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We study the field that is produced by a paraxial refractive axicon lens. The results from geometrical optics, scalar

wave optics, and electromagnetic diffraction theory are compared. In particular, the axial intensity, the on-axis

effective wavelength, the transverse intensity, and the far-zone field are examined. A rigorous electromagnetic

diffraction analysis shows that the state of polarization of the incident beam strongly affects the transverse

intensity distribution, but not the intensity distribution in the far zone.
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1. INTRODUCTION

Axicons [1], sometimes called conical prisms, are optical ele-
ments that have rotational symmetry. Whereas ordinary lenses
produce a focal spot, axicons generate a focal line, known as the
axicon line image, which, with increasing distance from the
axicon, gradually evolves into a ring-shaped pattern. This
makes axicons useful for applications as diverse as imaging with
an extended depth of focus [2], surface inspection [3], stimu-
lated Brillouin scattering [4], optical pumping [5], laser drilling
[6], optical trapping [7], frequency doubling [8], triangulation
[9], optical coherence tomography [10], and corneal surgery
[11]. Moreover, they can be used to create so-called nondiffract-
ing Bessel beams [12]. Useful reviews of axicon lenses are pre-
sented in Refs. [13—15].

Three types of axicons can be distinguished: diffractive axi-
cons [16-18], reflective axicons [19-22], and refractive axicons
[23,24]. In this study, we consider the latter variety. A vector
analysis for lenses that produce a converging spherical wavefront
has been presented in a well-known study by Richards and Wolf
[25]. However, a comprehensive electromagnetic description of
refractive axicons, as presented here, has, to the best of our
knowledge, not been undertaken yet.

We begin by briefly reviewing several geometrical axicon
properties in Section 2. This is followed by a scalar wave analysis
in Section 3, in which both the nondiffractive beam properties of
the line image and its transition into a ring-shaped intensity pro-
file are examined. In Section 4 we derive expressions for the
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electromagnetic field that is produced by incident beams whose
polarization state is either uniform, e.g., beams that are linearly
polarized, or whose polarization state is nonuniform [26],
namely, beams with radial or azimuthal polarization. We then
apply these formulas in Section 5 to study the on-axis intensity,
the effective on-axis wavelength, the transverse field intensity, the
state of polarization, and the farzone field. Because we are deal-
ing with beam-like fields, we will throughout this analysis make
use of the paraxial approximation. This justifies neglecting the
longitudinal field components.

2. GEOMETRICAL RAYS

A linear, plano-convex refractive axicon, as sketched in Fig. 1, is
rotationally symmetric about the z axis and has a cone-shaped
form. For holding the cone during manufacturing and use, a
cylindrical section is necessary. The axicon is characterized by
three parameters: the refractive index 7, the base angle @, and
the radius 2. We consider an axicon that is illuminated by a
collection of rays that are all parallel to the z axis. At the conical
surface of the axicon, these rays are refracted toward the axis, all
under the same angle - a. It is seen from Fig. 1 that they are
focused along a line that extends over a distance L from the apex
of the cone. From Snell’s law, we have that sin f/ = 7 sin a.
Hence the length of the focal line equals

L=atany-atan @, (1)

with the angle y given by the expression
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Fig. 1. Refractive axicon with radius 4, base angle a, and refractive

index 7. Rays are normally incident on the front face A. A marginal ray

crosses the z axis at a distance L from the apex, which is taken to be in

the plane z = 0.
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Fig. 2. Length L of the focal line as a function of the base angle a.
In this example the refractive index 7z = 1.5, and the axicon radius
a =2 cm.

y=90°-f+a (2

The length of the focal line versus the base angle @ is shown
in Fig. 2. It is seen that for applications in which a long focal
line is necessary, the base angle must be quite small. We will
from here on restrict ourselves to this paraxial regime.

We assume that the incident field has a Gaussian intensity
profile, i.e.,

10 (p) = Iy exp(-2p /wy), @)
with 7 and wj positive constants, and p = |p| = |(x, y)| being
the radial distance from the z axis. In order to calculate the axial
intensity distribution, we consider a thin ring on the front face
A, with inner radius p and outer radius p + dp. The power flow
through the ring is

P(p) = 1y exp(-2p* w?)2rpdp. 4)
The transmitted portion of this power is projected onto the
z axis between the two positions

L, = p(tan y - tan a), (5)

L, = (p + 6p)(tan y - tan a), (6)

where we have used Eq. (1) with the variable # replaced by the
radial distances p and p 4 Jp, respectively. The rays carrying
this power make an angle f - a with the z axis. If we define
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the length 6L = L, - L;, then the axial intensity or “power
per unit length” equals

PO) 1) T30 costp - )
_ 2zl T3 (@) T5(w) cos(f - a)
N tan y - tan @

p exp(-2p* /wp). (7)

Here 7' (w) and 7'5(w) are the amplitude transmission co-
efficients at frequency w of the air-glass interface for normal in-
cidence, and of the glass-air interface for incidence at an angle a,
respectively. From Eq. (1) we find that z = p(tan y - tan @),
and thus the axial intensity is given by the formula

I(2) = Dz exp[-22° /wj(tan y - tan @)?], (8)
where we introduced the symbol D, with
_ 2zl T3 (w) T3(w) cos(f - )

(tan y - tan @)?

