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We demonstrate that a J 0-Bessel-correlated beam that is in-
cident on a homogeneous sphere produces a highly unusual
distribution of the scattered field, with the maximum no
longer occurring in the forward direction. Such a beam
can be easily generated using a spatially incoherent, annular
source. Moreover, the direction of maximal scattering can
be shifted by changing the spatial coherence length. In this
process, the total power that is scattered remains constant.
This new tool to control scattering directionality may be
used to steer the scattered field away from the forward di-
rection and selectively address detectors situated at different
angles. © 2015 Optical Society of America
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Mie scattering, which is the scattering of an optical field by a
spherical object, has a long and venerable history [1–3]. In its
classical form, it deals with the scattering of a fully coherent,
monochromatic plane wave by a homogeneous, deterministic
sphere. Its many applications in, for example, spectroscopy,
optical trapping, astronomy, and atmospheric studies [4,5]
have led to a large literature, a substantial part of which can be
divided into two broad categories. The first one, inspired by the
seminal work of Kerker et al. [6], consists of efforts to design
objects with a prescribed scattering profile, such as a suppressed
scattering in the forward or backward directions [7–13]. The
second category consists of studies in which scattering theory is
extended to incident fields that are not deterministic but,
rather, partially coherent [14–21]. These researchers are moti-
vated by the fact that light that travels through atmospheric
turbulence suffers a loss of coherence.

In this Letter, we bridge both categories by reporting a novel
coherence technique that allows one to steer most of the scat-
tered intensity away from the forward direction. In contrast
to previous works, this is done by manipulating the incident
beam rather than the scatterer. We show that changing the spa-
tial coherence of the beam allows one to dynamically control

the scattering distribution. In this tuning of the scattering proc-
ess, the total power that is scattered remains unchanged.

A special class of partially coherent beams is formed by those
with a J0-Bessel correlation. Such beams are easily produced
with the help of uncorrelated, annular sources. Unlike, for
example, Gaussian correlation functions, Bessel functions can
take on negative values, which leads to qualitatively different
physical effects. For example, when a Gaussian-correlated field
is focused, the diffraction pattern gets washed out, with the
maximum remaining at the focal point. In contrast, a Bessel-
correlated field creates a minimum at focus [22–24]. Likewise,
when a Gaussian-correlated beam is scattered, the scattering
remains predominantly in the forward direction [18]. Here, we
show that scalar Mie scattering with J0-correlated fields leads
to a radically different profile in which the maximum occurs in
a cone centered around the forward direction. We examine the
influence of the transverse coherence length of the incident
field and find that, by reducing this length, the angle of maxi-
mum scattering can be gradually moved from 0° to 29°. We
show that the extinguished power is independent of the coher-
ence length. That means that changing this length results in a
redistribution of the total scattered field.

In the space-frequency domain, the time-independent part
of an incident wave field at position r and frequency ω can be
represented in terms of an angular spectrum of plane waves
propagating in directions u � �u⊥; uz� into the half-space
z > 0, namely, [25, Section 3.2]:

U �inc��r;ω� �
Z
ju⊥j2≤1

a�u⊥;ω� exp�iku · r�d2u⊥; (1)

where k denotes the wavenumber associated with frequency ω.
Restricting the domain of integration to ju⊥j2 ≤ 1 implies that
evanescent fields are neglected. The correlation properties of
the field are characterized by its angular correlation function
[25, Section 5.6.3]:

A�u1⊥;u2⊥;ω� � ha��u1⊥;ω�a�u2⊥;ω�i; (2)

where the angular brackets indicate the average taken over an
ensemble of field realizations.

