

TITLE

WHEPP X January 2008

Non-collinearity in high energy scattering processes

Piet Mulders

mulders@few.vu.nl

Outline

- Introduction: partons in high energy scattering processes
- (Non-)collinearity: collinear and non-collinear parton correlators
 - OPE, twist
 - Gauge invariance
 - Distribution functions (collinear, TMD)
- Observables
 - Azimuthal asymmetries
 - Time reversal odd phenomena/single spin asymmetries
- Gauge links
 - Resumming multi-gluon interactions: Initial/final states
 - Color flow dependence
- Applications
- Universality: an example $gq \rightarrow gq$
- Conclusions

QCD & Standard Model

- QCD framework (including electroweak theory) provides the machinery to calculate cross sections, e.g. γ*q → q, qq → γ*, γ* → qq, qq → qq, qg → qg, etc.
- E.g.

• Calculations work for plane waves

$$\left\langle 0 \left| \boldsymbol{\psi}_{i}^{(s)}(\boldsymbol{\xi}) \right| p, s \right\rangle = u_{i}(p, s) e^{-ip.\boldsymbol{\xi}}$$

Confinement in QCD

• Confinement limits us to hadrons as 'quark sources' or 'targets' (with $P_X = P - p$)

$$\left\langle X \left| \psi_{i}^{(s)}(\xi) \right| P \right\rangle e^{+ip.\xi}$$
$$\left\langle X \left| \psi_{i}^{(s)}(\xi) A^{\mu}(\eta) \right| P \right\rangle e^{+i(p-p_{1}).\xi+ip_{1}.\eta}$$

- These involve nucleon states
- At high energies interference terms between different hadrons disappear as $1/\mathrm{P}_1.\mathrm{P}_2$
- Thus, the theoretical description/calculation involves for hard processes, a forward matrix element of the form

$$\Phi_{ij}(p,P) = \int \frac{d^{3}P_{X}}{(2\pi)^{3}2E_{X}} < P | \bar{\psi}_{j}(0) | X > < X | \psi_{i}(0) | P > \delta(P - P_{X} - p)$$

$$= \frac{1}{(2\pi)^{4}} \int d^{4}\xi e^{i p.\xi} < P | \bar{\psi}_{j}(0) \psi_{i}(\xi) | P >$$
momentum
$$4$$

Correlators in high-energy processes

- Look at parton momentum p
- Parton belonging to a particular hadron P: $p.P \sim M^2$
- For all other momenta K: p.K ~ P.K ~ s ~ Q²
- Introduce a generic vector n ~ satisfying P.n = 1, then we have n ~ 1/Q, e.g. n = K/(P.K)

• Up to corrections of order M^2/Q^2 one can perform the σ -integration

$$\Phi_{ij}(x,p_T) = \int d(p.P) \Phi_{ij}(p,P) = \int \frac{d(\xi.P)d^2\xi_T}{(2\pi)^3} e^{ip.\xi} \left\langle P \left| \psi_j^{\dagger}(0)\psi_i(\xi) \right| P \right\rangle_{\xi.n=0}$$

(calculation of) cross section in DIS

Full calculation

(calculation of) cross section in SIDIS

OPTICAL THEOREM FOR SIDIS

Full calculation

Leading partonic structure of hadrons

Partonic correlators

The cross section can be expressed in hard squared QCD-amplitudes and distribution and fragmentation functions entering in forward matrix elements of nonlocal combinations of quark and gluon field operators ($\phi \rightarrow \psi$ or G). These are the (hopefully universal) objects we are after, useful in parametrizations and modelling.

