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Chapter 1

High energy processes with hadrons

1.1 Diagrammatic approach

The basic degrees of freedom that feel the strong interactions, quarks and gluons, are confined into hadrons,
strongly interacting particles. Considering the nucleons (light hadrons), the characteristic energy and
distance scales are given by the nucleon mass, A ~ My, or taking into account the color degrees of
freedom one may prefer a scale A ~ My /N, ~ 300 MeV. We refer to this as &'(1) or (M) if we consider
high-energy processes, characterised by hard kinematical variables that are of order @ with Q2 > AZ2.
The high-energy scale @ could be the CM energy, Q ~ /s or it could be a measure of the exchanged

momentum.

Figure 1.1: Schematic illustration of the contribution of a
hard subprocess, parton(p;) + parton(ps) — parton(k;) +
parton(ks), to the (2-particle inclusive) scattering process
hadron(P;) + hadron(P;) — hadron(K;) + hadron(K3) + X,
at the level of the amplitude.

Hadrons do not correspond to free particle states created via the quark and gluon operators in QCD
as is for instance the case for electrons in QED. In the latter case one knows how in the calculation of an
S-matrix element contraction of annihilation and creation operator in the field and particle state lead to
the spinor wave function. For positive times ¢° = ¢, thus multiplied with a function 6(£°), one has

(0[9i(€)lp) = (0[4i(€) b (p)[0) = (014i (0)|p) e~* ¢ = u;(p) exp (—i Byt +ip-§). (1.1)
with E, = \/p? + m2. Such a matrix element is "untruncated’ as seen e.g. from

4 ) m) U
OO 8(0) =000 [ 5 e e L i)

(27)%2E, 5 (k — p). (1.2)

In a process involving a composite hadronic state |P) the state may
involve contractions with one or several of the quark and gluon operators,
leading to nonzero matrix elements for a quark between the hadron state
and a remainder, but also for nonzero matrix elements involving multi-
parton field combinations,

(X[ (O)1P), (X[A* () $(E)IP), ... .

101
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Correlators, describing parton distributions

For a particular hadron and a parton field combination, one may collect those operators that involve
hadron |P) into (distribution) correlators

vo0:r) = 2 [ G (PIT O (X IO P) 5+ Px — ) (13)
= Gt [ €T PO B OIP), (1.4)

or correlators involving matrix elements of the form

Edty e PPE I (P (0) A () vi(€)| P), (1.5)

(bll M P =
z](p7p17 ) (2

pwi i jﬂp p‘plw Eém Hp
TC >(p;P.S) JT T( @ (p.p=p;P.S) ]T

P § P or P § P

pictorially,

We will not attempt to calculate these, but leave them as the soft parts, requiring nonperturbative QCD
methods to calculate them. In particular, although being 'untruncated’ in the quark legs, they should
no longer exhibit poles corresponding to free quarks. These are fully unintegrated parton correlators for
initial state hadrons, in general quite problematic quantities. For example, they are by themselves not
even color gauge-invariant, an issue to be discussed below. We will later also discuss similar correlators for
final state hadrons. When more hadrons are involved, one could consider two-hadron correlators, involving
two-hadron states (or correlators involving hadronic states in initial and final state), etc. If the hadrons
are well-separated in momentum phase-space with P; - P; ~ Q?, one expects on dimensional grounds
that incoherent contributions are suppressed by 1/(P; — Pj)? ~ 1/Q?. Such a separation in momentum
space requires a hard inclusive scattering process (Q? ~ s), which then at high energy and/or for large
momentum transfer still can be factorized into forward correlators. The inclusive character is needed to
assure that partons originate from one hadron, leaving a (target) jet. In turn, partons decay into a jet in
which we limit ourselves to the consideration of an identified hadronic state (which could in principle also
be a multi-particle, e.g. two-pion state).

The basic idea in the diagrammatic approach is to realize that the correlator involves hadronic states
and quark and gluon operators. They can be studied independent from the hard process, provided we
have solved the issue of color gauge invariance. The correlator is the Fourier transform in the space-time
arguments of the quark and gluon fields. In the correlators, all momenta of hadrons and quarks and gluons
(partons) inside the hadrons are soft which means that p? ~ p-P ~ P? = M% < Q? ~ s. The off-shellness
being of hadronic order implies that in the hard process partons are in essence on-shell. Consistency of
this may be checked by using QCD interactions to give partons a large off-shellness of €(Q) and check the
behavior as a function of the momenta. In these considerations one must also realize that beyond tree-level
one has to distinguish bare and renormalized fields, involving absorption of singularities.

Correlators, describing parton fragmentation

For the fragmentation of quarks (with momentum k) into hadrons (with momentum P}) we combine the
decay matrix elements in the (fragmentation) correlator

Alj(kaphac) = Z (21)4
X
1

(2m)t

where an averaging over color indices is implicit. Pictorially we have

/ di€ ™€ (0[5 (€)| Po, X) (P, X[1,(0)[0)

/ die ™€ (0] (€)alan T, (0)]0), (1.6)
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P P
a® ‘o,

There are a number of subtleties in these definitions. The use of intermediate states X and in addition
one specified state with momentum Pj, needs some explanation. First note that the unit operator can be
written as

s =L =3 (1.7)
X n=

with
Sy = %/df(l...df(n al (K1) ...a'(K,)|0)(0la(K,) ... a(K,) (1.8)

containing the n-particle states (with dK being the invariant one-particle phase-space). Thus

S PP X] = BB+ [ dR (P K (P K|
X

1 -
+§/dK1dK2 [Py, K, o) (P Ky, B[+
= a}:fah = a}:ah. (1.9)

After integrating over P} one obtains

/dﬁh > 1Pu X) (P, X[ =) nsy, (1.10)

X n=0

which is the number operator Nj. This will become relevant when one integrates over the phase-space of
particles in the final state to go from 1-particle inclusive to inclusive scattering processes.

Inclusion of spin

In principle hadrons could be polarized, having additional degrees of freedom, |P,«), etc. In order to
treat the spin of initial states, one then can explicitly work with distribution correlators in the hadron
spin-space,

ij pa(p; P) = ﬁ/d‘*g e PE (P, B[Y;(0)¥i(€)|P,a). (1.11)

It is convenient to include the off-diagonal elements in the definition. Having a non-pure initial state
described by a spin density matrix p(P,S) = > |P, a)Prob, (P, a| one then finds the spin-dependent
correlator

®ij(p; P, S) = pap(P,S) Pij pa(p; P). (1.12)

A single spin vector S is sufficient to parameterize the density matrix for a spin 1/2 hadron. For hadrons
with higher spins one needs additional parameters (e.g. a spin vector and a symmetric traceless tensor to
describe spin 1).

For fragmentation correlators, the role of spin is different. In that case not only the specific kind of
hadron in the final state, but also its spin state is fixed. This means that besides having Dirac structure,
we also include spin states (off-diagonal to remain as general as possible)

Nijpalk, Pr) = ! / d*¢ ™ (0)i (&) Pu, o, X)(Py, B, X[,(0)]0). (1.13)

1
> 2
In many applications we will use a spin-dependent fragmentation correlator A;;(k, Pp, Sy) by defining

Aij (k, Py, Sh) = (QSh =+ 1) Aijﬁa(k', Ph) paﬂ(Pha Sh), (114)
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where p(Py, Sy) is the usual spin density matrix. The factor (25, + 1) assures that for S, = 0 one ends
up with a sum over spins for the produced hadron. Note that in most applications S, will be replaced
by the analyzing power A, (P, f) of the decay channel (with f representing the final state variables) of
the produced particle, e.g. in the case of production of A’s or p’s, rather than the tunable polarization for
initial states (see section on spin vectors).

1.2 Sudakov decompositions and n-dependence

In a hard process, the parton fields that appear in the different correlators correspond to partons in the
subprocess for which the momenta satisfy p; - p; ~ @%. In the study of a particular correlator it implies
the presence of a ’hard’ environment. To connect the correlator to the hard part of the process, it is
useful to introduce for each correlator with hadron momentum P, a dimensionless null-vector n, such that
P-n ~ Q. Tt is actually more convenient to replace n/(P - n) by a dimensionful null-vector n ~ 1/Q, such
that P-n = 1. The vectors P and n can be used to keep track of the importance of various terms in the
correlators and in the components of momentum and spin vectors'. The n-vector will acquire a meaning
in the explicit applications or play an intermediary role. At leading order, it will turn out that the precise
form of n doesn’t matter, but at subleading (1/Q) order one needs to be careful.
For parton momenta we can write

p=xP+p+(p-P—xM?*)n, (1.15)
|

where the term x P ~ Q, pr ~ M and on ~ M?/Q. We have the exact relations p-p, = p2 = (p— 2z P)?.
The momentum fraction

rT=p-n (1.16)
is 0'(1). Note that one can construct two conjugate null-vectors,
ny=P—1M’n and n_=n, (1.17)
satifying ny -n_ =1 and n+ =n2 =0, that can be used to define light-cone components? a* = a - n=.
The symmetric and antisymmetric ’transverse’ projectors are defined as
g#u _ gp.l/ _ niﬂn’i} ~ gl“’ _ P{#nl’} (118)
6;71:1/ — nHn-pr €—+,u1/ _ ePn,uu' (119)

The decomposition of spin vectors is discussed at the end of this chapter.

Different n-vectors

A choice of a different null-vector n’, in principle leads to different z’, ¢’ and p,s as well as different
transverse projectors. With P -n’ = 1, one easily finds that the difference, 2’ —x =p-n’ —p-n =p; -0’
= —pr - n, is of 0(1/Q) and having up to that order p ~ zP + pr &~ ' P + p;s one finds
r=p-nx~z' =p-n,
Pr & prr — (prr )P = prog
Prr = pr — (pr - TL/)P ~ Prr’
P}~ pi.
Given two (hard) hadronic momenta hadronic P and P’ one can (up to 1/Q? corrections) use P’ /(P - P’

as the null-vector n for the hadron with momentum P. We note that this implies that « =~ (p- P’)/(P- P’
for any of the other hard (hadronic) momenta P’ involved in the process. We note that the integration

/d4 /dxdsz do = /d(p~n) d’p,d(p - P), (1.24)

is insensitive to the choice of n-vector.

1If one prefers a dimensionless vector, one must make a choice P-n ~ Q. In that case all further appearances of n in this
section should simply be replaced by n/(P - n).

2There is an arbitrariness in the definition of these vectors, allowing n. — any and n_ — n_/a. In this way one can
make dimensionless vectors. In the explicit appearance of vectors such a rescaling corresponds to a boost.
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Regions of importance in parton kinematics

We want to illustrate the kinematics for partons and translate it to physically intuitive quantities, the
off-shellness p? for partons or the invariant mass squared M3 = (P — p)? of the residual (spectator)
hadronic system and the (spacelike) transverse momentum squared p2 = —p2. We can do this for partons
in hadrons (distributions), but also for the production of hadrons from partons (fragmentation),

+@$

Pae
p=xP+pr+o,n k=z"YPy+ky+ 0opng
PT=P.-n=1 P,-ny=P =1
r=p-n=p" =k oy =k~
U]gzp-P—;r:M2 Uk:k-Ph—z_lM,%
ny=P—1M*n n_ =P, — tMiny,
p =p-ny=p-P—3aM> kT =k-n_=k-P,—3z"" M}

The kinematic freedom for the partons is illus-

2_Mm2 b z=112 trated in a plot of the off-shellness p? versus 2p- P,

P (x=2) where it is convenient to slightly shift the zero-
points to get a nice symmetry. The relations

e oM = 2P M) 4t
(-)M? = 7 M? —(1—x)?M?, (1.25)

VI p’—M* = 2(p-P—M?)+ Mg, (1.26)

- ‘ determine lines of constant Mg or p2. They are

M~ o . 2(p.P-M 2) used to map out the physical region determined

1o by p2 = —p2 < 0 and M3 > 0. We note

x=1/2 k (1M that for x = 1 the region dlsappears shrinking

Mg=0 to the line MR = 0or z = 1. We note the

0 2 2 symmetry = 1/z in jumping from distributions

| Mg = (p=P) of partons into hadrons to fragmentation of par-

T tons into hadrons. We assume that the domi-

x=1 nant contributions come from the regions where

p? ~p- P~ M}~ M? thus ¢ disappearing as a
function of these variables.

1.3 Distribution correlators in high-energy processes

In a hard process, the different importance of the various components allows up to specific orders in 1/@Q,
an integrations over some components of the parton momenta. The fact that the main contribution in
®(p; P) is assumed to come from regions where p- P < M? whereas the momenta have characteristic scale
Q, allows performing the o-integration up to M?2/Q? contributions (and possible contributions from tails).
Transverse momentum dependent (TMD) correlators are light-front correlators, integrated over o or p- P,

Q,i(z,pr;n) = /dp P) ®;;(p; P /dap drp 6(1p — 2z o) —p2 — 22 M?) Qi (p; P) (L.27)

- [HEDE s o0 uln)| (128)

LF
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where we have suppressed the dependence on hadron momentum P and the subscript LF refers to light-
front, implying £ - n = 0. The light-cone correlators are the correlators containing the parton distribution
functions depending only on the light-cone momentum fraction z,

®i(vsn) = /d(p-P) d’pr ®;5(p; P) = /do,, dr, 02z 0 — 7 + 2 M?) ®;5(p; P) (1.29)

U P) ive (p (0) 4
/ (2m) (Pv;(0)¥(§)|P)

, (1.30)
LC

where the subscript LC refers to light-cone, implying £ - n = £, = 0. This integration is generally allowed
(again up to M?/Q? contributions and contributions coming from tails, e.g. logarithmic corrections from
1/p2 tails) if we are interested in hard processes, in which only hard scales (large invariants ~ Q% or
ratios thereof, angles, rapidities) are measured. If one considers hadronic scale observables (correlations
or transverse momenta in jets, slightly off-collinear configurations) one may need the TMD correlations.

The fact that the matrix elements involve operators on the light-front, allows for specific operators,
the socalled good operators in front-form quantization, an easy interpretation in terms of partons. These
partons are the quanta created by the good fields. The good fields are

Shit U= g i and Al =givA, (1.31)

In front-form quantization the other components of the fields can be expressed in the good fields using
equations of motion, at least after imposing the gauge AT = A-n = 0. More important, however, for the
description of hard processes is that matrix elements involving these good fields turn out to be the leading
ones in an expansion in the inverse hard scale 1/Q.

As argued above (and made more explicit in applications to hard scattering processes) the correlators
involve collinear momenta (soft with respect to each other), but for use within the hard process an external
direction shows up, represented by a null vector n, which will acquire a meaning in the explicit applications
or play an intermediary role. It can be used in the projection of components or in an expansion of fields
or field combinations, e.g.

Y=y o =3 PR 5P, (132
AY = (A-n)P* + AL 4+ (A- P)n*. (1.33)
T = (B) PP+ s+ (PO (1.34)

Examples of orders of magnitude of the fields within the matrix elements appearing in hard processes are

(n-A)~n-P=1, (1.35)
(A > (G ) ~py~M, (1.36)
() ~ M3/2, (1.37)
(Ppap ) ~ (PR ) ~ (GREGHP ) ~ M2, (1.38)
(P )~ (D" ) ~ (g ) ~ M7, (1.39)
(VDG )~ (Y Py )~M* (1.40)

These results are obvious because ( ¢¥y* 1) ) in a matrix element of the form ®(p; P) must be proportional
to momenta p* or P* for the components of which we know the order of magnitude in a hard scattering
process. The above integrated or the TMD correlators also can depend on n*, e.g. appearing via the
transverse tensors g&-” or €4 (both being of order unity).

Gauge choices and n-dependence

We already remarked that for a given hadron, it is certainly convenient to also use n as a vector that fixes a
light-like gauge AT = A-n = 0. This is essential when one wants to discuss or interpret the correlator and
the fields appearing in it in front form quantization. Such a treatment, however, is considered problematic
in the treatment of the hard process to which the soft parts couple. Here a light-like gauge choice produces
additional poles for which one must introduce prescriptions. Moreover if one has several soft parts one can
only make one gauge choice in the calculation.
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The freedom in choosing n, even choosing n different for each hadron involved, also allows the treatment
of an arbitrary axial gauge A -v = 0 with v? # 0, applied in the treatment of the full process. We simply

could take n as®

v? v?

ny~(P-v)n+———P (1.41)

v=(W-ny)n+ D)

2(v-ny)

Consider a gluon with polarization x4 and momentum p = z P + p, + (p - P — x M?) n connecting a soft
part and the truncated hard part H,(p,...;v), which we assume to be O(Q?). For an on-shell gluon
with momentum py = x P + pr — (p2/2z)n (differing from p by a vector proportional to M?n) one has
po - H(po,...;v) =0. This implies for a gluon attached to the correlator

p-H(p,...;v) o< M*n-H(p,...;v),
oQ4-1)

showing that for Ward identities the gluons in the soft part can, up to &(1/Q?) corrections (compared to
the expectation Q91), be considered to behave as on-shell partons. With the above n-choice one sees,
moreover, that

n H(pa ,’U) U'H(pa 7U) v?
= P-H
P-n P-v +2(P v)?2 (P,-30)
v-H(p,...;v) v?
P.w + 22(P - v)2 pr-Hp,..5v),

o(1/Q%=?)

which means that for the soft part omitting the n - A gluons (putting n - H = 0) implies* at leading order
also the omission of the v- A gluons (v- H =0).

Color gauge invariance

The field combinations considered sofar in the correlators are not color gauge invariant since they involve
the A-fields and, more important, because they involve nonlocal field combinations. At each specific order
in Q gauge invariant combinations are expected. Along the light-cone, the leading ones involve the "parton
fields’

1y(€) =y (§) and G"(),
while AT = A™ = n - A operators appear in gauge links along the light-cone (£t =n-£ =&, =0),

13
Ully = 2 exp (—i /O d(n-P)n- A(n)> , (1.42)

which are needed to connect colored parton fields. Which n appears in a correlator is fixed by the hard
process, although some freedom in n may remain. We note that the exponent in the gauge link is in essence
built from ’operators’ (n-d)~tn- A, which are €(1). Actually, the gauge invariant correlators will in some
cases appear multiplied with the parton momentum, p# ®(p; P), etc., which implies a derivative 9% in the
matrix element, which is e.g. standard in the matrix elements involving gluon fields G#”. The color gauge
invariant light-cone correlators for quarks and gluons are

(€ - P)

N ip- A (] ).
& (ain) = [ S5 PO UL, vOIP N (1.43)
% (2;n) = /% 'S (P|Tr (G”B(O) U[[(:]g] G"* (&) U[[g]o]) |P>‘LC’ (1.44)

3Note that the length of v is irrelevant; making it dimensionless one has P - v/+/|v2| ~ Q or we could give it dimension
energy !, allowing setting P-v = 1. It is possible to include a small transverse piece vy on the righthandside of the expression
for v, which implies (taking v -n4 = 1) writing n — n + vy — %v% n4. If one assumes vr ~ M/Q? (thus smaller than
v ~ 1/Q) it might serve as a regulator.

