repeating collapse and revival
ccurs in complete unison with the spectral density at one of the
bservation points, thus demonstrating directly the wave character of
orrelations.

The collapse and revival of entirely different forms of coherence
ave been reported previously, in quantum optics [11] and Optical
oherence Tomography [12]. It is to be noted that those studies are
oncerned with temporal coherence, whereas as the present analysis
ertains to spatial coherence.

The configuration that we study is Young’s setup. An opaque screen
in the plane 𝑧 = 0 contains two small identical apertures located

t 𝑄1 = (𝑑, 0, 0) and 𝑄2 = (−𝑑, 0, 0) (see Fig. 1). From the pinholes

∗ Corresponding author at: Department of Physics and Astronomy, Vrije Universiteit, Amsterdam 1081HV, The Netherlands.
E-mail address: tvisser@nat.vu.nl (T.D. Visser).

Fig. 1. The superposition of the fields radiated by two identical pinholes at 𝑄1 and
𝑄2 in a screen  is observed at two symmetrically located positions 𝑃1 and 𝑃2. The
origin 𝑂 is located midway between the apertures. 𝑅11 = |𝑄1𝑃1|, and 𝑅12 = |𝑄1𝑃2|; 𝑅22
and 𝑅21 are not shown. The separation between 𝑄1 and 𝑄2 is 2𝑑, that between 𝑃1 and
𝑃2 is 2𝑠.

a stochastic, statistically stationary electromagnetic field emerges. The
superposition of the two radiated fields is observed at two symmetri-
cally located points 𝑃1 = (𝑠, 0, 𝑧) and 𝑃2 = (−𝑠, 0, 𝑧). When 𝑃1 and 𝑃2
are in the far zone and close to the 𝑧 axis, the 𝑧 component of the field
there may be neglected. The electric field vector 𝐄 = 𝐸𝑥�̂� + 𝐸𝑦�̂� at 𝑃𝑚

at frequency 𝜔 is then given by the expression

𝐄(𝑃𝑚, 𝜔) = 𝐾1𝑚𝐄(𝑄1, 𝜔) +𝐾2𝑚𝐄(𝑄2, 𝜔), (1)

with the propagators

𝐾𝑛𝑚 = − i𝐷
𝜆

𝑒i𝑘𝑅𝑛𝑚

𝑅𝑛𝑚
, (𝑛, 𝑚 = 1, 2), (2)
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where 𝐷 denotes the area of the apertures, 𝜆 and 𝑘 are the free-space
wavelength and wavenumber corresponding to 𝜔, and the distance
𝑅𝑛𝑚 = |𝑄𝑛𝑃𝑚| [13, Sec. 8.2]. In the following we keep the separation
distances 2𝑑 and 2𝑠 fixed, while varying the observation plane 𝑧.

In the frequency domain the state of coherence of the field is de-
cribed by the cross-spectral density (CSD) matrix 𝐖 with elements [2,
h. 9]

𝑖𝑗 (𝑃𝑛, 𝑃𝑚) = ⟨𝐸∗
𝑖 (𝑃𝑛)𝐸𝑗 (𝑃𝑚)⟩, (𝑖, 𝑗 = 𝑥, 𝑦), (3)

where the angled brackets indicate an ensemble average, and with the
frequency dependence suppressed for brevity. It is readily found that

𝑊𝑖𝑗 (𝑃𝑛, 𝑃𝑚) = 𝐾∗
1𝑛𝐾1𝑚𝑊

(0)
𝑖𝑗 (𝑄1, 𝑄1) +𝐾∗

1𝑛𝐾2𝑚𝑊
(0)
𝑖𝑗 (𝑄1, 𝑄2)

+ 𝐾∗
2𝑛𝐾1𝑚𝑊

(0)
𝑖𝑗 (𝑄2, 𝑄1) +𝐾∗

2𝑛𝐾2𝑚𝑊
(0)
𝑖𝑗 (𝑄2, 𝑄2), (4)

and hence

𝑊𝑖𝑗 (𝑃𝑛, 𝑃𝑛) = |𝐾1𝑛|
2𝑊 (0)