D, ©)

This factor is independent of the position z. Note that this
geometrical model predicts a nonzero field on-axis only when
0 < z < L. In the next section, we will compare the prediction
of Eq. (8) with the result of a scalar analysis.

3. SCALAR FIELDS

Let us next consider a plane, monochromatic scalar wave of
frequency @ with a Gaussian amplitude distribution that is
propagating in the positive z direction. The wave is normally
incident on the front face A of the axicon.

In the space-frequency domain, this wave can be re-
presented as

U™ (p, ) = Up(@) exp(-p* /wp), (10)
where  Uy(w) denotes the spectral amplitude, with
|Ug(w)|? = Iy, and w the beam width in the plane A (see
Fig. 3). The base angle a is taken to be quite small, which jus-
tifies using the paraxial approximation. In order to calculate the
field in the output plane z = 0, we notice that at position

Q'(p, 0) the field has traveled a length & through air, namely,
d~ptan a~pa (11)

A z=0
Fig. 3. Daraxial refractive axicon with radius @, base angle a, and
refractive index 7. A plane wave with a Gaussian amplitude distribu-
tion is normally incident on the front face A. The thickness of the
cylindrical base is denoted by # and z = 0 indicates the output plane.
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The phase difference A between the field at Q" and that on

the z axis is therefore
A= (1-nkd =(1-nkpa, (12)

where £ denotes the free-space wavenumber associated with fre-
quency @. We thus find that the output field in the plane z = 0
is related to the incident field in the entrance plane A by the
formula

U p, 0) = T(p, o) U™ (p, ), (13)
with 7'(p, w) given by the expression
T(p, w) = C(w) explik(1 - n)pa] (14)
and with the factor C(®@) being independent of p, namely,
C(w) = T (0) T, (w) exp(iknt). (15)

Here 7';(®w) and T,(w) are the transmission coefficients
described in relation with Eq. (7), and ¢ is the thickness of
the cylindrical axicon base.

The field at a position P(r) behind the lens is, according to
the Huygens—Fresnel principle ([27], Chap. 8), given by the

expression

i eikR
U(r, a)) = _—// U(°u‘)(p', w) —dzp’, (1 6)

AJ Ja=o R
where R = [22 + (x - &) + (y - )?]'/? is the distance be-
tween P(x, 9, z) and Q'(& 1, 0), and A is the free-space wave-

length. Using the Fresnel approximation, together with
Eq. (13), this diffraction integral can be expressed as

iCU
Ulxy2) = ! /1 0 exp(ikz)
z

x /L:o exp [i/e(l - n)\/ma}
x exp[-(&* + n*) /wy)]

xexp {iz—iw -9+ (- rl)z]}dédn, (17)

where, for brevity, the @ dependence has been omitted.
In cylindrical coordinates

p' = (&n) = p'(cos p,sin p), (18)
p = (x,y) = p(cos §,sin J), (19)
the field at P can be written as
iCU

Up,z) = -

0 . . k 2
= exp(ikz) exp (1 e p
2z a
x / / explik(1 - n)p'a] exp(-p* Jw})
o Jo

ko
exp | i—
X Xp 2zp

0P st - 5)] p'do'du. (20)

z

X exp [—i

The integral over the angle y is independent of §, and hence
we obtain the formula
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R2rCU k
Bl exp(ikz) exp (ipz)
Az 2z

x /lZ explik(1 - n)p'a) exp (ikp'z)
0 2z

k !
x exp(-p'Z/wa)/o( = )p'dp', @1)

U, z) =

with /, a Bessel function of the first kind of order zero. We note
that the field is rotationally symmetric about the z axis, i.e., it
depends on p = |p|. The intensity follows from the definition

I(p,z) = |U(p, 2)|% (22)

as is customary in scalar optics.

The oscillatory integral in Eq. (21) can be evaluated numeri-
cally, but it is instructive to find an approximate solution by
using the method of stationary phase ([28], Section 3.3).
If we consider only the contribution of the interior stationary
point, which means that the edge contribution is ignored, the
result for 0 < z < L is (see Appendix A for details)

Up, z) = -iCUy(2mkz)'/*(n - 1)a exp(in/4) exp(ikz)
x exp(ikp? [2z) exp[-ikz(n - 1)*a? /2]
xexpl-22(1 - 2 fudol(n - Dhoal  (23)
For the intensity we hence find that
1(p, 2) = Dyz exp[-2z*(1 - n)*a* /w}]
< {ol(n - V)kpal}?, (24)

where the constant D, is independent of position and given by
the expression

D2 = C2[0271'k(7l - 1)202. (25)

Before discussing the implications of these diffraction inte-
grals, it is important to note that whereas Eq. (21) is valid for all
axial positions z, Eq. (23) only applies for the interval
0 <z < L. When z is beyond the focal line, the method of
stationary phase, just like the geometrical model, predicts an
axial field that is identically zero.

