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Spin Structure Functions

P.J. Mulders
Department of Physics and Astronomy, Faculty of Sciences
Vrije Universiteit, Amsterdam, the Netherlands

This chapter deals with properties of hadrons in high-energy scattering pro-
cesses. We specifically study electroweak scattering processes. One specific
process, namely lepton-hadron scattering will be dealt with in detail. A
signal for an electroweak process is the presence of leptons which do not
feel strong interactions. They allow a separation of the the scattering am-
plitude for the process into a leptonic part and a hadronic part, where the
leptonic part, involving elementary particles is known. The structure of the
hadronic part is constrained by its (Lorentz) structure and fundamental
symmetries and can be parameterized in terms of a number of structure
functions. The emerging expression for the scattering amplitude can be
used to calculate the cross sections in terms of these structure functions. In
turn one can make a theoretical study of the structure functions. Part of
this can be done rigorous with as only input (assumption if one wants) the
known interactions of the hadronic constituents, quarks and gluons, within
the standard model. For this both the electroweak couplings of the quarks
needed to describe the interactions with the leptonic part via the exchange
of photon, Z° or W bosons as well as the strong interactions of the quarks
among themselves via the exchange of gluons described in the QCD part of
the standard model are important. For a general reference we refer to the
book of Roberts [1].
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1.1 Leptoproduction

In this section we discuss the basic kinematics of a particular hard elec-
troweak processes, namely the scattering of a high-energy lepton, e.g. an
electron, muon or neutrino from a hadronic target, £(k)H(P) — ¢'(k')X.
In this process at least one hadron is involved. If one does not care about
the final state, counting every event irrespective of what is happening in
the scattering process, one talks about an inclusive measurement. If one
detects specific hadrons in coincidence with the scattered lepton one talks
about semi-inclusive measurements or more specifically 1-particle inclusive,
2-particle inclusive, depending on the number of particles that are detected.

C=Fk-K)1?=-Q><0
2

2P - g=2Mv =—
Tp

2P, - q = —zp, @

2

pp-ta_20
Y 2zpy

The variable x5 is the Bjorken scaling variable. In this scattering process
a hadron is probed with a spacelike (virtual) photon, for which one could
consider a frame in which the momentum only has a spatial component.
This shows that the spatial resolving power of the probing photon is of the
order A =~ 1/@Q. Roughly spoken one probes a nucleus (1 - 10 fm) with Q
~ 10 — 100 MeV, baryon or meson structure (with sizes in the order of 1
fm) with @ ~ 0.1 —1 GeV and one probes deep into the nucleon (< 0.1 fm)
with Q > 2 GeV.

Exercise Rewrite the invariant mass squared of the hadronic final state,
W2, in terms of invariants and use that W2 > M? to show that 0 < 25 < 1,
with £ = 1 corresponding to elastic scattering.

Leptoproduction is characteristic for a large number of other processes in-
volving particles (leptons) for which the interactions are fully known to-
gether with hadrons. The electroweak interactions with the constituents
of the hadrons (quarks), however, are also known. This opens the way to
study how quarks are embedded in the hadrons (e.g. in leptoproduction
or in the Drell-Yan process, A(P4)B(Pg) — £(k){(k')X) or to study how
quarks fragment into hadrons (in leptoproduction and eTe™ annihilation
into hadrons).
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For inclusive unpolarized electron scattering the cross section, assuming
one-photon exchange, is given by

do 1 o ”
,d3k’ =—=n Q4 L&) aMw, (1.1)

5)

where L,(“, is the symmetric lepton tensor,
LE (kK =T [v,(F + m)y (k +m)] = 2k,k), + 2k, k), — Q%gpu. (1.2)

and Wy, is the hadron tensor, which contains the information on the
hadronic part of the scattering process,

OM W, (P, q) = 2/ (P|J}(0)|Pn)
<Pnuu< )[P) (21)" 8(P + g — Po), (1.3)

where |P) represents a target with momentum P.

Exercise. Show, using §*(P+q—P,) = [ d*z exp(iP-z+iq-z—iP,-z), shift-
ing the argument of the current, J,(z) = exp(iPppx)J,(0) exp(—iPpyp-) and
using completeness for the intermediate states that the hadron tensor can
be written as the expectation value of the product of currents J,,(z )J,, (0).
Then, adding a second term o J, (O)Jf (0)64(P — q¢ — Py), Wthh in the
physical region (v > 0) is zero because of the spectral conditions of the
intermediate states n (P? > M) one can after a similar procedure combine
the terms to

QM W, = % / diz €02 (P|[J}(z), J, ()] P). (1.4)

Including polarization this expression remains valid if summation and av-
eraging over spins is understood.

What is one actually probing in leptoproduction? In the leptoproduction
e+ H — € + X the (unobserved) final state X can be the target (elas-
tic scattering) or an excitation thereof. In a plot of the two independent
variables v and @Q? (see Fig. 1.1) elastic scattering corresponds to a line
given by v = Q2/2M, where M is the mass of the target. As we have seen
the behavior of the cross section along this line, where the ratio zz = 1, is
(besides the 1/Q* of the Mott cross section) proportional to a form factor
squared, measuring the expectation value of the electromagnetic current
(P'|J#(z)|P). Exciting the nucleon gives rise to inelastic contributions in
the cross section at v > Q?/2M, starting at the threshold W = M + M.
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Q 2 w 2> M2
1 fixed X 5< 1
Xg=
Figure 1.1. The physical region
in deep inelastic scattering.
physical
region
-V

Note that as a function of 2z any resonance contribution will move closer to
the elastic limit when Q? increases. When Q2 and the energy transfer v are
high enough the cross section will reflect elastic scattering off the pointlike
constituents of the nucleon and the cross section will become equal to an in-
coherent sum of the electron-quark cross section. This is known as the deep
inelastic scattering region, in which one finds Bjorken scaling. The cross
section, or more precisely the structure functions, become functions of one
(kinematic) variable x5, which is identified with the momentum fraction of
the struck quark in the nucleon, enabling measurement of quark distribu-
tions. We will make this explicit below. The picture will break down in the
limiting cases, such as z — 1, where it becomes dual to the summation
over resonances (see chapter xx) or  — 0, corresponding (for fixed Q?)
to v — oco. In this region one may employ Regge theory (see chapter xx).

It is also possible to consider in more detail the space-time correlations
that are probed. As already indicated q is space-like. But from the kine-
matics of deep inelastic scattering one can see that the process probes the
lightcone. Sitting in the nucleon rest-frame we note that both ¢° = v and
¢® = +/Q? + 12 go to infinity but working at finite 2, one sees that taking
the sum and the difference only one of them goes to infinity*. Choos-
ing g along the negative z-axis one has ¢~ = (v + |q|)/v/2 = oo and ¢+ =
(v—1q|)/V2 ~ —Mpz5/v/2. This corresponds in the hadronic tensor which
involves a Fourier transform of the product of currents to [z*| ~ 1/¢q~ — 0
and |z7| ~ 1/|¢"| — 1/Mzg or |z| ~ |t| # 1/Mzy. Thus, depending on
the value of zz the distances and times not necessarily are small, but one
has 22 = 2Tz~ —a:i & —a:ﬁ_ < 0, while on the other hand causality requires
that 22 > 0. Therefore, one sees that deep inelastic scattering probes the
lightcone, 22 ~ 0.

* Lightcone coordinates are defined a* = (a®+a%)/v/2. The scalar product of two vectors
is given by a-b = atb™ +a bT — alb! —a%b.
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1.2 Structure functions and cross section

The simplest thing one can do with the hadron tensor is to express it in
standard tensors and functions depending on the invariants, the structure
Junctions. Instead of the traditional choice using tensors, g,.,, P,P, and
€uvpo ¢° P° multiplying structure functions Wy, Wy and W3 depending on
v and Q?, we immediately go to a dimensionless representation. First we
define a Cartesian basis of vectors [2], starting with the natural space-like
momentum (defined by ¢). Using the target hadron momentum P* one
can construct an orthogonal four vector P# = P# — (P - q/¢*) ¢#, which is
timelike with length P2 = k P - ¢ with

2 12 2.2
M7Q _, 4M 2y (1.5)
(P-q)? Q?
The quantity x takes into account mass corrections o< M2/Q? which will
vanish for large Q% (k — 1). Thus we define

k=1+

Zt = —g*, (1.6)
2 ~
TH = —Pq—ﬂ PH =gt + 22, P, (1.7)
For these vectors we have Z2 = —Q? and T? = kQ? and we will often

use the normalized vectors 2# = —g# = Z*/Q and t* = T#/Q./k. With
respect to these vectors one can also define transverse tensors,

g =g" + "¢ -, (1.8)

e’ = Pt G, (1.9)

To get the parametrization of hadronic tensors, such as the one in Eq. 1.4,
including for generality also an (axial) spin vector S (see section 1.5), we
use the general symmetry property,

W/u/(‘la P, S) = Wl/u(_Q7Pa S) (1'10)

as well as properties following from hermiticity, parity and time-reversal
invariance,

W;V(q7P7 S) :Wuu(Q7P7 S)a (1'11)
Wu(q, P,S) = Wo,u(q, P,—S)  [Parity], (1.12)
W, (g, P,S) = W .. (g, P, S) [Time reversal], (1.13)
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where p = (p°, —p). Finally we use current conservation implying g“tW,,, =
Wouq” = 0. Note that depending on the situation not all constraints can
be applied. For inclusive unpolarized leptoproduction one obtains as the
most general form for the symmetric tensor,

u v Dl DV
Y (T S .
q P-q

= —g” Fi(zs,Q?) +i# <_F1 + F2>, (1.14)

FZ(‘T:B)Qz)

Fr pe
where the structure functions Fj, F5> or the transverse and longitudinal
structure functions, Fr = F; and FL, depend only on the for the hadron
part relevant invariants Q% and z. This is the structure for the electromag-
nic (photon exchange) part of the electroweak interaction. For the weak
(W- or Z-exchange) part both vector and axial vector currents with differ-
ent parity behavior come in. In that case also the following antisymmetric
tensor is allowed,

1e#"P? Pyqo 9
— = F.
(P ] q) 3(xBa Q )

=ike F3(zs, Q%) (1.15)

MwH (g, P) =

It appears in the part of the tensor in which one of the currents in the
product is a vector current and the other an axial vector current.

