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1. INTRODUCTION
When considering the scattering of light by spherical particles
(so-called Mie scattering), it is usually assumed that the inci-
dent field is spatially completely coherent [1–5]. However, in
practice this assumption is not always justified. Examples of
partially coherent fields include those generated by multi-
mode lasers and beams that have passed through a random
medium, e.g., the turbulent atmosphere. Such more general
situations have only recently begun to attract attention [6–13].

In a previous study [12] the theory of Mie scattering has
been generalized to include fields that are spatially partially
coherent. In the present paper we use this formalism to study
the scattering of partially coherent light (specifically, scatter-
ing of Gaussian Schell-model beams) by deterministic, sphe-
rical particles. In particular, we determine the influence of the
degree of coherence of the incident beam on the total amount
of scattered power (the extinction for nonabsorbing particles)
and the angular distribution of the scattered power. We
analyze the total scattered power and find that it is indepen-
dent of the degree of coherence of the incident beam. This
result agrees with one due to Greffet et al. [9]. We also inves-
tigate the angular intensity distribution of the scattered light
(the radiant intensity). We find that the radiant intensity de-
pends on the degree of coherence of the incident beam, most
strongly when the effective transverse coherence width is
comparable to the size of the scatterer. Finally, we calculate
the encircled energy of the scattered radiation in the far zone
of the scatterer for different detector geometries, as a function
of the degree of coherence of the incident beam.

2. PARTIALLY COHERENT INCIDENT FIELD
We first consider a monochromatic, complex scalar wave field
V ðiÞðr; tÞ, which is incident on a spherical scatterer occupying
a volume V . We represent the incident wave as

V ðiÞðr; tÞ ¼ U ðiÞðr;ωÞ expð−iωtÞ: ð1Þ

Its time-independent part U ðiÞðr;ωÞ may be represented in
terms of its angular spectrum, i.e., as a superposition of
plane-wave modes, each propagating along a direction speci-
fied by a unit vector u pointing into the half-space z > 0, viz.

U ðiÞðr;ωÞ ¼
Z
ju0

⊥
j2≤1

aðu0
⊥
;ωÞeiku·rd2u0

⊥
: ð2Þ

Here r denotes the position vector of a point in space, t
the time, ω the frequency, and k ¼ ω=c is the wavenumber, c
being the speed of light. Further, u0

⊥
¼ ðu0

x; u0
yÞ is the two-

dimensional projection, considered a vector, of u onto the
xy plane.

For a partially coherent wave field, one must consider, in-
stead of the field U ðiÞðr;ωÞ, the cross-spectral density func-

tion of the field at a pair of points r1 and r2, namely (see
Subsection 4.3.2 of [14])

W ðiÞðr1; r2;ωÞ ¼ hU ðiÞ�ðr1;ωÞU ðiÞðr2;ωÞi; ð3Þ

where the angular brackets represent the average over an en-
semble of monochromatic realizations, all of frequency ω, of
the incident field. On substituting from Eq. (2) into Eq. (3), we
find that the cross-spectral density of the incident field is given
by the expression

W ðiÞðr1; r2;ωÞ ¼
Z
ju0

⊥
j2≤1

Z
ju00

⊥
j2≤1

Aðu0
⊥
;u00

⊥
;ωÞ

× exp½ikðu00 · r2 − u0 · r1Þ�d2u0
⊥
d2u00

⊥
; ð4Þ

where

Aðu0
⊥
;u00

⊥
;ωÞ ¼ ha�ðu0

⊥
;ωÞaðu00

⊥
;ωÞi ð5Þ

is the angular correlation function of the incident field (see
Subsection 5.6.3 of [14]).
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An important class of partially coherent fields, which
includes the lowest-order Hermite–Gaussian laser mode, con-
sists of the so-called Gaussian Schell-model beams (see
Subsection 5.6.4 of [14]). The cross-spectral density function
of such beams in the plane z ¼ 0, which is taken to pass
through the center O of the spherical scatter, may be
expressed as

W ð0Þðρ1;ρ2;ωÞ ¼ ½Sð0Þðρ1;ωÞ�1=2½Sð0Þðρ2;ωÞ�1=2μð0Þðρ1 − ρ2;ωÞ;
ð6Þ

where the spectral density, Sð0Þðρ;ωÞ, and the spectral degree
of coherence, μð0Þðρ1 − ρ2;ωÞ, are both Gaussian functions,
viz.