A. Axial Intensity

The axial intensity distribution produced by an axicon is shown
in Fig. 4 based on the three different models we have discussed
so far: geometrical optics [Eq. (8)], scalar wave optics using the
full diffraction integral [Eq. (21)], and scalar wave optics using
the method of stationary phase [Eq. (24)]. For the choice of
parameters used in panel (a), the three curves are virtually in-
distinguishable. The intensity is seen to first rise, after which an
exponential decay sets in. The length of the focal line as calcu-
lated from Eq. (1), L = 1.15 m in this case. The beam waist wy
was taken to be less than the axicon radius . Neglecting the
boundary contribution, as is done in the stationary phase ex-
pression Eq. (24), is then justified. However, when the beam
waist and the axicon radius are equal, as illustrated in panel (b),
the edge contribution becomes significant. The diffraction in-
tegral of Eq. (21), in which the edge contribution is 7or ne-
glected, now predicts an intensity with a modulation with
increasing size and decreasing periodicity, followed by a steep
decline to zero. That the boundary contribution leads to an
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Fig. 4. Normalized intensity distribution along the z axis as given
by geometrical optics [Eq. (8)] (blue), wave optics using the full dif-
fraction integral [Eq. (21)] (green), and wave optics employing the
method of stationary phase [Eq. (24)] (red). In panel (a) the beam waist
wy = 0.5 cm, which is smaller than the axicon radius. In panel
(b) wy = 1 cm, which is equal to the axicon radius. In both these ex-
amples, the refractive index 7 = 1.5, the base angle @ = 1°, the axicon
radius @ = 1 cm, and the wavelength 4 = 632.8 nm.

oscillatory intensity has been discussed previously, e.g., in
Refs. [17] and [29]. This behavior is in stark contrast with
Egs. (8) and (24). These two formulas both still predict a
smooth intensity distribution, but now with a discontinuous

drop to zero at the end of the focal line (z = L).

B. Transverse Intensity

The normalized transverse intensity distribution, as given by
Eq. (24), is seen to be

1(p) = {ol(n - Dkpal}?,

which is independent of z. It is this ability of axicons to produce
“diffraction-free” or “propagation-invariant” Bessel beams that
has attracted much attention [30-34]. Because Eq. (26) is only
valid when z < L, it cannot be used to investigate the transition
of the axicon line image to a ring-shaped profile. To that end,
we therefore use Eq. (21) which, in contrast to Eq. (26), does
not rely on the stationary phase approximation. In Fig. 5, the
transverse intensity is shown in different cross sections. The

(z < L), (26)
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Fig. 5. Normalized transverse intensity distribution according to
Eq. (21) in different planes. From left to right, z=1m, 2 m,
3 m, and 4 m. In these examples 1= 632.8 nm, a=1°,
wy=1cm,2=1cm, and n = 1.5.

1(6) [a.u.]
1.5F
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L S,
0.002 0.004 0.006 0.008 0.010

Fig. 6. Transverse intensity distribution according to Eq. (21), nor-
malized to unity at @ = 0, as a function of the polar angle, in different
cross sections. From left to right, z = 1.4 m, 1.6 m, 1.8 m, 2.0 m, and
2.2 m. All other parameters are the same as in Fig. 5.

lef-most curve (z =1 m), is practically identical with the

% prediction of Eq. (26). For values larger than the focal line
length L = 1.14 m [see Eq. (1)], the distribution gets progres-
sively broader. We note that, for clarity, all curves in Fig. 5 are
normalized to 1 at p = 0. In reality, obviously, the axial inten-
sity will decrease when z gets larger.

The gradual broadening of the central transverse peak is
accompanied by the onset of sidelobes, which eventually leads
to a ring-like intensity profile. This is shown in Fig. 6, where,
because the peaks begin to cluster around the same angle, the
horizontal axis now represents the polar angle 0, rather than the
radial distance p. The sidelobes, positioned between 6 = 0.002
and @ = 0.008, have a maximum intensity that increases with
increasing z. Gradually, this maximum begins to exceed the
unit intensity on the axis (6 = 0).

The influence of the beam waist size w, can be examined by
increasing its value from 1 cm to 1 m. The result is shown in
Fig. 7, in which it can be seen that the position of the maxima
remains the same, but the secondary sidelobes are now more
suppressed.

For even larger distances, as plotted in Fig. 8, these sidelobes
get narrower, and a ring-like field develops around the angle
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Fig. 7. Transverse intensity distribution according to Eq. (21), nor-
malized to unity at @ = 0, as a function of the polar angle, in different
cross sections. From left to right, z = 1.4 m, 1.6 m, 1.8 m, 2.0 m, and
2.2 m. The beam waist w, is now increased to 1 m, from 1 cm in
Figs. 5 and 6. All the other parameters are the same as in Fig. 5.
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15}
10}
5L
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Fig. 8. Transverse intensity distribution according to Eq. (21), nor-
malized to unity at @ = 0, as a function of the polar angle, in different
cross sections. From left to right, z = 10 m, 15 m, and 20 m. The
beam waist wy = 1 m. All other parameters are the same as in Fig. 5.