The cross section is obtained from the contraction of lepton and hadron
tensors. It is convenient to expand also the lepton momenta k and k' =
k —q in ¢, 2 and a perpendicular component using the scaling variable y
= P.q/P -k (in the target restframe reducing to y = v/E). The result
(including target mass corrections) is

2-y1 1
y 2
1
L Q-9 @, Vi-ytil-ng g
2 2y /k y V&
2 I—y.,
Q_—))oo%,\u+( 23)Qt“+va Yim, (1.16)

where £# = k* /|k_|, is a spacelike unit-vector in the perpendicular direc-
tion lying in the (lepton) scattering plane. The kinematics in the frame
where virtual photon and target are collinear (including target rest frame)
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lepton scattering plane

Figure 1.2. Kinematics for lepton-hadron scattering. Transverse directions indi-
cated with a L index are orthogonal to P and q, e.g. the orthogonal component of
the momentum of a produced hadron has been indicated as example. Similarly one
can consider the orthogonal component of the spin vector of the target.

is illustrated in Fig. 1.2. With the definition of é, we obtain neglecting mass
corrections (k = 1) for unpolarized leptons the symmetric leptonic tensor

2 1 NN
LS = 3—2 [—2 (1 —yty yz) 9" +4(1 —y)tht”

PN 1 A
+4(1 — ) (MV +3 gﬁ”) +202-y)V1—y t{“ﬁ”}]l.ﬂ)
The explicit contraction of lepton and hadron tensors gives for electromag-

netic scattering (only symmetric tensor) the result

do? dr o’ xp s [(

1yt 1y2) Fr(an, @)+ (1 - ) Fu(an, @°)|

depdy —  Q* 2
2
= 2 [0 0 Paln, @) + 20y? Filn, Q)] (L18)

We have now used the known photon coupling to the lepton and parametrized
our ignorance for what happened with the hadron in a hadronic tensor. The
fact that we know how the photon interacts with the (quark) constituents
of the hadrons will be used later to relate the structure functions to quark
properties. In the same way one also knows for the weak interaction pro-
cesses leading to antisymmetric part containing F3 in the tensor for unpo-
larized hadrons, how the Z° and W couple to quarks. To describe weak
interactions also the antisymmetric part of the lepton tensor is needed,
which we will also encounter when we discuss polarization.
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1.3 Virtual photon cross sections

The tensor W, also appears in the total cross section for v*H — every-
thing, where 7* indicates a virtual photon. For a given virtuality Q2 of the
photon this cross section depends on only one variable, W2 = (P + ¢)?, or
equivalently on the variable v = P - q/M,

2
07*H(1/) _ 47;{6!

where 4M K is the photon flux factor. This flux factor only is physical for
real photons (Q? = 0). One convention is to take 4M K = 4,/(p - q)2 — p2¢2,
ie. K = 4/v2+ Q2. Other possibilities are to take the real photon result
AM K = 4P -q or K = v (Hand convention). Another convention that
has been used is to equate the final state invariant mass squared W2 =
(P + q)?%, ie. take the result 4M K = 2(W?2 — M?) for a massless photon
and equate W2 to the invariant mass in the case of a virtual photon, WW?2
=2P - q+M?>-Q*or K = v—Q?%/2M.

Being a (total) cross section for (virtual) photoabsorption, the hadronic
tensor is related to the forward (virtual) Compton amplitude through the
optical theorem,

e Wove”, (1.19)

1
Wy = —Im T, (1.20)
™

where

OM T, (P,q) = i / d*z 692 (P|T J,(2)J,(0)|P), (1.21)

Using the photon polarization vectors ek, where a indicates one of the
polarization directions (perpendicular to g#),
1

5 (O,ZF]., —Z,O) = :F%(Ga;:l:iﬁy), (122)

(¢*,0,0,¢°), (1.23)

e =

-

e =

L /_Q2

one gets two transverse structure functions and one longitudinal structure
function, F,, = e&* MW, €;,. Because of the fact that they are cross sections

for (virtual) photons, these structure functions, F';, F and Fp, are positive.
We have

1
FT - 5 (F_|_ + Ff) == F]_, (124)
Fy
Fp=———F 1.25
L 2%y 1, ( )

F3=F, —F_. (1.26)
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1.4 Symmetry properties of the structure functions

For the Compton scattering process, v*(¢) + H(P) — v*(¢') + H(P'), the
amplitude 7T),, (P, q,q") can be expanded, similar as W), in terms of am-
plitudes 77 and 75 that depend on the invariants in the scattering process.
These are (except the for a given process fixed photon virtuality) two of
the (three) Mandelstam variables for the v*N process, s = (P + q)2, t =
(P—¢q)? and u = (P — ¢')?> (Note that s +t +u = 2 M2 — 2Q?).

First we review the symmetries and analytic properties of the amplitudes T;
and the structure functions W;. Crossing symmetry relates the amplitudes

Tab_md(pa’pb’pwpd) = Tab_md(_pc’pb’ _pa;pd)- (127)

For the virtual Compton amplitude T) ¥ 77 H(y, s) = T/ #=7"H (5 4). For
the elastic v*H and v*H amplitudes themselves the crossing properties for
the photon imply 7} (s, u) = T1(u, s). From the optical theorem the relation
between the total cross section for v*H — X to the elastic v*H — v*H
amplitude, specifically the structure function Wi is found as the disconti-
nuity over the cut in the physical region, which is the imaginary part of
the forward (¢ = 0) amplitude 7;. For the forward amplitude (¢ = 0) the
variables s and u are related and v equals v = (s — u)/4M. Thus T} is a
symmetric function of v. One has

x 4 4
or By = %a ImTi(s + ie,u) = %a Im T (v + ie), (1.28)

* I 4 4:
or Ay = %O[ImTl(u + i€, 8) = %ImTl(—u + ie)

4
= —% ImTy(v +ie),  (1.29)

where the last equality follows from the symmetry of 71, T1(v) = Ti(—v)
and the fact that 7} is a real analytic function, 73 (v) = Ty (v*). Note that
as Wy, is defined as the commutator of the currents the cross section for
the ’crossed’ part enters with a negative sign. As an analytic function of v,
however, one precisely has

Wiy, Q%) = %Im Ti(v + i€) = —Wi(-v, Q%) (1.30)

which can also be derived from the translation invariance properties of the
commutator defining W#¥. The analytic behavior and symmetry in the
Bjorken variable z = Q2/2Mv is exactly the same as that in v, i.e. Wi(z)
= —Wi(—z) is antisymmetric in z.

Exercise. A simple example in which all of these properties are illustrated



1.5 Polarized leptoproduction 11

e

Figure 1.3. The Compton amplitude for a point fermion.

is the forward Compton amplitude for scattering off a point fermion with
mass m and charge /e = ey (fig. 1.3). The amplitude T} is the coefficient
of g, in the amplitude T,

(P)1u(@ + ¢ + m)yu(p)
(p+q)2 — m2 +ie

U
2m Ty, = €} +p ey, go —q. (1.31)

Show that it equals

om Tr — 2( s—u Uu—s )
ML= s 2(3—m2)+2(u—m2)

1 1
2
1.32
ef(l—x+1+x>’ (1.32)

of which the imaginary part precisely is the structure function for a pointlike
fermion,

2mW; = e?c [0(1 —z)—46(1+a)]. (1.33)

1.5 Polarized leptoproduction

For spin-polarized leptons in the initial state we have

1+9s
L) =T [y F + mp (g + m) 225
= 2kuk, + 2k, — Q7 guy £ 2im €ppoq”s”. (1.34)

Note that for light particles or particles at high energies helicity states (§
= 12:) become chirality eigenstates. For L,, the equivalence is easily seen
because for s# = (|k|/m, Ek/m) (s> = —1 and s -p = 0) one obtains in the
limit E ~ |k| the result m s# ~ k*. Then the leptonic tensor for helicity
states (A\e = ) becomes

Ae=%1/2)  7(R/L) _ 7(8 A
LQe=*Y2) o L) = L) 4 A L. (1.35)
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where the antisymmetric lepton tensor is given by
Lgﬁ)(ka kl) =Tr [7#75}6,71/%] 2i €uupaqpka- (1'36)

Expanding in the Cartesian set #, 2 and the vector / in the same way as
for the symmetric part, we have for the antisymmetric part of the leptonic
tensor! the result

2
L (4) = 3—2 —iy(2—y) e — 2iyy/T—y Elke0,|. (1.37)

One can use polarized leptons in deep inelastic €p — X to probe the an-
tisymmetric tensor for unpolarized hadrons, containing the Fj structure
function. This contribution comes in via the interference between the -~
and Z interference term.

In the situation where the target is polarized, one has several more structure
functions as compared to the case of an unpolarized target. For a spin
1/2 particle the initial state is described by a 2-dimensional spin density
matrix p = Y, |@)pa (e describing the probabilities p, for a variety of spin
possibilities. This density matrix is hermitean with Tr p = 1. It can in the
target rest frame be expanded in terms of the unit matrix and the Pauli

matrices,

1
Pss' = § (1 +§- ass’) ) (138}

where S is the spin vector. When |S| = 1 one has a pure state (only one
state |a) and p? = p), when |S| < 1 one has an ensemble of states. For the
case |S| = 0 one has simply an averaging over spins, corresponding to an un-
polarized ensemble. To include spin one could generalize the hadron tensor
to a matrix in spin space, W (¢, P) (P, s'|J#|X)(X|J”|P, s > depending
only on the momenta or one can look at the tensor ), pav"vgg (¢, P). The
latter is given by

WH(q, P, S) = Tr (p(P, S)W* (g, P)), (1.39)

t A useful relation is

€uvpo JaB = €avpo Gup + €papo Jvp + €uvac 9pp + €pvpa Gop
or for a vector a, orthogonal to  and g,

wvpo 5 v]

— flu Ve
P 2,01, =t ¥ ay,,

wvpo _ _ sl vle
€ tpaJ_‘,——z[ €,7al1,.
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with the spacelike spin vector S appearing linearly and in an arbitrary frame
satisfying P - S = 0. It has invariant length —1 < §% < 0. It is convenient
to write

Sy M?
b _ T& | 1] H
St =2 (P L. ) + S, (1.40)
with M(S-q)
°q
S, = —-. 1.41
L (P'q) ( )

For a pure state one has S2 + §2 = 1. Parity requires that the polarized
part of the tensor, i.e. the part containing the spin vector, enters in an
antisymmetric tensor of the form

i€tP7 g, P,

MW”V(A)(q,P’S) :SL (P_q)

g1+ 1" 9,8 15 (g1 + 92)

M

P-q
. 2M .

= —i5; 65‘_” g1 —1 ?t[MGprSJ_p zp(g1 + g2). (1.42)

It contains two structure functions ¢ (zz, @?) and g2(z5,Q?). One also
uses gt = g1 + g2. The resulting cross section is

A 4m o? 2M
jx;jfl; = 7521 Ae [Sp(2—y) g1 — S| cos ¢ 0 V1I—yzs(g + gz)] :
(1.43)
(Note that in all of the above formulas mass corrections proportional to
M?/@Q? have been neglected).

