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The intensity and the state of coherence are examined in the focal region of a converging, partially coherent
wave field. In particular, Bessel-correlated fields are studied in detail. It is found that it is possible to change
the intensity distribution and even to produce a local minimum of intensity at the geometrical focus by altering
the coherence length. It is also shown that, even though the original field is partially coherent, in the focal
region there are pairs of points at which the field is fully correlated and pairs of points at which the field is
completely incoherent. The relevance of this work to applications such as optical trapping and beam shaping is

discussed. © 2008 Optical Society of America
OCIS codes: 030.1640, 050.1960, 020.7010.

1. INTRODUCTION

Although light encountered under many practical circum-
stances is partially coherent, the intensity near focus of
such wave fields has been studied in relatively few cases
[1-5]. The correlation properties of focused partially co-
herent fields have been examined in [6,7], where it was
shown that the correlation function exhibits phase singu-
larities. In a recent study [8] it was suggested that the
state of coherence of a field may be used to tailor the
shape of the intensity distribution in the focal region.
More specifically, it was shown that a minimum of inten-
sity may occur at the geometrical focus.

In the present paper we explore converging, Bessel-
correlated fields in more detail. Three-dimensional plots
of the intensity distribution, in which the transition from
a maximum of intensity to a minimum of intensity at the
focal point can be seen, are presented. Also, the state of
coherence of the field near focus is examined. It is found
that there exist pairs of points at which the field is fully
coherent and pairs at which the field is completely uncor-
related.

2. FOCUSING OF PARTIALLY COHERENT
LIGHT

Consider first a converging, monochromatic field of fre-
quency o that emanates from a circular aperture with ra-
dius a in a plane screen (see Fig. 1). The origin O of the
coordinate system is taken at the geometrical focus. The
field at a point Q(r’) on the wavefront A that fills the ap-
erture is denoted by U®(r’,w). The field at an observa-
tion point P(r) in the focal region is, according to the
Huygens—Fresnel principle and within the paraxial ap-
proximation, given by the expression ([9], Chap. 8.8):
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Ulr,0)=- XJ U(O)(r’,w)?dzr’, (1)
A

where s=|r-r’| denotes the distance QP and \ is the
wavelength of the field, and we have suppressed a time-
dependent factor exp(—iwt).

For a partially coherent wave, instead of just the field,
one also has to consider the cross-spectral density func-
tion of the field at two points Q(r;) and Q(rj), namely,

W(O)(ri,ré,w) = (U*(ri,w) U(ry,w)), (2)

where the angle brackets denote an ensemble average
and the superscript (0) indicates fields in the aperture.
This definition, as well as others related to coherence
theory in the space-frequency domain, are discussed in
([10], Chaps. 4 and 5). On substituting from Eq. (1) into
Eq. (2) we obtain for the cross-spectral density function in
the focal region the formula

1 eik(sz—sl)
W(rl7r27 w) = F f f W(0>(ri,ré,w) eridzré'
A S1S9
3)
The distances s; and sy are given by the expressions
s1=|ry -7y, (4)
89 =[ry -1y, (®)

If the Fresnel number of the focusing geometry is large
compared to unity, i.e., if N=a2/\f>1, with f the radius
of curvature of the field, then the distances s; and s, may
be approximated by the expressions
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Fig. 1. TIllustration of the notation.

sy=~f-q;-ry, (6)

sg=f-qy- Ty, (7

where q; and q; are unit vectors in the directions Or; and
Or,, respectively. The factors s; and s, in the denomina-
tor of Eq. (3) may be approximated by f, and hence we ob-
tain the expression

1
W(rl’rz,w) = _()\f)z f fA W(O)(riaré9 (1))
% eik(qi'ﬁ—qé‘rz)dzridzré. (8)

The spectral density of the focused field at a point of ob-
servation P(r) in the focal region is given by the diagonal
elements of the cross-spectral density function, i.e.,

S(r,w) =W(r,r,w). (9)
From Egs. (9) and (8) it follows that
1

S(r,w) = W

JJ W(O)(ri,ré,w)eik(qi'qé)""dzrid2ré.
A

(10)

A normalized measure of the field correlations is given by
the spectral degree of coherence, which is defined as

W(ry,re, 0)
[S(ry, w)S(ry,w)]V2

/J“(rer’ (1)) = (11)

It may be shown that O0<|u(r;,rs,w)|<1. The upper
bound represents complete coherence of the field fluctua-
tions at r; and ry, whereas the lower bound represents
complete incoherence. For all intermediate values the
field is said to be partially coherent.