4Here the condition on the smallness of a possible vy in defining n becomes important.
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while for the TMD light-front correlators

d(e - PY 6, . _ 0
iy, prin, C) / A D) der (273)35 S (PIBO UGS HOIP) (1.45)
(€ - P) %, .. Gl n.C"
1% (2, prin, C,C") = /% P (P|Ty (Gnﬁ(O) Sl gma¢) U[[E,’O]C]) |P) LF,(1.46)

where we in passing mention that path dependence (indicated by the arguments C' and C’) will arise
because of the (necessary) transverse piece(s) in the gauge link.

Sum rules

Completing the integration over the correlators, one ends up with a local matrix element
Tr(T'e) = /dx d*pr Tji(, pr) ®ij(z, pr)

(P[5;(0) (i) UL-S (&) P)| (1.47)
=0

In particular when the operator ¥)I'U) is an operator with simple or known expectation values between
plane wave states (including possibly spin dependence) this provides interesting sum rules for the functions
appearing in the correlator.

Useful relations to relate correlators or in sum rule applications are

P07 Uy = Ul iD™(€), (1.48)
ig G%) = [iD"(€),iD5(6)] = [iD™(€), g A (€)] — i0g, g A™(©)], (1.49)
(107, Ulry gAS(€) U = Uy (ig Gm2(€) + i, gA™ () UL, (1.50)
-
[iD2 (), U] = / " dc- P) U, [iD"(Q).iD3(0)] U, (151)
ig G (C)

1.4 Fragmentation correlators in high-energy processes

In high-energy processes, it is useful to employ the Sudakov decomposition of the momenta. We write for
the parton momentum

1 M}

where Pp,-nj, = 1 and thus k-np, = 1/z. The above equation defines the coordinates of k for fixed P,,. Fixing
the quark momentum, one can consider variations of Py, in which case Py, = zk+ Py + (k- P, — M }%) n
with k- ni = 1. Taking ny = zny, one has P,; = —zk;. One thus has

/dzd2kT d(k - Pp) /22 d(k - np) d®ky d(k - Pp) = /z2 d'k...|p, =

1
/Z d(Py, -ng) d* Py d(Py, - /—d4Ph (1.53)

We consider the integrated correlators
1
ByeikinC) = o [ dlk- ) Ak, PiC)

d(€ - 26, n —
- 3 [HE PR ke e pn X0 X U 0| (150
X

LF
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where LC refers to the light-front, £ - n;, = 0. Integrating over the transverse momenta, we define
Aij(zin) = /dQPhJ_ Aij(z,krin, C) = Z/d(k'Ph)dsz Aij(k, Pn; C)

- ;/%em (01U 03 (€)1 P, X) (P, X[ (0)Ug10) (1.55)

LC

where LC refers to the light-cone, £ - nj, = &, = 0.

We note that issues on dependence on nj can be taken over from the distribution functions, including
issues on gauge choices and the possibility to get for time-like axial gauges a natural regulator from the
transverse momenta.

Sum rules for fragmentation functions

Since for fragmentation correlators, the hadrons are produced, one can construct observables by summing
and integrating over them including particular (in principle spin dependent) weights,

3 / dzd*Phy O g(z, Pri) Aij ga
h

1 ik dz d*P, n, - n,
5/d(&-Ph)d?fT eike ;/Ww;ﬁ O Ci(E)| Py 0, X) Oty (Pa) (Pa, 8, XI5, (0)U L 0) y

= %/d(ﬁ-Ph)d%T ™€ O|U S i (€) O, (0)U o) ; (1.56)

where

Z/dzd PMU%Q X) Ols(Pn) (Pn, 8, X| (1.57)

If the operator O is also known at the parton level,

Z/ d pT bT(p7 ) (p75)b(p75)7 (158)
we obtain
Z/dzcﬁpu Ol 5(2, Phi) Aijpa = —Zuz (p, s)o(p, s)u;(p, s)
_ {% ( o(k,s) + 2 ok, =s) | olk:s) —ZO(k,—s))Lj (1.59)

1.5 Large transverse momenta

We started out with the assumption that the support of the correlators ® and A is restricted to regions
where the scalar products of the momenta involved are of hadronic size, or stated differently the fall-off
as a function of these invariants should be sufficiently fast. To check consistency requires consideration
of large transverse momenta generated after emission of hard partons. These will produce 'their own’
hadrons and can at that stage be treated as on-shell partons. As our first case we look at parton(pg) —
parton(p)+parton(l) (with p = po—1), the emission of an on-shell parton with momentum ! by a parton with
momentum po (of which we will first neglect por). The momentum fraction is reduced from pg.n = z/x,
(x < zp < 1) to the lower value p.n = x and producing at the same time a (moderately large) transverse
momentum pr. We neglect the O(M) contributions.
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x
Po ~ —P
[P N
2 2
Pr (1 —=p) Tp  Pr
I =~ (1- — Py — ~ P—p,— L n,
[ ( Ze)P0 ~ Pr 2(1_3310)(]90'”)” Lp ! b 1—a 233”
2 2
T pT xp pT
~ ~xP — n.
pO p xpp0+pT+2(1—xp)(po-n)n ;v +pT+1—a:p 2z
————
Ip

For the invariant momenta we have

2
2 _ Pr

~2~0 d ~ )
Po an p 11—z,

The figure to the left shows the support region as
also discussed previously, but now neglecting all

p2 A O(M) contributions. Thus p- P ~ o, = p~ and
p? ~ 2z op + pi.
5 Mg=0 Although we assumed ® to vanish for large val-
Xp Pr P% / ues of the variables p - P and p?, these can take
1_?(9 X 1-x _larger values, e.g. after parton braching, as dis-
‘ 2 p.lg cussed above. In that case the additional variables
3 Xp= 3/4 1 P 4 5 entering are the fraction pg - n = /x, of the orig-
2_ .2 -0 | Pt inal parton and (considered below) its transverse
Py =M 1-x momentum pg, with z < z, < 1. By varying z,
) from 1 (minimal loss of longitudinal momentum
1 P 4 1pT along P) to z, = z (maximal loss) we scan the
T p full physical region of ®(z,p,). For given = and
3/4 pr, the values of the invariants are fixed for a given
‘ \ Lp,
Xp Xp= 112
1‘/2 7~ p? P
p "~ ~ )
11—
P Lp pg"
op R R~ —
PP 1—-z, 2z
The situation for fragmentation is analogous.
ke ~ 2p,
T Ko g 2 2
(1—2zg) zi k (1 —2zg) zk
Il =~ —ko—ky— L n = Py, —ky———F—n
jl 2k 0 2(1—zg) (ko n) z h R 2(1 — z)
_ 25, k2 1 2 k2
ko~ 2z ko+kr+ z nxz ' Pyt ke + s ——m
k kRO TR T AT (o - 1) A T
———
ok
For the invariant momenta, we have
2k
E~?~0 and k= k2.
. 1— Zk T

We will now give the explicit integrations including also small transverse momenta pg, for distributions
(and kor for fragmentation). We get

O(z,pr) = /dap dr, 6(1, — 2z 0, —pi)/d‘*l&(ﬂ) .. ®o(po) (1.60)

= /dap dry 6(1p — 2z 0p —pi)/d(po -n) d*por d(po - P)S(1%) ... ®o(po), (1.61)
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The integration over pg - n = /), is easily turned into an zp-integration, the integration over po - P can
be performed to get ®o(z/zp, por) and in the evaluation of 2 we have (note Iz = por — pr). Using

11—z,

1* = (po—p)* = (pr —por)® — - 2x oy, (1.62)
p

we find

x
O(z,pr) = /dap drp dzy d*por o 1) (Tp —2x 0, — pi)

p

1—= T
X(S(pi_poT'pT‘Fp(?)T_ - prO'p) ... %o <x—,p0T)

= / do, dr, dx, d*por % § (1p —2x0, — p)

p
2 1—x x
X(S(&_ZPOT'Z)T‘FP%T_ pr) ... P <_)p0T)
Tp Tp Tp
1 2
dzx, d“por T
= — .. Oy — 1.63
/m 92, (1 — ) 0 xp,poT ) ( )
where in the integrand invariants like 7, and o, are fixed,
1 2x T
2 2 P P2
=p° = — . —— Dirs 1.64
TSP S T P o, Por pT+1_xppoT (1.64)
T 2z T
2wop =p* —pi =1 _”xp Pr—1 _’;p por - Pr+ 1 _”xp Por- (1.65)
We note that
1 (1- fp) ( DPor - Pr 2 (Por 'pT)2 p%r 3 )
—=——"(1422x +dazi ————x,— +O(p 1.66
pQ p% p p% p (p%)z p p% ( OT) ( )
1 (1 - IP)Q < Por * Pr 2 (pOT 'pT)2 p% 3 )
= 1+4x + 122, ——-——2x,— + O(p . 1.67
(p2)2 (p%)Q p p% p (p%)g p p% ( OT) ( )
For fragmentation functions, we get
12 = (ko — k) = (kr — kor)? — (1 — 2x) 22" L o, (1.68)
and we find
1
Az, kr) = /dak dri, dzi, d*kor — & (Tk — 227 g — k%)
Z 2k

X 5(/63 — 2kor - kr +k§T — (1 —2g) 2271 Gk) VAN <i,]€QT)
2k
1
= /do‘dekdzdekoT—5(Tk—22_1O'k—k‘%)
Z 2k

z
><5(2;@]63—QkQT-kT-f—k(Z)T—(l—Zk)Tk) VA (z—,k0T>

1 2
dzy, d°kor z
= — .. A | —, K 1.
| s (k). .60
where in the integrand invariants like 75, and oy, are fixed,
2 1
k2= Tk g2 kor - ki 4+ —— k2 1.70
Tk l—Zk T 1_Zk or T+1—Zk RE ( )
2: oy =k — k2 = Lo 2 ke —— 82 (1.71)
T 1_Zk T l—Zk or r 1_Zk oz ’
We note that
1 (1 — z) Por - Pr (kor - kT)2 kgT 3
—=—114+2 4 — O(k 1.72
[ ( P20 P e e Ot (172)
1 (1 — Zk)Q kOT . kT (k‘()T . kT)Q k‘g 3
= 1+4 12 -2 L Ok . 1.73
By~ 02 w2 TP e T Pag O (173)
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Appendix: Spin vectors

For the hadron spin vector satisfying S? = —1 and P - S = 0, we can write
P P
S:SLM—FST—SLM?’L%SLM—FST, (174)

satisfying S? + Si = 1. The quantity S} is the light-cone helicity, S; the transverse spin vector. One has
S, =MS-n and Sk = ghk¥S,. (1.75)

The spin vector is used in the parametrization of the density matrix. Often, therefore, the transverse spin
will be defined with respect to a hadron momentum P’ using

pnpr}

gj}:ll:g“u_ pP.p -

(1.76)

If the hadron momentum P’ is hard with respect to the original hadron, i.e. P - P’ large, one still has a
useful expansion in which P’ has the role as an (approximate) null-vector. One has (first expression exact)

P P P
with 6 = M2M"? /(P - P")?, which satisfies Sﬁ + 8% =1 and where
1 MS-P  MS-P ,
S = T3 PP ~ PP and Si Zg‘tj_ Sy. (1.78)
Comparing both expansions order by order in (1/Q), we find
MS- P MS, - P
SH—SL:W—MSTL:ﬁ:—MSLn,
and one finds using that S%SL§+ST zSnﬁ—i—SL that
MS - P
ST%SL—(SL'H)P%SLT, (180)
Sy - P’
SL%ST_PT.P/P%STL- (1.81)
Using
P — M2 P —2'M?
P‘SZPT‘ST‘FPTSLZPT"ST'-FPTSL/, (1.82)

and the fact that the differences © — 2’ and S, — S,/ are O(1/Q) we have
pr - Sr R pr - S, (1.83)

which also holds if we use an approximate n’ ~ P’/P - P’.

Appendix: polarization sums for gluons

A useful feature is the fact that the polarization sum for on-shell gluons satisfying v- A = 0 is approximately
equal to the sum for gluons satisfying n - A = 0, at least if n is constructed from v and P as in Eq. 1.41.
This is important because at some point on-shell (cut) gluons in the hard part need to be considered to
study the large transverse momentum dependence of correlators. In the section on 'Moderate transverse
momenta’ we have shown the kinematics for the branching parton(pg) — parton(p) + parton(l) (with
p =po — 1) in case of the emission of an on-shell parton with momentum I.
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Looking at the polarization sum for the cases that either [ or p are gluons, we need the products of
these vectors with the gauge vector (assume P -v = 1),

T i
l-v = —|1- L
v 7 Tp+ 1 11—z, |
p-v = x[l—n p ]zm
11—z,
with 5 2|
— 2 Pr 2 Prl
MT=70 42 T g
serving as a small regulator. We note that in p - v the n-term is not harmful (no extra poles),
g vipr , v p-P)  vp-P)(P-n) (M
1—x, 1—x, 422 2x 2(p-n)(P-v)? Q?

(in last step we wrote the expression for the cases that the lengths of n and v are not fixed).
We can write for the polarization sum

BV Voh wv
duv(z;v):_guv+l Uzj-Lvl v .Y l l Zd (1.84)
with
1—
i (15 0) @ (;n), (1.85)
(]. — Tp + n ﬁ)
2 v
& (l0) = gt U (1.86)
1= (1_3311‘*'771;;,9)
) e
d (1:) % r (1.87)

p 22 \?
|T| (l—a:p+n17’;p)

)2 1 pY 4 1Y pr
A (L) = 52 tie R (1.88)

4
W |pT| (1_3311"'7713;)
p

We note that for a time-like gauge choice (v? > 0) one has 1 > 0 and one avoids hitting the poles. Similarly
we find for the polarization sum when the parton with momentum p is a gluon the sum

dm (p;v) 1 u ptoY +pYot v p“
_ 2| _ di (p 1.89
p? Y N P (p-v) QZ (1.89)
with
i}y (p;v) 1 1—=x
o = d" (pin) ~ S0 m) )d“”(p, n) (1.90)
p p2 (1_771?;,7) |pT|
dwj(p"(}) 1 w7
2y \P; T g T v
@V 5 = -7 p — ~ —n —5 g* (1.91)
p L—xp p? (1, 2 p7|
771,129
i3 (p;v) 4 1 i ¥ 4(1 —
3)\P; php T ”
()72 = ey n(iﬂpup (1.92)
p P2l p (1_77 zp ) P71
1—x,
Hoon) 2 1P P 5w e e )
| . .

= N5 < K~ -7
2 2 2
p p%| P (1 _q 1f;p)



Chapter 2

Specific processes

2.1 Introduction to electroweak processes

We will consider the following three types of processes,
e The lepton-hadron scattering process {H — £'X
e The annihilation process 0 — X
e The lepton-pair production process AB — (£X (Drell-Yan process).

All these processes involve electroweak currents, coupling to the leptons in a known way. The basic
advantage of electroweak processes lies in the fact that the process is accurately described in terms of the
exchange of one photon (for electromagnetic processes), since the coupling, o = €2 /471 ~ 1/137, is weak.
The same is true for the weak vector bosons. On the hadronic side, the coupling to the quarks is known,
but the structure of hadrons in terms of quarks and gluons is the unknown part. The fact that the coupling
to the quarks is known, however, enables the study of hadron structure.

For lepton-hadron scattering we consider the inclusive measurement {H — ¢'X and the I-particle
inclusive or semi-inclusive measurement /H — ¢'hX. The invariants are defined,

PF=k-E)1?=-Q*<0 (21)

Q2
2P-¢g=2Mv=—=— (2.2)
T
2P, - q= —2, Q? (2.3)
P-P,=zP-q (2.4)

The variable x; is the Bjorken scaling variable. Since the invariant mass squared of the hadronic final
state satisfies .
WE = (P+q)’ = —= Q%+ M> > M, (2.5)
B

one has 0 < z; < 1, with 2, = 1 corresponding to elastic scattering, i.e. W% = M?2. In this case a hadron
is probed with a spacelike (virtual) photon, for which one can consider a frame in which the momentum
only has a spatial component, from which it is clear that the resolving power of the probing photon is of
the order A\ = 1/@Q. Roughly spoken one probes a nucleus (1 - 10 fm) with @ =~ 10 — 100 MeV, baryon
or meson structure (with sizes in the order of 1 fm) with @ ~ 0.1 — 1 GeV and one probes deep into the
nucleon (< 0.1 fm) with @ > 2 GeV. As we will see, the invariants z & zj, for the case of one leading jet
(to which h belongs) in the limit that Q% — oc.

For the annihilation process we distinguish the inclusive measurement ¢¢ — X, the I-particle inclusive
measurements £/ — hX and the 2-particle inclusive measurements £¢ — hi1hs X (hadrons belonging to
back-to-back jets). The invariants are defined

114
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¢ =(k+K)?=Q">0 (2.6)
2P -q=2 Q2 (27)
2Py - q=2Q? (2.8)

In the case of production of hadrons with a timelike (virtual) photon one can consider the rest-frame of
the virtual photon, in which case it is clear that @ is a measure of the excitation energy.

For the Drell-Yan process we only consider the inclusive case, which already involves two hadrons. We
restrict ourselves to lepton pairs with small transverse momentum (compared to @), for which we have
the invariants

A “-
¢ =k+K)1?=Q"20  (29)
QQ
2Py-q= o (2.10)
2
B p.+ 2P5-q = f—B (2.11)

2.2 The hadronic tensor

2.2.1 Lepton-hadron scattering

Consider the process £ + H — ¢’ + h + X, in which a lepton with momentum & scatters off a hadron H
with momentum P and one hadron h with momentum F;, is measured in coincidence with the scattered
lepton with momentum k’. The lepton emits a highly virtual photon with momentum

¢ =k — kK" (2.12)

with @? = —¢* > 0. The unobserved outstate will be denoted by |Px), having a total momentum P%. We
will consider the most general case of a pure incoming spin state, characterized by the spin vectors S*, an
observed hadronic spin state characterized by the spin vector S;, and lepton helicities A and X’.