A special case of inclusive scattering is the situation in which the final state
is identical to the initial state, elastic scattering. In that case the final state
four momentum is P’ = P+ ¢ and is fixed to be (P+4¢)? = M?,i.e. x5 = 1.
We can still use the formalism for inclusive leptoproduction but the hadron
tensor becomes becomes

2M W, (g, P) = <P|J,,(0)|P'>V<p'|Jy(0)IP> é

H,,(P;P")

51— zp).  (1.44)

These current matrix elements have been discussed in chapter xx.

1.6 The parton model
The intuitive approach

In the intuitive derivation of the parton model one convolutes the y*-quark
cross section with a momentum distribution of quarks in the nucleon.
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Exercise. Show that the y*¢ cross section is given by

4ma
a(v*q) = e, w'’e
(7 ) 2p-q y7) v
W (,0) = = | (22— 6,,) @ + 45,5, | 6@p-q+ ¢
w(P,4) = 557 2 o Q° +4pupv| 62p-q+q°)

(note that there are in principle ambiguities here because of the flux factor
for virtual photons) and deduce

or(v*q) = 4n’a e 6(2p - g — Q%) (1.45)
A ¥ 2 o Am? 2 .
6L(7"q) = 4ma e o 5(2p-q- Q%) < or. (1.46)

In the next step this partonic cross section is folded with the probability
function for finding partons in the target. For this purpose it is convenient
to give the explicit momenta as lightcone components, p = [p~,p",p,]
where p* = (p®+p®)/v/2 or p = pn_ +pTn, +pr in terms of two lightlike
vectors satisfying n2 = n? =1 and ny -n_ = 0 (thus one has p* = p-nz).

Exercise. Derive the lightcone expansion for the external vectors P and g,

2 _ 2 - Q _ Q
q2__Q2 q= \/ETI/* ﬁn+
PP=M" b

g = 9 _ zpM? Q
2P-q= 3= P = Sﬁn,+wB\/§n+

Note that ni are not unique. Give the vectors ni for the target rest frame
(P = 0). What is the effect of a boost on the vectors n.

In particular the first representation with lightlike vectors shows that when
Q? becomes large, the nucleon momentum is ’on the scale @ in essence
lightlike. While the hard momentum has both components proportional
to @, this is not the case for P and one has P~ < ¢~. In deep-inelastic
scattering the plus components are of the same order with ratio precisely
being the scaling variable z; = —¢*/P™.

Exercise. Including finite @ effects the ’'better’ scaling variable is actually
zy = —qt /P (Nachtmann variable). Show that sticking to the exact
definition 5 = Q?/2P - q one has

2xp

:L'N—

2
4 M2g3
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Next we turn to the parton momentum. Compared with the hard scale @ it
is in essence also lightlike. It is useful to expand p = p~ n_ +2x PTn, + pr,
where the lightcone momentum fraction. x = p* /P™ has been introduced.

Exercise. Show that on-shell (p?2 = m?) one has

_ m?P+pi mi
- 2pt 2z PV’

while in a hadron one has
_ 2p- P — x M?
T 2zpt
pr = (1—2) M* - Mg,
where M% = (P — p)2.

Under the assumption that all invariants p - P ~ M2 ~ p? ~ P? = M?
one sees that for the expansion in terms of n4 one has for a quark in a
hadron (as one would have for an on-shell quark) that pt ~ P™ ~ Q, while
p ~ M?/Q and p2 ~ M2. This is sufficient to derive the parton model
results.

Using the cross section for y*q (elastic scattering) given above,

. A7«
)] (1.47)
where z, = —¢" /p* and introducing probabilities f;(z) for finding partons

carrying momentum fraction z = p*/PT = x5 /z, of the target lightcone
momentum, leads tof

e faenio (1)

x
4’
- Zef zp fi(zp)- (1.48)
i
Comparing with
8m2a
or = W.’L‘B Fl, (149)

1 We note that the probability involves in fact fi(z)dz/z, but we need to fold conting
rates which requires that we need the cross section multiplied with flux factors. The
ratio of the flux factors for quarks and hadrons is p-q/P - ¢ =~ p* /P = z. Hence we
need to weigh the cross section with f;(z) dz.
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S
pﬂ | Tiv
—

Figure 1.4. The handbag diagram for inclusive deep inelastic scattering off a
hadronic target.

we get .
Fi(zs) = 5 Zezz fi(zs). (1.50)

As o1, x 1/Q2 — 0 one obtains F, = 0 or the Callan-Gross relation,

Fy(zg) =2z Fi(zp). (1.51)

the diagrammatic approach

Another way in which the parton model is obtained is by just considering
the socalled quark handbag diagram (see Fig. 1.4) and its antiquark equiv-
alent. These diagrams turn out to be the leading ones out of a full set in
which the connection to hadrons is left as an unknown quantity [3,4]. The
basic expression corresponding to the handbag diagram restricting us to
the quark part is

2M WH(P,q) =
=S¢ [y dpt dp, T (@)1 + f+ my”) Sl + ) — i)
q
~ ; € /dp’ dp* d’p, Tr (‘P(p) 7" zqi_ 'v”) (p" +q")

+..., (1.52)
pt—zp P+

L[y
~ gty [dr dp. (0 a(p)

where ®(p) is the forward antiquark-target scattering amplitude,

1
(2m)*

&(p, P, ) = 157 [ '€ €7E(P, S0P, S), (1.53)

diagrammatically represented by
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T( P (p;P.S) )T

Comparing with the general form of the hadronic tensor, we read off (in-
cluding now also the antiquark part)

2F (z5) = 2M Wy(z5, Q%) Ze q(zp) +q(zs)], (1.54)
with
_ i — _ixPt¢— - +
ow) = g [ TR SFOTHOPS)| L (5)
1@) = - [de™ =P (P SE0)y (I, S)  (1.56)
Er=¢£,=0

satisfying g(z) = —q(—z) (see Exercise below). The result is (as expected)
a lightcone correlation function of quark fields.

Exercise. Show that the antiquark distributions are given by g(z) =
—q(—z). To do this start with the ’proper’ definition of antiquark dis-
tributions,

1
(2m)*

with ¢¢(¢) = CET(ﬁ). Show that one finds ®(p) = —C(®°)TCT. One
also needs to use the anticommutation relations for fermions, to obtain
®;;(p) = —®;;(—p), which leads to the crossing relations for quark and
antiquark distributions.

%;;(p) = /d4£ e* (PS|y5(0)%5 (€)|PS), (1.57)

The operator in coordinate space

The parton result for the structure functions can also be derived by inserting
free currents in the hadronic tensor for the current commutator and using
the expression for the free field commutator.

Exercise. Use the anticommutation relations for free quark fields, given
by {¥(£),9(0)} = 5 P 5(£2) €(£°) to derive for the gy, contribution in the
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current-current commutator for quarks
[Ju(€), 7 (0)] = [: 9(E)vuvh(€) =2 $(0)%9(0) ]
= 22 [0,8(€7) €(¢”)] : B(©)v % (0) — PO} (€) {1.58)

An important feature, evident in the free-current commutator, is the light-
cone dominance. By sandwiching the commutator between physical states
and taking the Fourier transform, it is a straightforward calculation to ob-
tain again the hadron tensor and the same result as in the diagrammatic
approach above. Details can be found in [5].

Flavor dependence

The explicit flavor and spin dependence of the structure functions in elec-
troweak processes depend on the probe being a 7, Z° or W+ boson. We are
in the situation, however, that we know the currents in terms of the quark
fields. Omitting the coupling constants e or /G, the standard model
currents coupling to fermions are

J‘“f’ = 9(2) QY ¥(@) 1, (1.59)
= : ¢(z) (Ijy — Qsin® Ow) yur (@) : — : ¢(z) Qsin’ bw Yur P(x) :

(z) (IW —2Qsin® Ow) v (@) : — : () Ly s P(x) 3, (1.60)

(@) Iy Yur ¥ () 1, (1.61)

where v,r/1 = Yu(1 £ 75).

Using the electromagnetic current, one obtains for the one-photon exchange

contribution to ep scattering the following expression in terms of the dis-
tribution functions up(z), dy(z), etc.,

=:9
J(W)— "

B o pra) =
g 4 _ 1 — 1 _
= 9 (“p(x) + “p(l')) + 9 (dp(x) + dp(x)) + 9 (Sp(l') + Sp(w)) +...
- g (u(z) + 7(z)) + % (d(z) + d()) + % (s(z) +5(2)) +... ,(1.62)

where the last line phrases the convention to use the proton as reference
hadron for distribution functions. Using isospin summetry, u, = dj, d, =
Uy, Sp = Sp one has for en scattering
F§"(z)
x

— 2F{"(2) =
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L (@) + (@) + = (d(z) + d(z)) + % (s(z) +5(2)) + ... (1.63)

As the difference between quarks and antiquarks contributes to the quan-
tum numbers, it is convenient to divide the quark distribution in a valence
part and a sea part

9(2) = qu(z) + ¢s(2), (1.64)
where

g (2) = ¢(z) — g(). (1.65)

The quark distributions are positive definite (see also section 1.7), so for
instance

B (u+ﬂ)+4(d+§)+(s+§)+...
TP Auta)+(d+d)+(s+3F)+...

<4 (1.66)

NI

If one looks at the experimental result one sees near ¢ ~ 0 a ratio that is
about 1, indicating dominance of sea quarks with v and dd pairs in equal
amounts. Near z ~ 1 the valence quarks dominate. Naively one might
expect u = 2d and all others zero, i.e. a ratio of 2/3. The experimentally
observed limit for ¢ — 1 tends to 1/4, the lower limit, which is reached
for d < u, i.e. dominance of the u-quark in the proton (and therefore the
d-quark in the neutron).

It is clear that in order to determine the quark distributions, several pro-
cesses are needed. At present the various quark and also gluon distributions
are well-known (see Fig. 1.5, taken from Ref. [6]). For compilations we refer
to Refs [7]

1.7 Properties of quark distributions
Interpretation as densities

To convince oneself that the above expressions for ¢(z) and g(z) actually
can be interpreted as quark momentum density one needs to realize that

P(E)yT(0) = ﬂ¢1(§)¢+(0) where ¢ = Py 1 are projections obtained
with projection operators onto good quark states [8], Py = %fﬁfyi. One
then can insert a complete set of states and obtain

_ d'fi ip- T
ae) = [ =5 P SWLOWLQIP.S) s

= % S [Pl |P)? 6 (PF — (1—=2)PT), (1.67)
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Figure 1.5. The parton momentum densities for gluons, valence and sea quarks.
Given are z g(z), = S(z) = 2z(i(z) + d(z) + 5(z)) (both divided by a factor 20),
zuy(z) and zd,(z) versus z at a scale y = 10 GeV. The full curves show the
results from a fit to world data including QCD corrections (see section 1.9). This
analysis is taken from Ref. [6]. The dashed curves are from the CTEQ-4 parton

distribution set.
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which represents the probability that a quark is annihilated from | P) giving
a state |n) with Pf = (1 — z)P*. Since P > 0 one sees that z < 1.
From the antiquark distribution g(x) and its relation to —g(—x) one obtains
x > —1, thus showing that the support of the functionsis —1 < z < 1[9,10].