A general formalism for Mie scattering with partially coher-
ent fields was presented in [19]. In particular, it was derived
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there that the radiant intensity J �sca��s;ω�, the rate at which
energy at frequency ω is scattered, per unit solid angle around
the direction s, is given by the expression

J �sca��s;ω� �
Z
ju1⊥j2≤1

Z
ju2⊥j2≤1

A�u1⊥; u2⊥;ω�

× f ��s · u1�f �s · u2�d2u1⊥d2u2⊥: (3)

[The symbol J �sca� is not to be confused with that for the Bessel
function J0.] Here, f �s · u� denotes the amplitude scattered in
direction s by a plane wave traveling along u; see Fig. 1. For a
homogeneous sphere of radius a and with refractive index n, it
can be expressed as (see Eq. (4.66) in [26] with a trivial change
in notation)

f �s ·u�� 1

k

X∞
l�0

�2l�1�exp�iδl �ω�� sin�δl �ω��Pl �s ·u�; (4)

where Pl denotes a Legendre polynomial of order l, and the
phase shifts δl �ω� are given by the expression [26,
Sections 4.3.2 and 4.4.1]:

tan�δl �ω�� �
k̄jl �ka�j 0l �k̄a� − kjl �k̄a�j 0l �ka�
k̄j 0l �k̄a�nl �ka� − kjl �k̄a�n 0

l �ka�
: (5)

Here, jl and nl are spherical Bessel functions and spherical
Neumann functions, respectively, of order l. Furthermore,

k̄ � nk (6)

is the wavenumber associated with the reduced wavelength
within the scatterer, and the primes denote differentiation with
respect to the spatial variable.

Let us now consider an incident field with a uniform spectral
density S�0��ω�, which is J0 correlated. This means that its
cross-spectral density function in the plane z � 0 (the plane
that passes through the center of the sphere) is of the form

W �inc��ρ1; ρ2;ω� � S�0��ω�J0�βjρ2 − ρ1j�; (7)

where J0 denotes the Bessel function of the first kind and
zeroth order, and ρ1 � �x1; y1� and ρ2 � �x2; y2� are 2D posi-
tion vectors in the z � 0 plane. The parameter β is, roughly
speaking, the inverse of the transverse coherence length of the
incident field. The generation of such a beam requires an
idealized, infinitely thin, δ-correlated ring source. However, a
J0-correlated beam may be approximated quite well by using an
incoherent annular source, as was employed in [24].

In order to evaluate Eq. (3), we need to calculate the
angular correlation function A�u1⊥; u2⊥;ω�. This function
is related to the cross-spectral density through the expression
[25, Section 5.6.3]

A�u1⊥;u2⊥;ω��
�

k
2π

�
4
ZZ

−∞
W �inc��ρ1;ρ2;ω�

× exp�−ik�u2⊥ ·ρ2 −u1⊥ ·ρ1��d2ρ1d2ρ2: (8)

On substituting from Eq. (7) into Eq. (8), we find after some
algebra and making use of two Dirac δ-function representations
[27], the expression

A�u1⊥;u2⊥;ω� �
k2

2πβ
S�0��ω�δ2�u2⊥ − u1⊥�

× δ�β − kju1⊥ � u2⊥j∕2�: (9)

Substituting this result into Eq. (3), we obtain for the radiant
intensity, the formula

J�sca��s;ω� � S�0��ω�k2
2πβ

Z
ju1⊥j2≤1

δ�β − kju1⊥j�

× jf �s · u1�j2d2u1⊥: (10)

Since u is a unit vector, it follows from the δ function in
Eq. (10) that the incident Bessel-correlated beam must satisfy
the condition

0 < β < k (11)

to produce a nonzero scattered field. Because 1∕β is a rough
measure of the transverse coherence length, this implies that
this length must exceed 1∕k � λ∕2π. It is shown in
Appendix A that under typical circumstances, β < k∕2. We
may thus, without loss of generality, set ju1⊥j � β∕k. Next,
let us write the vector u1, indicating a direction of incidence,
and the vector s, indicating the direction of scattering, as

u1 �
�
βk−1 cos α; βk−1 sin α;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2∕k2

q �
; (12)

s � �sin θ cos γ; sin θ sin γ; cos θ�: (13)

Expressing the integral of Eq. (10) in polar coordinates gives

J �sca��s;ω� � S�0��ω�k2
2πβ

Z
1

0

Z
2π

0

δ�β − kju1⊥j�jf �s · u1�j2

× ju1⊥jdαdu1⊥; (14)