We have the following relations

P?*=M?* P} =M} (2.13)
E=m?~0, k?=m"?~0, (2.14)
(k+P)* =s, (2.15)
S§? =82 =1, (2.16)
P.-S=P,-S,=0. (2.17)

We will work in the limit where Q%, P - q and P, - ¢ are large keeping the ratios Q2/2P - q and 2Py - ¢/Q?
finite. The invariant ampitude for the process is given by

2
_ e
M = u(K, )\’)Ay”u(laA)@<PX;P;LS;L|JM(O)|PS>. (2.18)
The square of this amplitude can be split into a purely leptonic and a purely hadronic part, according to

4
|%|2 _ &L%,H)H“V(EH), (2.19)

with the lepton tensor (neglecting the lepton masses) being

LED (RN KN = 6an (2kuk, + 2k K], — Q%G + 20X €pe g k) - (2.20)
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The product of hadronic current matrix elements is written as
H{ (Pyx; PS; PuSy) = (PS|J,(0)|Px; PuSn){(Px; PuSul|J,(0)|PS), (2.21)

where a summation over spins of the unobserved out state is understood. The total cross section is given
by

do = %|///|2d92, (2.22)

with the flux factor

F=4\/(P-k)2 - M2m2? ~ 2s (2.23)
and the Lorentz invariant phase space

d®Px 3K d>Py,

d# = (2m)*6*(k+P -k —Px — P, : 2.24
(2m)"0"(k + x = Fh) (2m)32PY (27)32Kk" (27)32P0 (2.24)
Integrating H,, over Px, gives the usual hadron tensor
oMy LH) (q: PS; P,Sy) = ! / Py (2m)464(q + P — Px — P,)H'H) (Px: PS; P,Sy).  (2.25)
e T (2m)* | (2m)32P% ny B ' '
The phase space for the scattered lepton can be rewritten as
3K E'dE'dQ
= , (2.26)
(2m)32k"0 1673
where Q is the lepton scattering angle and E’ the energy of the scattered lepton. Thus one gets
¢H 2
2Eh dO'( ) . 2ME' O[_L(ZH)WNV(EH)7 (227)

B3P, dE s QM

where the lepton tensor is given by the expression between brackets in Eq. (2.20) and the hadron tensor
by Eq. (2.25).
Note that for inclusive scattering one obtains the familiar result

det®)  IME' o2

maE s g (2.29
with the hadron tensor given by
MWL PS) = o [ Gl (om) 5t + P Px)(PS10)1Px) (P 4,(0)1PS)
2r | (2m)32P%
- % / da 607 (PS|[Ju(x), I, (0)]|PS). (2.29)

2.2.2 Electron-positron annihilation

Consider the process e~ + et — hy + hy + X, where two hadrons belonging to opposite jets emerge with
momenta P{" and P)'. The annihilating incoming leptons with momenta k* and k’* produce a high mass
photon with momentum

" =k"+ kK (2.30)

with Q2 = ¢> > 0. The unobserved outstate will be denoted by |Px). We will consider the general
case of polarized leptons with helicities A and A’ and production of hadrons of which the spin states are
characterized by spin vectors S{' and S4, respectively. We have the following relations

Pf=M;{, P;=M;3, (
k2:/€l2=m2%0, (
S =83 =1, (2.33
Pl-Slng'SQZO. (
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We will work in the limit where Q2, Py -q and P; - q are large, keeping the ratios 2P - ¢/Q? and 2P, - ¢/Q?
finite. The invariant ampitude for the process is given by

2
_ e
L/f = ’U(k‘l, )\')’y“u(k, /\)@ <Px; PlSl; PQSQ|JH(O)|O> (235)
The square of this amplitude can be split into a purely leptonic and a purely hadronic part, according to
64 ete™ v(ete™
| |* = @wa ) gHveTen) (2.36)

with the lepton tensor (neglecting the lepton masses) being
LE D (RN EN) = 6an (2k,k, + 2k, — Q%G + 20X €u0pr kK7 . (2.37)
The product of hadronic current matrix elements is written as
Hﬁe_)(PX;PlSl;PQSQ) = (0]J,,(0)|Px; P1S1; P2Sa)(Px; P1S1; PaSa|J,(0)]0), (2.38)

where a summation over spins of the unobserved out state is understood. The total cross section is given
by
1
do = F|///|2d92, (2.39)

with the flux factor

F=4y/(k-K)2—k2k? ~ 2Q* (2.40)
and the Lorentz invariant phase space

d3Px d3Py APy

(2m)32PY (27)32P) (2m)32PY"

d# = (2n)*0*(k + k' — Px — P, — P) (2.41)

Integrating H,, over Py, gives the usual hadron tensor

ete™ 1 ngX 454 ete™
P (G PuSi PeSe) = s / Gryapy 20)'0'a = Px = P P H{G O (Pxi PiSi; PSy). (2:42)

One obtains the cross section (including a factor 1/2 from averaging over incoming polarizations)

POPY dole™e) o2 o +o-
= LieTe ) yymvlerer) 2.43
d3P, d3P, 1Q6 ) (2.43)

where the lepton tensor is given by the expression between brackets in Eq. (2.37) and the hadron tensor
by Eq. (2.42).
Note that for a single produced hadron one finds
do a?

ete™ v(ete™
h d3 Py, - 2Q5 wa Wi ), (2.44)

where the hadron tensor is given by

ete™ 1 dBPX
Wie e ) (q; PuSh) = (277)/(%)32139( (2m)*6*(q—Px —Pn){0J,(0)| Px; PuSn){Px; PaSu|J,(0)|0). (2.45)

For the annihilation cross section one finds

4 2.2 _ _
o(ete™ — hadrons) = WQﬁa Lff:e JRHveter) (2.46)
where the tensor R, is given by
ete— d3Px
REOW = [ ey (20— PO OIP) (P 2,0)0

/ d*x e (0[[J,(z), J,(0)]]0). (2.47)
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2.2.3 The Drell-Yan process

Consider the process A + B — £+ { + X, where two spin—% hadrons with momenta P and PJ interact
and two outgoing leptons (considered massless) are measured with momenta k* and k’#. The leptons are
assumed to originate from a high mass photon with momentum

¢ =k K" (2.48)

with Q2 = ¢* > 0. The unobserved outstate will be denoted by |Px), having a total momentum P¥.
We will consider the case of pure incoming spin states, characterized by the spin vectors S% and S,
respectively, and observed lepton helicities A and A’. We have the following relations

Pi=M3, P;=M3, (2.49)
(Pa+ Pp)* =s, (2.50)
B2 =k?=m?=0, (2.51)
S% =5% =1, (2.52)
Py-Sa=Pp-Sp=0. (2.53)

In the deep inelastic limit Q?,s — oo, with the ratio 7 = Q?/s fixed. The invariant amplitude for the
process is given by

2
M =k, Ny ok, A’)&(PX|JM(0)|PASA; PgpSE). (2.54)

The square of this amplitude can be split into a purely leptonic and a purely hadronic part, according to
4
| = %LL’BY)H“”(DY), (2.55)

with the lepton tensor (neglecting the lepton masses) being
LEY (kX K N) = 0xn (2k,k), + 2k, K, — Q% g + 20X €000 k) - (2.56)
The product of hadronic current matrix elements is written as

HPY)(Px; PaSa; PpSp) = (PaSa; PsSg|J,.(0)|Px)(Px|J,(0)|PaSa; PsSz), (2.57)

%

where a summation over spins of the unobserved out state is understood. The total cross section is given
by

do = %L//lﬁl%, (2.58)

with the flux factor

F=4\/(Pa-Pp)? — MM} =~ 25 (2.59)
and the Lorentz invariant phase space

d®Px d3k d3K'

— (oyAgd
d% = (2m)*0%(Pa+ Pp — Px =k — k') (27)32PY (27)32k0 (21)32k0"

(2.60)

Integrating H,, over Px, gives the usual hadron tensor

1 d3Px
W PY)(q; PaSa; PsSp) = / 271)464(Pa + Pp — Px —
(¢ PaSa; PeSp) 27) (27r)32P)0(( m)°6"(Pa + Pp X —q)
< H{DY)(Px; PaSa; PsSp)
1 .
= W/d‘*x e (PsSa; PESp|[J.(0), J,(2)]|PaSa; PpSe). (2.61)
For the last equality completeness of the out states and causality has been used. The remaining phase
space is conveniently written as
d3k d3k’ d*q dQ

= 2.62
(2m)32k0 (27)32K0  (2m)* 3272’ (262)
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where the angles are those of the lepton axis in the rest frame of the two leptons. In terms of the fine-
structure constant o = e? /4w, we then obtain the Drell-Yan cross section (including a factor 2 from the
summation over the lepton polarizations)

do(PY) o2 .

— v(DY

where the lepton tensor is given by the symmetric part in Eq. (2.56) and the hadron tensor by Eq. (2.61).

2.3 Deep inelastic kinematics

In order to deal with the hard processes, it is convenient to consider a Cartesian set of vectors constructed
from the momenta. These start with defining ¢* as a spacelike or timelike direction depending on the
process. Then one proceeds using vectors that are orthogonal to ¢. Such vectors a are obtained subtracting
from a the projection along g,

" =§"a, = a* — L g, (2.64)

where oy
g =g"" = %. (2.65)
Another set of vectors that is useful, in particular for the theoretical description of the structure of
hadrons, are a set of light-like vectors, n" and n‘fr (n%r =n2 =0,ny-n_ = 1) that are in essence hadronic

momenta divided by the large scale Q. If P/Q = any +bn_ and a ~ 1 then b ~ M?/Q? < a. Hadronic
momenta divided by @ are thus in essence proportional to one light-like vector, the hard momentum ¢/Q,
however, involves two light-like vectors. We will use for four vectors the notations p = (p°, p!, p?,p?®) or p =
[p~,pt,p', p?] where p* = (p” +p®)/v/2, depending on the fact if we use a Cartesian set of basisvectors or
a set with two light-like vectors. In the latter case one must be aware of the metric, having e.g. p* = p-nz.

We will consider two different sets of frames, the first set (type I) has ¢, = (¢',¢%) = 0, i.e. the
virtual photon has no transverse components. We note that there is still freedom to parametrize ¢, e.g. in

lepton-hadron scattering,
I [ 1 Q Q ]
q = A .

VoAVl
The quantity A specifies a particular frame. Frames with different A are connected via a simple boost
along the z-axis. The second set of frames (type II) are those where the hadrons have no perpendicular
momentum, relevant in cases where two hadrons play a role. In these frames the transverse momenta are
indicated with p,. and thus P, = Pj, = 0,. Note that ¢ in such a frame in general does have transverse
components,

11
q:

1Q ,Q
A T = A = qT )
A2 V2

with ¢2 = Q2 and Q% = Q? + Q2. The connection between frames of type I and II can be made by a
Lorentz transformation, e.g. one that leaves the minus component unchanged ! and involves a parameter
b~ and a two-component vector b

[a,at,a] — |a~ a+——.b+bz—_a——_b. (2.66)

3 3 3 b7 2(b7)2 )

In most of the following we will assume that all hadrons and the virtual photon are in essence parallel,
ie. Qr < Q and up to 0(1/Q?) corrections @Q ~ Q. This implies for semi-inclusive lepton-hadron

just one leading jet containing the produced hadron, for 2-particle inclusive lepton annihilation just two
back-to-back jets and for Drell-Yan only lepton-pairs with transverse momentum < Q.

1To do this one needs in the two parametrizations boost factors A differing by a factor Q/Q
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lepton scattering plane

Figure 2.1: Kinematics of lepton hadron scattering in a frame where target hadron and virtual photon
momentum are parallel (including target rest frame).

2.3.1 Lepton-hadron scattering

For lepton-hadron scattering the starting point of defining a Cartesian set is a spacelike direction defined
by the momentum transfer ¢*. Using the target hadron momentum P* one can construct an orthogonal
four vector P* = P* — (P - q/q%) ¢*, which is timelike and satisfies P2 = k P - ¢ with

M?Q>  AM%?

k=14 =1+ 2.67
e @ (267
taking into account mass corrections oc M?/Q? which will vanish for large Q% (k — 1). Defining
Zh = —qH, (2.68)
2 pw Wy 9p . PH
TH = Q" P _ s T (2.69)

Ve
we have Z% = —Q? and T? = @ and will mostly consider normalized vectors 2 = Z#/Q and #* = T#/Q.
Note that P-T = \/k P-q and P? = (P-t)? = k(P - 2)?. In the space orthogonal to 2 and f one has the
tensors

g =g 4 ¢q” — M, (2.70)

= T G, = €7 Py (2.71)

1
(P-a)Vk
A relevant vector in the perpendical space appears if we have more than one hadron, e.g. in 1-particle
inclusive leptoproduction. For instance Py = g'” Py, , defining the orientation of the production plane
in semi-inclusive leptoproduction, h#* = Pl /|Ppi| (see figure 2.1).

We can also construct a timelike direction using the vector vector P;,. The vector P, = Pl'—(Pp-q/ ) "
satifies ]5,% = kp (P - q)? with

MQQQ 4M2
kp=14+-—"*_ =1+ h 2.72
" (Pn - q)? 2 Q? (2.72)
One has P- P, = (P-1)(P, -t) and P} = M? + (P, - 2)*> = (P - 1) — P} =k (Pn- 2)2.
One can extend the Cartesian set with
p,-T)P*—(P-T)P"
X (Ln )A ( A) h (2.73)
(P-t)(Ph-2)—(P-2)(Py-t)
wpo p P g 1,
y# ¢ Tvihele _ = ey, (2.74)
(P-t)(Pn-2)—(P-2)(Pn-t) VK
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Explicitly one has

2 by 2
I _ 2 H _— - —h T PV P.T)
A= e P T e | T, |1 EaE
(Po) (P T) P (Pn0)
PM
< gia o D (2.75)
Zh

the last expression being without the mass corrections, valid up to 1/Q? corrections.

Introducing
_ MMQ2 _ 4 My
where M?, = M? + P2% |, one can write
PN'
XF =+ PP 2 b2 (2.77)
z K
bzl ey
from which one e.g. immediately sees that
2
X% = Ei L \/7 (2.78)
z; 1+
or using z instead of zj,
2
X% = PL; T (2.79)
F(1-0-n =)
Next we introduce two simple light-like vectors (ng - n_ =1, n? =n? = 0), such that we have
- M2
Pt = i nly + 3 (2.80)
V2 f
¢Q My
Pl =2%pt 4 —h ph (2.81)
R N
Q Q
h= Tt — —=nk + ¢, 2.82
=5 Gt (2.82)
where ¢2 = —Q2 and Q?=Q2— Q2. Note that the variables ¢ and ¢ are equal to the invariants x; and 2y,

or z up to corrections of order M?/Q?, M?/Q? and Q2/Q?. Furthermore one has that X? = —Q2 = —q2.

It is possible to take several kinematic corrections into account by starting with the above parametriza-
tion in terms of £ and ¢ and calculate the invariants. Inversion gives

2
¢ = xB% 2“2 ez \
<1+ 1+% Q;B)

or instead of the last one in terms of z instead of zj,
4x2, M2 M?
(1 +4/1+ %)

¢=z 2 4z M2 '
(1+ Vi &)

Qr is determined from Pj or implicitly from z, z; and x5 (e.g. equating the two expressions for
¢). For inclusive lepton-hadron scattering one has Qr = 0 and £ = 2z5/(1 + /). This quantity is
referred to as the Nachtmann scaling variable.




September 2007 122

We give the hadronic momenta in the frames I and II, including the vector g, up to (1/Q?). We do this
omitting the "boost’ factors 1/A and A multiplying — and + components respectively.

lepton-hadron:
momentum frame I frame II relations
_ Q Q Q Q _ _1
q_k_kl \‘Ea_E7OLJ \‘E’_Ti7qTJ qT__ZPhJ—
P zgM? _Q zpM? _Q 0 T _ _4a ~ Q* ~ _Pna
Q\/§ azva QV2 ) zpv2’ T B P 2P-q Pp-P
2Q _Mj 2Q My _ P _2Pyq PPy
P | s thsx’f’ml 2R im0 a- P ~ige s~ SR
qr ’703_2 QQ\va “ ’VanaqT“ q?": 3"

The important thing to notice is that the momentum ¢, introduced as the transverse part of ¢ in frame II,
produces in frame I a term in the +-direction, which will produce effects only suppressed by 1/Q, rather
than mass effects which always will appear suppressed by 1/Q?2.

The forms of the vectors in the Cartesian set and the vectors n1 and ¢, including transverse momentum
corrections, but neglecting mass corrections (order 1/Q?) are explicitly given below.

(H and e” et
vector frame I frame II
Q Q@ Q 742097
T \\\/57@\/570LJ {\/57 Q\/iTJqTJ
Q Q* Q Q
Z {_%’Q\/ﬁ’ol} {_%aﬁv qT:|
2
X (0,0, q,] {0 2@\%7%]
n_ [1,%—%,—%’5} 1,0, 0,]
ny 0,1, 0] 0,1, 0]
dr ’70 _25\;53 “ [07anT]

Later on we will need to transform from the theoretically useful vectors ny and ¢, to the quantities
appearing in the expansion of the hadronic tensor, ¢, Z and z,

nt Q;<<1+Q—2>T“—<1—g—2) Z“—2X“) ~ W (2.83)

Q2 TH + ZK N TH + ZH

B
T T T o (284)
QQ
= X = G (T4 20) (2.85)
Again inclusion of mass corrections can be done by using the exact inverse of the expressions for
P, Py and g,
EM?
m,&\/ﬁ (P_ @2 Ph)
- A 20202\
Q (1— S h)
_eM?
n_ = @ (Ph Q2 P)
T A0 e2m2Mm2\’
Q (1 N )

and rewriting ¢, P, and P, in terms of Z, T, and X.



September 2007 123

Neglecting the mass and transverse momentum corrections of order 1/Q? (but keeping those of order 1/Q)
we obtain

g = g" —nlin” —nfnl
Qr - Qr
_ pv {nsv} {nsv}
= g — —=q¥a" + —=tW¥z" 2.86
, , \/in{“q”}
e (2.87)

Using normalized vectors is important to see which are the terms containing transverse vectors that should
be kept at order 1/Q. Note that for any vector that in frame II is of the form [0,0, ar] with |a,| ~ 1, i.e.
~ QY one has up to @(1/Q?) the relation

Ar “qr | Or G

02 q" + o2 T, (2.88)
Note that the first term on the righthand side has in frame I the form [0, 0, a,]. We will sometimes simply
use the notation o/ = ¢"ap, for it, but one must be careful not to confuse this with the vector g/” a,.
An example of such a vector is Sz, part of the spin vector characterizing the spin of a spin 1/2 hadron,
for which one has

~ MY
ay =~ g\ ar, —

M2
pr= 2, (2.89)
M Pt
S“:—ShLFnﬁ‘f'ShLﬁni"‘S#, (290)

such that P-S = 0 and —S% = 1 = S7, + S2. Also for the quark transverse momentum vectors k. this
relation will become important.

Also the lepton momenta k and k' = k — g can be expanded in ¢, 2 and a perpendicular component
using the scaling variable y = P - q/P - k (in the target restframe reducing to y = v/E). The result is

1— 11— 2
ku:_2_yljw_lzu+ki — Qqu+(2_y)%{u+\/ y+il—ny %gu
Yy K 2 2 2y K Y K
2 00 2 — - Vi—y
Qs %qwr( 23)Qt“+ @ ” Y jn, (2.91)

where /1 = k'l /|k1], is a spacelike unit-vector in the perpendicular direction lying in the (lepton) scattering
plane. The kinematics in the frame where virtual photon and target are collinear (including target rest
frame) is illustrated in Fig. 1. With the definition of ¢, we have for the leptonic tensor? neglecting mass
corrections (k = 1)

Q2
y?

Loy =

1 y "y

-2 (1 —y+ §y2> g+ 41— y)thi
. A 1, oA

+4(1 —y) <1M” + §gﬁ ) +2(2 —y)\/1 —y tred

—idey(2—y) e = 2iN .y /1 —y {[ﬂef”ép] . (2.92)

2A useful relation is
€uvpo JaB = €avpo uB + €papo 9ug T €pvac 9pB + €uvpa 9o

or for a vector a | orthogonal to ¢ and g,
MVPTE a5 = g[uei]ﬂalm

vpo} 2 v]p
P a ) 4 ——z[“eL aj,.