Sð0Þðρ;ωÞ ¼ A2
0 expð−ρ2=2σ2SÞ; ð7Þ

μð0Þðρ1 − ρ2;ωÞ ¼ exp½−ðρ2 − ρ1Þ2=2σ2μ�: ð8Þ

In these formulas ρ ¼ ðx; yÞ is a two-dimensional position vec-
tor of a point in the plane z ¼ 0, and the positive parameters
A0, σS , and σμ are independent of position but may depend
on frequency. We assume that the beam propagates in the
positive z direction (see Fig. 1). It is evident from Eq. (4) that
the angular correlation function of the beam is proportional to
the inverse four-dimensional Fourier transform of the cross-
spectral density, viz.

Aðu0
⊥
; u00

⊥
;ωÞ ¼

�
k
2π

�
4
ZZZZ þ∞

−∞

W ð0Þðρ1;ρ2;ωÞ

× exp½−ikðu00
⊥
· ρ2 − u0

⊥
· ρ1Þ�d2ρ1d2ρ2: ð9Þ

On substituting from Eq. (6) into Eq. (9) and making the
change of variables

U ¼ ρ2 − ρ1; ð10Þ

V ¼ ðρ1 þ ρ2Þ=2; ð11Þ

one obtains for the angular correlation function the
expression

Aðu0
⊥
;u00

⊥
;ωÞ¼

�
k2A0σSσeff

2π

�
2

×exp

�
−
k2

2

�
ðu0

⊥
−u00

⊥
Þ2σ2Sþðu0

⊥
þu00

⊥
Þ2σ

2
eff

4

��
;ð12Þ

where

1
σ2eff

¼ 1
σ2μ

þ 1
4σ2S

: ð13Þ

In order for the field to be beamlike, the parameters σS
and σμ must satisfy the relation {Eq. (5.6-73) of [14]}

1

σ2μ
þ 1

4σ2S
≪

k2

2
: ð14Þ

We will use Eq. (12) in the analysis of scattering of a Gaussian
Schell-model beam by a sphere.

In the analysis of scattering phenomena, one usually
normalizes the scattered power by that of the incident field.
It seems therefore natural to ask the question whether the
power carried by a partially coherent beam is independent
of its degree of coherence. If this is the case, then the effect
of the degree of coherence on the scattering phenomena can
be isolated, and, indeed, we find this is so for scattering
of Gaussian Schell-model beams. A proof is presented in
Appendix A.

3. SCATTERED FIELD
A. Angular Dependence of the Intensity
of the Scattered Field
When a monochromatic plane wave is incident on a scatterer
in the direction of a unit vector u0, the scattered field in the far
zone at the point r ¼ ru, with ju ¼ 1j, has the form

U ðsÞðru;ωÞ ∼ f ðu;u0;ωÞ
eikr

r
; ðkr → ∞; u fixedÞ; ð15Þ

where f ðu;u0;ωÞ is the scattering amplitude. When the inci-
dent field is not a plane wave but rather is given by a super-
position of plane waves as expressed by Eq. (2), one has,
instead of Eq. (15), the more general expression

U ðsÞðru;ωÞ ∼ eikr

r

Z
ju0

⊥
j2≤1

aðu0
⊥
;ωÞf ðu;u0;ωÞd2u0

⊥
: ð16Þ

A central quantity that describes the behavior of the scat-
tered field in the far zone is its radiant intensity JðsÞðu;ωÞ,
given by the expression (see Subsection 5.2 of [14])

JðsÞðu;ωÞ ¼ r2hU ðsÞ�ðru;ωÞU ðsÞðru;ωÞi;
× ðkr → ∞;with u fixedÞ: ð17Þ

On substituting from Eq. (16) into Eq. (17), we find that the
radiant intensity of the scattered field is given by the formula

JðsÞðu;ωÞ ¼
ZZ

Aðu0
⊥
;u00

⊥
;ωÞf �ðu; u0;ωÞf ðu;u00;ωÞd2u0

⊥
d2u00

⊥
:

ð18Þ

On making use in Eq. (18) of Eq. (12) for the angular correla-
tion function of a Gaussian Schell-model beam, the expression
for the radiant intensity takes on the form

JðsÞðu;ωÞ ¼
�
k2A0σSσeff

2π

�
2

×
ZZ

exp
�
−
k2

2

�
ðu0

⊥
− u00

⊥
Þ2σ2S þ ðu0

⊥
þ u00

⊥
Þ2 σ

2
eff

4

��
× f �ðu; u0;ωÞf ðu;u00;ωÞd2u0

⊥
d2u00

⊥
: ð19Þ

We take the axis of the incident beam to pass through the
center of the spherical scatterer. The scattering amplitude
then has the form

00

u

θV
O

u
z

Fig. 1. Illustrating the notation.
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f ðu0; u00;ωÞ ¼ f ðu0 · u00;ωÞ ¼ f ðθ;ωÞ; ð20Þ

i.e., it depends only on the angle θ between the direction of
incidence u00 and the direction of scattering u0 (see Fig. 1).
For a spherical scatterer of radius a, with refractive index
n, the scattering amplitude can be expressed in terms of
the phase shifts δlðωÞ as {see Eq. (4.66) of [15]}

f ðθ;ωÞ ¼ 1
k

X∞
l¼0

ð2lþ 1Þ exp½iδlðωÞ� sin δlðωÞPlðcos θÞ: ð21Þ

Here Pl denotes a Legendre polynomial, and the phase shifts
δlðωÞ are given by the expressions (see Subsections 4.3.2 and
4.4.1 of [15])

tan δlðωÞ ¼
�kjlðkaÞj0lð�kaÞ − kjlð�kaÞj0lðkaÞ
�kj0lð�kaÞnlðkaÞ − kjlð�kaÞn0

lðkaÞ
; ð22Þ

where jl denotes the spherical Bessel function of order l and nl

denotes the spherical Neumann function of the same order.
Further,

�k ¼ nk; ð23Þ

j0lðkaÞ ¼
djlðxÞ
dx

�
x¼ka

; ð24Þ

n0
lðkaÞ ¼

dnlðxÞ
dx

�
x¼ka

: ð25Þ

If we substitute from Eq. (21) for the scattering potential into
Eq. (19), we obtain for the radiant intensity the expression

JðsÞðu;ωÞ ¼
�
kA0σSσeff

2π

�
2X∞

l¼0

X∞
m¼0

b�l ðωÞbmðωÞ

×
ZZ

exp
�
−
k2

2

�
ðu0

⊥
− u00

⊥
Þ2σ2S þ ðu0

⊥
þ u00

⊥
Þ2 σ

2
eff

4

��
× Plðu · u0ÞPmðu · u00Þd2u0

⊥
d2u00

⊥
; ð26Þ

where, for brevity, we have written

bmðωÞ ¼ ð2mþ 1Þ exp½iδmðωÞ� sin δmðωÞ: ð27Þ

We will restrict ourselves to the case where the beam width is
much greater than its transverse coherence length, i.e.,
σS ≫ σμ. Under these circumstances one can obtain an asymp-
totic approximation as kσS → ∞ for the double integral over
u00
⊥

using Laplace’s method [16]. This method asserts that,
for two well-behaved functions f ðx; yÞ and gðx; yÞ defined
over a two-dimensional domain D,ZZ

D
e−pf ðx;yÞgðx; yÞdxdy ≈

2πgðx0; y0Þ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DetfH½f ðx0; y0Þ�g

p e−pf ðx0 ;y0Þ;

as p → ∞; ð28Þ
where ðx0; y0Þ is the point at which f ðx; yÞ has a minimum.
Further, H½f ðx0; y0Þ� is the Hessian matrix of f ðx; yÞ evaluated
at ðx0; y0Þ, i.e.,

H½f ðx0; y0Þ� ¼
 

∂2f ðx;yÞ
∂x2

∂2f ðx;yÞ
∂x∂y

∂2f ðx;yÞ
∂y∂x

∂2f ðx;yÞ
∂y2

!%
x0;y0

:

We make use of Eq. (28) with the choices

gðu;u0
⊥
;u00

⊥
Þ ¼

�
kA0σSσeff

2π

�
2X∞

l¼0

X∞
m¼0

b�l ðωÞbmðωÞPlðu · u0Þ

× Pmðu · u00Þ exp
�
−
k2σ2eff
8

ðu0
⊥
þ u00

⊥
Þ2
�
; ð29Þ

f ðu0
⊥
; u00

⊥
Þ ¼ 1

2
ðu0

⊥
− u00

⊥
Þ2; ð30Þ

p ¼ ðkσSÞ2: ð31Þ

The minimum of the function of u00
⊥

occurs when u00
x ¼ u0

x

and u00
y ¼ u0

y, and the determinant of the Hessian matrix, eval-
uated at this point, can be shown to have the value unity.
Equation (26) for the radiant intensity then reduces to

JðsÞðu;ωÞ ¼ A2
0σ2μ
2π

X∞
l¼0

X∞
m¼0

b�l ðωÞbmðωÞ

×
Z

Plðu · u0ÞPmðu · u0Þe−k2σ2μu02
⊥
=2d2u0

⊥
: ð32Þ

or, written more explicitly,

JðsÞðu;ωÞ ¼ A2
0σ2μ
2π

X∞
l¼0

X∞
m¼0

ð2lþ 1Þð2mþ 1Þeiðδl−δmÞ sin δl sin δm

×
Z
ju0

⊥
j2≤1

Plðu · u0ÞPmðu · u0Þe−k2σ2μu02
⊥
=2d2u0

⊥
; ð33Þ

where we have used the fact that σeff → σμ as σS → ∞. By
symmetry, the radiant intensity depends only on the angle
θ between the beam axis (the z axis) and the direction of
scattering.

Several examples of the angular distribution of the radia-
tion generated by scattering from spheres of different radii,
calculated from Eq. (33), are shown in Figs. 2–4. Two trends
can clearly be distinguished. As the size of the scatterer
increases, the field becomes more strongly peaked in the
forward direction and there are more oscillations in the
scattering pattern. Also, as the transverse coherence length
σμ decreases, the radiant intensity becomes more isotropic.
In particular, this is seen to occur when the coherence
length is comparable to the size of the scatterer. This is in
agreement with experimental observations reported by
Gori et al. [17].

In Fig. 5 the radiant intensity, plotted as a function of the
scattering angle, is shown on a logarithmic scale, illustrating
more clearly its fine structure. It is seen that, as σμ decreases,
the characteristic deep minima gradually disappear and the
radiation pattern becomes smoothed out.

B. Total Scattered Power
The total scattered power PðsÞðσμ;ωÞ is given by the integral
of the radiant intensity over all directions (see Subsection 5.7
of [14]), i.e.,
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PðsÞðσμ;ωÞ ¼
Z
ð4πÞ

JðsÞðu;ωÞdΩ: ð34Þ

On substituting from Eq. (33) into Eq. (34), we find that

PðsÞðσμ;ωÞ ¼ 2A2
0σ2μ
X∞
l¼0

ð2lþ 1Þ sin2 δl
Z
ju0

⊥
j2≤1

e−k
2σ2μu02

⊥
=2d2u0

⊥
;

ð35Þ
where we have used the identity [18]

Z
ð4πÞ

Plðu · u0ÞPmðu · u0ÞdΩ ¼ 4π
2lþ 1

δlm: ð36Þ

If we now express u0 in component form, i.e.,
u0 ¼ ðcosϕ0 sin θ0; sinϕ0 sin θ0; cos θ0Þ, we obtain the formulas

PðsÞðσμ;ωÞ¼4πA2
0σ2μ
X∞
l¼0

ð2lþ1Þ tan2 δl
1þ tan2 δl

Z π=2

0

×exp½−k2σ2μ sin2 θ0=2�sinθ0cosθ0dθ0

¼4πA2
0

k2
X∞
l¼0

ð2lþ1Þ tan2 δl
1þ tan2 δl

�
1−exp

�
−k2σ2μ
2

��
: ð37Þ

In the case that we are considering, namely that of a beam
with a width that is much greater than the transverse coher-
ence length, i.e., when σS ≫ σμ, we have from Eq. (13) that
σeff ≈ σμ. The beam condition Eq. (14) then becomes k2σ2μ ≫ 2.
It is seen that Eq. (37) now reduces to the optical theorem for
the absorption-free case (see Subsection 13.3 of [3]), i.e.,

PðeÞðωÞ ¼ 4πA2
0

k
ℑf ðu0;u0Þ; ð38Þ

where PðeÞðωÞ denotes the extinguished power and ℑ the
imaginary part. Hence, we conclude that, for Gaussian Schell-
model beams whose effective width is much greater than their
transverse coherence length, which are scattered from a
sphere, the total amount of scattered power is independent
of their state of coherence.