Polarized parton densities

Analogously to the unpolarized structure functions one can obtain for the
polarized structure functions

2g1(z5) 262 [Ag(zs) + AG(zs)] (1.68)
where
Subq(e) = o [ de =T (P SO sb(E) P, S) (1.69)
Er=¢,=0
S.8q(s) = o [de e =R SFO @RS (170)
Er=¢,=0

a correlation existing in a hadron with the lightcone component of the spin
vector S, # 0. This represents the difference of chiral even and odd quarks
(in infinite momentum frame quarks parallel or antiparallel to proton spin).
The corresponding quark fields are projected out by

1
Paj = 5(1+ %), (L)
which commute with the projectors P.. In this way one obtains distri-

butions ggr(z) and gr(z) for which ¢(z) = qr(z) + qr(z) and Ag¢(z) =
qr(z) — qr().

Sum rules

As probability distributions the quark distribution functions satisfy a num-
ber of obvious sum rules, such as

/ dr [u(z) — a(@)] = ny = 2, (1.72)
/ dz [d(a:) - E(w)] =ng =1, (1.73)
° 1

/0 dz [s(z) —5(2)] = ns = 0, (1.74)
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corresponding to the (net) number of each of these quark species in the
proton. On the basis of this one finds a number of sum rules for the structure
functions, such as the Gottfried sum rule [11] which is based on an isospin-

symmetric sea distribution, u(x) = d(z),
Ldz
Sa = /0 d; [F5P () - F5" ()]
1 —
- % /0 dafu(e) — d(z) + u(x) ~ d)] = 3. (1.75)

3

The experimental result (NMC [12], giving 0.240 + 0.016 indicates that

Exercise. Show that building a proton and neutron from ’'bare’ 3-quark
nucleons and a pion-bare nucleon component (also coupling to total isospin
1/2) with probability Py, leads to

1 4

If one has found the explicit quark distributions one can determine the
quantity obtained by weighing the sum over all quarks with the momentum,

1 1 _
A dexX(x) = / dz z[u(z) +u(z) + d(z) + d(z) + s(z) +5(z)+...] = €q-
0

(1.76)
It represents the total momentum fraction of the proton carried by quarks.
It must obviously be smaller than one.

For the polarized structure functions one can obtain similar estimates using
the naive flavor-spin structure of the proton based on SU(6) symmetry,

1
Ip 1) = i <2 upurd) —uqu dy —ujurdy+ [d at places 1 and 2] ) (1.77)

From this wave function one finds in terms of a normalized one-quark dis-
tribution ¢(z) the 'naive’ results

ule) =30, u) = 5o,
) = ga@),  d@) =3 q) (1.78)
ue)=24(e),  Auz)= 3 q()
a@) = ae),  Ad)= 3 a(e), (1.79)
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and all other distributions (strange quarks or antiquarks) are zero. In this
case one obtains naive sum rule results for the polarized distributions,

/0 "z [Au(z) + Aa(e)] = Au = % (1.80)
AlmﬂAﬂ¢y+Aﬂ@]:Ad:—%. (1.81)

Note that the sum AY = Au + Ad + As + ... represents (as probability
distributions) the total number of quarks parallel to the proton spin. If the
proton spin comes from the quark spins, as is the case for the above SU(6)
wave function multiplying a spherically symmetric spatial wave function,
one expects this to be one. It leads to

1 1 5
rp—/d [A A A]:—z.2 1.8
x u-l—9 d-l—9 s 18 0.28, (1.82)
1 1
/dxgl [ Ad+9Au+9As]:O, (1.83)

which is in disagreement with the experimental result [13], T} =~ 0.15
and the result T7 ~ —0.04, obtained from the deuteron sum rule T'¢ =

(T +T7) (1 + %wD) with wp =~ 0.05 being the D-wave probability in the
deuteron.

The much smaller than expected result stimulated a vigorous experimental
program. Including not only inclusive measurements but also semi-inclusive
ones (see section 1.11), one has obtained the picture of the polarizations
for the different flavors shown in Fig. 1.6 (taken from Ref. [14]), indicating
in particular for small x-values a strong deviation from the above naive
expectations Au/u =2/3 and Ad/d = —1/3.

The importance of these sum rules becomes clearer when one starts with
the expressions for the distribution functions in terms of matrix elements
of bilocal operator combinations. One has

[* do o) = [ e lto) st = TEQIVOR)

where n, is the coefficient in the expectation value (P[¢(z)y*4(0)|P) =
2ng P#. The coefficient n, is precisely the quark number because the vec-
tor currents are used to obtain the quantum numbers for flavor (upness,
downness, strangeness, etc.). In general one obtains

/11 de "1 q(z) = /01 do 271 [q(z) + ()" g(2)]
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Figure 1.6. The quark polarizations obtained from inclusive and semi-inclusive
spin measurements by the HERMES collaboration at DESY [14]. The error bars
indicate statistical uncertainties while the bands indicate systematic uncertainties
in which the light gray band specifies the part due to errors in the fragmentation
process. The lower plot gives the scales at which the asymmetries in the various
bins are measured.
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S e (3—+) HO)P).  (L85)
2Pt Pt ) )

The moments of the structure functions are related to expectation values of
particular quark operators. In a field theory these matrix elements depend
on a renormalization scale ;? and thus a similar renormalization scale de-
pendence must be present for the structure functions. In the next sections
these QCD corrections will be discussed in more detail. In some cases such
as the rule in Eq. 1.84 the result is scale independent This is true if the
operator combination corresponds to a conserved current. The situation is
different for the second moment that appeared in the momentum sumrule
in Eq. 1.76,

1 1
[ dewaletogu?) = [ dw zla(e, logu®) + a(a,log )]
—1 0

Plyp(0)iytot P),2
PO O VORI _ o, (10

where ¢, is defined in (P|1(0) i7,0,%(0)|P) = 2¢€, P,P, +. .. and is the rel-
ative contribution of quarks to the energy momentum tensor of the proton
(the dots indicate trace terms o< M? g,,). Only the first moment of the sum
including quark and gluon distributions in the proton is scale independent

as the local operator turns out to be the energy momentum stress tensor
of QCD.

For polarized structure functions the lowest moment is given by

1 1
/ dx Ag(z,log i) = / dz [Aq(z,log 4®) + Ag(w,log 1))
-1 0

Pgp(0)yTy59(0)|P) (.2

_ PHOTSORI _ iy )
The quantity Agq appears in (P[(0)yt5%(0)|P) = 2M Aq S*, the matrix
element of the axial current, where S* is the spin vector for the nucleon.
Also this is in general not independent of the renormalization scale. In
particular the flavor singlet axial current is not conserved (because of the
Adler-Bardeen-Jackiw-anomaly). It implies, however, a breaking indepen-
dent of the flavor of the quarks. For the non-singlet axial currents that
are important in the flavor-changing weak decays of baryons, e.g. for the
neutron o« 7 y*vs5, the current is conserved and the corresponding matrix
elements are scale independent. From the neutron decay one deduces the
(scale independent) flavor nonsinglet combinations

Ag® = Au(p?) — Ad(p?) = G4 = 1.259, (1.88)
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while from hyperon decays one finds (using SU(3) symmetry),

Ag® = Au(p?) + Ad(p?) — 2 As(p?) = 0.6, (1.89)
In terms of these combinations and the scale-dependent singlet combination,
AS(u?) = Au(p®) + Ad(p®) + As(u?), (1.90)

one has 1 1 1
/" (z) == 9 AR (u?) + 2 Ag® + 36 Ag®. (1.91)

A sum rule involving only flavor non-singlet combinations is for example
the polarized Bjorken sum rule [15],
1

[ de 670 - (@) = 5a¢* = Z2 ~ 0, (1.92)
in reasonable agreement with experiment. Note that this result is a factor
0.75 smaller than the naive expectation for which G4 = A¢® =5 /3 instead
of G4 =~ 1.26. A long-known explanation for this reduction is the relativistic
nature of quarks in hadrons implying a sizable p-wave contribution in the
lower components of the quark spinor that reduces the spinor densities
P53y = Yloy.
Using the result for I'Y or '} as the third input one can solve for AY,
leading to AY. =~ 0.2, very small compared to the naive expectations AX
being of the order of 0.75 (taking the same reduction factor for relativistic
quarks as for G4). This was known as the ’proton spin puzzle’. At present
we know that the scale dependence is important and that the deep inelastic
measurements imply AY(20 GeV?) ~ 0.2.

1.8 The operator product expansion

The connection of structure functions and quark distribution functions to
local operators via sum rules is more formally grounded in the operator
product expansion (OPE). The basic idea of the OPE is that the product of
two operators simplifies in the limit that their arguments coincide, Applying
this to the time-ordered product of two currents, suppressing the current
indices, one writes writes

TJ(2)J(0) < Y CP) (% g) k.. at» OF) , (0). (1.93)
B.n

The functions C?(z?;g) are invariant functions depending on 22 and the
parameters of the theory. In the (well-defined) Euclidean formulation this
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corresponds to a short-distance expansion. The 051 ...un 2re a set of local op-
erators. For a unique expansion, one needs a set of (irreducible) symmetric
and traceless operators.

An explicit example is the g, contribution in the current-current commu-
tator for free quark currents,

[Ju(x), Ju(0)] = [E() ¢(> 2 9(0 W():]
3(?) e(a®)] : P(2)r*p(0) — B0 (x) : +

P
120 :
X 2 Oy - - O, P(0)]y w( ) = 9(0)y* Oy - - 0, %(0) :
Fo (1.94)

_ _g;w

= o %
206

_guy

Inserting the expansion in the expectation value of the time ordered prod-
uct, such as in the Compton amplitude in Eq. 1.21 one finds after Fourier
transforming C(z2),

~ M1
2MT(¢%,v) o« 3 CP (g g, 1%) (=)" Q(T
B,n

- %éﬁﬁ)(qz;g,uz)@&m(uz) [(%)n +0 (é)] . (1.95)

(P|Of) |P) (u2)

i (0)

The scale dependent quantities ©%) appear in the expectation values of the
operators,

(PO, (0)|P) 2y = ©P (u?)[Pyy - Py + -], (1.96)

and the dots are dictated by the tracelessness of O.