Distribution functions

$$p^{\mu} = x P^{\mu} + p_T^{\mu} + \frac{p \cdot P - x M^2}{P \cdot n} n^{\mu}$$

$$\Phi(x, p_T) = \int \frac{d(\xi.P) d^2 \xi_T}{(2\pi)^3} e^{i p.\xi} \left\langle P \left| \phi^{\dagger}(0) \phi(\xi) \right| P \right\rangle_{\xi.n=0}$$

Fragmentation functions

$$k^{\mu} = \frac{1}{z} K^{\mu} + k_{T}^{\mu} + \frac{k \cdot K - z^{-1} M_{h}^{2}}{K \cdot n} n^{\mu}$$

$$\Delta(z,k_T) = \int \frac{d(\xi,K)d^2\xi_T}{(2\pi)^3} e^{-ik.\xi} \left\langle 0 \left| \phi(0) \right| K, X \right\rangle \left\langle K, X \left| \phi^{\dagger}(\xi) \right| 0 \right\rangle_{\xi,n=0}$$

2

` lightcone

(non-)collinearity of parton correlators

The cross section can be expressed in hard squared QCD-amplitudes and distribution and fragmentation functions entering in forward matrix elements of nonlocal combinations of quark and gluon field operators ($\phi \rightarrow \psi$ or G). These are the (hopefully universal) objects we are after, useful in parametrizations and modelling.

Distribution functions

$$p^{\mu} = x P^{\mu} + p_{T}^{\mu} + \frac{p \cdot P - x M^{2}}{P \cdot n} n^{\mu}$$

$$\Phi(x, p_T) = \int \frac{d(\xi \cdot P)d^2 \xi_T}{(2\pi)^3} e^{ip.\xi} \left\langle P \middle| \phi^{\dagger}(0) \phi(\xi) \middle| P \right\rangle_{\xi.n=0}$$

$$\text{Iightfront: } \xi^+ = 0$$

$$\Phi(x) = \int d^2 p_T \Phi(x, p_T) = \int \frac{d(\xi \cdot P)}{(2\pi)} e^{ip.\xi} \left\langle P \middle| \phi^{\dagger}(0) \phi(\xi) \middle| P \right\rangle_{\xi.n=\xi_T=0}$$

collinear

$$\Phi = \int dx \ \Phi(x) = \left\langle P \left| \phi^{\dagger}(0) \phi(0) \right| P \right\rangle$$
 Iocal

Spin and twist expansion

• Local matrix elements in Φ

Operators can be classified via their canonical dimensions and spin (OPE)

• Nonlocal matrix elements in $\Phi(x)$

Parametrized in terms of (collinear) distribution functions f...(x) that involve operators of different spin but with one specific twist t that determines the power of $(M/Q)^{t-2}$ in observables (cross sections and asymmetries). Moments give local operators. $M^{(n)} = \int dx \ x^{n-1} f(x)$

• Nonlocal matrix elements in $\Phi(x,p_T)$

Parametrized in terms of TMD distribution functions $f...(x,p_T^2)$ that involve operators of different spin and different twist. The lowest twist determines the operational twist t of the TMD functions and determines the power of $(M/Q)^{t-2}$ in observables.

Transverse moments give collinear functions.

$$f^{(n)}(x) = \int d^2 p_T \left(\frac{-p_T^2}{2M^2}\right)^n f(x, p_T^2)$$

Spin n:

Twist t:

~ ($P^{\mu_1}...P^{\mu_n}$ – traces)

dimension – spin

Gauge invariance for quark correlators

• Presence of gauge link needed for color gauge invariance

$$U_{[0,\xi]}^{[C]} = \mathscr{P} \exp\left(-ig \int_{0}^{\xi} ds^{\mu} A_{\mu}\right) \qquad \qquad A^{\mu} = A^{+} P^{\mu} + A^{\mu}_{T} + A^{-} n^{\mu}$$