𝑖𝑗 (𝑄1, 𝑄1) +𝐾∗
1𝑛𝐾2𝑛𝑊

(0)
𝑖𝑗 (𝑄1, 𝑄2)

+ 𝐾∗
2𝑛𝐾1𝑛𝑊

(0)
𝑖𝑗 (𝑄2, 𝑄1) + |𝐾2𝑛|

2𝑊 (0)
𝑖𝑗 (𝑄2, 𝑄2), (5)

where

𝑊 (0)
𝑖𝑗 (𝑄𝑛, 𝑄𝑚) = ⟨𝐸∗

𝑖 (𝑄𝑛)𝐸𝑗 (𝑄𝑚)⟩, (6)

is the CSD matrix of the incident field in the plane 𝑧 = 0. The spectral
density at each observation point is defined as the trace of the CSD
matrix, i.e., 𝑆(𝑃𝑛) = Tr𝐖(𝑃𝑛, 𝑃𝑛).

The spectral degree of coherence, whose magnitude is directly
related to the fringe visibility in Young’s interference experiment [2],
equals

𝜂(𝑃1, 𝑃2) =
Tr𝐖(𝑃1, 𝑃2)
√

𝑆(𝑃1)𝑆(𝑃2)
. (7)

The magnitude |𝜂(𝑃1, 𝑃2)| is bounded by zero and unity. The lower
bound corresponds to the complete absence of coherence, whereas the
upper bound indicates full coherence. It should be noted that other
definitions of the degree of coherence have been suggested [14].

Another quantity of interest is the spectral degree of polarization,
which is defined as

(𝐫) =

√

1 −
4Det𝐖(𝐫, 𝐫)
[Tr𝐖(𝐫, 𝐫)]2

. (8)

his real-valued quantity is also bounded by zero and one.
As an illustration of the behavior of the spectral degree of coherence

e consider a Gaussian Schell-model source [2, Sec. 9.4.2], located in
he plane 𝑧 = 0 and covered by the screen  that contains the two
inholes. In that case the CSD elements are

(0)
𝑖𝑗 (𝝆1,𝝆2) =

√

𝑆(0)
𝑖 (𝝆1)𝑆

(0)
𝑗 (𝝆2)𝜇

(0)
𝑖𝑗 (𝝆2 − 𝝆1). (9)

Here 𝝆 = (𝑥, 𝑦) is a two-dimensional position vector, 𝑆(0)
𝑖 (𝝆) denotes the

spectral density of the Cartesian component 𝐸𝑖, and 𝜇(0)
𝑖𝑗 (𝝆2 − 𝝆1) is the

correlation between 𝐸𝑖 and 𝐸𝑗 . Furthermore

𝑆(0)
𝑖 (𝝆) = 𝐴2

𝑖 exp[−𝜌
2∕(2𝜎2𝑖 )], (10)

𝜇(0)
𝑖𝑗 (𝝆2 − 𝝆1) = 𝐵𝑖𝑗 exp[−(𝝆2 − 𝝆1)2∕(2𝛿2𝑖𝑗 )]. (11)

The parameters 𝐴𝑖, 𝐵𝑖𝑗 , 𝜎𝑖 and 𝛿𝑖𝑗 are independent of position, but may
depend on frequency. They cannot be chosen arbitrarily, but have to
satisfy certain constraints relating to physical realizability. If 𝜎𝑥 = 𝜎𝑦 =
𝜎 these are given by Eqs. (7a)–(9) of [2, Sec. 9.4.2], and Eqs. (25)
and (29) of [15].

Let us first analyze the special case that a) 𝐵𝑥𝑦 ∈ R, b) the two
component-wise spectral densities are equal at both pinholes, and c)
the coherence radii 𝛿𝑥𝑥 = 𝛿𝑦𝑦 ≤ 𝛿𝑥𝑦. This inequality is in agreement
with the realizability constraints outlined in [15]. We introduce the
abbreviations

𝐴 ≡
√

𝑆(0)(𝑄 ) = 𝐴 𝑒−𝑑
2∕(4𝜎2), (𝑖 = 𝑥, 𝑦), (12)
𝑖 𝑛 𝑖 1

2

Table 1
Evolution of the spectral density, degree of coherence, and degree of polarization on
free-space propagation. In the last column it is assumed that 𝛿𝑥𝑦 > 𝛿𝑥𝑥.