Let us illustrate this once more for the Compton amplitude for an elemen-
tary fermion. In calculating matrix elements one encounters on the right
hand side the matrix elements of local operators. In momentum space, the
contribution from the T-ordered product of currents corresponds to

(TI@IO)) o= 5z o (197

One can expand this in the following way (restricting us to the g,, part),

1T J(z) ocsté( ) 4
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Figure 1.7. The O(g?) contributions to the time-ordered product of currents.

which correspond precisely to the matrix elements of local operators of
the form ¢yH#9*1 ... 9"y, proportional to p#t...pHr multiplied with a
coefficient in momentum space (see Eq. 1.95), in our case

Chr-tn(g) = 1. (1.98)

The lowest order corresponds to the operators appearing in the expansion
in Eq. 1.94. From a similar collinear expansion of the result of the diagrams
in Fig. 1.7 one can find the momentum space coefficients C(¢?, g) at O(g?)
for QCD including interactions.

The important features of the OPE are:

e The OPE yields an expansion in which the target dependence is in
the matrix elements. The coeflicient functions are independent of the
target (factorization!). Their singularity structure plays a crucial role.

e In the operator expectation values (Green’s functions) the renormal-
ization scale y enters. Since the amplitude in Eq. 1.95 cannot de-
pend on a renormalization scale, this dependence must be precisely
cancelled by the scale dependence in C’T(lﬂ ) (¢%;g,1t). The latter scale
dependence can be calculated using perturbative QCD.

The systematics of the expansion can be further investigated by looking at
a dimensional analysis of the various quantities. For instance the canonical
dimension of the coefficients is

d[cP(a*)] =6-a[0f)] +n, (1.99)
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d[CP )] =2-d[0P] +n=2-1, (1.100)

where

t=d[0f)] -n (1.101)

is referred to as the twist of the operator O. The dimension of C(¢?; g, 42)
must be provided by ¢2, allowing for logarithmic behavior arising from the
anomalous dimensions of the operator (as we will see below),

(8)
CP) (g% g, n?) = = (225)(;12!”2)) : (1.102)

In order to make contact with the deep inelastic structure functions one
needs to invert Eq. 1.95 to obtain the coefficients. For this we use the
analytic properties of the forward Compton amplitude discussed for the
free Compton amplitude in section 1.4. Using the quantity w = 1/z one
has the properties T} (w) = Ti(—w) and T} (w*) = T1(w) (a real-analytic
function). Considering the following contour in the complex w plane with
branch cuts in the physical regions (where Im 7} # 0)

one obtains

-1 T(w' ; —00 T(w' —1

Tl(UJ) — i / dw' (a,} + ZE) +/ d ! (w 'LG)
271 w —w w —w

N d,T(w'—ze d' T(w' + ie)
w —w w —w

l/ o [Im T(w' + ie€) +Im T( —He)]
w4+ w w —w

_ / d'M (1.103)
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In case of bad convergence one can use a subtracted relation,

2w? [ Im 7' (o'

etc. Expanding around zero one finds

T1 (w) = % i /loo %‘jl (%)n Im T} (o). (1.105)
n=>0

n even

Note that this expansion around w = 1/z = 0 is in fact a short distance
expansion since in deep inelastic processes, the relevant contributions in the
current-current matrix elements came from |z| = ¢t = 1/Mz. Recall that
the structure functions W;(q¢?,v) or Fj(x,q?) are found as the imaginary
part of the forward Compton amplitude, to be precise (1/7)Im T(q?,v).
Thus

1 n
2M T(q”,v) o 2i My(g%) (—) : (1.106)
nezven " T
where -
My(g) =1 / dz 2" Tm T(¢%, v). (1.107)
m™Jo

Thus one sees that the moments of the structure functions F(z,Q?) =
ImT(z,Q?)/= are given by

(8) B)
Mn(Q%) 2/01 dzz" ' F(z,Q%) en_ (log(e’ ,u2))2 On ('uz).

The dominant contributions in the moments and thus also the structure
functions come from twist two operators. They come in two classes, quark
operators
F O
Om---un =" SYvuDy,...Dy, Y +..., (1.109)

where § indicates symmetrization in the indices, D, are covariant deriva-
tives; furthermore, there are also gluon operators
A\ —2 A
0S4 =@20)" ?SFu\Dy,... Dy, F, 2+ ... . (1.110)
The quark operators can of course be supplemented with flavor operators.
Note that the sum rules derived for the parton distributions written as cor-

relation functions and the expansion of the field operators in the correlation
functions are precisely the (free) quark operators from the above set.
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Twist 4 operators contributing to the unpolarized structure functions are for
instance of the form &9y, % ¥yu,% or Y[DP, Fyy ]vu,%- They specifically
contribute to the lowest moments of the contributions in deep inelastic
scattering arising from diagrams in which more than two partons emerge
from the soft scattering part.

1.9 QCD corrections in deep inelastic scattering

The actual scale dependence of the coefficient functions for various opera-
tors can be straightforwardly been calculated in QCD. It is for a particular
operator governed by the anomalous dimension function 7;(g), independent
of the particular process where the operator shows up. One obtains

ci(Q% 9, 1) = ci(p®;9(7), 1) exp (— /OT dT'%(g(T’))) (1.111)
@)™

as(u?)
as(Qz) &
as(M2)> , (1.113)

where 7 = log(Q?/u?) and ~y; is the coefficient in the leading term in
7i(g) = (70i/47)as, while by multiplies the leading term in the £ function$,
bo = (33 —2f)/3, and d; = 70i/2bo.

The next to leading order (NLO) is a matter of calculating the v function
for the appropriate operators and calculating the coefficient functions,

= ci(p?9(7), 1) ( (1.112)

= ¢i(1;9(7)) (

(o7 Qs 2
Yi(g) =v0i | — ) +76 (—) +---) (1.114)
47 47
ci(l;g) = 1+ B; (%) o (1.115)
47

§ The B-function describes the running coupling constant and can be expanded in c.
The leading order result, da;(7)/87 = —(bo/47) a2 gives

1 1 bo

— s = ——— + — T,

as(Q?) as(p?) 4
implying that for Q% — oo one has

Qs (QZ) i

~ bo log(Q?/A%)’
with the scale invariant definition —(bo/47) log A% = a; *(u?) — (bo/47) log p?.
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Many of these coefficients are now know to this or even higher orders, which
has been an enormous task.

For sum rules connected themselves to a conserved current the anomalous
dimension 7;(g) = 0 and the results for the coefficients B; immediately give
the NLO corrections to sum rules. The Gottfried sum rule gets a very small
correction. The polarized Bjorken sum rule gets a correction (1 — o, /7), or
explicitly (including also the next order [16]),

/01 do [gf(2, Q%) — g7 (w, Q)] = Ca <1 -y _§< 4.5833+f/3)) :

6
(1.116)
where f is the number of (active) flavors. This gives an excellent expla-

nation of the experimental result Iy — I'! ~ 0.19 being somewhat smaller
than G4/6 = 0.21.

Exercise. As we have seen, the g sum rule by itself involves the singlet
combination AY. connected to the singlet axial current, i.e. the combination
which is not conserved because of the anomaly. Thus, we need to include
the scale dependence for which we need the anomalous dimension that is

given by
2 2
b3 Qg A
= .=1 —
1) =71’ (47r) + 6f (47T) +o

Derive the leading order solution

2(Q?) = exp (Sj;bo (0 (@) - as@%))) AR@).

Together with the coefficient B> this gives the corrections for the singlet
contribution in the spin sum rules

T5(Q?) = (1 . _E (—4.5833 + 1.16248f)) AR(Q?).  (1.118)

Including this the deviation of the proton sumrule from the naive result can
be pretty well understood.

1.10 Evolution equations

It is possible to extend the intuitive folding picture that we have used
to derive the parton model to obtain the QCD correction in a different
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approach, which provides also a practical way to calculate the coeflicient
functions ¢;(g) and gamma functions 7;(g)-

Extending the result for the transverse structure function written as a delta
function contribution,

or = Z/ dzq(z [ N .1;5(:1: —2) 4+ 064(2,Q%) + .. ] ,  (1.119)

one obtains contributions from the process v*q¢ — Gg¢q, which is no longer
proportional to §(z — z) because of the fact that there are two particles in
the final state. The amplitude is
5 20Q?
3 + @ ) (1.120)

(VIS S

4
2
=32 — =
IM| 2 e? g @0 3 < v

and contributes

. , 2maas 4 t & 2tQ% +23Q% +2Q*
JU(S)Zqui“_ —_—= — = — =
(8+@%)?3\ § ¢ st
We now express the momenta (using lightcone components) for v*(g¢) +
quark (k) — gluon (pg) + quark (p,) as

) di  (1.121)

q= [ 5\2/_ f/fi ] (photon), (1.122)
m?  zA zA
k= [W, T,OJ_] ~ [O, E,OJ_] (parton), (1.123)
2
pG = [Cq ,22){,1&] ~ [ iﬁ[ 0 PL] (1.124)
pe=|(1 —C)q‘,ﬁ,—m] ~ [%,0, —p.]- (1.125)

Note that z can be written as z/£, where £ = —q* /k™ = z/z is the Bjorken
scaling variable for the subprocess. We will neglect all particles masses, in
which case pg = 0 gives

o CA-01-=¢

Pl=""—p—" Q% (1.126)
The invariants for the subprocess become
. 1-¢ 2 1 2
§=(k+q¢?="—"-Q*=—_p?, 1.127
1-¢ 1 9

t = (pg — q)2 = —T Q= —mlha (1.128)
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The kinematic range of the process § > 0, —(

5+ Q%) <t <0 in principle
restricts the ranges of (£,{) to0<¢<1land0<(¢<1

< 1. The cross section
becomes
N 2y 9 2maas 4 1—{-25 1+ &2
664(£,Q°) = ¢ oz —5 — A 60-0 d¢.  (1.129)

Integrating for inclusive scattering over the final state, i.e. integrating over
¢ one sees that there are singular points, specifically for ( = 1, which cor-
responds to a gluon radiated with p; = 0. These divergences are therefore
referred to as collinear divergences. There are again several ways of reg-
ularizing, either by giving quarks and gluons masses or by dimensional
regularization. In this case a p | cutoff also provides a regularization. The
restriction p?2 > u? modifies the allowed region in the (¢,(¢) plane. For a
given & (not to close to unity) the integration is limited to
2 2
5 LD T (1.130)
1-¢Q 1-¢Q?