0 = - a = 0.0087, which is precisely the geometrical angle
of refraction shown in Fig. 1. Of course, the far-zone field (the
field at infinity) can be brought to the focal plane of a paraxial
lens. Notice that in Figs. 5-8 the same normalization is used.
This means, for example, that for the right-most curve in Fig. 8
(z = 20 m), the intensity of the ring-like sidelobe is about 16
times higher than that of the field on-axis.

4. ELECTROMAGNETIC FIELDS

In this section, we analyze two types of incident electromag-
netic beams, namely, beams with a uniform polarization, i.e.,
beams whose state of polarization is the same at all points in a
cross section, and radially and azimuthally polarized beams,
which are nonuniformly polarized.

A. Linear Polarization

We begin by assuming a monochromatic, normally incident
field that is linearly polarized along the x direction, i.e., a field
of the form

E(™ (r) = Eg&e* ) = E(1,0,0)7 o), (27)
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with £y > 0, ke a phase constant, and 7" denoting the trans-
pose. We note that this incident field has a constant amplitude,
in contrast to the Gaussian fields that were discussed in earlier
sections. The Fresnel transmission coefficient 7'; for normal
incidence at the front face A gives rise to an overall amplitude
factor that is independent of position, i.e., ([35], Section 7.3)

2
=31 (28)

As can be seen from Fig. 3, the field travels a distance
t + a(a - p) from the entrance plane A to the inside of the
conical surface. Hence the field there, indicated by the super-
script (=), equals

EC) (r) = E,T,6*=0) gkrlitatapl(1 0,0)7.  (29)

The inward normal vector of the cone is given by the
expression

1

A = —(sin & cos ¢, sin a sin ¢, cos )7, (30)

where the caret symbol denotes a unit vector. We define the
vector s, which is normal to the plane of incidence at the conical
surface, as

S =1Zxn, (31)
= (sin @ sin ¢, - sin a cos ¢, 0)”. (32)

The vector P, which lies in the plane of incidence and is
also perpendicular to the wave vector within the axicon, is de-
fined as

p=12xS (33)
= (cos ¢, sin ¢, 0)”. (34)

The electric field vector can now be decomposed into an
s- and a p-polarized part by writing

EQ(p, ¢) = EX (0, ¢) + ES (p, ), (35)

with
EX (o, ) = [EO(p, $) - 818, (36)
= A(p)(sin® ¢, - cos ¢ sin ¢, 0)7, (37)
E; (p,¢) = [EO(p, 4) - Ip, (38)
= A(p)(cos® ¢, cos ¢ sin ¢, 0)7, (39)
and where we introduced the abbreviation
A(p) — Eo Tl gi/e(zfe) fi/en[t+a(ﬂ—p)]_ (40)

These two field components are transmitted with their re-

spective Fresnel coefficients, 7, and T[,, for which we have
([271, Section 1.5.2)

2n cos a

T, = , (41)
ncos a+ ~1-n®sin? a
T 2n cos a . (42)

cos @ + nv/'1 - n*sin’a

Whereas the s-polarized part remains otherwise unchanged,
the p-polarized part of the electric field is, according to Snell’s
law, also rotated over an angle ff - a around the vector s
(see Fig. 1), with
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sin f = nsin a. (43)
If we now introduce a vector § by defining
4 = (cos(f - ) cos ¢, cos(f - a) sin ¢, sin(f - a))”, (44)
it is readily verified that
qG-§=0 (45)
and that
q-p = cos(f - ) (46)

This demonstrates that the rotation indeed transforms the
vector P into §. Hence the field at the right-hand side of the
conical surface, indicated by the superscript (4), equals

EN(p,¢) =T [ED(p.¢)-88+ T,[EO(p,d)-pla,  (47)

sin? ¢
= T,A(p)| -cos ¢ sin ¢
0
cos(f - a)cos? ¢
+ 7T,A(p) | cos(f-a)cos ¢sin ¢ |. (48)

sin(ff — a) cos ¢

The assumption of paraxiality allows us to neglect the rel-
atively small z component of the electric field in Eq. (48) that is
introduced by refraction of the p-polarized part. In addition, we
note that the two Fresnel coefficients are related by the expres-
sion ([27], Section 1.5.2)

T,cos(fp-a)=T. (49)

On making use of this in Eq. (48), it follows that the ex-
pression for the x component simplifies, and that the y com-
ponent vanishes, and hence we find that

E®(p, ¢) = T.A(p)(1,0,0)". (50)

The field on the right-hand side of the axicon surface prop-
agates to the output plane z = 0. As indicated by Eq. (11), this
involves a distance d = pa in air, giving rise to a phase factor of
exp(ikpa). Hence the field E©"(p, ¢) in the output plane is

given by the expression
E€ (p, ) = exp(ikpa)ET) (p, ), (51)

= exp(ikpa) T,A(p)(1,0,0)7. (52)

We note that this output field has no ¢ dependence.