September 2007 124

For completeness, we also give the full tensor including mass corrections

v 1Q°
LM — ——2

1 2 pv 1 2 %
(¢H) s |:—2<1—y+1(1+:‘i)y>9L +4<1—y+1(1—n)y)tt

+4 (1—y+i(1—fc)y2> (lﬁ”lzu—&-%gfj) +2(2—y)\/1—y+i(1—ﬁ)y2 gy

, v 1 U
—ide VE y(2 — y) €} —QZAE\/Ey\/l—y—l—Z(l—ﬁ)yQt[“eﬂpﬂp].

The lepton-momenta also can be written down in the frames discussed above using that up to (1/Q?)
corrections )
¢ _P-q Q

B
which in the target rest frame (A = 2, M/Q) equals y = v/E.
lepton-hadron:
momentum frame I frame 11 relations
1 Q 4010 1 yQ 4 _k; _ q
k [ZW@A el ,ku} {ZuﬁaAyQ—\T/iakT} kr =k +=F
K P (1-9Q 4 Q 1 P 1-9)Q 4 yvkr—2krqy) w K2 = oy
AT /2 0 y\/§’J‘ A2 0 1—9Qv2 7 dr 1= 2
The lepton phase space becomes d°k’'/E’' = E'dE'dS) = mysdxzdy, and one obtains for Eq. 2.27
(¢H) 2
do = 2Oy LD oy D), (2.94)

drsdzd?q,.dy — 2Q*
For the inclusive process one finds

do ) 7 a? y
ol OF y LD oprwm (EH), (2.95)
B

2.3.2 The annihilation process

For e~ e™ annihilation the starting point is the timelike direction defined by ¢. Then it is often convenient
to use one of the hadron momenta, say P> to construct an orthogonal spacelike vector proportional to

Py=Py— (P2 q/q*)q.

1| Q
™ = ¢ L |5 5 o |, 2.96
! L/i V2 l] (290)

2 DI
Z# = — — Pr — H = — s ’0 N 297
Prdvime v \m 2 ¢ Ve v (2:97)

For these vectors we have T? = Q? and Z2? = —Q? while
M2 Q2 4 M2

=14 2% =142 2.98
K2 +(P-q)2 +Z§Q2 ( )

The quantity sz takes into account mass corrections oc M3 /Q? which will vanish for large Q2 (k2 — 1).
Note that Py - Z = - \/ka Py - q. We will mostly consider normalized vectors t* = TH/Q and 2* = Z"/Q.
In the space orthogonal to Z and ¢ one has the tensors

g = g -+ (2.99)

1
I R ——L - N (2.100)

(P2 - q)\/Fa

Vectors in the orthogonal space are for instance obtained using the other hadronic momentum P; (see
figure 2.2). The following Cartesian vectors can be defined,
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P

lepton scattering plane (cm)

Figure 2.2: Kinematics of the annihilation process in the lepton center of mass frame

—(P-Z) Péu +(Py-2) Piu

= N T (2.101)
(PL-t)(Py-2) — (P -2)(Py-1)
b — €"P? Po, P 4o o 1 v
= (Py-t)(Py-2) — (P -2)(Py- 1)’ - NG Xy (2.102)

We define in frame I X = [0,0, g, ], with length X? = —q2 = —Q?2. The proportionality constant for X is
chosen such that X* = g¢* + ... P{'+ ... P} = ¢* — P/'/zy — P} /2. This choice implies that in frame II,
in which P; and P, do not have transverse momentum, one has the transverse component of ¢ precisely

equal to q,. In frame II we, moreover, choose two simple light-like vectors (ny - n_ = 1), such that we
have
GQ M?
Pl=>=np' 4+ ———nl, (2.103)
P2 aQv2 "
(2@ M3
Py =>=nh —=—nt, (2.104)
Vo O ND)
Q Q
b= = pt + Znl +q~, 2.105
TERT TR T (2109

where Q2 = Q% + Q2. Note that up to @(1/Q?) the variables (1 ~ z1, (2 ~ 22 and Q ~ Q. Explicitly the
hadronic momenta in the frames I and II up to €(1/Q?), including the vector ¢, are given below.

electron-positron:

momentum frame I frame II relations
_ Q Q Q Q _ 1
q=Fk+k {%a%aOLJ {%aﬁvqTJ q,=—5 P11
P M 2Q 0 M 2Q 0 25 = P_2+ ~ 2P>-q . P-P
2 22QV2 V2 1 220V2 V2 T 2 = ar ~ QT ~ Piq
©nQ M: 2Q M} _ Pl 2Piq ., PP
P [ i pu] [38gn0r] a=gbsge s B
Q2
qr ’VOa_2Q—\§§7qT-‘ [0707QT] Q%:Qi

The forms of the vectors T', Z, X, nit and ¢, are identical to the case of lepton-hadron scattering.
Neglecting the mass and transverse momentum corrections of order 1/Q? (but keeping those of order 1/Q)
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we obtain
g = g™ —niinY —ntn}
_ gﬁqu%é{u@u} n %T Hngrt (2.106)
{uqu}
g = g ny 4r (2.107)

Q

Using normalized vectors is important to see which are the terms containing transverse vectors that should
be kept at order 1/Q. Note that for any vector that in frame II is of the form [0,0, ar] with |a,| ~ 1, i.e.
Q°, one has up to @(1/Q?) the relation

Qr * qr Qr - qr
al’; ~ gliuaTl/ + Q2 Z# + Q2 q# (2108)
We will sometimes simply use the notation af = ¢//“ar,, but one must be careful not to confuse it with
the vector ¢/ a,.

Also the leptonic momenta can be expanded in the Cartesian directions. Using the scaling variable
y=Py-k/P,-q, we obtain up to 0(1/Q?) corrections

1 1-2 1-2y)
R T R =i (2.109)

where /4 = k'l /|k1|. This leads to the leptonic tensor
LY oy = @ [— (1 =2y +2y°) g1 + 4y(1 — y) 22"
—4y(1 —y) (5“5” + % g‘i”) —2(1 - 2y)\/y(1 - y) 210"
FiA (1= 2y) " — 2iX /y(1 — y) £,e" " 1 (2.110)
The lepton-momenta also can be written down in the frames I and II using
k- Pk

Yy=—= )
- P-gq

(2.111)

which in the lepton rest frame equal y = (1 & cosfs)/2 with 05 the angle of hadron (or jet) with respect
to the momentum of the incoming leptons.

Electron-positron:
momentum frame I frame II relations
_ k2
k B B ke = kL +ya,
- - k2 2k
P S0 k| [0y BB g, ke K =y y)Q?

In the e~e™ rest frame d3Pid®Py/PYPY = (dz1/21)(22Q% dz2/4)d P11 dQs = 7Q?% 2120 dz1 dze dy d*q.,., s0
Eq. 2.43 becomes

do(e™e™) Ta
= (e¥e™)yyuv(ete) 2.112
dzy dze d?q, dy 2Q4 anl ( )
For the production of a single hadron
(efe)
do'® ) _ mo? 2Ll e Iweten), (2.113)

dz dy Q
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lepton plane (cm)

Figure 2.3: Kinematics of the Drell-Yan process in the lepton center of mass frame

2.3.3 Drell-Yan scattering

For Drell-Yan scattering, for which ¢* is timelike, one can define the following four orthogonal vectors that
can be used to expand any vector. Starting with ¢* defining the timelike vector T*#,

Q Q }

T = g S5 50u 2.114
! [\/i Nt (2114)
Pp-q 3 Pa-a 3 Pp-q Py -q 1@ Q

= Py — Py = Py — prLl|l= =0 2.115
PB'PA 4 PA'PB B PB'PA A PA'PB B |:\/§7\/§a A ( )

oo i L (2.116)
(Pa-t)(Pp-2)— (Pa-t)(Pp-2)

yr = €"P? Py PBoqo 2.117)

(Pa-t)(Pp-2)—(Pa-1)(Pp-2)

These vectors satisfy T2 = @2 and up to mass corrections Z? ~ —Q?. We will use normalized versions
th =TH/Q and 2* = Z"//—Z2. We note that in this case both hadrons are used to define the spacelike
direction, in contrast to e.g. e¥e™ annihilation (compare figs 2.2 and 2.3). In the space transverse to
T = q and Z we can use the perpendicular tensors

g = gM — Y 4 s (2.118)
- 1
= e, = 5P, 7, (2.119)
We define in frame I X = [0,0, g, ], with length X? = —q2 = —Q?2. The proportionality constant for X is

chosen such that X* = ¢* + ... Py + ... P =~ ¢* — 2, P} — 2, Pj;. This choice implies that in frame II,
in which P4 and Pp do not have transverse momentum one has the transverse component of ¢ precisely

equal to q,. In frame IT we, moreover, choose two simple light-like vectors (n4 - n_ = 1), such that
Q §a M}y
Pt = nt 4 25 A g (2.120)
AT a2 T QvR
Q Ep M3
Pk = Py 2Bk, (2.121)
P V2 Qve
Q Q
b= pt 4+ Znk 4+ gH, 2.122
TR TR T (2122

where Q% = Q2 + Q2. Note that up to ¢(1/Q?) the variables {4 ~ ., £ =~ x5 and Q ~ Q. Next, we
explicitly give the hadronic momenta and ¢, in the frames I and II, up to 0(1/Q?).
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Drell-Yan:
momentum frame I frame II relations
_ / Q Q Q Q
q—k+k {ﬂ’ﬂ’OLJ {\/ﬁ?\/ﬁ?qTJ
p saMi, _Q_ _4rp aMi _Q_ p.o— 4 o Q@ . Psg
A QVZ Tav2) 2a4 QV2 'zav2 T AT P] T 2Paq” Po-Pa
P [ Q_=eMp, _&} [ Q* _ zpMj O} r, =9 Qo Pag
B zpV2)  QV2 O 2p TpQV2) QV2 T B~ P, 2Psq " PaPs
Q3 Q2
qr {_Q%’_Q—\}é’q”;‘ [0707QT] qi: ?P

The precise forms of the vectors in the Cartesian set and the vectors ny and g are explicitly given
below (omitting "boost’ factors 1/A4 and A multiplying — and 4 components respectively).

DY
vector frame I frame II
Q Q Q Q
T {ﬁa%aOLJ {jivjiaqTJ
_Q Q _Q Q _
Z |: V2 V2 0J.:| |: V2 V2 0T:|
X 0.0 Qr Q7 Q@
[ ) ) qT] Q\/i’ Q\/i’ Q qT
n {:&-Q Q-Q _Q_T] 1,0, 0]
- 2Q 7 2Q 0 Qv2 ’ )y VT
n4 |:Q27Qa QQ+Q ) _%} [O ) 1 ) OT]
2 2 A
dr "_ QQ\}éa_QQ\;i 7%(17"-‘ [07 07 QT]

Later on we will need to transform from the theoretically useful vectors ny and ¢, to the quantities
appearing in the expansion of the hadronic tensor, ¢, Z and z,

w_ L Qo g u) o T Zr X

"= <QT” zZr X“) NG (2.123)
“:L QT“—Z“—X“ %w 2.124
NG (Q QV2 (2124
qg:%Xu_Q_%Tu ~ X“—Q—%T“ (2.125)

The last relation is important to keep track of transverse momentum effects at order 1/Q. Neglecting the
mass and transverse momentum corrections of order 1/Q? (but keeping those of order 1/Q) we obtain

g = g" —nkn” —nfnl
"+ % gtavt, (2.126)
el

= — . 2.127

Using normalized vectors is important to see which are the terms containing transverse vectors that should
be kept at order 1/Q. Note that for any vector that in frame II is of the form [0,0, ar] with |a| ~ 1, i.e.
~ QY one has up to @(1/Q?) the relation

v Qr -
a ~ ¢"ar, + TQQqT q". (2.128)
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We will sometimes simply use the notation /| = ¢'“ar,, but one must be careful not to confuse it with
the vector ¢/ a,.
Also the lepton momenta can be expressed in the cartesian vectors. For DY we have

1-2 1-2y)
% :§T“+ 2yZ“+k“ = Cjw+( : N Rn 3 (2.129)
where /4 = k'l /|k1|. This leads to the leptonic tensor
Ly, = Q2[— (1—2y+2¢°) g + dy(1 — y)2H2"
—4y(1 — )<M”+ 2g ) —2(1 —2y)\/y(1 —y) 2t
—iA(1—2y) " + 2iA /y(1 —y) é,,ei“‘z”]] . (2.130)
The lepton momenta can also be written down in frames I and II using
k= kT
y="_ 2.131
g gt ( )

which in the lepton rest frame equal y = (1 £ cos#)/2 with 6 the angle of the leptons with respect to an
axis that is approximately parallel to the momentum of hadrons A and B (the z-direction).

Drell-Yan:
momentum frame 1 frame 11 relations
¥Q (1-1)Q vQ _k; _ 1
g 8 Ak B0 k) fr =kt 24
/ (1-9Q ¥Q _ -y (ki—2krq,) 2 _ o
k 7 kﬂ [ 7 i gavs 0 9r kTW k1 =y(1-y)Q
Eq. 2.63 becomes
DY 2
o) _ 70 o)y (2.132)
dr,dzs d®q.dy  Q* ~H

2.4 Spin vectors, ...

In the next section it will turn out that the most convenient way to describe the spin vector of the target
is via an expansion of the form

Maxyg

Q
Q\/§ Mﬂ:Bﬁ

One has up to ¢(1/Q?) corrections S, ~ M (S -q)/(P -q) and S; ~ S,. For a pure state one has
S? + Si =1, in general this quantity being less or equal than one.

The final state spin vector S;, in the case of detection of a spin 1/2 hadron (e.g. a A-baryon) will be
expanded in the same way. This vector can e.g. be determined from the decay products (e.g. the N
system in case of a A). It satisfies P}, - S;, = 0 and is written

Qg Mu
— L
]\4h\/§ Zh Q\/i

Up to 0(1/Q?) corrections one has Sy, ~ My, (S - q)/(Py - q), but note that one has S, ~ Sp, —
Shr Pni /My, In general one has S3, + 87, < 1.

St =-8,, ——n_+ Sy, ——— n4 + Sr. (2.133)

Sﬁ = Su. Ny + Shr. (2.134)



Chapter 3

Quark correlation functions

3.1 Distributions: from hadron to quarks

We consider now the most general form of the two-quark correlation function

1 ik _

Gt | € S EUR S O @1P.5), (31)
where a summation over color indices is implicit, diagrammatically represented in Fig. 3.1. In order to
render the definition color gauge-invariant each quark field needs to be accompanied by a path ordered
exponential (link operator) of the form

®,;(k,P,S) =

§
U (a,§) = Pexp (—ig/ dz" A#(z)> . (3.2)

For the relevant correlation functions ® in a hard scattering process, we will encounter only those cases in
which the link involves gluons of the type A - n, where n is a lightlike vector (see Fig. 3.2).

Constraints on the correlation function ® come from hermiticity, parity and time reversal invariance.
We know how the states behave under such transformations and we know how the fields transform. This
gives consistency conditions. One finds

®f(k, P,S) = 7 ®(k, P,S)yo [Hermiticity] (3.3)
(I)(k7p7 S) :’YO(I)(E7P7_S) 70 [ParltY] (34)
®*(k, P,S) = (—ivsC) ®(k, P, S) (—iy5C) [Time reversal] (3.5)

where C' = iv%yg, —i75C= iy'y® and k = (k°, —k).
We will give the explicit proof of these properties. Starting with hermiticity,

@)y = 05 = g [ 46 P SHLOG0 ©IPS)
- ﬁ / d'e e (P, S () (o) (0)| P, S)

= ﬁ/d‘lg eik‘5<P7S|El(0)(70)lj(’YO)ikl/)k(fNP, S)

= (70)ik Prt (70)1s,

Figure 3.1: The diagrammatic representation of the quark-quark correlation function ®(k, P, S).

201
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Figure 3.2: The link as can be obtained from A gluon blobs (see sections 3 and 7) in the case of
T =&, =0 (left) and the case &7 = 0,&, # 0 (right).

where from second to third line translation invariance has been used. Next considering parity

®i;(k, P, S) = —(271r)4 /d4§ eikf(P’S|9T<@Ej(0)ﬁf=@¢i(£)97<@|P, s)
= —(2711_)4 /d4£ eik-‘E(P,—S|El(0)(fy0)lj(70)ik¢,k(g)“—}’_S.>
1

= ) /d4£ eik‘i(p, —511,(0)(70)15 (Y0) ixtbr (£)| P, —S)
= (70)ik Pr(p, P, =) (v0)15,

where 2 (&) 21 = v (€) and from second to third line k - € = k - € and d*¢ = d*€ has been used.
Finally time reversal invariance (with 7 anti-unitary),

@ (k,P,S) = 1 /d4£ —~ k~§<P7S|yTij 0.7 79:(€) 7T 7|P, S)
= 27r /df TP, §(—inaC), (0)(—irsCe)i(—E)| P, 5)

- / d'€ & FE(P, B[ OB), (0) (—ivs Cu)i(€)] P, §)
= 2’750)m ik, P, S) (—iysO)yj,
where ﬂd)(f)yT = —iysCp(—E).

Including the link-operator these properties will be different. For the gauge link one has

%T(a7§) = %(57 )’ (36)
P U (a,6) Pt = U (a,€), (3.7)
T U (a,€) TT = U (—a,—£), (3.8)

for which we used AL = A, AP = A, and T A,(6) TT = A,(—€). This means that the
space-reversed (time-reversed) correlation function has a different link structure running from a (—a)
respectively. However, if the common point is defined with respect to the two fields in the matrix element,
no problem arises. For example the straight line link with path z#(s) = (1 — s) 0* + s&H gives a path
zZH after applying parity, but after the change of variables one ends up with the same path; similarly for
time-reversal.

The most general structure implementing the constraints from hermiticity and parity is

ok, P,S) = MAl+A2P+A3k+iA4%+iA5(k-S)V5+MA6$75
B D PEL B
+A11(M)[Pk] et Ary W’ 59)

where the first four terms do not involve the hadron polarization vector. Hermiticity requires all the
amplitudes A; = A;(k - P,k?) to be real. The amplitudes A4, A5 and A2 vanish when also time reversal
invariance applies.
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One might wonder if the lightlike direction n should not appear in the expansion of the matrix element
®. We note, however that the matrix element with link, ®( in the gauge n- A = 0 becomes equal to the
matrix element ®(©) without link. In the expansion of the latter n obviously does not appear. For the fully
integrated matrix element, which involves a d*¢ integration, however, one can consider a different gauge
n'- A = 0 and perform a change of integration variables such that £ -n’ = £ -n. One then finds that ® (")
= ®() ie. the link direction will never appear. Essential in this is the fact that n is not fixed by the
momenta k, P or S.

For the applications, it is useful to introduce besides the lightlike vector n = n_ a lightlike vector n,

such that one has ni =n? =0and ny -n_ = 1. The vector ny is fixed by the hadronic momentum such
that
’ +
P = Wn_—FP ny, (310)
M Pt
k=k~n_+xzPtng + k. (3.12)

The parametrization satisfies P2 = M? and P - S = 0. One immediately deduces k= = (k2 4 k2)/2z P,
while 2z k- P = k2 + k:i + 22M?. Depending on the use of the soft parts one may need integrations over
one or more components of k. At that point the lightlike vector n_ will become relevant.