• The gauge link arises from all 'leading' m.e.'s as $\psi \; A^{\scriptscriptstyle +}...A^{\scriptscriptstyle +} \, \psi$

$$\Phi_{ij}^{q}(x;n) = \int \frac{d(\xi.P)}{(2\pi)} e^{ip.\xi} \left\langle P \left| \overline{\psi}_{j}(0) U_{[0,\xi]}^{[n]} \psi_{i}(\xi) \right| P \right\rangle_{\xi.n=\xi_{T}=0} \\ \Phi_{ij}^{q}(x,p_{T};n,C) = \int \frac{d(\xi.P) d^{2}\xi_{T}}{(2\pi)^{3}} e^{ip.\xi} \left\langle P \left| \overline{\psi}_{j}(0) U_{[0,\xi]}^{[C]} \psi_{i}(\xi) \right| P \right\rangle_{\xi.n=0}$$

- Transverse pieces arise from $A_T^{\alpha} \rightarrow G^{+\alpha} = \partial^+ A^{\alpha} + ...$
- Basic gauge links:

Gauge invariance for gluon correlators

$$\Phi_{g}^{\alpha\beta}(x, p_{T}; C, C') = \int \frac{d(\xi.P)d^{2}\xi_{T}}{(2\pi)^{3}} e^{ip.\xi} \left\langle P \left| U_{[\xi,0]}^{[C]} F^{n\alpha}(0) U_{[0,\xi]}^{[C']} F^{n\beta}(\xi) \right| P \right\rangle_{\xi.n=0}$$

- Using 3x3 matrix representation for U, one finds in TMD gluon correlator appearance of two links, possibly with different paths.
- Note that standard field displacement involves C = C'

$$F^{\alpha\beta}(\xi) \to U^{[C]}_{[\eta,\xi]} F^{\alpha\beta}(\xi) U^{[C]}_{[\xi,\eta]}$$

• Basic gauge links $\Phi_{g}^{[+,+]}$ $\Phi_{g}^{[+,+]}$ $\Phi_{g}^{[+,-]}$ $\Phi_{g}^{[+,-]}$ $\Phi_{g}^{[-,+]}$ $\Phi_{g}^{[-,+]}$ $\Phi_{g}^{[-,+]}$ $\Phi_{g}^{[-,+]}$

 $S \approx S_L \frac{P^{\mu}}{M} + S_T^{\mu}$

Collinear parametrizations

- Gauge invariant correlators \rightarrow distribution functions
- Collinear quark correlators (leading part, no n-dependence)

$$\Phi^q(x) = \left(f_1^q(x) + S_L g_1^q(x)\gamma_5 + h_1^q(x)\gamma_5 \mathscr{S}_T\right) \frac{\mathscr{P}}{2}$$

- i.e. massless fermions with momentum distribution $f_1^{q}(x) = q(x)$, chiral distribution $g_1^{q}(x) = \Delta q(x)$ and transverse spin polarization $h_1^{q}(x) = \delta q(x)$ in a spin $\frac{1}{2}$ hadron
- Collinear gluon correlators (leading part)

$$\Phi_{g}^{\mu\nu}(x) = \frac{1}{2x} \left(-g_{T}^{\mu\nu} f_{1}^{g}(x) + i S_{L} \mathcal{E}_{T}^{\mu\nu} g_{1}^{g}(x) \right)$$

• i.e. massless gauge bosons with momentum distribution $f_1^{g}(x) = g(x)$ and polarized distribution $g_1^{g}(x) = \Delta g(x)$

TMD parametrizations

- Gauge invariant correlators \rightarrow distribution functions
- TMD quark correlators (leading part, unpolarized)

$$\Phi^{q}(x, p_{T}) = \left(f_{1}^{q}(x, p_{T}^{2}) + ih_{1}^{\perp q}(x, p_{T}^{2})\frac{\not p_{T}}{M}\right)\frac{\not p_{T}}{2}$$

TMD correlators $\Phi_q^{[U]}$ and $\Phi_g^{[U,U']}$ do depend on gauge links!