� S�0��ω�
2πk2

Z
2π

0

dα
X
l

X
m

�2l�1��2m�1�

×exp�i�δl −δm��sin δl sin δm

×Pl

�
βk−1 cos α sin θ�cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−β2∕k2

q �

×Pm

�
βk−1 cos α sin θ�cos θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−β2∕k2

q �
; (15)

where we have used that δ�β − kju⊥j� � k−1δ�β∕k − ju⊥j� and
the dependence on γ drops out on integration over α.
Equation (15) shows how the angular distribution of the
scattered field arises from an intricate interplay of the sphere
radius a, its refractive index n, and the inverse coherence length
β of the incident field. Formidable as Eq. (15) may look, it can
easily be solved numerically.

The dependence of the scattered radiant intensity on the
normalized coherence parameter β∕k is shown in Fig. 2 for
scattering angles up to 90°. The left-most curve (red) is for

Fig. 1. A homogeneous sphere with radius a is illuminated by a
plane wave propagating in the direction u. The scattering angle θ
is the angle between the positive z axis and an observation direction
s. Both u and s are unit vectors. The point O is the origin of the
coordinate system.
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β∕k � 0, which corresponds to the case of a fully coherent in-
cident field. We indeed retrieve the classical Mie result with
strong forward scattering. However, when the coherence length
is decreased to β∕k � 0.15 (green curve), the forward scatter-
ing is somewhat suppressed and the maximum scattering occurs
at an angle of θ � 7° deg. For the cases β∕k � 0.30 (blue) and
β∕k � 0.50 (black), the angle of maximum scattering moves to
17° and 29°, respectively. Also, the minimums are raised from
their near-zero value. We note that as long as β∕k < 0.12, the
maximum occurs in the forward direction. This maximum only
shifts to larger angles when the correlation function, Eq. (7),
takes on negative values for pairs of points in the sphere, i.e.,
when J0�β2a� < 0.

The unnormalized scattered field for all scattering angles is
shown on a logarithmic scale in Fig. 3. For the fully coherent
case, we obtain the well-known Mie resonances (red curve).
These become much less pronounced for the partially coherent
cases (green, blue, and black curves). In these last three cases,
the backscattering is strongly decreased compared with the fully
coherent case.

The question of how the coherence parameter β may be
varied is addressed in Appendix A. There, it is shown that
one possible way is to change the radius of the annular source.
A practical implementation is also described in [24].

The optical theorem in its classical form [2,3] relates the
total extinguished power (due to scattering and absorption)
to the scattering amplitude in the forward direction. Because
this theorem assumes the incident field to be a monochromatic
plane wave, rather than a partially coherent field, it does not
apply to the present case. However, the theorem has been
generalized to deal with stochastic fields by Carney et al. [16].
They derived that the ensemble-averaged extinguished power
hPe�ω�i is then given by the expression

hPe�ω�i �
4π

k
Im

�Z
ju1⊥j≤1

Z
ju2⊥j≤1

A�u1; u2;ω�

×f �u1 · u2�d2u1⊥d2u2⊥
�
: (16)

Because we are assuming a nonabsorbing scatterer, the extinc-
tion is entirely due to scattering, i.e., the extinguished power is
equal to the radiant intensity of the scattered field integrated
over a 4π solid angle:

hPe�ω�i �
Z

2π

0

Z
π

0

J�sca��s;ω� sin θdθdϕ: (17)

On substituting from Eq. (9) for the angular correlation func-
tion into Eq. (16), we obtain the formula

hPe�ω�i�
2kS�0��ω�

β

× Im
�Z

ju1⊥j≤1
δ�β − kju1⊥j�f �u1 ·u1�d2u1⊥

�
: (18)

Evaluating this in polar coordinates gives

hPe�ω�i �
4πS�0��ω�

k
Im�f �u · u��: (19)

In Eq. (19), the two arguments of the scattering amplitude f
are equal, i.e., f �u · u� represents the forward scattering ampli-
tude. It is seen from this expression that the total scattered
power does not depend on the coherence parameter β. This
implies that varying β, as was illustrated in Figs. 2 and 3, results
in a redistribution of the scattered intensity with the total scat-
tered power being unaffected. Also, it was verified numerically
that Eqs. (19) and (17) yield the same result.