Having established the field in the output plane, the field in
the half-space z > 0 can be calculated by using the diffraction
formula

e/eR

E(r) = LV x / [z x EC (r")] —d?/, (53)
2r 2'=0 R
where R = |r - r'|. We note that Eq. (53) is derived in ([35],
Section 10.7) for apertures in a plane conducting screen.
However, it is valid for any planar surface, as is shown in
([36], pp. 218-221). On substituting Eq. (52) into
Eq. (53), we find that
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_E}Cout) (r/)az AR

1
E(r) = —/ 0 —d*r. (54)
2z z'=0 E)(Cout) (r/)a R

Whereas in Eq. (48) the z component was introduced by
refraction, in Eq. (54) it arises as a result from diffraction.
Differentiation with respect to z of the factor exp(i#R)/R in-
troduces a prefactor z, whereas differentiation with respect to x
leads to a factor x - x'. Therefore the z component of the dif-
fracted field drops off quickly with increasing z, and may there-
fore be neglected. Hence we find that

2r

We will make use of this expression in Section 5.

-T o AR
E(r) = —% / ' A(p')o, szr’. (55)
z'=0

B. Uniform Polarization

We have thus far considered an incident beam that is linearly po-
larized along the x direction. Let us now generalize Eq. (27) to
beams with an arbitrary, but uniform state of polarization, namely,

E@ (r) = Ey e, (56)
where
U=AX+A43, (57)

and with A, and A, complex-valued constants such that
|4, > + |Ay|2 = 1. For example, A, = i4, represents a circu-
larly polarized beam. Because the axicon is a linear system with
rotational symmetry, the resulting field in the half-space z > 0
can be found by simply adding the contributions of both field
components of Eq. (57), i.e.,
1 ' AR
E(r)=-—A4.TX / N (p")0, —d*r
2n ' R

z'=0

1 b el/eR 5
-—A,TY¥ kAN (p")0, —d*r. 58
AT [ drenpa e 68

This expression demonstrates that the x and y field compo-
nents everywhere in the half-space z > 0 have the same ampli-
tude and phase relation (given by A, and 4,) as the two
components of the incident field. We therefore conclude that
the state of polarization of the diffracted field is the same as that
of the uniformly polarized incident beam that generates it.

We next turn our attention to two types of beams with
a nonuniform state of polarization.

C. Radial Polarization

Consider a monochromatic, normally incident beam that is
radially polarized, i.c.,

E®(r) = Egpetto), (59)

= Ey(cos ¢, sin ¢, 0) 7 ¢*9), (60)

The field at the left-hand side of the axicon surface is now
E(-) (r) — EO Tl ei/z(z—e) ei/en[t-!-(l(a—p)] ﬁ, (61)

= A(p)(cos ¢, sin ¢, 0)7, (62)

with A(p) defined by Eq. (40). The s-polarized part is zero, i.c.,
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whereas the p-polarized part equals

EQ(p, ¢) - p = Alp). (64)
The field at the right-hand side of the axicon surface is
therefore

EX(p, ¢) = T,[EV (p, $) - P4, (65)

cos(ff — a) cos ¢
T,A(p) ( cos(ff — a) sin ¢ )
sin(ff - a)
If we again neglect the weak z component and make use of
Eq. (49), we find that the output field in the plane z = 0 is
given by the formula

E(OUY) (,0) ¢) = eXp(ikﬂ(l)EH—) (,0) ¢)) (67)

= T.A(p) exp(ikpa)(cos @, sin ¢, 0)7. (68)

We will momentarily analyze the diffracted field produced

by a radially polarized beam by substituting Eq. (68)
into Eq. (53).

(66)

D. Azimuthal Polarization

Consider a monochromatic, normally incident beam that is azi-
muthally polarized, i.e.,

E0")(r) = Eype*=0, (69)
= Ey(-sin ¢, cos ¢, 0)7 ¢z, (70)
The field at the left-hand side of the axicon surface is then

E® (l‘) =E, TlEi/e(z—e)gi/en[t-&-a(a—p)]d'\)

= A(p)(-sin ¢, cos ¢, 0)”. (71)
The s-polarized part is
EC(p, ¢) -8 =-Alp), (72)
whereas the p-polarized part now equals zero, i.c.,
EQ(p.¢)-p=0. (73)

The field at the right-hand side of the axicon surface is
therefore

EM(p, ) = T[EO(p, ) - 88, (74)
= -T,A(p)(sin ¢, - cos ¢, 0)7, (75)

and hence the output field in the plane z = 0 is given by the
formula

EC(p, ¢) = explibpa)ED (p, §), (76)

=-T,A(p)exp(ikpa)(sin ¢, -cos ¢,0) . (77)
We will analyze the field produced by an azimuthally polar-
ized beam by substituting Eq. (77) into Eq. (53).

5. ELECTROMAGNETIC FIELDS GENERATED
BY AXICONS

We are now in a position to compare the on-axis field, the
transverse intensity distribution, and the intensity in the far
zone for each of the three types of polarization that were
discussed in the previous section.
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A. Axial Intensity

For linear polarization we find, by applying Eq. (55) to points
on the z axis and using polar coordinates, for the only nonzero
component of the electric field the expression

a 2
E.(0,0,2) = % T, /) A explikp'a]A(p")
ikR

RZ

X

[; - ik] p'dg'dp’, (78)

— ZT,EO Tleikn(t+aa)e—i/ee /ﬂ ei/e(l—n)p’a
0
AR T1 L

X |:§—1/€:|p dp’, (79)
where R = (p? + z°)!/2.