The fully integrated result leads to a local matrix element, omitting the dependence on hadron mo-
mentum and spin vectors (P, S),

By = [ ahay (5. P.5) = (PS[T,0) 6(0)P.S), (.13

It is parametrized as
1 )
®:§{MQS+QVP+M9AW5$+QTW}' (3.14)

Because the matrix element is local the gauge link will vanish and there will be no dependence on the
lightlike vectors. Projecting using a basis of 4 x 4 Dirac matrices (I')and defining

alll = %Tr(q>r)7 (3.15)

one finds

200" = (P, S[(0)y* 1(0)| P, S) = gy 2P*, (3.16)
231" = (P, S[1p(0) 475 1 (0)|P, S) = g4 2M S, (3.17)
2@l sl — (P S[1h(0) ic" 5 (0)|P, S) = g, 2 S, PV (3.18)
20l = (P, S[((0) ¥(0)|P, S) = gs 2M, (3.19)
2017] = (P, S[(0) iys (0)| P, S) = 0. (3.20)

Note that g, = n (number of quarks minus antiquarks), g, is the axial charge for quarks and antiquarks
of a particular flavor, g, is the tensor charge. Multiplying gs with the quark mass one finds precisely
the contribution of the quark mass term to the nucleon mass. The first two matrix elements are special
because the operators correspond to conserved currents (for the axial current up to mass terms). The
anomalous dimensions of these operators vanish.

In inclusive deep inelastic scattering one needs to consider the correlation functions

®;5(x)

/ d?ky dk™ ®;;(k, P, S)

kt=xP+

_ /di_; e (P, S[,(0) % (0,€) :(€)|P, S) , (3.21)

Et=£r=0

This correlation function is in general the result of a large number of diagrams, as it not only includes
matrix elements that contain only quark fields, 1), but also matrix elements of the type A1 ... AT,
All of these will contribute in leading order in 1/Q. It will turn out that in a full calculation gluonic
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matrix elements containing AT fields precisely form the for color gauge invariance necessary link, which
runs along the minus direction (see Fig. 3.2). Working in the gauge AT = 0 none of the gluonic matrix
elements will appear and the link in Eq. 3.21 becomes unity.

The quantity ®(z) can be parametrized as

1

)= 5{f”)m“m(xmwhl(x)M}

+2%{e<x> +gr(@) 3 B+ A b (@) %}

+2%{—A eL(&) 75 ~ Fr(2) 73 Sro + h(2) M}
T {fs(a:) o+ Aga(e) st + o) %} (322)

The factors of (M/P7) are the ones required from Lorentz invariance. As we will see, each factor 1/P™ gives
rise to a suppression factor of 1/Q in cross sections. From the structure of the above matrix element, being
of the form A% 2/(P*)!~2 one defines the quantity ¢, the (operational) twist of the profile or distribution
functions appearing in the parametrization.

To be slightly more specific, using the amplitude expansion for the quark-quark correlation function
one can easily analyze the effect of the integration over £k~ and k, for the different Dirac projections of
the quark correlation functions (twist analysis). For instance

oll(z) = %/dk* d?k, Tr(1®(k, P,S)) o
kt=xP
M
= 55 d(2k - P)dk* m Ay (k*, k- P)0(2x k- P — 2 M? — k?)
M
— ﬂe(a}), (3.23)

where r = k*/P* and the integration over k., is rewritten as an integration over k2 using k:i =2xk-P—
22 M? — k2. In rewriting the matrix element in this way one has separated it in a function e(z) which we
refer to as a distribution or profile function. This function, containing only hadron and quark momenta
and scalar products of them which are of hadronic size (Ag), is of €(1). It is multiplied with some factor
that contains some powers of PT and momenta of hadronic size of which the consequence has already
been mentioned. The functions ey, fr and h are expected to vanish because of time-reversal symmetry.
They involve the amplitudes Ay, As and Aj2. We have kept them here, because they will have potential
relevance later and furthermore are useful for comparison with fragmentation functions. The functions are
referred to as T-odd.

Projecting with the various Dirac matrices one finds the 'leading’ (twist two) distribution functions

o (z) = fi(a), (3.24)

¢‘[’Y+’Y5](1’) = Agi(x), (3.25)
ol ) () = Si ha (), (3.26)
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the twist three distribution functions

ol (z) = B €(@), (3.27)
L) = % er(z), (3.28)
ORI ) (329)
ol () Afgf; gr (), (3.30)
Bl ) () = % Mhi(2), (3.31)
ool () = Izﬁ €4 Ah(z), (3.32)
and the twist four functions
o (z) = <%>2 fs(2), (3.33)
Bl 5] (7) = <%)2 A gs(@), (3.34)
Blie ") (7) = (%)2 St ha(x). (3.35)
By rewriting ® in Eq. 3.14 as
o = PTJF {gvﬁJr +Agays ot + gr W}
+ % {gs + 9475 fr + Agr W}
+2]\%2+{1gm + = Ag”m +— [ST’Z s } (3.36)

it follows from ® = [ dk™ ®(z) = Pt [ dx ®(x) (assuming convergence and integrating over all z-values,
which will be discussed later) that

[z fitw) =2 [ do faw) = g1, (3.37)

/da: o (z /dx gr(z) = —Z/da: g3(z) = ga, (3.38)
/da: hi(x /dx hp(x) = Q/da: hs(x) = gr, (3.39)

/da: e(r) = gs, (3.40)

/da: er(x /da: fr(x /dx h(x (3.41)

Making use of support properties of the distribution functions (=1 < z < 1) and symmetry relations be-
tween quark and antiquark distributions (the latter to be discussed in the next section), fi(z) = —fi(—z),
and finally the fact that the vector charge gy is in fact the definition of the flavor quantum number, i.e.
gv = ng, the first line turns into the number sum rule

/0 dz (fi(z) — fi(z)) = n. (3.42)

In semi-inclusive deep inelastic scattering or Drell-Yan processes, the matrix elements that are needed
for the hadron — quark pieces in the hard scattering processes are the ones in which the integration over
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k. is not yet performed, namely

@ij(x,kT) = /dk_ (I)ij(k,P, S)

kt=zPt, kr

)
= [EEE RS T0 200 e uEOrs) . (343)

@)’ oo
In this case one is sensitive to transverse separation .. We consider, however, only gauge links attached
to each quark along the minus direction, i.e. built from matrix elements with additional A* fields, which
contribute at the same order in an 1/@Q expansion (see Fig. 3.2). That this is the result in an actual dia-
grammatic expansion needs to be proven. It will turn out that the bilocal quark-quark matrix element will
be supplemented with links running from 0 to [0, 00, 0] and one running from [0, 00, €] to [0,£,&,] re-
spectively, With the physical condition that any matrix element involving ¥(0) A(n~ = 400, 7T, 1) ¥(€)
vanishes, the links can be connected and one has a color gauge invariant quantity, for which after gauge
fixing the link becomes unity. At this point it is useful to mention that quark-quark-gluon matrix elements
with gluon fields other than A' need to be considered separately (see chapter 4).

We write down the expression for ®(x, k,) in terms of ny, n_ and transverse vectors up to O(M/Pt),
including T-odd parts, but restricting ourselves to twist-two (o< 1) and twist-three (oc M/P™) parts. Simple
kinematic arguments already show that factorization of k,-dependent functions cannot hold beyond twist-
three.

vpo v k?Sg
ko) = %{fl(x’kT)ﬁJr + fir (e, k) % + g15(x, kr) 75 it
+h1T(JJ, kT) 2 [$;—7 ﬁ+] + hlLs(x, kT) P B Pt %Lﬁuﬁ_] + hlL (33, kT) 72. [}6271;\47%4_] }

M
4——2PJr {e(x, kr)+ fl(g;, kr) kMT — fr(z, kr) €277, 10
€ Yphro
M
T, Be) s B+ g (o br) 2KT 4 bk (e k) 221Er ol

M 2M
s [, 0] iy ]
2

+ (z, k) 7} (3.44)

A (. ker) —es(z, kr)ivs

+hs(makT) D)

We have here use the shorthand notation

(kr-Sr)
M 3

and similarly for other functions, e.g. hi;, g~ and hs. Included are also T-odd functions fi, ki, fr, fi,

es and h.

Again we can analyze the Dirac content of the correlation function (twist analysis). For instance for
the unit matrix the effect of the integration over £~ is

Gis(w, k) = Agip(w, kr) + g17(z, kr) (3.45)

oz k) = %/dk* Tr(1®(k, P,S))

kt=xP*t, kp

M
= F/d(Qk:-P)de’ A (K% k- P)o(k2 + k2 — 22k - P + 2% M?)

= % e(z, ky), (3.46)
where z = kT /PT and k., is the transverse component of the quark momentum % in the frame where P
has no transverse components, i.e. frame II discussed in the previous section. The profile function e only
depends on x and ki It is expressed as an integral in which all momenta and products thereof are of
hadronic size (Agr), and is multiplied with a factor of the form A% */(P*)!~2 defining the operational
twist. It is this factor that will lead in the cross section to a suppression factor 1/Q*~2.
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The various (T-even) Dirac projections ®') = (1/2)Tr(®I') appearing in here are explicitly

+ 2 kriSr;
O (@, ko) = (e, k) = T i (e k), (3.47)
+ k * S
o 5z k) = Agip (@, kr) + gi7 (2, ko) {kr 5x) TM T)7 (3.48)
[ic*t 5] 1 k:bf 1 6’?ij 1
@ "z, k) = Sy lar(z, kr) + 57 hiy (@, kr) — =57 hi (2, k1),
i Ak
= Srhi(z, kr) + MT hiz(x, kr)
ki kj k209 S g,
_ (kkr + AhﬂT)TJH}@kTy—?Emhﬂakﬂ, (3.49)
and the profile functions that appear multiplied by a factor M/P™" (twist three) are
M
@“Mm,kT)::Eﬂ;e@;kT) (3.50)
i kL
q)h ](x7kT) = P_ifL(kaT% (351)
i M Sk K}
ol (2, k) = ?QIT(I kr)+ Pi g: (z,kr)
Mk Ak keky + 3kig7) St
TPt gT( 7kT) P+ gL( kT)_ ( — M2T T) — g%(kaT)v (3'52)
s J o J
(I)[za 7 5] (1} k ) M hT (I kT) (3753)
- M
(I,[za+ 5] (m, kT) = F hs (I, kT). (3,54)
Note that sometimes it may be useful to work with the functions projected using o, instead of io ., vs.
These are
o] 4y GiTj/ij 1
[} (II}, kT) = € ST] th(I, kT) + T hls (I,kT), (355)
i M (%
"4, ky) = Pi he(z, k), (3.56)
ot kr:iS
! ]@ukT)::SL?;:ElhT(,kT) (3.57)

The integrated results fi(z) etc. discussed before are obtained from f;(z, k2) etc., where one must be
aware that g1 = g17, b1 = har + (k2/2M?)hiz = hir + htﬁl) and gy = g + (k2 /2M2) 97 = g +gT(1).
Besides the kr-integrated functions shown before, it is useful to consider k¢-weighted functions,

L pa(a) = d’k ﬁ@xk (3.58)
M P M

1 . (Rek? + 42 g2%)
m @88 (33) = /d kT M2 ¢($7kT) (359)

Note that the operator structure involved is
S5 (z, kr) = kS O(x,kr)

B /@%%%””WRQ@MMM%@wmmw@w@HR$

_ /@%%gwmﬂgﬂmm%mmﬁﬁ@%&OMMRﬁ

Note that in this case choosing the gauge AT = 0, one cannot just neglect the link operator, because it
contains &, dependence. We will return to this in the chapter 4. Note, however, that in the way defined
here, the correlation function ®y is color gauge invariant.

§+t=0

(3.60)

£+=0
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We use the following properties for integrating k2 dependent functions over kr,
/koT k‘%kl}...:—%/koT krgs. ..
Phop Kok Kk = 2 [ Pk ( 2B | o g
T Frlr Brhr... =3 r kr (97'97” + 977 97" + 97 gT)"'7
d2k kakﬁ kl k] 1 k2 ij _ 1 2 4 i Bj aj Bi af ij
T KpRp TT+§ T 9r TR d°kr kr (ngT +9r°9r — 9r gT)"'7
2 a1, 1 2 ap i 7.9 1 2 ij 1 2 4 i Bj aj [Bi af ij
d"kr kaT+§kTgT kaT+§kTgT :g d°kr kr (ngT +9r°9r —9r gT)"'7
Nonvanishing for twist two are
L calvtas) o 2 k7 =524
i 038 (z) =87 | &kr WE gir(z, kr) = S7 g7 (), (3.61)
1 alic? ai
M%[ ")) = — g2 A/d kr 2]\;2 hip(z, kr) = —g5 Ahi Y (), (3.62)
(o3 ZO' 1 T k2 2
W(I) Blio™ sl () = —5( P+ g Se — g3’ sy )/koT <ﬁ) hizr(z, kr)
1 ot L]
= — 5 (9852 + 92’87 — 93781 ) WP (@), (3.63)
and for twist three
1 aly? ot M
iV q’ah @) = —g7 T O (@), (3.64)
1 o ; M
37 87 @) = gt 5 A (@) (3.65)
1 o M at L]
m@ §0 @) = — oo (9857 + 9755 — 63751 ) 97 ® (@) (3.66)
afictd M at T
@3 el () = - (95754 — 92757 ) b (@), (3.67)
1 afict™ e
% @) = ﬂs P (@). (3.68)
We obtain now besides the integrated results, the k,-weighted results
1 0,y R
) = 5 { 912 (@) S5 fars — Ahi (@) LR
M 1
+2Pﬁ{—fl(l)(l‘) v+ g7V (@) 73
«
+hED () [y ,fT]% + 1D () 52 [ﬁ+,72€—]75} (3.69)
S{ 5}7 _ B ,
2@ = -~ ( 0% thabs — (Bt
M @ S8y — g8 Bvs 270
opt I (x) B (3.70)

For the matrix elements @g(x) no new functions come in. Working in A™

O U (0,€) =% (0,£) DT, see chapter 4) one sees that

B (o) =aP* 0(a) = [ G HEP ST 0) (0.6 D ()| S)

Et=¢r=0

)

= 0 gauge (or using

(3.71)
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and hence using the parametrization of <I>h+],

20,1 = P+/dx Te (0 (2)4) = (P+)2/dx o Tr (D)
= 2(P+)2/da: vfi(x) = (P, S|%(0) v iDT(0) | P, S). (3.72)
o T

€q

Realizing that 0;* is only part of the energy-momentum tensor, it leads to the momentum sumrule
Jdx zfi(z) = €4 < 1. Using the support properties of the distribution functions (-1 < 2 < 1) and the
symmetry relation fi(z) = —f1(—=x), the sum rule reads

/0 de x (fi(z) + fi(z)) =€ < 1. (3.73)

3.2 Antiquark distribution functions

The profile functions for antiquarks in a hadron are obtained from the matrix elements

®,;(k,P,S) = ﬁ/d% efik-§<P,S|%(07§)¢i(§)wj(0)|p7 S)
= <z7lr>4 / die e (P, S (0)% (0,€)i(€)|P, S). (3.74)

For a definition of the profile functions that is consistent with the definition of free particle and antiparticle
states, one needs the correlation function ®€¢ that is defined analogous to ® but using the conjugate spinors

Y€ = CET, where C”yff Ct = —,,

1 . —c
@5 (k, P, S) = @ /d4§ B (P, S[ih;(0)% (0,€)45 (€)| P, S). (3.75)
The relation between these quantities is ¢¢ = —C ETCT. Using @'l to define the antiquark profile

functions, f(z,kr), etc., one must be aware of the relative sign (&) between 3" and ®°'1 depending on
I' = FCTTCT. Explicitly,

6[F]
)

= ¢l for I' = vy, 0 OF 90,75,
I _ — eIl for I' =1, .75 and iys,

We note also that (at the twist two and twist three level) the anticommutation relations for fermions
can be used to obtain the symmetry relation

@, (k,P,S) = —®;;(—k, P,S). (3.76)
For the profile functions this gives the symmetry relations
Fi(w, k) = —fi(-x. kD) (3.77)
and identically for gi7, hir, hf-T, gt and hy, (C-even functions), while
(@ k7) = g10(~w,k7) (3.78)

and identically for hi;, e, f*, g4, g7, h# and hr (C-odd functions).
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Explicitly we get (fixing ¥~ and integrating over kT)

k—=zP~, kr

%/dk* (k, P, S)

1 |- — . 1 10, YskkEn?
n {f1($7 kr)p— +Gis(z, kr) povs — har(z, kr) 105 SEnY. — hyg(z, kr) L}

4 M
o {—ax, k) 4 T ko) K24 g0 k) s 45 o) B0
~Top (. k) % — ha(w, ke) ioysnt ni}. (3.79)
and the projections for twist two are
37 N k) = Fla, k), (3.80)
3 @ k) = 7y, (3, k), (3.81)
T k) = 3T (o, k) + 22 B (o), (3.2)
while those of twist three are
k) = — 2L o k), (3.83)
3" (0, k) = ]’jT_ T (2, k), (3.84)
T k) = - M5 g o) - EE g k), (389
T ) = M iy (2, k), (3.86)
31 (g k) = % T, For). (3.87)
Using o, instead of i0,,,y5 one has
37 a ky) = —cif Sy T (o, ) — il Ty, k), (3.88)
37 (@, k) = —]\ff_gj Tio(z, oz, (3.89)
37 e k) = —@ Top (. ko). (3.90)

The integrated results for antiquarks are



March 2007 211

3 [ PR TP = {?1(33)7%_ AT (@) s + P () W}

+%{—E(:v) + 37 (@) Brvs + A (z) W} (3.91)
g [actere RS = {aﬁlT’(x) S iy — Ay (a) W}

+%{_7Lm@ 7 = A7z M (@)

i 0@y D82S | 50 g Pl } (3.92)

% / dk d2k (kakg M2 gggﬂ) o(k, P, S) -

2T @) (Si"‘ bbb 5;55 5. ﬁ]%)

T ) <S§awﬁ}% 5 s ﬁm) (3.93)

3.3 Result for an ensemble of free quarks (parton model)

It is instructive to calculate the correlation function for a free quark. This is given by
i (. s:k) = wi(k, s)u;(k, 5)0" (k — p) = 5 ((k +m) (1 +5§)),,0" (k — p), (3.94)

where the momentum and spin of the quark are parametrized as

k2 +m?
ko= [TZT kT, kel (3.95)
mAg  kr-Sgr  AgkZ A kT Ag
T [_ ot T TR 2mkt Tm SqT+EkT (396)

in terms of a quark lightcone helicity A, and a quark lightcone transverse polarization sqr, such that £ - s
= 0 and )\3 + szT = —s2 = 1. Note that this helicity only is a true helicity for a quark with infinite
momentum. It is then straightforward to calculate the projections for a free quark target. For twist two

o1 (k) = 6(€ = 1) 8*(kr — Py) = Farjan + Fatjors (3.97)
STl (k) = Xy 86 = 1) 8% (K — pr) = Fat/an — Fatjons (3.98)
¢[i01+75](/€) = SZT (€ —1)8(kr —py) = fo=asr = fa—/asr) (3.99)
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where £ = kT /pT, and we have indicated the intuitive interpretation in terms of probabilities of finding
quarks in a quark with spin given by A and s, (see below). For twist three we get

ol (k) = 75 8¢ = 1) (ks — p,). (3.100)

o' (k) = :—1 §5(§—1)6°(kr —py), (3.101)

thi%](k) — (Tnssz%/\qkT) 5(&—1)0%*(ks —py), (3.102)
o SiTk’Zr - k’é“sé 2

plie” ) (k) = qk—+ d(&—-1)6(kr —p,), (3.103)

lio s (1) = W §(&—1)0%(kr —p,). (3.104)

In a parton model description of the target, one uses the expansion for the free quark field to get

Dij (k) = 28(k = m?) [0(@)ul” (k) Pa (0)a\ (k) — 6(~2)o (=k) P g (~R)5 (=R)] . (3.105)

i J

where x = k™ /PT. The use of lightcone coordinates is convenient because of the integration over k™ that
is needed in deep inelastic processes. The functions & and & are given by

Poalk) = Paale,k2) = 5 (2;)3 / é”;;g e (PSIBL (KR PS). (3.106)
! 2 1./
Poall) = Pone k) = g [ s (PSIAL)(IPS). (3.107)

Note that Pz (k) is a production matrix in the quark spin-space of which the trace is the quark density
operator evaluated in the target. The Dirac structure can be parametrized as

P (k, 5) P (k)@ (k,s) = P (k) +m) (H%’M)) (3.108)
VP (k, 5) P 3o (k)0 (K, 5) = P (k) (F — m) <1++5g(’“)> (3.109)

in terms of a positive definite quark and antiquark densities (k) and (k) and spin densities s(k) and
5(k) which satisfy 0 < —s?(k) < 1or0 < X2(k)+s2,.(k) < 1. Inserting the free field expansion in the current
expectation value (PS[(0)y*1(0)|PS) = 2P*(N — N), where N and N are total number of quarks and
antiquarks respectively one obtains from the 4-component the normalizations fol dz d*k, P (x, ki) =N
and [ do [ d®k, P(x,k2) = N.