- as massless fermions with momentum distribution $f_1^q(x,p_T)$ and transverse spin polarization $h_1^{\perp q}(x,p_T)$ in an unpolarized hadron
- The function h₁^{⊥q}(x,p_T) is T-odd!
- TMD gluon correlators (leading part, unpolarized)

$$\Phi_g^{\mu\nu}(x,p_T) = \frac{1}{2x} \left(-g_T^{\mu\nu} f_1^g(x,p_T^2) + \left(\frac{p_T^{\mu} p_T^{\nu} + \frac{1}{2} g_T^{\mu\nu}}{M^2} \right) h_1^{\perp g}(x,p_T^2) \right)$$

• as massless gauge bosons with momentum distribution $f_1^{g}(x,p_T)$ and $_{16}^{16}$ linear polarization $h_1^{\perp g}(x,p_T)$ in an unpolarized hadron

The quark distributions (in pictures)

need p_T

 p_T

$$f_{1}(x, p_{T}^{2}) = \bullet = \mathbb{R} + \mathbb{L}$$

$$= \bullet + \bullet$$

$$\bullet + \bullet$$

Results for deep inelastic processes

$$\sigma_{\gamma^*N \to X} = f_1^{N \to q}(x) \otimes \hat{\sigma}_{\gamma^*q \to q}$$
$$\Delta \sigma_{\gamma^* \vec{N} \to X} = g_1^{N \to q}(x) \otimes \Delta \hat{\sigma}_{\gamma^* \vec{q} \to \vec{q}}$$

$$\sigma_{\gamma^*N \to hX} = f_1^{N \to q}(x) \otimes \hat{\sigma}_{\gamma^*q \to q} \otimes D_1^{q \to N}(z)$$

Probing intrinsic transverse momenta

- In a hard process one probes quarks and gluons
- Momenta fixed by kinematics (external momenta)

DIS
$$x = x_B = Q^2 / 2P.q$$

SIDIS $z = z_h = P.K_h / P.q$

- Also possible for transverse momenta SIDIS $q_T = q + x_B P - z_h^{-1} K_h = k_T - p_T$
 - 2-particle inclusive hadron-hadron scattering $q_T = z_1^{-1}K_1 + z_2^{-1}K_2 - x_1P_1 - x_2P_2 = p_{1T} + p_{2T} - k_{1T} - k_{2T}$
- Sensitivity for transverse momenta requires ≥ 3 momenta SIDIS: $\gamma^* + H \rightarrow h + X$ DY: $H_1 + H_2 \rightarrow \gamma^* + X$ $e+e-: \gamma^* \rightarrow h_1 + h_2 + X$ hadronproduction: $H_1 + H_2 \rightarrow h_1 + h_2 + X$ 19

 \rightarrow h + X (?)

pp-scattering

 $p \approx xP + p_T$

 $k \approx z^{-1}P + k_{\tau}$

Time reversal as discriminator

$$\begin{split} W_{\mu\nu}(q;P,S,P_h,S_h) &= -W_{\mu\nu}(-q;P,S,P_h,S_h) & \text{symmetry structure} \\ W_{\mu\nu}^*(q;P,S,P_h,S_h) &= W_{\nu\mu}(q;P,S,P_h,S_h) & \text{hermiticity} \\ W_{\mu\nu}(q;P,S,P_h,S_h) &= \overline{W}_{\mu\nu}(\overline{q};\overline{P},-\overline{S},\overline{P}_h,-\overline{S}_h) & \text{parity} \\ W_{\mu\nu}^*(q;P,S,P_h,S_h) &= \overline{W}_{\mu\nu}(\overline{q};\overline{P},\overline{S},\overline{P}_h,\overline{S}_h) & \text{time reversal} \\ \hline W_{\mu\nu}(q;P,S,P_h,S_h) &= W_{\nu\mu}(q;P,-S,P_h,-S_h) & \text{combined} \end{split}$$

- If time reversal can be used to restrict observable one has only even spin asymmetries
- If time reversal symmetry cannot be used as a constraint (SIDIS, DY, pp, ...) one can nevertheless connect T-even and T-odd phenomena (since T holds at level of QCD).
- In hard part T is valid up to order α_s^2