The axial intensity /(z) = |E,(0, 0, z)|? is plotted in Fig. 9.
It is seen that for increasing z, the intensity oscillates more
strongly and then drops suddenly to zero. If we compare this
with the scalar result [Eq. (21)], for the case of an incident
plane wave, i.c., for a beam waist wy > 4, the two results
are virtually indistinguishable. This should not come as a sur-
prise: in the paraxial regime that we are dealing with, with a
base angle @ = 1°, we expect the scalar case to give results that
are similar to those for a linearly polarized field.

This situation is quite different for incident beams with a
nonuniform state of polarization. For an incident beam that
is radially polarized, we find that applying the output field given
by Eq. (68) to the diffraction integral of Eq. (53), yields that
both £, and E|, are zero. As before, we neglect the z component
of the electric field. For an incident beam that is azimuthally
polarized, substitution from Eq. (77) into Eq. (53) yields that
all three components of the electric are zero for points along
the central axis. Hence, we conclude that the axial intensity
is nonzero when the incident beam is uniformly polarized,
whereas it is zero for an incident beam with radial or azimuthal
polarization.

B. Effective Wavelength on Axis

The rays that are refracted by the axicon all propagate under
an angle f - a with the central axis (see Fig. 1). We therefore

I (z) [a.u.]
7

N W~ 00O

P R

% AN SN S SRS (NS S SN N S S S N S—Y - i Z [m]
02 04 06 08 10 12 14

Fig. 9. Axial intensity distribution 7(z) = |E,(0, 0, 2)|? for an in-
cident beam that x-polarized, as given by Eq. (79). In this example
n=15a=1cm, a=1° and A = 632.8 nm.
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Table 1. Effective Wavelength on Axis for an Incident
Beam with A = 632.80 nm

Base Angle a Eq. (80) [nm] Eq. (79) [nm]
1.0° 632.82 632.83
2.5° 632.95 632.95
5.0° 633.41 633.37

expect the effective axial wavelength A4 to be given by the
expression

B A
off cos(f - a)’

with 4 the free-space wavelength of the incident field. We can
verify this prediction by numerically determining the successive
zeros of the argument (or phase) of £,.(0, 0, ), using Eq. (79).
This was done for three different values of the axicon base angle
a, at a position halfway along the focal line, i.e., atz = L/2 [see
Eq. (1)]. The results are shown in Table 1, and indicate an
excellent agreement within the paraxial regime. This is in con-
trast with findings reported earlier for focusing systems with a
much higher angular aperture [37,38].

(80)

C. Transverse Intensity

Scalar theory, using the method of stationary phase, predicts a
normalized transverse intensity profile that is given by Eq. (26):

I(p) = {ol(n - Dkpal}?, (= <L), @1)
which is independent of z. If one does not make use of the
stationary phase approximation, scalar theory predicts a more
complex behavior, as illustrated by Figs. 5-8. On the other
hand, the electromagnetic analysis for a linearly polarized beam
leads to Eq. (55), from which we find for the only nonzero field
component that

-1 (out) /.1 gikR 2.7
Ex(r) = E Y Ex (r )OZTd 7, (82)

= _z T—‘EO T1 ei/en(t-}—(m) e—i/ee
2r

P w o eikR
» / / el/ep a(1-n) — [1k _ I/R]p/dqs/dp', (83)
0 0 R
with

R= \/(x -p'cos @) + (y-p' sin ¢')* + 2% (84)

The results of a numerical evaluation of Eq. (83) are, just as

for the axial intensity, practically indistinguishable from the sca-

lar results for a large beam waist that were presented in
Section 3.

The transverse field for the radially polarized case is obtained

by substituting Eq. (68) into Eq. (53). The resulting expres-

sions are

E(r) = ;: /0 ’ /0 7 AQ') cos et (k- 1/R)

ikR

RZ

p'dg'dp’, (85)

X
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Fig. 10. Transverse intensity distribution for an incident beam that
is x-polarized [Eq. (83)] (purple and green curves), and for a radially
polarized [Eqs. (85) and (86)] or azimuthally polarized beam
[Egs. (87) and (88)] (red and blue curves), for z = 0.5 m and
z = 1.5 m. The other parameters are # =1.5, 2 =1 cm, a = 1°,

and 4 = 632.8 nm.