With this regularization the result becomes

2
864(6,Q%) = €; 2732% £ lB(S) + Pyq(§) log (%)] . (1.131)
where
4 1+¢2
Pyg(€) = 5 T g (1.132)

is the splitting functions coming from the collinear 1/(1 — {) singularity,
appearing proportional to a; log @ and B(€) is the part appearing propor-
tional to a;. Combining the results of the (leading) contribution (omitting
for now the term B(&)) one has

ot el g () ()]

(1.133)
This can be rewritten in parton form
4ma

or = oz x Ze q(z,log Q?), (1.134)

where the functions ¢(z,log Q?) satisfy

dq(z,log Q%)  a,(Q?) /1 dz (fv>

= — Pl —1. 1.135
dlog Q2 2r  Jo =z 4(2) Paq z ( )
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As in the case of integrating over ( above one still encounters divergences,
in this case for £ = /2 — 1. This also gives rise to log(Q?/u?) corrections.
They are considered separately by considering the 1/(1 — ¢) appearing in
the splitting functions as functionals,

1-6
/ da: /f )dlog(1l — z)
0 l—m

=0 f@) - 1)
_/ T — f(1) logd
/d :cl_:fl log5/d:vf 01 —x)
_ x
:/de(l—x) logd/dm (1 —x)
or 1 1
= — (1 — ) logd. (1.136)

-z (1-2)+

Including these and other singular contributions (vertex corrections to the
process v* + ¢ — q) one then has

oz, Q%) = /: % q(z){5 (1 - g) (1.137)

(&) o D) ()] o

The piece between curly brackets can be seen as the probability density Pgq
of finding a quark inside a quark with fraction £ = z/z of the parent quark
to first order in a,. Instead of calculating all contributions and checking
all cancellations, it is easier to see what the final result must be from

/ngqq(g) —1 (1.139)

Keeping the form in Eq. 1.133 one can write the full piece between square
brackets in Eq. 1.138 as

4 1+¢
3(1-¢6)+

While this splitting function describes how QCD corrections arising from
g — qG splitting are incorporated into the parton distributions (fig. 1.8a),
one needs in addition other splitting functions such as P, describing how
quark and gluon distribution functions mix (fig. 1.8b). They are calculated

P(€) = +26(1 - ¢). (1.140)
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=N L NN -
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Figure 1.8. Ladder diagrams used to calculate the asymptotic behavior of the
correlation functions.

from the proces v*G — ¢q. Since gluons are flavor-blind, nonsinglet and
valence distribution functions are not affected by such corrections.

The splitting function for the polarized distribution functions is given by

2
APyy(z) = Pyylz) = % % +28(1—¢), (1.141)

Solutions of the evolution equations

In solving the evolution equations the moments play an important role,
while they also establish the connection with the OPE. Rewriting the evo-
lution equation (Eq. 1.135) as

1 1
dg(z,7) _ Ols(T)/ dz/ dyd(z — y2) Pyg(y) a(z, ), (1.142)
dr 2 Jo 0
and using the moments
1
M(r) = [ doa" qe,m), (1143)
0
1 41 1 1 1
A = d n—1 P = — R - 9 - 1.144
n /0 vy 4141(3/’7-) 3 2+n(n+1) ]_22]16 )
one has

dr 2m
Using the leading order QCD result for a,(r) (which reads da,/dr =
—(bo/4m) as) this is easily solved, giving the result

Ma(Q)  (as(@)\™
(2@2)" w0
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where d,, = —2 A,,/by. Comparison with Eqs 1.112 and 1.113 show that the
moments of the splitting functions are up to a factor equal to the coefficients
70, namely A, = —vo,/4. As an example, consider the second moment
of the quark distributions, for which Ay = —16/9. The result for dy is
dy = 32/9by = 32/81 for three flavors. The fraction of momentum carried
by valence quarks thus vanishes for Q2 — oo as

Mo(@?) = [ dosl(e,log Q) ~ (e, log Q%)) x (a(@). (1147

For sea quarks and gluons mixing occurs and one finds that the combination
corresponding to the total momentum involving the second moment of the
singlet quark distribution and the second moment of the gluon distributions
does not vanish, but is Q?-independent.

In principle the evolution of the structure functions can be done using
the evolution equations. Using the moments is actually quite convenient,
although one needs all of them. A very useful method in practice is to
parametrize the distributions at one Q? with a function for which the mo-
ments can be easily calculated, evolve the moments and apply an inverse
Mellin transform. One has

1 c+i00

a(,Q) =~ [ dna " M(QY), (1.148)
27 Je—ioo

where ¢ must be such that M, has no singularities in the complex n-plane

right of the line Ren = c¢. A similar relation exists for the moments of the

splitting functions, 4, = —von/4,

1 c+i00 n
Py lx) = —/ dnx~ 1.149
We have discussed the extensions to higher orders in Eqs 1.114 and 1.115
involving «; and B. The 7; coefficients are precisely moments of the next
order in a; in the splitting functions. The coefficients B correspond to
the moments of the additional pieces appearing in the expressions for the
structure functions, such as the B(z) appearing in the calculation of Fj in
Eq. 1.131.

While the splitting functions are universal (process independent), the con-
tributions B(z) are in general process dependent. An example of a con-
tribution of this type is the longitudinal structure function (for which the
dominant parton model result is zero). Calculating both the a; B(x) con-
tributions for F; and F5 in electroproduction gives for instance the first
nonvanishing contribution in the longitudinal structure function,

Fi(z,Q?) = MF /ml@ (§)2F2(z,622)

by 3 z
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+ (2%}3) /: % <§>2 <1 - g) zG(z,Q2)] (1.150)

1.11 Quark correlation functions in 1PI leptoproduction

We now consider the case in which one particle is detected in coincidence
with the scattered lepton, one-particle-inclusive or 1PI leptoproduction.
The kinematics of this process is already in the picture given before (Fig. 1.2).
With a target hadron (momentum P) and a detected hadron h in the fi-
nal state (momentum Pj) one has a situtation in which two hadrons are
involved and the operator product expansion cannot be used. Within the
framework of QCD and knowing that the photon or Z° current couples to
the quarks, it is possible to write down a diagrammatic expansion for lepto-
production, with in the deep inelastic limit (Q2? — co) as relevant diagrams
only the ones given in Fig. 1.9 for 1-particle inclusive scattering.

In analogy with the case of inclusive scattering, we also in l-particle in-
clusive scattering parametrize the momenta with the help of two lightlike
vectors, which are choosen now along the hadron momenta,

" M?

2 _ 2 ) My
qu___J\% = e
P2 = M? - Q _ Q
2'1‘3 "o > 9= GFn- — g+ toar

4=
2P, -q=—2z,Q? _ zpM? Q

hd nQ \P_ Sﬁn_—i_aza\/ﬁn"'

An additional invariants z; comes in. Note that the expansion is appro-
priate for the socalled current fragmentation, in which case the produced
hadron is hard with respect to the target momentum, i.e. P-P, ~ Q2. The
minus component p~ is irrelevant in the lower soft part, while the plus com-
ponent kT is irrelevant in the upper soft part. Note that after the choice
of P and P} one can no longer omit a transverse component in the other
vector, in the consideration above put in the momentum transfer q. One
sees that one has (up to mass effects) the relation

pt -
gy =q" + x5 P* — Z—h = —Qr h*. (1.151)
h
This relation allows the experimental determination of the 'transverse mo-
mentum’ effect from the external vectors ¢, P and P, which are in general
not collinear. The vector h defines the orientation of the hadronic plane in
Fig. 1.2
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T

q kT T -k Fi :
q_ igure 1.9. The simplest (parton-
avaV YAVAWV level) diagrams for semi-inclusive
scattering, of which we consider
pT T 1 "lp one-particle inclusive leptoproduc-
} tion. Note that also the diagram
T[ : ]T with opposite fermion flow has to be

P | P added.

An important consequence in the theoretical approach (Fig. 1.9) is that one
can no longer simply integrate over the transverse components of the quark
momenta.

Structure functions and cross sections

For an unpolarized (or spin 0) hadron in the final state the symmetric part
of the tensor is given by

MW4Y (q, P, Py) = —g'" Hr + tHt¥ Hy,
iR e+ [2 hHRY + gﬁ”] Hrr. (1.152)
Noteworthy is that also an antisymmetric term in the tensor is allowed,
MWK (q, P, Py) = —it PR #) . (1.153)

Clearly the lepton tensor in Eq. 1.17 or 1.36 is able to distinguish all the
structures in the semi-inclusive hadron tensor.

The symmetric part gives the cross section for unpolarized leptons,

dzrpdy dzpd?qy Q* 2
~ (2= y)V1—ycos¢} Hrr

+ (1 —y) cos2¢f, ’HTT} (1.154)

do dr o s 1
92 - szh{<1—y+—y2)%T+(1—y)%L
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while the antisymmetric part gives the cross section for a polarized lepton
(note the target is not polarized!)

doro 4 o? o
= A 1 _ . )
dzxpdy dzpd?qr ¢ Q? Zh V y sing, Hyp (1.155)

Of course many more structure functions appear for polarized targets or if
one considers polarimetry in the final state. In this case the (theoretically)
most convenient way to describe the spin vector of the target is via an
expansion of the form

Q
———n, + Sr. 1.156
M.’L‘B\/i + T ( )
One has up to O(1/Q?) corrections S, ~ M (S -q)/(P -q) and S ~ S|,
where the subscript L still refers to perpendicular to ¢ and P. For a pure
state one has S? 4+ §2 = 1, in general this quantity being less or equal than
one.

The parton model approach

The expression for W, can be rewritten as a nonlocal product of cur-
rents and it is a straightforward exercise to show by inserting the currents

Ju(z) =: Y(x)yup(x) : that for 1-particle inclusive scattering one obtains in
tree approximation

2M W, (q; PS; PrSh)

(271r)4 /d4x €07 (PS| = (=) (V) jrfs () : ; | X; PuSh)
X (X5 PuSh| : 1(0)(m)uithi(0) : |PS)

[ ' 17 (PS[G@)40)1PS) ()i

(Olk () D 1X; PuSh)(X; PhSa[1h:(0)10) (v )ui
X

1
(2m)*

Gt [ 5 € PSIi (@ 0)|PS) (0 )

(Ol (z) > |X; PuSh)(X; PaShl1i(0)[0) () ji,

+

= /d4p d*k6*(p+ q — k) Tr (B(p)vuA(k)w) + { q;;_yq } ,

(1.157)
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where
By0) = Goyx [ 4'€ 7S (PSIT;O(E)IPS),
Bulk) = s [ 4% € (O1lE) S 15 PaSi) (X5 PuSh ,(0)0).