3. GAUSSIAN SCHELL-MODEL FIELDS

We now briefly review the focusing of a Gaussian Schell-
model field with a uniform spectral density. Such a field is
characterized by a cross-spectral density function of the
form

WO (py, pz, ) = SO (w)e (P2~ P20, (12)

where S%(w) is the spectral density and o, a measure of
the coherence length of the field in the aperture. Further-
more, p=(x,y) is the two-dimensional transverse vector
that specifies the position of a point in the aperture plane.
It was shown in [4] that the maximum of intensity always
occurs at the geometrical focus, irrespective of the value
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of g,. Furthermore, the spectral density distribution was
found to be symmetric about the focal plane and about the
axis of propagation. On decreasing o, the maximum
spectral density decreases, and the secondary maxima
and minima gradually disappear. In the coherent limit
(i.e., 0;— ) the classical result [11] is retrieved.

The coherence properties of a focused Gaussian Schell-
model field were examined in [6]. It was shown that the
coherence length can be either larger or smaller than the
width of the spectral density distribution. In addition, the
spectral degree of coherence was found to possess phase
singularities.

4. J,-CORRELATED FIELDS

Jo-correlated fields with a constant spectral density are
characterized by a cross-spectral density function of the
form

WO r],r),w) = SO(w)Jo(Blrs - ri)), (13)

where J, denotes the Bessel function of the first kind of
zeroth order. The correlation length is roughly given by
B~ In [8] it was shown that the occurrence of a maxi-
mum of intensity at the geometrical focus is related to the
positive definiteness of the cross-spectral density. Since
the cross-spectral density function of Eq. (13) takes on
negative values, another kind of behavior may now be
possible. In this section we analyze the effect of the state
of coherence on the three-dimensional spectral density
distribution near focus. The cross-spectral density of the
focused field is, according to Eq. (8), given by

1
— f f SO()To(Blry - v
A

X eI 42 (14)

W(ry,ry,w) =

We use scaled polar coordinates to write

r; = (ap; cos ¢,ap; sin ¢,z;)  (i=1,2). (15)

The spectral density is normalized to its value at the geo-
metrical focus for a spatially fully coherent wave, i.e.,

. S (w)
coh = 1 Wi = = 0’ =
h /313(1) (ri=r;=0,0) oz

To specify the position of an observation point we use the
dimensionless Lommel variables, which are defined as

a\2?
u=k(;> z, (17)

(16)

v =k<a]—c>p=k(a/}‘)\r’x2+y2. (18)

The expression for the normalized spectral density distri-
bution is thus given by
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xJo{Balp} + p5 — 2p1p2 cos(dy — b)1%}
Xcos[v(p; cos ¢y — ps cos ¢by) + u(p] — p3)/2]
X p1padp1depidpadeps. (19)

It can be shown that this distribution is symmetric
about the plane u=0 and the line v=0. To reduce this
four-dimensional integral to a sum of two-dimensional in-
tegrals we use a coherent mode expansion, as described in
Appendix A.

The contours and three-dimensional images of the spec-
tral density of a converging «J(-correlated Schell-model
field are shown for several values of the coherence length
B! in Figs. 2-4. When this length is significantly larger
than the aperture size a, the intensity pattern of the field
in the focal region approaches that of the coherent case of
[11]. This is illustrated in Fig. 2, where (Ba)"'=2. This
quantity is a measure of the effective coherence of the
field in the aperture.

Snorm(u U, w)

norm
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(b)
Fig. 2. (Color online) (a) Three-dimensional normalized spectral
density distribution and (b) its contours for the case A!
=0.02m, ¢=0.01 m and hence (8a)"'=2.00. In this example \
=500 nm, and f=2 m.
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Fig. 3. (Color online) (a) Three-dimensional normalized spectral
density distribution and (b) its contours for the case g'=3.5
X103 m, ¢=0.01 m and hence (Ba)"1=0.35. The other param-
eters are the same as those of Fig. 2.

When the correlation length is decreased, a local mini-
mum appears at the geometrical focus. This is shown in
Fig. 3 for the case (B8a)"'=0.35. An intensity minimum
can be seen at u=v=0. Also, the overall intensity has de-
creased.

Figure 4 shows the intensity pattern for the case
(Ba)"'=0.25. The minimum at the geometrical focus is
now deeper, the focal spot is broadened, and the overall
intensity has decreased even further.

The behavior of the cross-spectral density function of
the field in the aperture for the cases mentioned above is
shown in Fig. 5. The spectral degree of coherence is plot-
ted as a function of p=|ry—r4|. It is to be noted that for the
two cases in which the spectral density has a local mini-
mum at the geometrical focus, the spectral degree of co-
herence also takes on negative values.