Integrating over £~ one obtains the result

1 — _ ‘@(xa ki) 1 +'75#(:EakT)
3 [amam = o) T g (L)
?(_xv k?ﬁ) 1+ 753(_567 _kT)
- 9(—I)T(}€+m)( 5 : (3.110)
This gives (for z > 0)

ol (k) = P(2,k2) = Pri + Prr = Poa + P, (3.111)
Ol (k) = Ay (2, ke) P(@, k37) = Prr — P, (3.112)
L7l () = 58, (2, k) P, k2) = P — P, (3.113)

where the indices R/L and «/( are particular (chiral and transverse spin) projections for the fermion
fields or spinors, obtained using the projection operators Pg/;, = (1£75)/2 and Qfl/ﬂ = (1£~%y5)/2. The
interpretation of the first equation is that of the probability for finding quarks in a target. The second
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equation is interpreted as the probability for righthanded quarks minus that for lefthanded quarks. The
third equation is interpreted as the probability for quarks with spin parallel to the transverse direction ¢
minus that for quarks with spin opposite. The chiral structure of these functions is RL + LR and they
are referred to as chirally odd distribution functions. Equating these unpolarized and polarized densities
to the distribution functions defined in the previous section,

‘@(xa ki) :fl($7kT)7 (3114)
k;-S
(2, kr) P(x,k2) = A gip(x, kr) + TM g7 (v, k) = g1s(z, k), (3.115)
i 2\ _ Qi k; 1 1 kT ) ST
qu(x7 kT) 32(557 kT) = ST th(CC, kT) + M hlL(fvv kT))‘ + th(IE, kT)
i ki1
= Sy har (@, ke) + - b (2, k), (3.116)

shows how the functions gi11,, g11, h1, hfL and hi; are to be interpreted as longitudinal and transverse spin
distributions given the spin of the hadron (A and S;). For the antiquarks the same relations hold between
the antiquark helicity A\, and transverse polarization 35 on the one hand and the antiquark distributions
on the other hand. Extending to all z, results are obtained in accordance with the symmetry relations in
the previous section, e.g. fi(x, ks) = 0(z) P (x, k2) — 0(—x) P (z, k2).

We note that at the twist two level this parton interpretation can be made rigorous as the distribution
functions can be expressed as densities involving the socalled good components of 9, 1 = P} obtained
with the projection operator Py = %"/—"ﬂ'. In lightfront quantization a Fourier expansion for the good
components (at T = 0) can be written down in which the Fourier coefficients can be interpreted as particle
and antiparticle creation and annihilation operators The different spin-distributions involve projection
operators (Pg/; and Q(ly /ﬂ) that commute with Py. At twist three the analysis of the quark - quark
correlation functions lead to a number of new distribution functions. For an ensemble of free quarks they
can also be expressed in the quark densities and in this way related to the (six) twist two distribution
functions. Explicitly one has for the ensemble of free quarks,

m
e(z,kr) = 3 fiz, kr), (3.117)
1
F (k) = — filw, k), (3.118)
m
gr(w kr) = 5 Inr (@, kr), (3.119)
1 m
0 (2. kr) = — gra(@,kor) + 5= i (., k), (3.120)
1
h (2, k) = — (@, ky), (3.121)
m kr- S k2
ha(a k) = 57— g1s(@ k) + L2 hyp(x, ky) + —ng hi,. (3.122)

As we will show in one of the next sections, the above results are not generally true; the presence of
nonvanishing quark - quark - gluon correlation functions causes deviations from these naive parton model
results.

Summarizing we get for ®(z, k,) and ®!'!(z), ordered according to twist, chirality and time-reversal
behavior for unpolarized (U), longitudinally polarized (L) and transversely polarized (T) (spin 1/2)
hadrons:

DISTRIBUTIONS DISTRIBUTIONS
x-even x-odd x-even | y-odd
oM (z,k;) | T-even | T-odd | T-even | T-odd o () T-even | T-even
U f1 hi Ul h
twist 2 | L giL hfL twist 2 | L a1
T| gr fir | hr hip T I
U ft gt e h U e
twist 3 | L 9t i hr er twist 3 | L hr,
T\ gr 95 | & fr | hr hy |er ep T gr
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3.4 Fragmentation: from quarks to hadron

For the fragmentation of quarks into hadrons we need the correlation function

Aylk.PrS) = 30 gy [t et O 0.0 X) (P XIT,0010)
X

1

= @ /d4£ (012 (0, )i (€)afantd;(0)]0), (3.123)

where an averaging over color indices is implicit. We note, however that fragmentation is into a hadron in
a specified spin state.

The use of intermediate states X and in addition one specified state with momentum P needs some
explanation. First note that the unit operator can be written as

[e'e]

=D XN =3 A (3.124)
X p=0
with . ) )
Ip = Z? /dkl ... dkp al (k1) ... aT(kp)|0>(O|a(k1) ...a(kp) (3.125)

containing the p-particle states (with dk being the invariant one-particle phase-space). Thus

S NP XN P X = (PYE+ [ dy (Pt (Pl
X

1 I
+§/dk1dk2 |Ph,k1,k2><Ph,k1,k:2|—|—...
= azfah:a;rlah. (3.126)

After integrating over P, one obtains
[ 10 X = Y p 7, (3.127)
X p=0

which is the number operator Nj. This will become relevant when one integrates over the phase-space
of particles in the final state to go from 1-particle inclusive to inclusive scattering processes.

For the Dirac structure the same expansion as before can be written down,

Ak, Py, Sn) = My By + Bs Py, + Bsk + (Ba/Mp,) U”VPhNk,,
+i Bs(k - Sp)vs + Mp Befnys + (Br/Mn)(k - Sp)Pavs + (Bs/Mp)(k - Su)fvs
+i By 0" v5 Spy Py + 1 B1o 0 vs Spuky + 1 (Bin /ME) (k - Sp) 0" v5 ky Phy
+(Bi2/Mp) €uvpoy" P kP ST, (3.128)

where the amplitudes B; depend on P, - k and k2. As the states |Pn, X) in the above expression for Ayj
are not plane waves, one cannot apply time-reversal invariance. So the amplitudes By, Bs and By2 do not
vanish.

The fact that the time-reversal-odd amplitudes do not vanish is a consequence of the final state
interactions of the produced hadron h. To see this, it is instructive (even necessary) to treat |Pp, X)
as physical states. In that case they should be labeled as outstates. Consider the multi-channel matrix

INEEDSD / d'€ €™ (0]hs(€)]f; out) (f; out[F,(0)[0) (3.129)
X

(Note that AV = A(ff/”). The behavior of AYf") under time reversal involves

(f5out[;()|0) = (F;in|(=7:C9);(=€)[0)"
= (f;out]S" (=7509);(=8)|0)" (3.130)
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from which one finds that the combination

Aff — (\/E)fflAflfQ (\/g)hf (3.131)
behaves as ~ o
A*(k, Ph, Sh) = (—i’)/5C) A(k7 Ph, Sh) (—’L")%C). (3,132)
2i8

If the final state would be one unique channel obtains zero because S = e“*°. For two channels the

S-matrix can e.g. be parametrized as

; 215, .
cose —sine e 0 cose  sine
5= ( sine  cose ) ( 0 22 > ( _sine cose ) . (3.133)
Working in channel space with the diagonal S-matrix one has
- (11) i(81—82) A(12)
£ _ A e
AT = ( o—i(61-62) A(21) A2 > . (3.134)

From the hermiticity condition one knows that for A the amplitude analysis requires real amplitudes

Bi(ff/) for ¢ = 1,12. The time-reversal invariance condition applied to A requires B:‘ = B, for i =
1,2,3,6,...,11 and B = —B; for i = 4,5,12. Thus one finds
B =B® =0 (i=1,236,...,11) (3.135)
sin(6; —82) B =0 (i=1,23,6,..,11) (3.136)
cos(61 —62) BM =0 (i=4,5,12), (3.137)

In general one can make a partial wave expansion of the final state in states |J, M) and one finds

S sin(8; —6,) BY) =0 (i=1,2,36,...,11) (3.138)
J,J!

(I _ C
> cos(d;—6,) BT =0 (i=4,5,12), (3.139)
J,J!

The first equation is a constraint between partial waves which is trivially satisfied in the absence of
final state interactions. The second equation implies in the absence of final state interactions that the
amplitudes B4, Bs and Bi2 vanish.

For the fragmentation a twist analysis of A considering the projections

1
Az k) = — /dk* Tr(AT)
4z k==P; /2, kr
derd?e. . _
= [y IO 0,90 T (3.140)
4z (2m) £-=0
leads to the following set of twist two profile functions, which depend on z = P, /k~ and k:i = k2,
- i .
APz k) = Dy(z, —2ks) + ”;\“Jﬂ Dip(z, —zky), (3.141)
h
APl k) = Grg(z, —2ky) (3.142)
o ‘ i i
A 512, key) = Sy Hur (2, —2hor) + L HE (2, —2kr) + S L (3, —2ky), (3.143)
Mh Mh

and those of twist three are
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M,
Al(z,kr) = P—h E(z, —zkz), (3.144)
h
. i N € M €9 .
AP (2 ky) = =2 DNz, —2ky) + L_Tj Di (2, —zky) + Th IOkt GT_Sth Dr(z, —zk(3.145)
P; P, b,
) M,
A[Z'Yii](z’ kT) — P_h E (z’ _ZkT), (3146)
h
i M, S} Kl
A[V V5] (Z, kT) — @ G’II'('Z? —ZkT) + 7; Gj‘(z7 —sz)’ (3147)
p, P,
i 7 k] kl J M, ij
A[ZU ") (Z, kT) = ShT ShT HT ( kT) + hET H(Z7 _ZkT)v (3148)
P P,
- M,
A[zo’ +y5](z’ kT) — P_il HS(Z, —ZkT). (3149)

h

Again it may sometimes be useful to work with the functions projected using o, instead of io,,, 5. These
are

y ek it
Al ](za kr)=—¢ Shrj Hir(z, —zks) — ) Hls( —zkr) + — HlJ_(Zv —zk), (3.150)
Mh Mh
M, €4
Az k) = — 2 H (2, —2ky), (3.151)
h
_ i M
AT k) = M HE(z,—zky) + =2 H(z, —zky). (3.152)
P, P;
The shorthand notations G etc. stands for
kr-S
Gis(z,—zkr) = M\ G1(2, —2zkr) + Gir (2, —2ks) (T]Wi}”) (3.153)
h
The integrated profile functions are defined as
Alllz) = /ko: ANz k) /dk+ Pky Tr(AT)
k==P, /z
= & [ e Tl 0.0 daior) | (3.154)
§~=Er=0

Besides these we have nonvanishing kr-weighted functions in analogy to the distribution functions.
The Dirac structure of the fragmentation correlation function integrated over kT then becomes up to
twist three

1 +
4—z/dk A(k, Py, Sp)

k==P] /z, kr

P
euupapyunli kT SZT
My,

1
1 {Dl(z, —zkr)ho + Df‘T(Z7 —zky) — Gis(z, —zks) f—s

10 u,Ys khnY o kin?
—Hy7(2, —2ks) i0ys Si.n” — Hi (2, —zks) Wpws Tl Hi (2, —2k,) 22—
Mh Mh

Mh k v o

-|-F{E(z7 —zky) + D (2, —zky) i + Dp(z, —zks) €uupentin’ 4P Sy,

Epvpon!in? yPES
My,

—Gh(z, —2ks) Breys — GL(z, —zkr) k]\T/[T — Hi (2, —zky)

+An Dr (2, —2ky) — Ey(2, —2kz) i7s

; HoL.v
105 SthT

M,

—Hy(z,—zkz) ioys ntnll + H(z, —zkr) opntnl] } (3.155)
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The integrated results are

Z /dk+ d*kr A(k, Py, Sp) R = i {Dl(z) i — An G1(2) o5 + Hi(2) _[’ghT’;‘—]% }
My - )
+ﬁ {DT(Z) 7 VpShro + E(2) — Ay EL(2) 175
— Gr(2) Prrvs + An HL(Z)W —HH(z)LJLJr]}, (3.156)
D[ R S ALY T i{ G S s — M H )LJQL]WS}

1
z{D%) 0 Sy + 2 HE D (2) T ]}

+ﬁ{ DD ()97 + 3, G (2) s + HED () D0 Bre

+H$Vd5ﬁpM¥%?k§}, (3.157)

(kakﬂ iggﬂ)
A(k, Py, Sh) =
k==P, /z

L i, (S,Ei ™ -l — g [ﬁhT,ﬁ_m>

4

la By _ 0B
M,
4+ Mn G¢(2)(Z) <ShTA/ 5 29T ShT%). (3.158)

The appropriate normalization of the fragmentation functions can be obtained via a momentum sum
rule. For this consider the following integral for the fragmentation function D,

L/MZDﬂ@ = /ﬁmﬂﬂLzDﬂaPM)

2 d§+d2£T ik-& T, -
= dzd” Py | ———== " Tr (0 (€)a;ant(0)y~]0) (3.159)
4 (2m)3 £-=0
(we have omitted the links along the n-direction, but including them all subsequent arguments remain
valid). Considering the integrand for fixed quark momentum k and choosing this to have no perpendicular
component, the P, dependence is only contained in a};ah and summing over all produced hadrons (for a

given quark) one obtains

Z/dz z2D1(z) = /df ¢, eF S Tr(0)ep(€ Z/dp g;;% TP;;ahE(O)’Y_|O>
h

£-=0

- [EEE crenuerTon ) (3.160)
£-=0

Inserting a complete set of quark states one obtains

détd? ; dk'~ d?k, —
> [asamie) = [EEE et enoe [ e 2K 00 710)
h s’

dk'= a2k [ detd2¢
_ T T i(k—k')€
[ | S > k')

£-=0

1
=3 (3161
£-=0
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and hence

ZZ/dz zDy(z) = 1. (3.162)

h  Sh

3.5 Antiquark fragmentation functions

For the fragmentation of antiquarks the profile functions are obtained from

Zz‘j(k,Ph, Sh) = Z —(2717)4 /d4§ o ikE <0|Ej(0)|1’3h,X)(Ph,X|%(07§)¢i(§)|0>7 (3.163)
X
considering the projections
k) = o [a (@) s
— d§7d2£T —ik-€ — t
- / T ¢ OO e 20,9000 (3.164)

and they are denoted D(z, —zkr), etc. The functions E and G acquire a sign compared with the quark
profile functions. For the antiquark fragmentation functions we have

1 o
E/dk A(k, Py, Sp)

k+=P) )z, kr

euupo”yunli kTpShTO'

T 4 G (2, =) s

1]|— —1
1 {Dl(z, —zks) s + Dip(z, —2zk7)

_ ] 1 iouwYs kinY 1 o khny
—Hi7(2, —zks) i0u7ys S — Hi (2, —zkr) L5 Frliy. + H; (z,—zks) ”7”}

M, My,

M, 7L D
+4P§— {_E(2’7 —zkr) + D™ (2, —zkr) j}\é/[_Th + Dr(z, —2kr) €uponn’ v S},

po
€r 'kaTo

—
+An Dy (2, —zkr) A

+ Ey(z, —zks) ivs

G G vl 10,V ShpkY
G (2, — k) B + G (5 —oker) K08 TTE (s, o) L05 Skt
My, M,
—H (2, —2ky)io s niin” + H(z, —zks) opmin”. } (3.165)

The symmetry relations in z are Di(z,k?) = Dy(—2,k?) and identically for Dy, Gir, Hir, Hiz, Er,
G+, H and Hp, while Gi(2, k) = —G11(—2,k?) and identically for D3z, Hj;, Hi-, E, D*, Dy, Ey,
', GF, Hf and Hr. The integrated results are



March 2007 219

J— 1 TT T
2 [ @ Bk Pus) - —{ BT IR WAE )ﬁ+75+H1(Z)M}
kt= P+/z 4 2
My, — po — — )
+-57 | ~DP1(2) €77 Shre — E(2) + An EL(2) i
4P;
FTr(2) Surrs + 2 Ho () LI i) W} (3.166)
2 [y T2 SRS o) St s — 3 Hy () D10
4 " My k+=Pt /2 4
M — — *, Phr
+ }1 —DL(l)(Z) /ya _ Ah Gi(l)( ) + HT(l)( ) [A/ }Sh ]75
4P 2
+Hy (2 )ShT%}, (3.167)
. L (hewl 4 1K2687)
—/dk‘d Ko : Ak, Py, Sp) =
4 Mh
k+:P:/Z
11, (Sial™ pidrs — g8° [Bur, i)
1 Hip (2) 4
My ey [ Siers — 67 Bues
o) ( . . (3.168)

3.6 The parton picture for fragmentation functions

Similar as in the case of distribution functions, it is instructive to consider the correlation function for the
case of a free quark, given by

0ij(p, 53 k) = ik, s);(k, 5)8" (k — p) = 5 (K +m)(1 +154)) ;0" (k —p), (3.169)

where the momentum and spin of the quark are parametrized as

k2 2
Eo— {k‘, % k|| (3.170)
Ak~ A, k- A\, k2 A
¢ — |: qm 7 _T;k_q+ Tk—SQT—’_ZT;ZkaI;’ SqT+EqkT (3.171)

in terms of a quark lightcone helicity A, and a quark lightcone transverse polarization syr. The projections
become for twist two

5[7_](]“) = %5@ -1 52(’% —py) = %DqA/qT + quk/ql’ (3.172)
5[7_%](]“) = %)‘q‘s (C=1)0*(ks —py) = Dq)\/qT Dq)\/qla (3.173)
87 (k) = 351 6 (C = 1) 82 kr = Py) = $Dysefa — $Dasr g (3.174)
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where ( = p~/k~ and we have given the intuitive interpretation in terms of probabilities for quarks to
fragment into quarks with spin characterized by A and s,. For twist three we get

6 (k) = 50 (¢ = 1) 8% (ks — ). (3.175)
S (R) = 5o 5(C 1) (s — ), (3176)
; e+ A K
a0l (k) = (m%—) 5(¢—1)0% (ks — py), (3.177)
. ij S k?j - kl SqT 2
817 () = S 6 (¢ — 1) 0% (ke — ). (3.178)
gl 0l () = MRS (1) (ke — ). (3179)
Inserting the expansion for the free quark field gives
Aj (k) = 4z 0(k? —m?) |0(2)ul” (k) Zga (k)™ (k) — 0(=2)0{7 (k) Dga(~K)0S (k)| . (3.180)

where z = P, /k™. The use of lightcone coordinates is convenient because of the integration over k&t that
is needed in deep inelastic processes. The functions 2 and & are given by

Tiall) = oo 2. 703) = s [ Tt Obak hanal (1)) (3181)
2 d2k!
Fialk) = Dol 242) = 10 | éﬂ;‘is; (Olda (K )analdfy () 0). (3.182)

Note that Zs.(k) is a decay matrix in the quark spin-space. Most easily to deal with is the 'momentum
sum rule’

dz' d2k/ 1 apr, Py,
E 2 2 _ E T — T2t
- /ded Py gﬁa(szhT) - 2 / (27‘(’)3 24! k. |b5 / 32P_ hPh ahba(k)|0>
1 [ dd @K, 1 ,
= — _— T = -t — — 1
3 [ a7 Oa() o 0I0) = 5 b (3.183)

Integrating over k£~ one obtains the twist two results (for z > 0)

AP (k) = 3Prr + 3P11 = 3 Do + $Ppp, (3.184)
ATl (k) = 1 Drr — 1911, (3.185)
Alio" ™ s] (k) = L Doe — L1 D, (3.186)

using the same projection operators as for the distribution functions. In this way an interpretation in terms
of quark decay functions is obtained, again rigorous for the twist two functions. In this 'parton picture’
the twist three results can also for the fragmentation functions be expressed in the twist two functions.