C. Power Intercepted by a Finite Detector
Apart from the total scattered power, power measurements
with a finite-sized detector situated in the far zone are also
of practical interest. The power captured by a detector cen-
tered on the z axis and subtending a half-angle θD at the origin
O (see Fig. 1), is given by the expression

Fig. 2. (Color online) Normalized angular distribution of the radiant
intensity generated by scattering a partially coherent beam by a sphere,
for various values of the transverse coherence length σμ. In this example,
the sphere radius a ¼ 1λ, and the refractive index n ¼ 2.

Fig. 3. (Color online) Normalized angular distribution of the radiant
intensity generated by scattering a partially coherent beam by a sphere,
for various values of the transverse coherence length σμ. In this example,
the sphere radius a ¼ 2λ, and the refractive index n ¼ 2.

Fig. 4. (Color online) Normalized angular distribution of the radiant
intensity generated by scattering a partially coherent beam by a
sphere, for various values of the transverse coherence length σμ. In
this example, the sphere radius a ¼ 4λ, and the refractive index n ¼ 2.

Fig. 5. (Color online) Normalized angular distribution of the radiant
intensity generated by scattering a partially coherent beam by a
sphere, shown on a logarithmic scale, for various values of the trans-
verse coherence length σμ. In this example, the sphere radius a ¼ 4λ,
and the refractive index n ¼ 2.
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PðsÞðθD; σμ;ωÞ ¼
R
ðΩDÞ J

ðsÞðu;ωÞdΩR
ð4πÞ J

ðsÞðu;ωÞdΩ ¼
R θD
0 JðsÞðθ;ωÞ sin θdθR π
0 JðsÞðθ;ωÞ sin θdθ :

ð39Þ

Several examples of the detected power as a function of the
angle subtended by the detector at the origin are presented in
Figs. 6–8.

We see that, when the incident beam is fairly incoherent
(σμ ≤ a) and the scattering is more or less isotropic, the inter-
cepted power essentially increases linearly with the detector’s
subtense, up to the extent of the scattering pattern. When the
incident field is more coherent and the scattered power is
spread nonuniformly in angle (i.e., the field has fine structure
or oscillations), the intercepted power has a nonlinear depen-
dence on the detector subtense. As the detector subtense is
increased, the intercepted power can rise sharply or not much
at all. This behavior is particularly pronounced for larger
spheres.

In addition, especially for smaller spheres, the intercepted
power for a particular detector subtense increases with in-
creasing transverse coherence length. For larger spheres,
however, there are cases when the intercepted power for a
partially coherent incident field may be greater than that
for a field that is more coherent. This is seen in Figs. 7 and
8 where the curve for the more coherent case (σμ ¼ 4a) dips
below that for the less coherent ones.

The interplay between angular subtense of the detector and
the state of coherence of the incident beam can also be visua-
lized by examining the scattered power for fixed detector size,
as a function of the coherence length σμ (see Figs. 9–11). It is
seen that the measured power typically saturates when σμ be-
comes sufficiently large. This saturation occurs for larger va-
lues of σμ when the subtended angle θD is smaller. In addition,
this anomalous behavior of the detected power decreasing
with increasing transverse coherence can be seen in Fig. 10
for θD ¼ 18°.

Fig. 6. (Color online) Normalized intercepted power as a function of
the angle subtended by the detector for various values of the trans-
verse coherence length σμ. In this example, the sphere radius
a ¼ 1λ, and the refractive index n ¼ 2.

Fig. 7. (Color online) Normalized intercepted power as a function of
the angle subtended by the detector for various values of the trans-
verse coherence length σμ. In this example, the sphere radius
a ¼ 2λ, and the refractive index n ¼ 2.