X

Note that in ® (quark production) a summation over colors is assumed,
while in A (quark decay) an averaging over colors is assumed. The quanti-
ties ® and A correspond to the blobs in Fig. 1.9 and parametrize the soft
physics, leading to the definitions of distribution and fragmentation func-
tions [17,18]. Soft refers to all invariants of momenta being small as com-
pared to the hard scale, i.e. for ®(p) one has p?> ~p- P ~ P2 = M? < Q2.

In general many more diagrams have to be considered in evaluating the
hadron tensors, but in the deep inelastic limit they can be neglected or
considered as corrections to the soft blobs. We return to this later. One
situation we want to mention here are target fragmentation parts involving
matrix elements of the form (PS|v;(x) Y x | X; PrSh) (X; PnSh|i(0)|PS),
known as fracture functions. They are relevant in the situation where
P . P, ~ M? (target fragmentation region), which can be distinguished
experimentally from the region we are interested in, P - P, ~ Q2 (current
fragmentation region).

1.12 Collinear parton distributions

The form of @ is constrained by hermiticity, parity and time-reversal invari-
ance. The quantity depends besides the quark momentum p on the target
momentum P and the spin vector S and one must have

[Hermiticity] = ®'(p, P, S) = v ®(p, P, S) o0, (1.158)
[Pa‘rlty] = @(p, P7 S) =7 @(ﬁ,ﬁ, _S) %Yo, (1159)
[Time reversal] = ®*(p,P,S) = (—iy5C) ®(p, P, S) (—iy5C);1.160)

where C = iy%yy, —i75C= iy'vy% and p = (p°, —p).

To obtain the leading contribution in inclusive deep inelastic scattering
one can integrate over the component p— and the transverse momenta (see
discussion in the section where the parton model has been derived). This
integration restricts the nonlocality in ®(p). The relevant soft part then is
a particular Dirac trace of the quantity

Byi(z) = / dp~ &’pr Bi;(p, P, S)
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N /dzg—w_ e (P, S[$;(0)%i(6)|P, S) . (1.161)

Et=£r=0

depending on the lightcone fraction z = p*/P*. When one wants to calcu-
late the leading order in 1/Q for a hard process, one looks for leading parts
in M/P™ because Pt « Q. The leading contribution [19] turns out to be
proportional to (M/PT)?,

®(z) = % {fl(x) M+ + Spg1(x) s 7+ + hi() M} (1.162)

The precise expression of the functions fi(z), etc. as integrals over the
amplitudes can be easily written down after tracing with the appropriate
Dirac matrix,

A =[S @t sBoreOIRS) (116
§r=£r=0
Suor@) = [ S PP SFO@IPS) (1164
§r=¢r=0
Sim@) = [F PR SFOic R uORS)  1165)
§r=¢r=0

Including flavor indices, the functions f{(z) = ¢(z) and g{(z) = Ag(z) are
precisely the functions that we encountered before.

The third function in the above parametrization is known as transversity or
transverse spin distribution [20]. Including flavor indices one also denotes
h{(xz) = dg(z). In the same way as we have seen for fi(z) and g1(z), the
function h; can be interpreted as a density, but one needs instead of the
projectors on quark chirality states, Pr/; = %(1 + 75), those on quark
transverse spin states, Py, = %(1 + 74iv5). One has

fi(z) = fir(z) + fir(z) = fir(z) + f1(z), (1.166)
91(z) = fir(z) — fir(z), (1.167)
hi(z) = fir(z) — fri(z). (1.168)

This results in some trivial bounds such as fi(z) > 0 and |g1(z)| < f1(z).
We already did discuss the support and charge conjugation properties of
fi(z). The analysis for all these functions shows that the support is in all
cases —1 < z < 1, while the charge conjugation properties of the functions

are f(z) = —f(—z) (C-even) for f; and hy and f(z) = +f(—2z) (C-odd)
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for g;.

Exercise. Show that the Dirac structure for h; in terms of chirality states is
Yr¥r and Y Yr. Such functions are called chiral-odd. Explain why chiral-
odd functions cannot be measured in inclusive deep inelastic scattering.

While the evolution equations for ¢(z) and Ag(z) require quark-quark and
quark-gluon splitting functions, the evolution for dg(z) does not involve
mixing with gluon distributions because the chiral-odd nature of d¢(z).
The splitting function is given by
4 2¢
6P () = = —> 1 2§(1—¢). 1.169

1.13 Bounds on the distribution functions

The trivial bounds on the distribution functions (|hi(z)| < fi(z) and
lg1(z)| < fi(z)) can be sharpened. For instance one can look explicitly
at the structure in Dirac space of the correlation function ®;;. Actually,
we will look at the correlation functions (®1y);;, which involves at lead-

ing order matrix elements z/Jlj(O)ipH(f). One has in Weyl representation

(7% = pt, 7t = —ip?ct, v5 = i7%y1y2y3 = p3) the matrices
(1 0 0 O
0 00O
P=1000 0|
L0 0 0 1
(1 0 0 0 0 0 01
looo o . loooo
P+’75_ 0 O O 0 ) P+’7/Y5_ 0 0 O O
L0 0 0 -1 1000

The good projector only leaves two (independent) Dirac spinors, one righthanded
(R), one lefthanded (L). On this basis of good R and L spinors the for hard
scattering processes relevant matrix (®7_) is given by

fitSegr (SE+iSi)m
(@ ph_)ij(z) = (1.170)
(St —i82)h1  fi— S

One can also turn the S-dependent correlation function @ into a matrix in
the nucleon spin space via the standard spin 1/2 density matrix p(P,S).
The relation is ®(z; P, S) = Tr [®(z; P) p(P, S)]. Writing

&(z; P, S) = o + S, &1 + S; &1 + 52 B2, (1.171)
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one has on the basis of spin 1/2 target states with S, = +1 and S, = —1
respectively

®o +@;, PL-id2
S, (z) = (1.172)
dlL+i®2 ®p -9
Exercise. Show by generalizing ®(p) to a matrix elements between states
(P,s| and |P,s') that for the matrix M = (®p_)T (transposed in Dirac
space) one has viMwv > 0 for any direction v in Dirac space.
mbox
On the basis +R, —R, +L and —L the matrix in quark ® nucleon spin-space

becomes

(( fi+aq 0 0 2y ®
0 fi—-q 0 0 ®
(@(z)p )" = (1.173)
0 0 fi—a 0
L 2m 0 0 fite ) ~©

®

® O©

®

Of this matrix any diagonal matrix element must always be positive, hence
the eigenvalues must be positive, which gives a bound on the distribution
functions stronger than the trivial bounds, namely

1
[h1(2)] < 5 (f1(2) + g1(2))
known as the Soffer bound [21].

(1.174)

Exercise. Show that a change to the transverse quark spin basis gives the

quark production matrix
((fit+th
0

0

( g1+ M

©

0
fi—h
g1 — ht

0

©)

0
g1 — hy
fi—h

0

®

g1+ h1 )
0

0

fi+hi )

®

©

©)
®
®

(1.175)
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1.14 Transverse momentum dependent correlation functions

Without integration over p, the soft part is

d¢—d? - —
3(e.pr) = [ BT PP STHONOIP.S)
For the leading order results one can write down parametrizations which
for the parts involving unpolarized targets (O), longitudinally polarized
targets (L) and transversely polarized targets (T) up to parts proportional
to M/P* take the form [22,23]

(1.176)

£+=0

%o(z,pr) = %{mx,pT) o+ hi (2, ) M} (1.17)

2M
[#r, 7 +]

1
QL(x’pT) = {SL glL(wapT)75 77’/+ + 5. hf‘L(IL',pT)%T(}.178)

P
e;wpafyﬂ nipT Sg

{ff:r(w,pT) U

. S 8-,
PP T e pe) s 1+ har () 2P
Dy St

_l_

M hf_T(:'U’pT) oM (1.179)

Vs [#r, 71+]}
All functions appearing here have a natural interpretation as densities. This
is seen as discussed before for the p,-integrated functions. Now it includes
densities such as the density of longitudinally polarized quarks in a trans-
versely polarized nucleon (g;7) and the density of transversely polarized
quarks in a longitudinally polarized nucleon (hi7 ).

Upon integration over p; not all functions survive. We are then left with
Eq. 1.162 with fi(z) = [d®pr fi(z,pr), 91(z) = [d®pr gir(e,pr) and

2
hi(z) = [ d*pr [th(x) + 21)# th(rL‘,pT)]. The explicit treatment of trans-

verse momenta also provides also a way to include the evolution of quark
distribution and fragmentation functions. The assumption that soft parts
vanish sufficiently fast as a function of the invariants p- P and p?, which at
constant x implies a sufficiently fast vanishing as a function of p2, simply
turns out not to be true. Assuming that the result for p2 > u? is given by
the diagram shown in Fig. 1.8 one finds that the extra distribution written
in terms of p; becomes

o\ P72 1 as(MQ) /1 dy (95) 2
x = P, — ; 1.180
fl( ap:r') % 2 c Y qq y fl(y,/l )7 ( )
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. . 2 . .
which gives fi(z;p?) =« [§* dp2 fi(z,p2) a logarithmic scale dependence.
Actually we find that different functions survive when one integrates over
pr weighting with p%, e.g.

G (x /dsz Pz ®(z,py)

= % { g(l)( ) S% s — Sy hlL( )(x) [’Va;7;L+]75

fJ_(l a [Ln Sp hl Z[’Y ﬂ"’] }’ (1.181)
involving transverse moments defined as

2
9P (x) = /d Pr 2M2 qir(z, Pr), (1.182)

and similarly for the other functions. The functions ki and ffg,w are T-odd.
As we will explain in the section on color gauge invariance they do not to
vanish because time reversal invariance cannot be used for the transverse
moments. Also for fragmentation functions they will not vanish. The T-
odd functions correspond to unpolarized quarks in a transversely polarized
nucleon (fi7) or transversely polarized quarks in an unpolarized hadron
(hi). The easiest way to interpret the functions is by considering their
place in the quark production matrix (®(z,pr)%_)T, which becomes [24]

@ @ © ©

([ fAitour % € gir % e~ hi;, 2hy )
|I]’M_T| e~ g, fi— gir |PMT|22 =2 pd, \p:r\ =19 hiy
% €% hix |p 1\71‘22 2i ., fi— gz _% €% gt

\ 2 —% e’ hiy, —% e gir fitor )

In this representation T-odd functions appear as imaginary parts, ffg,w =
—Imgir and hi = Imhyy,
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1.15 Fragmentation functions

Just as for the distribution functions one can perform an analysis of the
soft part describing the quark fragmentation [18]. One needs

dETdEr e -
Byleke) = T [ S S TrO(O1Pn X)(Pr, XIG;(0)0)
X £-=0
(1.183)
For the production of unpolarized (or spin 0) hadrons h in hard processes

one needs to leading order in 1/Q the (M}/P, )° part of the correlation
function,

Ao(z,kz) = zDi(z, kL) 1/_ + z H{-(z, k) M (1.184)
2Mp

The arguments of the fragmentation functions Dy and Hi" are z = P, [k~
and k. = —zky. The first is the (lightcone) momentum fraction of the
produced hadron, the second is the transverse momentum of the produced
hadron with respect to the quark. The fragmentation function D; is the
equivalent of the distribution function fi. It can be interpreted as a quark
decay function, giving the probability of finding a hadron h in a quark. The
quantity np = [dz D;(z) is the number of hadrons.