5. SPATIAL CORRELATION PROPERTIES

We next turn our attention to the spectral degree of coher-
ence in the focal region of a Jj-correlated Schell model
field. We first look at pairs of points on the z-axis, i.e.,
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Fig. 4. (Color online) (a) Three-dimensional normalized spectral
density distribution and (b) its contours for the case 8 1=2.5
%107 m, a=0.01 m and hence (Ba)"'=0.25. The other param-
eters are the same as those of Fig. 2.

r)= (070’21)5 (20)

ry= (0’0722)- (21)

On using cylindrical coordinates p and ¢ and the expres-
sions in [6] we obtain

q) -1y~ -z,(1-pY/2f%), (22)

u(p, w)

1 (Ba)" =2.00
0.8
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Fig. 5. Spectral degree of coherence of the field in the aperture
1wO(p,w) for three different values of (Ba)~!, as discussed in the
text. In this example A=500 nm, ¢=0.01 m, and /=2 m.
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Q) Ty~ —z5(1 - p3/2f%). (23)

Substituting these approximations in Eq. (14), we obtain
for the cross-spectral density the expression

1 27 ra 27 pra
W(O5O’Z ;O,O)Z ’(1)) = _f j j f S(O)((D)
ety Jo o o

XJo{BLP; + P — 2p1ps cos(eby — ) 1V%}

X eitl=211-012f")2n(1-321) . )

X depydpidepadpsy. (24)

As shown in Appendix A, the coherent mode expansion for
Jo reads

JolBLP% + p3 — 2p1ps cos(y — o) 1%}

=Jo(Bp)Jo(Bpg) + X, 2[,(Bp1) (Bpg)cos[n(py — do)11.
n=1

(25)

It is to be noted that in the expression for the cross-
spectral density, Eq. (24), the angular dependence resides
exclusively in the correlation function; hence after inte-
gration over ¢, and ¢, only the zeroth-order term of Eq.
(25) remains. We therefore find that

W(070521;0’0’Z2;w) =fﬁ:(0,0,zl;w)f(0,0,zz;w), (26)

with
a

k .
1(0,0,z;0) = 7 f Jo(Bp)e*= 1 pdp. (27)
0

From this result and Eq. (11) it readily follows that
|M(O’O’2170,0722,w)|= 1 (28)

This implies that the field is fully coherent for all pairs of
points along the z axis, even though the field in the aper-
ture is partially coherent. This surprising effect can be
understood by noticing that only a single coherent mode
comes into play.

Next we examine pairs of points that lie in the focal
plane. One point is taken to be at the geometrical focus O.
Due to the rotational invariance of the system, we may
assume, without loss of generality, that the second point
lies on the x axis. Hence we consider pairs of points for
which

r1=(0’0’0)7 (29)

ry = (x,0,0). (30)

The cross-spectral density, Eq. (14), then yields

1 27 pa 27 ra
W(0,0,0;x,0,0; w) = J f f f SO ()
()\f)z 0 0 0 0

XJo{ BlpT + P — 2p1p2 cos(y — o)1V}
X g ikeze cos 22)lf ) o0 d by dpyd padpy.
(31)
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On using the coherent mode expansion of / and integrat-
ing over ¢, again a single term remains, i.e.,

Qar a 27 ra
W(07070;xa0}0;w) = zf f f S(O)(w)JO(ﬁpl)JO(BPZ)
()\f) 0 Y0 0

pax
X cos kT cos ¢y | p1p2dp1d dedpy.
(32)

It is to be noted that this expression is real-valued.
In order to obtain the spectral degree of coherence, we
use the facts that

k 2 ra a
5(0,0,0;0) = (}7) f f Jo(Bp1)Jo(Bpa)p1p2dpidps
0 Jo

(33)
and
1 (27 o (27 pa
S(x,O,O;w)=WJO JO JO fo SO(w)
xJo{BlpT + p5 — 2p1p2 cos(by — b)) V%)
Xcos[kx(p; cos ¢y — py cos ¢o)/flp1ps
Xd¢idp;ddedp,. (34)

Examples of the spectral degree of coherence
©(0,0,0;x,0,0;w) are depicted in Figs. 6 and 7 for se-

: (Ba)" =2.00
1(0,0,0; x,0,0;w)
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Fig. 6. Spectral degree of coherence w(0,0,0;x,0,0;w) (solid
curve) and spectral density S(x,0,0,w) normalized to its maxi-
mum value (dashed curve) for the case (a), (Ba)'=2
and (b), (Ba)"'=0.35. In this example A=0.6328 um, ¢=0.01 m,
and f=0.02 m.