Sivers asymmetry

$$\left\langle \frac{|q_T|}{M} \sin(\phi_h^\ell + \phi_S^\ell) \sigma_{\gamma^* N^\uparrow \to \pi X} \right\rangle = h_1^q(x) \otimes \hat{\sigma}_{\gamma^* q^\uparrow \to q^\uparrow} \otimes H_1^{\perp(1)q}(z)$$

Collins asymmetry

$$\left\langle \frac{|q_T|}{M} \sin(\phi_h^{\ell} - \phi_S^{\ell}) \sigma_{\gamma^* N^{\uparrow} \to \pi X} \right\rangle = f_{1T}^{\perp (1)q}(x) \otimes \hat{\sigma}_{\gamma^* q \to q} \otimes D_1^q(z)$$

Function as appearing in parametrization of $\Phi^{[+]}$

Generic hard processes

- Matrix elements involving parton 1 and additional gluon(s) A⁺ = A.n appear at same (leading) order in `twist' expansion and produce link Φ^[U](1)
- insertions of gluons collinear with parton 1 are possible at many places
- this leads for correlator Φ(1) to gauge links running to lightcone ± infinity
- SIDIS $\rightarrow \Phi^{[+]}(1)$
- DY $\rightarrow \Phi^{[-]}(1)$

C. Bomhof, P.J. Mulders and F. Pijlman, PLB 596 (2004) 277 [hep-ph/0406099]; EPJ C 47 (2006) 147 [hep-ph/0601171]

Link structure for fields in correlator 1

22

Integrating $\Phi^{[\pm]}(x,p_T) \rightarrow \Phi^{[\pm]}(x)$

$$\Phi^{[\pm]}(x, p_T) = \int \frac{d(\xi.P) d^2 \xi_T}{(2\pi)^3} e^{i p.\xi} \left\langle P \left| \psi^{\dagger}(0) U_{[0,\pm\infty]}^n U_{[0_T,\xi_T]}^T U_{[\pm\infty,\xi]}^n \psi(\xi) \right| P \right\rangle_{\xi.n=0}$$

collinear correlator

$$\Phi^{\bigotimes}(x) = \int \frac{d(\xi \cdot P)}{(2\pi)} e^{ip.\xi} \left\langle P \left| \psi^{\dagger}(0) U_{[0,\xi]}^{n} \psi(\xi) \right| P \right\rangle_{\xi \cdot n = \xi_{T} = 0}$$

Integrating $\Phi^{[\pm]}(\mathbf{x},\mathbf{p}_{\mathsf{T}}) \rightarrow \Phi_{\partial}^{\alpha[\pm]}(\mathbf{x})$

transverse moments

$$\Phi_{\partial}^{\alpha[\pm]}(x) = \int d^2 p_T p_T^{\alpha} \Phi^{[\pm]}(x, p_T)$$

$$\Phi_{\partial}^{\alpha[\pm]}(x) = \int d^2 p_T \int \frac{d(\xi \cdot P) d^2 \xi_T}{(2\pi)^3} e^{ip.\xi} \left\langle P \left| \psi^{\dagger}(0) U_{[0,\pm\infty]}^n i \partial_T^{\alpha} U_{[0_T,\xi_T]}^T U_{[\pm\infty,\xi]}^n \psi(\xi) \right| P \right\rangle_{\xi.n=0}$$

A 2 \rightarrow 2 hard processes: qq \rightarrow qq

Gluonic poles

• Thus: $\Phi^{[U]}(x) = \Phi(x)$

$$\Phi_{\partial}^{[\mathsf{U}]\alpha}(\mathsf{x}) = \Phi_{\partial}^{\alpha}(\overset{\sim}{\mathsf{x}}) + \mathsf{C}_{\mathsf{G}}^{[\mathsf{U}]} \pi \Phi_{\mathsf{G}}^{\alpha}(\mathsf{x},\mathsf{x})$$