Exercise. Show that the normalization of the fragmentation functions is
given by Y, [dz zDi’Hh(z) by relating this quantity to a local operator.
One needs to eliminate the hadrons in the intermediate state via the mo-
mentum operator

Pu:Z|Pha-X)PI¢<Ph7X|
h,X

The function Hj-, interpretable as the difference between the numbers of
unpolarized hadrons produced from a transversely polarized quark depend-
ing on the hadron’s transverse momentum, is allowed because of the non-
applicability of time reversal invariance [25]. This is natural for the frag-
mentation functions [26,27] because of the appearance of out-states | Py, X)
in the definition of A, in contrast to the plane wave states appearing in ®.
The function Hi is of interest because it is chiral-odd. This means that it
can be used to probe the chiral-odd quark distribution function h;, which
can be achieved e.g. by measuring a particular azimuthal asymmetry of
produced pions in the current fragmentation region.

The spin structure of fragmentation functions is also conveniently summa-
rized by explicitly giving it on a R and L chiral quark basis, for which we
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find for decay into spin zero hadrons,

D, \kT|€ 4 HlJ_ @
(A(z, kr)phy)T = (1.185)

. kT e+i¢ J_
—glbzle™ 1|V1h Hj D, @

@ ®

Ezxamples of azimuthal asymmetries

Transverse momentum dependence shows up in the azimuthal dependence
in the SIDIS cross section (via h or transverse spin vectors), in most cases
requiring polarization of beam and/or target or requiring polarimetry [28,
29]. Examples of leading azimuthal asymmetries, appearing for polarized
leptoproduction are

(%2 sin(of - 68)) =

2ra? s

Tt
<]?4—Z sin(¢f, + ¢S)>OT =

|Sz (1 —y+ 5Y ) Ze T f1T (25)D$(2,).(1.186)

47T5 s |Sr|(1—y Ze xzp hi(xp)H () “(zp). (1.187)

The notation (W) is the g,-integrated cross section with weight W. The
factor @ is included, because it together with the direction h combines to
qr, allowing a defolding of the cross section in distribution and fragmenta-
tion parts (one of them weighted with transverse momentum). Note that
both of these asymmetries involve T-odd functions, which can only appear
in single spin asymmetries. The latter can easily be checked from the con-
ditions on the hadronic tensor, which are the same as those in Eq. 1.11 to
1.13. They require an odd number of spins vectors entering in the symmet-
ric part and an even number of spins entering in the antisymmetric part of
the hadron tensor. The results of single spin asymmetries in SIDIS mea-
surements on a transversely polarized target from HERMES [30] are shown
in Fig. 1.10. An extended review of transverse momentum dependent func-
tions and transversity can be found in Ref. [31]
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Figure 1.10. Weighted asymmetries for the Collins and Sivers angles (see
Eqgs 1.186 and 1.187) obtained in semi-inclusive single spin asymmetries mea-
sured on a transversely polarized Hydogen target by the HERMES collaboration
at DESY [30]. The error bars represent the statistical uncertainties.
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Figure 1.11. Examples of gluonic diagrams that must be included at subleading
order in lepton hadron inclusive scattering (left) and the soft part entering this
process (right).

1.16 Inclusion of subleading contributions

If one proceeds up to order 1/Q one also needs terms in the parametriza-
tion of the soft part proportional to M/P*. Limiting ourselves to the
pr-integrated correlations one needs [19]

2(@) = 5 {fl(w) B+ S001(@) 75 14 + (@)

+ 2%{e(w) + g97(z)vs 80+ Sy hr(z) %} (1.188)

s [ 1z, 71+]}
2

We will use inclusive scattering off a transversely polarized nucleon (|S || =
1) as an example to show how higher twist effects can be incorporated in
the cross section. The hadronic tensor for a transversely polarized nucleon
is zero in leading order in 1/Q. At order 1/@Q one obtains a contribution
from the handbag diagram, which turns out to involve the transverse mo-
ments in ®§ in Eq. 1.181. There is a second contribution at order 1/Q,
however, coming from diagrams as the one shown in Fig. 1.11. For these
gluon diagrams one needs bilocal matrix elements containing 1/Q one only
needs the matrix element of the bilocal combinations (0) gA%(¢) v(¢) and
(0) gA2(0) 4(¢). The ®%(z) and ®§(z) contributions sum to ®%(z) in-
volving matrix elements of bilocal combinations 1(0)iDZ +(¢) for which
one can Use the QCD equations of motion to relate them to the functions
appearing in @,

o M m (67
() = 5 {— (g = T 1n) S ans

2
_ S, (x hr — %gl> W} (1.189)
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The distribution function gr e.g. shows up in the corresponding structure
function of polarized inclusive deep inelastic scattering

IMzp -1 o
2M W (q, P, Sy) = i%t[“ej_]pSLpgT(xB), (1.190)

leading for the structure function gr(zz,@2) defined in Eq. 1.42 to the
result

gr(zs, Q%) = %Zeg (g%(xB) —i—ggw(xB)) ) (1.191)

In the process of integrating the correlation functions over p~, pr and finally
over pT, consecutively restraining the nonlocality to lightfront-separated
fields, lightcone-separated fields and local fields, interesting relations can
be derived. For instance, the correlators [ dz ®*75](z) must yield g4 Sk
(for any p), which means that the functions in the nonlocal correlators
" 1sl(z) and @ 15l(z) (a transverse) yield the same result after inte-
gration over z, [dzxgi(z) = [dzgr(z) or [dxgs(z) = 0, known as the
Burkhardt-Cottingham sumrule [32]. For quark-quark correlators, simi-
lar considerations yield relations between the subleading functions and the
transverse momentum dependent leading functions, referred to as Lorentz
invariance relations, such as [33,28]

d

gr = g1 + dr g%), (1.192)
although these relations may be too naive if one includes gauge links (see
section 1.17). An interesting result is obtained by combining this relation
with an often used approximation, in which the interaction-dependent part
@9 is set to zero. In that case the difference % — ®§ vanishes. Using
Egs 1.189 and 1.181 this gives

~ 1 m
Tgr =T gr — ggr} " h1 =0, (1.193)
Exercise. As an application of the relations between twist-three functions
and transverse momentum dependent functions in combination with the

Lorentz invariance relations, one can eliminate gﬁz using Eq. 1.192 and
obtain a relation between gr, g1 and gr (assuming sufficient neat behavior
of the functions). Show that this relation for for go = gr — g1 takes the

form
= - [ ] S [0

1 o~
dy gT(y)] _
z y

v [§T(m) _ (1.194)
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Neglecting the interaction-dependent part, gr(z) = 0 one obtains the Wandzura-
Wilczek approximation [34] for g, which in particular when one neglects

the quark mass term provides a simple and often used estimate for go. It

has become the standard with which experimentalists compare the results

for ga.

1.17 Color gauge invariance

We have sofar disregarded two issues. The first issue is that the correlation
function ® discussed in previous sections involve two quark fields at different
space-time points and hence are not color gauge invariant. The second
issue are the gluonic diagrams similar as the ones we have discussed in
the previous section (see Fig. 1.11), among which also correlation functions
appear involving matrix elements with longitudinal (A1) gluon fields,

¥;(0) gA™ (n) i (£).
These do not lead to any suppression. The reason is that because of the
+-index in the gluon field the matrix element is proportional to P*, p* or
M ST rather than the proportionality to M S or p¢ that one gets for a
gluonic matrix element with transverse gluons.

A straightforward calculation, however, shows that the gluonic diagrams
with one or more longitudinal gluons involve matrix elements (soft parts)
of operators 91, ¥ At ¢, ) AT At 4, etc. that can be resummed into a
correlation function

de— . _
3y(x) = [ S PP SGOUOOKEIRS) . (1195)
Er=¢r=0
where U is a gauge link operator
=
U0,£) = Pexp (—i/o ¢~ A+(§)) (1.196)

(path-ordered exponential with path along —-direction). Et voila, the un-
suppressed gluonic diagrams combine into a color gauge invariant correla-
tion function [35]. We note that at the level of operators, one expands

_ B é‘lin

GOWE) =3 =90 - 8, $(0),  (1.197)
in a set of local operators (cf Eq. 1.94), but only the expansion of the
nonlocal combination with a gauge link

_ gHL . ghn _

PO)U0,8) (&) =Y >—>—1(0)Dy, ... Dy, 1%(0), (1.198)

|
) n:
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Figure 1.12. The gauge link structure in the quark-quark correlator ® in SIDIS
(a) and DY (b) respectively

is an expansion in terms of local gauge invariant operators. The latter
operators are precisely the local (quark) operators that appear in the op-
erator product expansion applied to inclusive deep inelastic scattering (cf
Eq. 1.109).

For the pr-dependent functions, one finds that inclusion of AT gluonic
diagrams leads to a color gauge invariant matrix element with links running

via £~ = +00 [36,37]. For instance in lepton-hadron scattering one finds
dé—d? . _
3(e,pr) = [T PP SFOUTO.OOIPS)|  , (1199)
£+=0

where the link #[*] is shown in Fig. 1.12a. We note that the gauge link
involves transverse gluons [38,39], showing that one in processes involving
more hadrons the effects of transverse gluons are not necessarily suppressed,
as has also been shown in explicit model calculations [40].

Moreover, depending on the process the gauge link can also run via mi-
nus infinity, involving the link in Fig. 1.12b. This is for instance the case
in Drell-Yan processes. The transverse momentum dependent distribution
functions also are no longer constrained by time-reversal, as the time rever-
sal operation interchanges the U [+ and U] links, leading to the appear-
ance of T-odd functions in Eq. 1.181. The process dependence of the gauge
link, however, points to particular sign changes when single spin azimuthal
asymmetries in sem-inclusive leptoproduction are compared to those in for
instance Drell-Yan scattering. For such effects the measurement of trans-
verse momentum dependence is a must, since the specific link structure
does not matter in pr-integrated functions, in which both links in Fig. 1.12
reduce to the same straight-line link connecting 0 and &.
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