Summarizing we get for Al'l(z, —zk,) and All(2), ordered according to twist, chirality and time-
reversal behavior for production of unpolarized (U), longitudinally polarized (L) and transversely polarized
(T) (spin 1/2) hadrons:

FRAGMENTATION
x-even x-odd

Al (z, —zk;) | T-even | T-odd T-even T-odd

U Dy Hi
twist 2 L| G Hi;

T Gir D, Hyr Hi

U| D+ Gt E H
twist 3 L Gi Di HL EL

T |G}, Gy | Dy Dy | Hr Hf | Er Ef
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FRAGMENTATION
x-even x-odd

AlMl(z) T-even | T-odd | T-even | T-odd

U Dy
twist 2 L G1

T H,y

U E H
twist 3 L HL EL

T Gr Dr

3.7 Structure of H — ¢ profile functions

221

In order to study the structure of the profile functions, we will first give the expressions in terms of the
amplitudes A;(o,7), where 0 = 2k - P and 7 = k2,

where

with

fl(ﬂj,ki):/ [AQ—FJIAg],

glL(m,ki):/... [—A6—<

[A7+£UA8],

gir(z, k)

th(ﬁ, ki)

hi_L(irv k?")
hlLT(J% ki) =

6(33, ki) =

—

Il

fH(w k2

8

3

N
[\
~—
I

gr(

T

9t (z,k2)

8
??‘
N

g7 (

r)

h(z, k)

)

oy
o

hi(

8

)

)

8
x>
[\
~—

I

ho(

T

- (

.. [All] s

o — 2z M?

2M?

. [—(Ag + $A10)] s

o — 2xM?
o-aarty ]

2M?

) oo,

/dadr S(kZ 4 2°M?* 4 1 — z0)

= /deT5($nM2+T—CEJ),

=+

2
T

xM?’

(3.187)
(3.188)
(3.189)
(3.190)
(3.191)
(3.192)
(3.193)
(3.194)
(3.195)
(3.196)
(3.197)

(3.198)

(3.199)

(3.200)

(3.201)

(3.202)
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Figure 3.3: The region ki > 0 which contributes in the integration over o and 7 in the expressions for the
distribution functions and fragmentation functions

The integrated functions also can be expressed as an integral over amplitudes, e.g.
filz)=m / dodr 0(x*M? + 7 — 20) [A2 + xA3], (3.203)

now involving a f-function to ensure contributions from the physical region p2 > 0, indicated in the figure.
Implicitly, there are several relations which can be traced back to the fact that there are less amplitudes
than profile functions. Useful are the following relations for ki—weighted functions: If we have

2

(2, k%) = [ dodr §(K2 + 2> M? + 7 — 20 ko F(z,0,7),
T T

2M?2
K2 \" oF
n 2N 2 2 2
f/( )(x,k:T) _/deTé(kT+x M —|—T—(EO’) <2J\4T,2> %(ﬁ,J,TL
k2 \" o —2xM?
n 2N 2 2 2
g™ (z, k2) = —/dadTé(kT—Fa: M?* + 71— x0) <2]\;2) e F(z,o,7), (3.204)

one easily proves the relations

d d
% f(l)(xv ki) = —g(ac, ki) + fl(l)(xv ki) + 2M2 d? g(l)($7 ki),
T

d

(@) = —g(2) + 'O (@) + 2M2 g (2, 0), (3.205)
d d

o /O @ k) = =200 (@ k) + O k) + 2M? — g (2, k7).

L 1) = ~290w) + £ (a) + 2M2 ¢ (1, 0). (3.206)

For the five g-functions this leads to the two relations (assuming ¢("=!(z,0) to vanish)

d
gr(z) = g1(z) + @gﬁﬁ, (3.207)
d 14 1 d 10
gi‘(x):—% T( ) and 2gL( )(x):—%gT( ), (3.208)
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while for the six h-functions three relations are found, where the one for h:% is trivial,

d

hi () = hi(x) - — hith, (3.209)
d 1(1 1 d 1(2

hr(@) = —— D and  2ni(z) = — hi?), (3.210)

hp™ (@) = b (2) = b (@), (3.211)

Similarly we have for the fragmentation functions expressions of the profile functions in terms of the
amplitudes B; to Bis. This gives relations analogous to the distribution functions,

M
22 D1 (z,2° /dadr ) <k:2 +=h oy g) [32 + = Bg} , (3.212)
etc. with now in addition some time reversal odd functions,
22 Diy(z, —zks) = / [Bia], (3.213)
22 Hi (2, —=2 / (3.214)
2z DL / Blg (3215)
—2M?/z
22 Dr(z, —2ky) = / {— <TQ’1/> Bm] . (3.216)
2M?2/z
2z Er(z,—zkr) :/ { < 202 ! >B5} . (3.217)
2z Ep(z, —zky) / [Bs], (3.218)
2M2/z
2z H(z,—zky :/ {( 2M,%h/ >B4] (3.219)
The integrated functions are given by
2 M? 1
=Di(z) = /dUdT 6 <— -7 — —2h> |:Bg + - B3:| , (3.220)
z z z z

with an integration region also indicated in the figure. The following relations can be derived in the case
of fragmentation functions: If we have

M2 k2 n
22 D" (z,2%k2) = /dadns (kzi + T g) ( i ) F(z,0,7),

2M?
M? o oF
n 212\ _ 2 h
22D (2, 2 kT)—/dodT5<kT+ o> +T—;) (2M}%) % (2,0,7),
M?2 o K2 \" o —2M2/z
n 21,2\ _ 2 h h
2ZG( )(Z,Z k?T) _—/d0d76<kT+7+7-_ ;) (2]\;}%) 2M}% F(Z7J7T)7(3'221)

one easily proves the relations

22 d _zD(l)(z,zzki)} 2 Gz, 22k2) + 28 D'D (2, 22k2) + 2M? — d [ZG D(z, 22k2 )}
dz | dk?2.
rp@) (1)
szi (z)] _GE) 2D () o 120 (,0) (3.222)
2| =z z z
zQC;lZ - D@ (z,22k2)| = 22GW (2, 22k2) + 25 D' (2, 22k2) + 2M} dlcei [z G(Z)(z,szi)] ,
- T
rpe &) a
EXUNE (z)] _, G0 + 2 D'W(2) + 2M? L (2,0) (3.223)
dz |z z z
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For the five G-functions this leads to two relations (assuming G("=)(z,0) to vanish,

(1)
Gr(z) _Gi(x)  »d [GIT(Z)‘| ’ (3.224)
z z dz z
n L(1) L(1) L(2)
GL(2) _ »d |Gr ()| o 56 _ .d |G| (3.225)
z dz z z dz z
For the eight H-functions this leads to 4 relations,
L(1)
Hi(z) _ Hi(2) | »d [HIL (Z)] 7 (3.226)
z z dz z
1(1) (1) L1(2)
Hr(z) _ zzi Hip'(2) and 2 Hy'(2) _ z2i Hi77(2) , (3.227)
z dz z z dz z
Hy ™ () = Hy () = 13, (), (8.228)
L(1)
HE) _ o d lu] | (3.220)
z dz z

The last equation relates time reversal odd functions. Other relations between time reversal odd functions
are,

Ei(z) _ ,d [E(2) (3.230)
z dz z ’ .
and
1(1)
Dr(z) _ »d lDlT <z>17 (3.231)
z dz z
DM (z) = —DEHM (2). (3.232)

Using the splitting of the twist three profile functions in a piece that is expressed in terms of partonic
(twist two) functions and a remainder ("true’ twist three piece) that as we will see in the next chapter can
be expressed in terms of 'good’ quark and gluon fields. This is achieved by using the ’free’ quark results or
equivalently the results for quark-quark-gluon correlation functions using the QCD equations of motion,

m -
e(l.akT) = M—mfl(ivakT) +€(1'7kT), (3233)
1 1 Fl
f (xakT) = ;fl(xakT)—’_f (xakT)7 (3.234)
m -
g%(xJkT) = M—xth(%kT) +g’/1"($7kT)7 (3235)
1 m .
gi(ﬁa kT) = E glL(xa kT) + M—JZ hfL(fa kT) + gi_($7 kT)7 (3236)
1 m -
91 (@, kr) = — grr (. k) + 3 hip (@, k) + 97 (2, kz), (3.237)
_l w m i
gr(x, kr) = —gip (2, k) + 7 ha(w, kr) + gr (@, kr), (3.238)
1 ~
h%(m7kT) = Eth(makT) +h%($7kT)7 (3.239)
m k’i 1L 7
hL(x,kT) = M—xg]_L(x,kT) - M—QxhlL—’_hL(x’kT)’ (3240)
m hir(x, kr) k2 ~
h (@, kr) = 3 g1r(@, kr) = " - e L4 hr(z, kr). (3.241)

The functions é, etc. can be immediately seen as the functions appearing in the twist three projections of
the quark-quark-gluon correlation functions.
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Comparing the above expression with the second relations found for the g-functions one has

1)

9171 m hy . d (1)
_ — il .242
gr . +M - +gr gl+dxng’ (3.242)
from which one obtains the relation
d g(l) m .
2 1T
JAT | _ .24
T dx(x ﬂcgl+Mh1+a:gT, (3.243)
that can be used to eliminate gﬁp),
d d 1 d m 1 d 1 d
J— — = — = —— — ———h _ q .244
dz (g7 = g1) dz 72 x dx (2g1) + rdr t + x dz (2gr), 3 )

M
or (provided sufficient convergent behavior at the endpoints)

ga(x) = — {91(33) —/: dyng(y)] +% {th(x) —/:dy hly—(zy)} + [QT(x)—/: dygT—y(y)] . (3.245)

Similarly we obtain from the expression for hy above and the second of the h-relations

h —ﬂﬂ—z—iﬂ)w} — = L) (3.246)
™M 2 x L= g L o '
from which one obtains the relation
d (hHY m .
x3£ < lmLQ :xhl—Mgl—th, (3.247)
which can be used to eliminate hllL(l),
d (hr —hy d [ ho 1 d m 1 d 1 d , -
s — — [Z2) = _— = (zh - - = — — (zhy), 3.248
dx < x > dx (23:) x? dx (@h) + M 22 dx g1+ x? dx (whe) ( )
or (provided sufficient convergent behavior at the endpoints)
1 ) m [ g1(z) Loy
§h2(x) = - {hl(x)—%c/w dy " +M - —Qx/w dy "
-
= h
+ |he(z) — 2x/ dy Z(Qy)l . (3.249)
Continuing with the twist-three functions we have
ho bt mogir d 10
hp=——t_ "t AT g 2t 3.250
r x x + M =z tor de T ( )
from which one obtains the relation
d [(htD m ~
22 % (% =h; — M giT +x hr, (3251)
which can be used to eliminate h#l),
d 1 d m 1 d 1d -
—hr=——h14+—— — — — (xh 3.252
de T z dx 1+de;vng+xd;v(x 7), ( )

or (provided sufficient convergent behavior at the endpoints)

== [ [ ] [ - L)

y2

BT(x)—/ldy@]. (3.253)
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For the second k2-moment one obtains

1 1(2
h<1>:_£_h1§)+m9§¥+h<1>_
T T T M

from which one obtains the relation

1(2 1
2i<h17(~)>:2£_2mgiip)

T M =x

which can be used to eliminate hfﬁ),

d hg}) 1 d, oy, m1d
— (=) =—= =41 LA
dx(m ol C v R e

or (provided sufficient convergent behavior at the endpoints)

M) = —[ /d

+ | A

m

1
b x)—23:/ dy

ng

hﬁ(y)]
y? |

1d 1(2)
C2dx TS

205,

1 d

7(1
5 7 (@),

It is sometimes useful to realize that the moments of combinations appearing above are

1 1 1
n— k— f(y) _ n—1 n—
/odmx 1[f(x)_kx 1/xdy yk]_n—l—k—l/odmm

L () (form>1, k>1).

]

226

(3.254)

(3.255)

(3.256)

(3.257)

(3.258)

Therefore all first moments (n = 1) of the expressions between brackets above vanish, at least if the first

moments of the function f is finite.



Chapter 4

Deep inelastic processes

4.1 The point cross sections

In section 1 we have discussed the formalism for three types of hard processes, the Drell-Yan process, ete™
annihilation and lepton-hadron scattering,

A+B — (+1+X, (DY)
e +et — hi+he+ X, (e7e™)
(+H — 0'+h+X. (¢H)

The underlying processes are:

DY : g+q7 — (+7, (4.1)
eTet: e 4et — q+q,
(H : l4+q — U'+q. (4.3)

The cross sections for these processes would be quite similar to the (observable) lepton cross sections. The
annihilation cross section e“e™ — p~puT, neglecting lepton masses is given by

do 21 a2 (12 + u?)
-t -+ =
a(e e —pp )_5—4’ (4.4)
or the equivalent expressions in terms of y = —t/s = (1 4 cos0.1n)/2,
do a?
W(676+ —upt) = o (1 + cos? Gcm) , (4.5)
d dra? (1
ﬁ(e_e"— —upt) = T (5 —y+ y2> . (4.6)
The total cross section becomes
- 4 R 47 062
olee »u pu") = . (4.7)
3s
The cross section for e~ u™ — e, neglecting lepton masses is given by
do, _ . 21 o (5% + u?)
E(e Hoo—c H ):Tv (4.8)
or using y = —t/s,
do dra?s (12
-+ -+ —
d—y(eu —e pu)= oL (7+1—y . (4.9)
Also useful is the cross section for a virtual (transverse) photon, given by
N 42 s
o(yput —pt) = ? 0 (@ - 1) . (4.10)

301
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4.2 The Drell-Yan process
The hadronic tensor in this case is rewritten as
1 d3 Px
2m)464(Pa + P — Px —
e | Gy P+ Fa = Px =0
><<PASA;PBSB|JN(0)|P)(><PX|JV(O)|PASA;PBSB>,
1

= G /d4x elgw <PASA;PBSB|JM(5C) J,(0)|PaSa; PSp),

which in tree approximation (Born terms) becomes

L /d4x e (PaSa; PpSp| : 1 (x) () e () :

(2m)4
X 1y (0)(7)1:%i (0) : [PaSa; PeSp)
— Gy [ e PaSAT @ O1PAS )
(P Stk()Y,(0)|PeSs) ()i
+# % /d4x e~ " (PaSalvr ()0, (0)|[PaSa) (v )i
(PeSp[Y;(x)¢i(0)|PeSE) (V) jk;

_ % /d4p d4]€ 54(]9 + k- q) Tr (@(p)’mg(k)%) + { qu_:—)_l/q } ’

W (q; PaSa; PSB)

Viw =

-~ =

where we have used
1 —ip-x o
Dii(p) = @ /d433 e (PaSal;(x)i(0)|PpSE),

1

Pu(k) = (2m)*

/ 04z e~ (Pl (2)6,(0)| PsSi),

302

(4.11)

and its symmetry properties (see section 2). Note that since in both ® (quark production) and ® (antiquark

production) summations over colors are assumed, a factor 1/3 appears in the result in Eq. 4.11

Using the lightcone representation of the momenta in frame IT (see section 1) it is easy to see that if
the quark momenta in the matrix elements ® are limited, i.e. p2, p- P4 are of hadronic scale and similarly

in the matrix elements ® for k2 and k - Pg, one can write the delta function up to &(1/Q?) as
tpt+k—aq) = dpt —q")o(k™ —q7) (P, + ke —q.),

The result in leading order is then

1 -~ _
W,uu = § /dng d2kT52(pT + kT - qT)Tr ([.[ dp (I’(p)]’}/#[f koF(I)(k)]ryy)‘ er — I'APX
k— = meg
Qv | ZpZv\ 1 —
= <_g,uu+ 22 +%) gl[flfl]v
it - LY P - LY
I B SR B
k| ‘L [k k| 0 -k
VAVAV VAVAV VAVAW JUY
it b b th

| ,
= S

Figure 4.1: Born diagrams for Drell-Yan scattering

(4.12)

(4.13)
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where
A7) = [ @or@he @, + ke~ a,) fi(wa )T (w0, ko) (114)
Using the contraction with the leptonic tensor,
v Qv | ZuZy _ 5 (1 9
L <—gw+ 2 ' Z2) = 4Q <§—y+y
= Q" (1+cos®Ou), (4.15)

the cross section becomes
do(AB — ptp~X)  o?
dradrp d’q, dQ,, 12Q2
Integrated over the transverse momenta of the produced mu pair,

do(AB — ptp~X)  o?

(14 cos®0,,,.) I[f1 fy)- (4.16)

dx 4 dzp dS T 1202 (14 cos?O,) fr(za) f1(zB), (4.17)
o
and integrated over the muon angular distribution,
do _Am a?
dradrg  9Q? h(@a) J1(es), (4.18)

or including the summation over quarks and antiquarks,

do(AB — putu=X 4 o? _
L da:Ad/;BM ! - 971;2 Zezfla/A(ffA)fla/B(xB)
= _Zfla/A TA fla/B(xB) 6(aa — pp'), (4.19)

where the quark-antiquark annihilation cross section is given by

2
dma

TQQ €q-
and the factor 1/3 multiplying the summation is the color factor that can be naturally understood because
only quarks of the same color can annihilate and we have seen that the definitions of the quark distribution
functions included a summation over colors.