02

ZT: a 2 . ) s
E,(r) = / / A(p')sin ¢p'e*? *(ik - 1/R)
2z Jo Jo
ikR
X3 p'de'dp’. (86)

The transverse field for the azimuthally polarized case is ob-
tained by substituting Eq. (77) into Eq. (53). One then finds
that

E(r) = %A AZ” Alp')sin ¢'e*'“(ik - 1/R)

ikR
x oz p'dg'dp), 87)
E,(r) = _;T: / ﬂ / A cos ¢ (ik - 1/R)
T Jo Jo
ARR
x Fp’d(]ﬁ’dp’. (88)

On comparing Egs. (87) and (88) with Egs. (85) and (80), it
is seen that an azimuthally polarized beam and a radially polar-
ized beam produce exactly the same transverse intensity distri-
bution. The transverse intensity distributions for a radially or
azimuthally polarized beam and a linearly polarized beam are
compared in Fig. 10. The radially and azimuthally polarized
beams produce identical fields with a dark core that is sur-
rounded by rings of decreasing intensity. When the plane of ob-
servation is changed from z = 0.5 m to z = 1.5 m, the central
peak of the linearly polarized field broadens (purple and green
curves), whereas the first peak of the radially or azimuthally po-
larized field is seen to move outward (red and blue curves).

D. Far-Zone Intensity

Far away from the output plane, Eq. (53) for the diffracted field
takes the asymptotic form (Eq. 10.109, [35])

ikr

E(#) = ik:x / 7 x B0 (1) H1/d2, (89)
z'=0

r

A derivation of Eq. (89) can be found in Appendix B. On
defining the integrals



Research Article

ikr
gl-(rf‘) — i e / Ez(‘om) (r')e'ikf'r’dzr'(i =x z)) (90)
2xr 2'=0

where the unit vector corresponding to the direction of obser-
vation is given by

£ = (sin @ cos ¢, sin O sin ¢, cos 6)7, (91)
we can derive, with E©€"(r’) given by Eq. (52), that

—cos O, (rT)
E(rt) = 0 . (92)
sin 6 cos ¢, (rT)

Because of the assumption of paraxiality, we have that
sin @ < cos 6, and the z component of the field may again
be neglected. On substituting Eq. (52) into the definition of
Eq. (90), we obtain the expression

ikr a
T, / RN
0

4

E(rF) = ik
<(rf) = ik

2z
y {/ o-ikp" sin 0 cos(¢'~) d¢’}dp ’ (93)
0

eikr ) )
— %7 Ts TlEogllen(tﬁm)e—x/ee

x /0”Z Gk aQ=m ' T (kp' sin O)dp’. (94)

The far-zone intensity
1(0) = |E.(F)? = cos® O, (+D) %, (95)

is plotted in Fig. 11 as a function of the angle 6. The intensity is
seen to be sharply peaked, corresponding to a thin, ring-like
distribution. In this case, the ring subtends an angle 6 =
0.0087 at the origin. We note that this is in exact agreement
with the geometrical angle of refraction f - a, as depicted
in Fig. 1.

When the incident beam is radially polarized, substitution
from Eq. (68) into Eq. (89) yields

-cos OE . (rT)
- cos ng(rf') , (96)
0

E(T) =
where

1(0) [a.u.]

1.0f
0.85
0.6;
oaf

0.2}

0.002 0.004 0.006 0.008 0.010 0.012 0.014

Fig. 11. Farzone intensity distribution 7(6) as given by Eq. (95)
for an incident beam that is x-polarized. In this example, 7 = 1.5,
2a=1cm, a=1° and A = 632.8 nm.
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ikr
~ (4 : .
E.(rt) = b— T, T Eyé*"+aa gike o5 ¢
r

x / "D ] (k' sin O)dp’,  (OT)
0

R ei/er ) )
&,0t) = /eT T T Eye*"+ad ke sin ¢

y / * ho'am ' (k' sin 0)dp’.  (98)
0

It is clear from the ¢ dependence in Eqs. (97) and (98) that
the far-zone field is radially polarized, as is to be expected.

In a similar fashion, we find on substituting from Eq. (77)
into Eq. (89) that for an azimuthally polarized beam

cos OE,.(rT)
E(#t) = | cos 0E,(rF) |, (99)
0

with
ek . .
E.(rF) = ~b— T, T Eyeknitaa ike iy o
r

x /a Gk’ a=n o' I (kp' sin 0)dp’, (100)
0

R gi/er ) )
E,(rt) = /eT T, T Eye*"e+aa) gike o5

« / * dk'am 1T (k' sin O)dp’. (101)
0

It is seen from Eqs. (100) and (101) that this field is indeed
azimuthally polarized. A comparison of Egs. (96) and (99) shows
that the far-zone intensity produced by radially polarized and
azimuthally polarized beams are identical. Moreover, a numerical
evaluation shows that the far-zone intensity distribution for these
two types of polarization is the same as that for a linearly polar-
ized beam shown in Fig. 11. This may seem somewhat counter-
intuitive, because Eq. (94) involves a /, function, whereas the
corresponding expressions for the radial and azimuthal cases con-
tain a /, function. However, the respective integrands are all
products of two rapidly oscillating functions, namely an expo-
nent and a / or a /| Bessel function. Loosely speaking, these
oscillations will tend to cancel each other, except when they oc-
cur in unison. This happens when the functional arguments are
equal, i.e., when —kp'a(1l - n) = kp' sin 6, which implies that
these integrals will all be approximately zero except when
sin @ = f - a. This is precisely the geometrical angle of refrac-
tion that was mentioned above in connection with Fig. 11.