- Universal gluonic pole m.e. (T-odd for distributions)
- $\pi \Phi_G(x)$ contains the weighted T-odd functions $h_1^{\perp(1)}(x)$ [Boer-Mulders] and (for transversely polarized hadrons) the function $f_{1T}^{\perp(1)}(x)$ [Sivers]
- $\widetilde{\Phi}_{\partial}(x)$ contains the T-even functions $h_{1L}^{\perp(1)}(x)$ and $g_{1T}^{\perp(1)}(x)$
- For SIDIS/DY links: $C_{G}^{[\pm]} = \pm 1$
- In other hard processes one encounters different factors: $C_G^{[\Box+]} = 3, C_G^{[(\Box)+]} = N_c$

Efremov and Teryaev 1982; Qiu and Sterman 1991 Boer, Mulders, Pijlman, NPB 667 (2003) 201 C. Bomhof, P.J. Mulders and F. Pijlman, EPJ C 47 (2006) 147

0000

A Contraction

Bacchetta, Bomhof, Pijlman, M, PRD 72 (2005) 034030; hep-ph/0505268

 $C_{G}^{[D_3]} = C_{G}^{[D_4]}$

Bacchetta, Bomhof, D'Alesio, Bomhof, M, Murgia, PRL2007, hep-ph/0703153

Gluonic pole cross sections

 In order to absorb the factors C_G^[U], one can define specific hard cross sections for gluonic poles (which will appear with the functions in transverse moments)

Bomhof, Mulders, JHEP 0702 (2007) 029 [hep-ph/0609206]

examples: $qg \rightarrow q\gamma$ in pp

Universality (examples $qg \rightarrow qg$)

Transverse momentum dependent

weighted

'Residual' TMDs

- We find that we can work with basic TMD functions $\Phi^{[\pm]}(x,p_T) + 'junk'$
- The 'junk' constitutes process-dependent residual TMDs

$$\Phi^{[(\Box)(\Box^{\dagger})^{+}]}(x, p_{T}) = \Phi^{[+]} + \left[\Phi^{[(\Box)(\Box^{\dagger})^{+}]}(x, p_{T}) - \Phi^{[+]}(x, p_{T}) \right]$$

$$\Phi^{[\Box^{+}]}(x, p_{T}) = 2\Phi^{[+]}(x, p_{T}) - \Phi^{[-]}(x, p_{T}) + \delta\Phi^{[\Box^{+}]}(x, p_{T})$$

$$no \ definite \ T-behavior \ definite \ definit$$

• The residuals satisfies $\delta \Phi_{\partial}(x) = 0$ and $\pi \delta \Phi_{G}(x,x) = 0$, i.e. cancelling k_{T} contributions; moreover they most likely disappear for large k_{T} 35

Bomhof, Mulders, Vogelsang, Yuan, NPB, hep-ph/0709.1390

Conclusions

- Beyond collinearity many interesting phenomena appear
- For integrated and weighted functions factorization is possible (collinear quark, gluon and gluonic pole m.e.)
- Accounted for by using gluonic pole cross sections (new gauge-invariant combinations of squared hard amplitudes)
- For TMD distribution functions the breaking of universality can be made explicit and be attributed to specific matrix elements
- Many applications in hard processes. Including fragmentation (e.g. polarized Lambda's within jets) even at LHC

References: Qiu, Vogelsang, Yuan, hep-ph/0704.1153 Collins, Qiu, hep-ph/0705.2141 Qiu, Vogelsang, Yuan, hep-ph/0706.1196 Meissner, Metz, Goeke, hep-ph/0703176 Collins, Rogers, Stasto, hep-ph/0708.2833 Bomhof, Mulders, hep-ph/0709.1390 Boer, Bomhof, Hwang, Mulders, hep-ph/0709.1087