cos(𝑘𝛥) 𝑆(𝑃𝑛) 𝜂(𝑃1 , 𝑃2) (𝑃𝑛)

1 max max max
0 (max+min)/2 𝜇 |𝐵𝑥𝑦|

−1 min min min

𝜇 ≡ 𝜇(0)
𝑥𝑥 (𝑄1, 𝑄2) = 𝜇(0)

𝑦𝑦 (𝑄1, 𝑄2) = 𝑒−2𝑑
2∕𝛿2𝑥𝑥 , (13)

𝜇𝑥𝑦 ≡ 𝑒−2𝑑
2∕𝛿2𝑥𝑦 , (14)

and hence

𝜇(0)
𝑥𝑦 (𝑄1, 𝑄2) = 𝜇(0)

𝑦𝑥 (𝑄1, 𝑄2) = 𝐵𝑥𝑦𝜇𝑥𝑦. (15)

It then follows that

𝑊 (0)
𝑖𝑗 (𝑄𝑛, 𝑄𝑛) = 𝐵𝑖𝑗𝐴

2, (𝑛 = 1, 2), (16)
(0)
𝑥𝑥 (𝑄1, 𝑄2) = 𝑊 (0)

𝑦𝑦 (𝑄1, 𝑄2) = 𝐴2𝜇, (17)
(0)
𝑥𝑦 (𝑄1, 𝑄2) = 𝑊 (0)

𝑦𝑥 (𝑄1, 𝑄2) = 𝐴2𝐵𝑥𝑦𝜇𝑥𝑦, (18)

here we have used that 𝐵𝑖𝑖 = 1, 𝐵𝑥𝑦 = 𝐵𝑦𝑥, and 𝛿𝑥𝑦 = 𝛿𝑦𝑥. Finally,

(0)
𝑖𝑗 (𝑄2, 𝑄1) = 𝑊 (0)

𝑖𝑗 (𝑄1, 𝑄2). (19)

he assumptions of paraxiality and the observation points being in the
ar zone imply that 1∕𝑅𝑖𝑗 ≈ 1∕𝑧, and 𝑅12 − 𝑅11 ≈ 2𝑠𝑑∕𝑧 ≡ 𝛥. From
q. (5) it is then straightforward to derive that

(𝑃𝑛) = 4
(𝐷𝐴
𝜆𝑧

)2
[1 + 𝜇 cos(𝑘𝛥)], (𝑛 = 1, 2), (20)

and thus, from Eq. (4), it follows that

𝜂(𝑃1, 𝑃2) =
𝜇 + cos(𝑘𝛥)
1 + 𝜇 cos(𝑘𝛥)

, (21)

(𝑃𝑛) = |𝐵𝑥𝑦|
1 + 𝜇𝑥𝑦 cos(𝑘𝛥)
1 + 𝜇 cos(𝑘𝛥)

, (𝑛 = 1, 2). (22)

The fact that the spectral density 𝑆(𝑃𝑛) varies sinusoidally as the plane
of observation 𝑧 is changed, comes as no surprise. It is a direct effect
of the interference between the two wave contributions. In contrast,
Eq. (21) has several striking consequences. These follow from the fact
that the correlation coefficient 𝜇, as defined by (14), is bounded by
zero and unity. First of all, no matter how strongly the two aperture
fields are correlated (with the exception of the limiting case of complete
spatial coherence 𝜇 = 1), at observation planes 𝑧 such that cos(𝑘𝛥) =
−𝜇 the spectral degree of coherence is zero, indicating a complete
absence of spatial coherence. Then, as 𝑧 is increased, the magnitude of
𝜂 grows to unity, then decreases, to eventually become zero again. The
evolution of all three quantities (spectral density, degree of coherence,
and degree of polarization) is governed by the same cos(𝑘𝛥) term.
This shown is in Table 1. If the cosine equals one (minus one), then
𝑆(𝑃𝑛), 𝜂(𝑃1, 𝑃2), and (𝑃𝑛) all attain their maximum (minimum) value.
t follows that the spectral density, the degree of coherence, and the
egree of polarization oscillate in complete unison.