Vol. 25, No. 3/March 2008/J. Opt. Soc. Am. A 579

! TN (Bay' =025
0.8 , / \

06 / S(x,O,O;w)\\\

0.4 / \
0.2 , X

-2 1(0,0,0;.x,0,0;)

-04

(@

H(0,0,0;X,0,0;w)/ = R (,Ba)‘l =0.20
0.8 ‘ h
0.6
0.4

02!

/ N
/ \
/ \

K S5(6,0,0;w)

s N
~

— x/\

0.5 1 15 2 2
-0.2

-04

(b)

Fig. 7. Spectral degree of coherence w(0,0,0;x,0,0;w) (solid
curve) and the spectral density S(x,0,0,w) normalized to its
maximum value (dashed curve), for the case (a), (Ba)"1=0.25
and (b), (Ba)"'=0.2. In this example \=0.6328 um, ¢=0.01 m,
and f=0.02 m.

lected values of the coherence parameter (8a)~!. For com-
parison’s sake the normalized spectral density is also
shown. In Fig. 6(a) two regions can be distinguished, re-
gions where the fields are approximately co-phasal [i.e.,
1(0,0,0;x,0,0;w)=1] and regions where the fields have
opposite phases [i.e., ©(0,0,0;x,0,0;w)~-1]. In between
these two regions the spectral degree of coherence exhib-
its phase singularities [i.e., u(0,0,0;x,0,0;w)=0]. The
latter points coincide with approximate zeros of the field.

When the coherence parameter is decreased, the over-
all intensity gets lower. This is shown in Fig. 6(b) for the
case (Ba)~1=0.35. An intensity minimum now occurs at
the geometrical focus. The spectral degree of coherence
still possesses a phase singularity; however its position no
longer coincides with a zero of the field.

On further decreasing the coherence, the spectral den-
sity at focus almost reaches zero. This is shown in Fig.
7(a) for the case (Ba)"'=0.25. The spectral density rises
again if the correlation parameter is decreased further, as
can been seen in Fig. 7(b). In all cases the spectral degree
of coherence exhibits phase singularities.

6. OTHER CORRELATION FUNCTIONS

In this section we examine the spectral density in the fo-
cal plane for other Bessel-correlated fields. In particular
we consider a cross-spectral density function of the form
(see Section 5.3 of [10])
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n ) J2(Blps— p1))

W (py,pg, ) = S(O)(w)2”/2F(1 +—
(Blp2 - pil

2 )n/2 ’

(35)

where J,/5 is a Bessel function of the first kind and I is
the gamma function. The case n=0 was discussed in the
previous sections.

Let us denote a position in the focal plane with the vec-
tor (p,0). The spectral density is then given by the expres-
sion

1

Sn(p70aw) = ()\ 2

f f W(py, po, w)e kPP P2, d2p, .
Ada

(36)
This can be simplified to [12]
2l 2kapb
J C(b)mo)@aﬁb)JO(T)bdb,

ka?
S,(p,0,0) = 2(7) .
(37)
where

C(b) = (2/m)[arccos(b) — b(1 - b%)V2]. (38)

As before, the spectral density is normalized to its value
for a fully coherent field at the geometrical focus. The nor-
malized spectral density is thus given by the formula

S,(p,0,0) 2kapb )bdb
; .

Scoh
(39)

8 1
=@ fo C(b)Wf,O)(za/sb)Jo(

An example is shown Fig. 8 for the case n=2 and (Ba)™!
=0.13. It is seen that the spectral density now has a flat-
topped profile. Fields with such a J;(x)/x correlation can
be synthesized by placing a circular incoherent source in
the first focal plane of a converging lens [13].

7. CONCLUSIONS

We have investigated the behavior of selected Bessel-
correlated, focused fields. It is observed that JJy-correlated
fields produce a tunable, local minimum of intensity
within a high-intensity shell of light. This observation
suggests that such beams might be useful in a number of
optical manipulation applications. In particular, it is well
appreciated that optical trapping of high-index particles

S(p.0, w)/S.,,
0.06

0.04

0.02

0 p(mm)
0 0.1 0.2

Fig. 8. Normalized spectral density, Eq. (39), in the focal plane
for the case (8a)1=0.13. In this example A\=500 nm, ¢=0.01 m,
n=2, and f=2 m.
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requires high intensity at focus, while the trapping of low-
index particles requires low intensity at focus. The J, fo-
cusing configuration allows one to construct a system that
can continuously switch between these two trapping con-
ditions [14].