Fig. 8. (Color online) Normalized intercepted power as a function of
the angle subtended by the detector for various values of the trans-
verse coherence length σμ. In this example, the sphere radius
a ¼ 4λ, and the refractive index n ¼ 2.

Fig. 9. (Color online) Normalized intercepted power as a function
of the transverse coherence length σμ for several values of the angle
subtended by the detector. In this example, the sphere radius a ¼ 1λ,
and the refractive index n ¼ 2.
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4. CONCLUSIONS
We have examined the effects of the state of spatial coherence
of an incident beam on the scattering by a deterministic, sphe-
rical scatterer. The beams were assumed to be of the Gaussian
Schell-model type. The total scattered power was shown to be
independent of their state of coherence. However, the angular
distribution of the scattered field was found to depend
strongly on the state of coherence of the beam, especially
when the transverse coherence length is comparable to the
size of the scattering sphere. The power intercepted by a fi-
nite-sized detector was shown to vary significantly under such
conditions. These results may be of importance, for example,
in Mie scattering in the atmosphere and in scattering from
colloidal suspensions.

APPENDIX A: POWER CONTENT OF
GAUSSIAN SCHELL-MODEL BEAMS
In this Appendix we establish a property of Gaussian Schell-
model beams that does not appear to have been noted before.
The radiant intensity JðiÞðu;ωÞ of the beam in the direction u ¼

ðcosϕ sin θ; sinϕ sin θ; cos θÞ can be expressed in terms of its
angular correlation function Aðu0

⊥
; u00

⊥
;ωÞ {see Eq. (5.6-53) of

[14]} by the formula

JðiÞðu;ωÞ ¼
�
2π
k

�
2
Aðu⊥;u⊥;ωÞ cos2 θ; ðA1Þ

¼ ðA0kσSσeffÞ2 cos2 θ exp½−k2σ2eff sin2ðθÞ=2�; ðA2Þ

where Eq. (12), together with the expression u2
⊥
¼ sin2 θ, was

used. The total power PðσS; σμ;ωÞ that is carried by the beam
is given by the integral of the radiant intensity over a hemi-
sphere at infinity in the half-space z > 0, i.e.,

PðσS; σμ;ωÞ ¼
Z
ð2πÞ

JðiÞðu;ωÞdΩ; ðA3Þ

with dΩ ¼ sin θdθϕ being the element of solid angle. On sub-
stituting from Eq. (A2) into Eq. (A3), we obtain for the total
power the expression

PðσS; σμ;ωÞ ¼ 2πðA0kσSσeffÞ2

×
Z π=2

0
exp½−k2σ2eff sin2ðθÞ=2� cos2 θ sin θdθ;

ðA4Þ

¼ 2πA2
0σ2S

2
641 − expð−k2σ2eff=2Þ

ffiffiffiffiffiffiffiffi
π=2

p
erfi
�
kσeff=

ffiffiffi
2

p �
kσeff

3
75; ðA5Þ

where erfiðxÞ ¼ erfðixÞ=i denotes the error function with
imaginary argument, erf being the ordinary error function,
i.e.,

erfðxÞ ¼ 2ffiffiffiπp
Z

x

0
expð−t2Þdt: ðA6Þ

The dependence on the state of coherence of the total power
that is carried by the beam is contained in the factor σeff that
appears in Eq. (A5). The beam condition, Eq. (14), can be ex-
pressed as kσeff ≫ 21=2. Under that condition the second term
within brackets of Eq. (A5) is negligible compared to unity,
and the formula for the total beam power reduces to

PðσS;ωÞ ¼ 2πA2
0σ2S; ðkσeff ≫ 21=2Þ: ðA7Þ

We have written PðσS;ωÞ rather than PðσS; σμ;ωÞ since, ac-
cording to Eq. (A7), the power that is carried by a Gaussian
Schell-model beam is independent of the coherence length σμ.

We conclude that Gaussian Schell-model beams with the
same transverse intensity profile but with different states of
coherence carry the same amount of power, namely that of
a fully coherent beam (σμ → ∞). We note that Eq. (A7) can also
be obtained by integration of the spectral density over the
plane z ¼ 0. However, for non-beamlike partially coherent
fields, this may not be the case (see [19]).
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