This behavior is illustrated in Fig. 2. The cycles of collapse and
evival of spatial coherence are repeated over and over again as the
ield propagates. The spatial extent of these cycles gradually becomes
arger as 𝜂(𝑃1, 𝑃2) tends to its asymptotic value 1 as 𝑧 → ∞. The fact that
he spectral degree of coherence oscillates just like the spectral density
irectly demonstrates the wave nature of the correlation functions and
hows that the observed spatial coherence is, just like the spectral
ensity, the result of interference. The degree of polarization shows a
imilar oscillatory behavior.

An example of a more general case is presented in Fig. 3. Now the
wo observation points are no longer symmetric with respect to the 𝑥
xis: 𝑃1 = (𝑠, 0, 𝑧), 𝑃2 = (−2𝑠, 0, 𝑧) with 𝑠 = 5 mm. Also, 𝛿𝑥𝑥 = 1 cm, 𝛿𝑦𝑦 =

.2 cm, and 𝛿𝑥𝑦 = 1.41 cm. Unlike the highly symmetric case of Fig. 2, no
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Fig. 2. The spectral degree of coherence 𝜂(𝑃1 , 𝑃2) (solid blue curve), together with the
caled spectral density (red dashed) and the degree of polarization (black dotted) at
he observation points as a function of the distance 𝑧. In this example 𝛿𝑥𝑥 = 1 cm,
𝛿𝑥𝑦 = 1.41 cm, 𝐵𝑥𝑦 = 0.5, 𝜆 = 632.8 nm, 𝑑 = 1 cm, and 𝑠 = 5 mm. Hence 𝜇 = 0.135 and
𝜇𝑥𝑦 = 0.365.

Fig. 3. The modulus of the spectral degree of coherence 𝜂(𝑃1 , 𝑃2) (solid blue curve),
ogether with the scaled spectral density (red dashed) and the degree of polarization
black dotted) for two asymmetric observation points 𝑃1 = (𝑠, 0, 𝑧) and 𝑃2 = (−2𝑠, 0, 𝑧),
s a function of the propagation distance 𝑧. In this example 𝛿𝑥𝑥 = 1 cm, 𝛿𝑦𝑦 = 1.2 cm,
𝑥𝑦 = 1.41 cm, 𝐵𝑥𝑦 = 0.5, 𝜆 = 632.8 nm, 𝑑 = 1 cm, and 𝑠 = 5 mm.

imple analytic expressions are available. Also, 𝜂(𝑃1, 𝑃2) is now complex
alued. Nevertheless, the numerical results show that in this case too
he modulus of the spectral degree of coherence varies between zero
nd unity. Furthermore, the degree of polarization is again seen to
ave an oscillatory nature. We note that the (approximate) zeros of |𝜂|
ccur a distances 𝑧 where the spectral density is appreciable, and not
ecessarily a minimum. In Fig. 4 the real and complex parts of 𝜂(𝑃1, 𝑃2)
re plotted. It is seen that both parts exhibit a complicated oscillatory
ehavior.

In summary, the Wolf equations state that optical correlation func-
ions satisfy a pair of wave equations or, in the frequency domain, a
air of Helmholtz equations. We have directly demonstrated that the
patial coherence of a partially coherent wavefield (i.e. the correlation
f the wavefield at two different points in space) has indeed a wave-like
3

Fig. 4. The real (blue) and imaginary (green) parts of 𝜂(𝑃1 , 𝑃2) as a function of the
bservation distance 𝑧. All parameters are as in Fig. 3.

haracter. For the field generated by two partially-correlated electro-
agnetic point sources this manifests as a continuing cycle of collapse

nd revival of coherence on propagation through free space. More
pecifically, it was shown that the spatial coherence that is observed
s the direct result of interference, just as is the case for the spectral
ensity and the degree of polarization. We note that the oscillatory
ehavior that we have described here does not occur for extended
aussian Schell-model sources [16,17]. The mutual interference be-

ween all the pairs of points that make up such sources, washes out
he oscillations.

We dedicate this study to the memory of our mentor and friend Emil
olf.
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