It is also observed that JJ;(x)/x correlated fields result
in a flat-top intensity distribution. Such an intensity dis-
tribution could be useful in applications where a uniform
intensity spot is required, such as lithography.

These intensity distributions, and others, can be
roughly predicted using straightforward Fourier optics.
The image that appears in the focal plane is essentially
the Fourier transform of the aperture-truncated correla-
tion function in the lens plane. This correlation function
can in turn be generated by an incoherent source whose
aperture is given by the Fourier transform of the correla-
tion function. One such example is using an annular in-
coherent source to produce a Jy-correlated field at the
lens. The detailed three-dimensional structure of the light
field in the focal region, however, requires a numerical so-
lution of the diffraction problem.

It is important to note that this method of generating
the necessary correlations is by no means unique. Any
technique that produces the desired Bessel correlation in
the lens plane will result in the same intensity distribu-
tion at focus. For instance, one could use a coherent laser
field transmitted through a rotating ground-glass plate
with the desired correlations.

This coherence shaping of the intensity distribution at
focus holds promise as a new technique for optical ma-
nipulation [c.f. [15]].

APPENDIX A: COHERENT-MODE
EXPANSION OF A J,-CORRELATED FIELD

Following Gori et al. [16], we use the coherent mode ex-
pansion for the cross-spectral density function given by
Eq. (13) to evaluate expression (19). Since it belongs to
the Hilbert—Schmidt class, it can be expressed in the form
[17]

W(O)(Pl,Pz,w) = E )\n(w) lff:(Pl,w) lr//n(pZ’ (1)). (Al)

Here ¢,(p,w) are the orthonormal eigenfunctions and
\,(w) the eigenvalues of the integral equation

J W(O)(pl’p%w)wn(rl’w)dzpl:)\n(w){pn(p%w), (Az)
D

where the integral extends over the aperture plane D. We
rewrite the expansion (A.1) as

WO (py,pa, @) = >, N(@) W, (py,p2, @), (A.3)

where Wn(pl,pz,w)=z//:(p1,w)wn(p2,w). The spectral de-
gree of coherence corresponding to a single term, W,, is
clearly unimodular. Hence the expansion in Eq. (A.3) rep-
resents the cross-spectral density as a superposition of
fully coherent modes.

In the case of a Jy-correlated field the expression for
the eigenfunctions #,(p, ) reads [16]
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Fig. 9. Eigenvalues \, versus n for a J,-correlated field with a
uniform spectral density across the plane of the aperture. Only
the points corresponding to integer values of n are meaningful,;
the connecting lines are drawn to aid the eye.

Un(psd) = CoNS O ) ane o (Bp)e ™ + by _y(Bp)e™ ], (A4)

where C,, is a suitable normalization factor and the ratio
a,/b,, is arbitrary. On substituting from Eq. (A.4) into Eq.
(A.2) and using Neumann’s addition theorem

JolBloT + p3 — 2p1p2 cos(by — )17}

©

= > Ju(Bp)(Bp)e =92 (A.5)
k=—x

we find that the eigenvalues A\, are given by the formulas
N = 1a*S V()2 Ba) - I, 1(Ba) .1 (Ba)],
(n=0,1,2,...). (A.6)

To ensure that all the functions ¢,(p,») are orthonormal,
we may choose

1
Cn=,—_ (n=0,1,2,...). (A7)
\‘”)\n
This choice implies that
(ao + b0)2 =1 (AS)
a?+b2=1 (n=1,2,3,...). (A9

Hence we find a twofold degeneracy for the eigenfunctions
i, except for the case that n=0. We thus obtain the ex-
pansion

Jo{BLo% + p3 — 2p1p2 cos(y — ¢2) Y2}
= Jo(Bp)Jo(Bps) + > 2{T,(Bp1),(Bps)
n=1

Xcos[n(¢y — ¢o)1}, (A.10)

Vol. 25, No. 3/March 2008/J. Opt. Soc. Am. A 581

where we have used the fact that the functions J,, and /_,
are related by [18]

J_(x) = (- 1)%J,(x) (n e N). (A.11)

The behavior of the eigenvalues A, versus n is shown in
Fig. 9. Although the decreasing behavior of the eigenval-
ues is not strictly monotonic it can be seen that as soon n
exceeds Ba the eigenvalues become very small. In other
words, only those modes whose index n is smaller than Ba
contribute effectively to the cross-spectral density.
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