Some related results were reported in [28], where it was
suggested that Bessel-correlated fields can give rise to strongly
suppressed scattering in the forward direction. In contrast to
the present study, this result was obtained for a random spheri-
cal scatterer while making use of the first-order Born approxi-
mation. However, it is well known that this approximation is
incompatible with the optical theorem [29], i.e., it violates
energy conservation. In contrast, using Mie theory allows us to
make use of the optical theorem. We thus find that the extin-
guished power is independent of the coherence length. That
means that changing the coherence length of the incident field
results in a redistribution of the total scattered field. Also, our
analysis pertains to the important class of scatterers that are
deterministic, rather than random. Furthermore, the angular
shifts of the direction of maximum scattering that we find while
using Mie theory are significantly larger than those obtained
using the Born approximation.

In conclusion, we have demonstrated that the angular dis-
tribution of a field that is scattered by a homogeneous sphere
can be controlled. In contrast to previous works, this is done by

Fig. 2. Angular distribution of the normalized radiant intensity of
the scattered field for selected values of the normalized coherence
parameter β∕k, namely: 0 (red), 0.15 (green), 0.30 (blue), and
0.50 (black). In this example, the wavelength λ � 632.8 nm, the re-
fractive index n � 1.33, and the sphere radius a � 2λ.

Fig. 3. Angular distribution of the logarithmic radiant intensity of
the scattered field for selected values of the normalized coherence
parameter β∕k:0 (red), 0.15 (green), 0.30 (blue), and 0.50 (black).
The parameters are the same as in Fig. 2.
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manipulating the incident beam rather than the scatterer. In
particular, an incident beam with a J0-Bessel correlation gives
rise to an unusual scattering profile. This profile can be changed
by varying the spatial coherence length. The total power of the
scattered field remains constant when the transverse coherence
length is varied. This provides a new tool to steer the scattered
field dynamically without losing energy. This method may be
used to selectively address detectors that are not (or cannot be)
located along the line of sight connecting the source and the
scatterer. Such detectors have the advantage that they are not
saturated by the illuminating beam.

APPENDIX A

For the idealized case of a δ-correlated, infinitely thin ring
source of radius c, the cross-spectral density function of the
source field reads

W �0��ρ1; ρ2;ω� � S�0��ω�δ�ρ1 − c�δ2�ρ2 − ρ1�: (A1)

Away from the source, this function is given by [25, Eqs. (4.4)–
(18)]

W �r1; r2;ω� �
�

k
2π

�
2
Z Z

z�0

W �0��ρ 0
1; ρ

0
2;ω�

exp�ik�R2 − R1�
R1R2

× cos θ1 cos θ2d
2ρ1d

2ρ2; (A2)

where Ri � jri − �ρi ; 0�j and i � 1; 2. On substituting from
Eq. (A1) into Eq. (A2) and making the usual far-zone approx-
imations described in [25, Section 4.4.4], we then find that

W �∞��ρ2 − ρ1;ω� � S�0��ω�J0
�
kcjρ2 − ρ1j

Δz

�
; (A3)

where c denotes the ring radius, and Δz is the approximate
distance from the center of the ring to the two observation
points �ρ1; z� and �ρ2; z�. For the far-zone approximation to
be valid, the distance Δz should be at least, let us say, twice
as large as the radius c. Comparing the condition Δz ≥ 2c with
Eq. (7) gives β ≤ 0.5k. This upper limit for the parameter β
means that Eq. (11) is always satisfied. Also, it translates into
a transverse coherence length 1∕β ≥ λ∕π.

A way to obtain a variable coherence parameter β is sug-
gested by comparing Eqs. (7) and (A3). It is seen that β cor-
responds to kc∕Δz. This means that the coherence length of
the incident field can be varied by changing the radius of the
annular source.
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