6. CONCLUSION

We have analyzed the field of a paraxial refractive axicon within
the frameworks of geometrical optics, scalar optics, and electro-
magnetic optics. The field along the central axis and the tran-
sition to a ring-like distribution were examined. It was shown
that the scalar theory and the electromagnetic theory are in very
good agreement for the case of an incident beam that is linearly
polarized. However, scalar theory cannot describe the field that
is produced when the incident beam is radially polarized or azi-
muthally polarized. In those two latter cases, the axial intensity
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is zero, and the transverse intensity is a field with a dark core
surrounded by rings of decreasing intensity. In the far zone, the
axicon produces a ring-like field whose intensity distribution is
independent of the state of polarization of the incident field.

APPENDIX A:DERIVATION OF EQ. (23)

In this appendix, the stationary-phase calculation of the axicon
field is outlined (cf. [39]). We note that this method applies to
systems for which the Fresnel number N = 2% /(AL) > 1; see
[24]. To this end, let us assume that f(p") and g(p’) are two

well-behaved functions in an integral in the form of

F(b = A " £ (0" explikg(p))dp" (A1)

If % tends to infinity, the general solution of this integral is
([28], Section 3.3)

7\ /2 exp(Lir/4
P~ (%) " SEEE it esplkgp0) k= o)

(A2)
where p, is known as the critical point, which is obtained when

the derivative of g(p') is zero, i.c., g'(p") = 0. From comparing
Egs. (21) and (Al), it is clear that

k !
) = exp(-p'Z/wé)fo< o )pc (A3)

z

n”
n o _ ’ L
gp) = A -np'at—. (A4)
Thus, the derivatives of g(p’) are
g0)=(1-ma+”, (A5)
144 ! 1
=1 (n6)

The fact that g”(p") > 0 implies that the plus sign must be
chosen in Eq. (A2). It follows immediately from Eq. (A5) that
the critical point

pl = z(n- 1. (A7)

Substitution from Egs. (A3), (A4), and (A6) into Eq. (A2)
yields Eq. (23). Notice that the interior critical point is con-
fined to the range of integration, i.e.,

0<p/ La (A8)

This means, according to Eq. (A7), that the method of sta-
tionary phase predicts a field that is identically zero when

(A9)

a(n-1)

As is well known, geometrical optics may be regarded as the
asymptotic limit of physical optics as the wavenumber # tends
to infinity ([27], Section 3.1). Therefore, Eq. (A2) reproduces
the geometrical optics result that the field is zero when z ex-
ceeds the focal line length L. It is easily verified numerically that
L, as given by Eq. (1), is indeed very well approximated by the
right-hand side of the inequality (A9).

z >
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APPENDIX B:DERIVATION OF EQ. (89)

We begin by applying a product rule to Eq. (53), namely,

Vx(AxB)=A(V-B)-(A-V)B+ (B-V)A-B(V-A).
(A10)

Since A = 7 is a constant vector, the third and fourth terms
are both zero. Furthermore,

ei/eR
V.B=V. (E("“‘)(r’) 2 ), (A11)
(out) eikR (out) gikR
=Ex (r )ax7+E}/ (r )@7
ei/eR
+ B ()0, (A12)
EX(0) R ik(x - x') - (x - ) /R]
LBk -y - 0 -/ K]
RZ
E;out) N ikR bz — R
n (r')e 2[1z z/ ] (A13)
R
Because in the far zone R > A, we may write
V.B= ELw (r’)ikgx - x")el*R
R
E(Out) Yik(y v ikR
+2 (r")ik(y - y)e
RZ
EO (1 iks
G a1

Thus, the first term on the right-hand side of Eq. (A10)

becomes

W (r)ik(x - x")e*R

A(V.-B) =1 2
LB @ik -y ) B () iked
R? R?
(A15)
For the second term of Eq. (A10) we have that

eikR
~(A-V)B = -E°"(r')g, 7 (A16)
Making again use of the fact that R >> A, we obtain the result

ei/eR
~(A-V)B = -E©"(r)iks (A17)

R

Thus, we can rewrite Eq. (53) as

A .k A out ’ ’ out ’ !
BOi) = [ HE )62 + B0
(out) (s (out) (4" (% e 2.,
+ E (I')Z]—E (r)(zr)}ﬁd r.
(A18)

Because x" and y are bounded by the size of the axicon ra-
dius 2, we may neglect the terms in x" and y" as R — o0. Also,
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we use that in that limit AR~ kr-Af-r’, and that
1/R? ~ 1/r%. This yields

R ikfikr
E(}’r) == W

+ EX"(r)z] - ECO () (2 - 1) b M 27,

O{Q[Ea(couo (r/)x + E}(/out) (I',)_)/

z'=

(A19)

ikt . N oA NA AN ik 12
= [Z(EC™ (x") - £) - ECYW(r)(Z - £)]e T d?r.
2nr 2'=0
(A20)
Using the “BAC-CAB” rule
Ax(BxC)=B(A.C)-C(A-B), (A21)

we finally obtain the formula
. ikelkr R N 12
E(#) = F x 2 x ECu (r') ¥ q2, (A22)
2xr 2'=0

which is Eq. (89).
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