Introducing the virtuality of the photon (i.e. the invariant mass § of the produced mu pair) as a variable
one can consider the Drell-Yan cross section as a function of s. Writing

G(aa — p~pt) = (4.20)

do 4
dc; (a@ — p~pt) = 371; ez 0(5 - Q7), (4.21)
one has
do(AB — u utX
U(dexjng ) ‘Zfla/A za) fra/p(zB) ng( — p ')
4 _
= 97TQO¢4 Zez fla/A(fCA) fla/B(xB)é (é TArp — 1) , (4.22)

which exhibits explicitly the scaling in 7 = s/Q? for the cross section Q* do/dQ?.

4.3 Electron-positron annihilation

The hadronic tensor in this case is rewritten as

1 3P
W (q; PLS1; P2S2) = (2m)* / (27T)32XP§)( (27T)454(q —Px — P — P)

X<0|JM(O)|P)(; P1S1; P252><Px; P1S1; P252|JV(0)|0>,
z 7 (0], (x) > |X; PrSy; PaSa) (X5 PySy; PaSalJ,(0)[0),
X




November 3, 1998 304

which in tree approximation (Born terms) becomes

W = ﬁ/d% eIT(0] = 4y () (vu) jron (2 Z|X P1Sy; Py S2)
X (X3 PLS1; Py S| - %( )(7)15i(0) = |0)
1 4 iq-x o . .
BRCHE /d re <0|¢j(ﬁ”)z|X271325'2><X2,1325’2|@/J¢(0)|PS>(%)j;C
X2
(Ofvor(@) Y [X1; PrS1)(Xu; PrSi[¢(0)[0) (1 )
X1
g d [ ' e Oa) X X Pa) (X PaSafi(0)0) ()
X2
(O () Y 1X15 PrS1)(X1; PrS[13(0)]0) ()
X1
= 3/d4pd4k ' (¢ =k — p) Tr (A(p)vuA(k) 1) +{ qﬂi_yq } (4.23)

where we have used

Ball) = g7 [ e € Ofv(o) X 105 LS (X1 P T 0)),
X1
Zz](p) = (27];_)4 /d4x eip-w <PS|EJ($)Z |X2;P252><X2;P2S2|wi(0)|PS>u
X

and its symmetry properties (see section 2). Note that since both in A (quark decay) and A (antiquark
decay) an averaging over colors is assumed, we get a color factor of 3 in Eq. 4.23. We have only con-
sidered two hadrons in different jets, i.e. no fragmentation parts involving matrix elements of the form
(0tj(x) > | X5 P1S1; PaS2) (X5 P1S1; P2S2|1i(0)|0) are considered.

Using the lightcone representation of the momenta in frame IT (see section 1) it is easy to see that if
the quark momenta in the matrix elements A are limited, i.e. p%, p- P, are of hadronic scale and similarly
in the matrix elements A for k% and k - P;, one can write the delta function up to €(1/Q?) as

g—k—p) =g —k)o(g" —p*)6*(qr — kr —ps), (4.24)

The result in leading order is then

WMV = 3/d2kT dng(S?(qT - kT _pT)Tr ([f dpiz( )]Vu[f dk A 'Vu)| k— = P /z1
pt = P+/2’2
ey me
= ( 22 P«V + Z2 ) 12 Z129 I[Dl Dl] (425)
where
I[Dl /koT d2pT 52( kiT —pT) Dl(zl, —ZlkT)ﬁl(ZQ, _ZQPT). (426)
Using the contraction with the leptonic tensor,
v q qV Z ZIJ o 2
L+ <—gm,—|— ‘;2 + ;2 ) = 4Q < —y+y )
= Q? (1 + cos? 9) , (4.27)

where 6 is the angle of the produced hadrons hs in the e~e™ rest frame. The cross section becomes

do(e"et — h1hoX) 302
dS) le dZQ d2qT o 4 Q2

(1+ cos®0) 2725 I[Dy D). (4.28)
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Integrated over transverse momenta of hadron h; one finds,

do(e”et — hihyX) 3a?

= 1 20)D D 4.2
i dz dz 1 (10" 0) D) Dalaa), (4.29)
Including the summation over quarks and antiquarks one obtains
do(e”et — hiha X) 3a? 9 5 —
dQ dz, dz RYeE (L +cos®6) 2@: €aD111a(21) D1nyya(22)
= 3 Z (e”e™ — a@) D11, sa(21) D1 hyja(22), (4.30)

where the annihilation cross section into a quark-antiquark pair is given by

do _ __a2
d—Q(e e —>aa)—4Q2

The factor 3 multiplying the cross section can be naturally understood as the definitions of each fragmen-
tation function includes an averaging over color and the annihilation can be into a quark-antiquark pair of
any of the three colors. The result for the production of a single hadron is obtained by considering hadron
2 as the jet with Dy = (1 — 22), thus

(14 cos?0). (4.31)

do(eet - hX) 302 9 5
dQdz YAL (1 + cos H)EeaDlh/a(z)

= 32 (e”e™ — a@) Dy p/a(2). (4.32)

Integrating over the jet direction gives

do(e—et — hX A o
) e
_ 32 “et — aa) Dyp/q(2). (4:33)

Finally the jet cross section is found by taking Di(z) = 6(1 — 2),

do(e’e;(; jets) i’zf; (1+ cos?0) Z e
= BZ e et — aa), (4.34)
and the total cross section
o(e”eT — hadrons) = 47Ta Ze
= 3 Z G(e” et — an)
= 0(§_e+ —u put)3 Zei. (4.35)

Note that integrating over z the multiplicities of produced particles enter,

do(e”et — hX -
/dz ole ed = hX) = (nj, e yo(e~e™ — hadrons) (4.36)
z
given by
2
e"ety _ Ea €q nh/a
<nh > - Za eg ) (437)

where 1/, = [ dz Dyp/q(2).
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4.4 lepton-hadron scattering

The hadronic tensor in this case is rewritten as

1 d*P
M4 PS: i) = o / (27r)32XP)0( (27)46*(q + P — Px — Pp)
x(PS|J,(0)|Px; PnSh)(Px; PnSnr|J,(0)|PS),
1

@) / d'z €7 (PS|J,(z) ij |X; P, S1)(X; PuSi |, (0)| PS),

which in tree approximation (Born terms) becomes

2M W (q; PS; PuSn) = @ €' (PS|: ;(x) (v) jwvon(x ZIX PSh)

X (X3 PuSn| + 40 )(%)Wi( )+ |PS)
@ €' (PS[ih;()1i (0)|PS) () jn

(Of¢)e (2 Z|X PuSp) (X5 PuSk[(0)]0) ()i

+o [t € (PSIBO1PS) ()
(O[th;(x) > 1X; PuSh)(X; PuSuli(0)0) (v1) i
X
= /d4pd4k54(p+q—k) T (©(p)yu A (k) 7) +{ e } (4.38)
where we have used

©ij(p) = g7 [ 4 €7 (PSIT0)0:(0)|PS)

v (27.‘.)4 J g ’
Ball) = gz [ e € Olv(a) 1 PLS (X3 PLST0)0)

X

and its symmetry properties (see section 2). Note that in ® (quark production) a summation over col-
ors is assumed, while in A (quark decay) an averaging over colors is assumed. We have not consid-
ered possible target fragmentation parts involving matrix elements of the form (PS;(z) >y | X; PrSh)
(X PrS|1i(0)|PS).

Using the lightcone representation of the momenta in frame IT (see section 1) it is easy to see that if
the quark momenta in the matrix elements ® are limited, i.e. p%, p - P are of hadronic scale and similarly
in the matrix elements A for k% and k - Pj,, one can write the delta function up to ¢(1/Q?) as

8 p+aq—k)=o(pt +q")8(q” —k7) 0% (py +ar — ka), (4.39)
The result in leading order is then
2M Ay, = /d2pT k6 (pr+ @r — ko) Tr ([[dp~ @)l T A®)W)| v _ . pe
k= =P, /z
Gy B.b,
= ( Zz —9 ;52 ) 2z I[f1 D4], (4.40)
where

I[fi D1] = /dng &k 6%(pr + Gy — kr) f1(25,pr) D1z, —2kr). (4.41)

Using the contraction with the leptonic tensor,

D D 2 2
N PP\ _4Q% (y* o
L ( 7 g 5 ) =2 (3 +1—-y], (4.42)
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the cross section becomes

do({H — {'hX) Ama?s (y?
= & T1=y | zsllfi D], 4.4
dry dydz d? P Q* 9 + y | ws[f1 D1] (4.43)
or integrated over Py,
do((H — 'hX)  4Ama?s (2
Gy~ gr |z Ty wehiles) Daz). (4.44)

The case of inclusive electroproduction is easily obtained using the result Di(z) = 6(1 — z) for quark
production off a quark, giving
do(lH — 0'X) 4ma®s (y?
_ v , 4.45
de dy Q4 + Yy xBfl(xB) ( )

2
This leads to the well-known result for electroproduction of hadrons h (now also including the summation
over quarks and antiquarks, where the latter come from the second contribution in Eq. 4.38)

do((H—¢'hX)

dz dydz _ NfH(%Z) _ Za 62 fla/H(l’) Dlh/a(z) (4.46)
TTXT ~ A frou@) | L€ frayn(e)
Upon integration over z one obtains
do((H — {'hX) i, wAdo(lH — 0'X)
dz ———= = _ 4.47
/ : drdydz (i (@) dx dy ( )
where (nj,(z)) represents the average number of produced particles as a function of z,
2
LH Za €aMh/a fla/H(ir)
n; " (x)) = , 4.48
@) > €atfia/n(T) 445)

where 1y, = [dz Dy /q(2).
Finally we note that we can write the inclusive cross section for different values of s = Q2?/z5y in
terms of the virtual photon-quark cross section o (v*(Q%) a — a) as

do(tH — 'X 1 al (¢
—Z;ded@) = Ty [%“‘y]me/mxg)o(w*(@?)wa)
2 2
= 422—35 [%4-1—9] f1a/H($B)5<é’IBZ/_1>v (4.49)

which is quite analogous to the situation in the Drell-Yan process.

4.5 Inclusion of longitudinal gluon contributions

We will consider in this section the inclusion of diagrams with gluons connecting the soft and hard part
(see fig. 4.2).

a d*'& A ki) - o
Wk PS) = [t e (P, S[T,0) g4 B(OIP.S)  (4.50)
(satisfying Y@ (k, k)0 = G (k1. k)), and
1 e N _
Alhoy (ke brs P Sh) = gy [ 6t e DTN 0, (6 AS) afarT,00), (450)

(satisfying 'yOAjT (k,k1)vo = A% (k1,k)). Performing the integrations dk~ d°k, and dk; d?ki, one finds,
using kT =z P and kf = g P, the lightcone correlation functions corresponding to multiparton matrix
elements, e.g.

$(@y) = P+/dk‘ Py dkT dkip O, (k, b P, S)
v [dET AN g (e—n)tike - o
= P —— o e TSTITRIP Sl (0) gAY ()i ()P, S)| (4.52)
2 2w / LC
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Figure 4.3: Quark-quark-gluon correlation functions in lepton-hadron scattering

where the subscript LC refers to ’lightcone’, ¢+ = nt = £, = n; = 0. Whatever way one parametrizes
the above matrix elements, it is clear that in a process the index « being + requires a + component of
one of the vectors of the soft part (P, S), which are of order @ after expanding in ny as discussed in the
previous chapters. These thus give the dominant contribution. We will analyse them first for lepton-hadron
scattering. We obtain four contributions as given in figure 4.3. Two of them have gluons connected to the
lower soft part (the hadron — quark part), the others gluons connected to the upper soft part (the quark
— hadron part). Including the contribution of the handbag one has

MW = / dpd*k 54 (p + g — k) Tr [@(p)7,A (k)]

(k—p1+m)
(k—p1)2 —m? + i€

(Fk —pr+m)

(k—p1)?2 —m?2 —ie

_/d4pd4kd4p1 54(p+q—k){Tr [fya v @%(p, p — 1) VA

+ Tr [w Yo A(K) v, @5 (p — p1,p

(p—Fk1)2 —m? +ie

(ﬁ_k1+m) : Aa(kk kl ’71/

—/d4pd4/€d4k154(p+q—k){Tr |:A/u (7‘6_%1 +m) — Yo ( ),YNAa k ki, k ]

+ Tr [Ara

(4 53)
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[Note that we have for a quark-quark-gluon blob used momentum p; (or k1) for the gluon and p — p; (or
k — ki) for the quark. This is easier to extend when we consider multiple gluon correlation functions.]
In the remainder of this section we will often omit the standard integration | d*pd*k 6*(p+q — k). The
momenta p; and k; connected to the soft hadronic parts are parametrized according to

pP= [p_agapq"] ) P1 = {plavaljl ) p_klz [_Zlgvga"'] ’ (454)
V2 V2 V2 V2
Q } [21 Q ] [ Q Q ]
k= |2 k" k|, k= | ==k kir | k—-m=|—4,—21—,...|, (4.55
[\/5 T 1 \/5 1 1T p1 \/5 1 \/5 ( )
The momentum appearing in the extra fermion propagator is p—p; +q = k —p1 with (k—p1)? = —21 Q?,
ork—ky —q=p—k; with (p — k1)?> = —21 Q2. Thus one has in leading order in 1/Q,
fF—p1+m - 0y " e (B —pip) —m
(k —p1)* —m? +ie QV2  (—z1 +ie) QV2 (—xqy +i€) Q%
p—ki+m - v Ve (Pr—kir) —m
(p— k1)? —m? +ie QV2  (—21 +ie)QV2 (=21 +1ie) Q2
This can be used to consider separately the contributions of transverse (A%) and longitudinal (A™) gluons.
For the transverse gluons, the trace of the first gluonic contribution becomes

(4.56)

(4.57)

_ 4 T o k—ﬁl‘f'm V(I)oz _ A
/d D1 1"{’7 (k—p1)2—m2+i67 app pl)'}’,u (k)

d'pi : : — Yoy~
= d*¢ [ din et PPN (P S[h(0)y, Ak) Sy, gAS P,S
[t e [t (P, SO 57 2, 04T 0) WP, ),
which starts off at order 1/Q and at this order requires leading parts from ®% (proportional to Py ®%P_)
and leading parts from A (proportional to P_AP,). As {y,72} =0 and vy~ Py = P_y~ = 0 only the
v~ = Py~ P_ part in Eq. 4.56 contributes. This term is independent of any of the components of p;, and
we thus can immediately consider the distributions [ d*py ®%(p, p — p1), or explicitly

/ di€ 7€ (P, S[E(0)7, Alk) ”Q}? 70 gA%(€) (©)| P, S). (4.58)

This contribution will be studied in the next section. Note that it can be written in terms of the covariant
derivative as

/ di€ ¢7€ (P, S[E(0)7, Alk) 7@35 70 i DE(E) (€| P, )

e / di¢ v (P, S@(O)M(k)”g—}; T ()P, 5. (4.59)

In this section we consider next the contributions of longitudinal gluons (A™). They lead to traces of
the form

— +m
_ d4 T - k 151 Vq)-'r _ Ak
/ P r{ﬂy G —mziie ! A, p — P A(K)

The first term in Eq. 4.56 does not contribute. The second term contributes at ¢(1) as the dominant
contribution in ®% is the part projected out by [dp; Py®} P which is of 0(Q). Explicitly, we get for
the first correction in Eq. 4.53

d*py 4 i(p—p1)Etipr _ - ~
_/ or /d%/d n et PPUERIPEN (P S (0)y, A(k)y m%g

d izipt(n”—€67) _ —~t
= [ 52 [t [ anm e e (PSR AG) T g AT US| g

xl—ie
nr =4&r

+

AT () ¥ (9)IP,S)

- / d'e / dn 007 — €7) 7€ (P, S[E0),A (k) Py v igA* () $(€)|P, S)

.
_ / di€ ¢7€ (P, S[T(0)7, Ak) Py 7y ig / dn~ A (™) 9(€)|P, S). (4.60)
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The second term in Eq. 4.53 gives

—/d4p1 Tr[ F—frtm) V‘A(k)vuﬂ(p—pl,p)}

T (k—p1)2 —m? —ie

0
- / di€ ¢7€ (P, S[(0) ig / dn~ A () 7 P AGK) 7 9(6)|P, S) (4.61)

The last two terms in Eq. 4.53 give

-/ d%{Tr [% - _(pkl‘)flfm’;ﬁ B k)]

=k +m)
(p—k1)? —m?2 —ie

+Tr [’er YAy (ks b — kl)wb(p)} }
- / di¢ i {Tr O[(€) alan ig /_ dn* A (1) B(0) 7 Py (p) 7,4/0)

§+
=Tr (0[1(§) ig /_ dnt A= (") a}an $(0) v, ®(p) P- 'Y,u|0>}-

The result of multiple AT- or A™-gluons together with the tree-level result gives in leading order in 1/Q
(when the projectors Py and P_ don’t matter) the exponentiated path-ordered result

2M Wi = [ Aipd®h 5!+ q - ) Tr[0()3 A (1.62)
with
Dii(p, P,S) = ﬁ /d‘*g e PE(P, S (0)% (0,00;04) % (00, &5 &) (€)|P, S), (4.63)
1

Ai;(k, Py, Sp) = / A€ e (0% (—o00, €15 €2 )1i(€) afan ¥ ;(0)% (0, —00; 0.)|0).  (4.64)

(2m)t

Provided we assume that matrix elements containing bilocal operators 1(0) A(n* = Foo, n;) 1 (€) vanish
for physical states, the above links can be connected resulting in a color gauge-invariant matrix element
that must be used in the definition of the correlation functions.

Before considering the transverse gluons let us check the case of two AT gluons. For instance considering
a gauge choice A~ = 0, one needs only to consider the absorption of the A™ gluons in the ’distribution’
part. Dressing the diagram leading to the first of the four terms above with another 'parallel” gluon one
obtains a contribution

d* d4/€54( +qg—k d4p1 d4p2 d* d4ns dt i(p—p1—p2)-E+ip1-m+ip2m2
p b q ) (27T)4 (27’[’)4 5 T 2 e

+ +

— 1 - g
AP SO AR Y o Ci v W gAT (n2) gAT (m) ¥ (©)|P, S)

dzq dx2 i($1+w2)17+(77_*§_) ei$2P+(772_ - ) . _
= d*pd*k ot — / d* /d d ipg
/ p (p+q ¢ ) (x1 + 2o — i€) (xo — i€) ¢

x (P, S|P (0)7.A(k) +%gz4+(n2)gz4+(m) IR, S). (4.65)

The integration over x; and x5 gives

0 —&§ )iy —ny ), (4.66)

leading to the path ordering.



Chapter 5

Gluon fields and correlation functions

5.1 Quark-gluon correlation functions

For the analysis beyond the twist two level, it is necessary to include quark-gluon correlation functions.
We define

4 4
Bk ki P.S) = [ g e @B EP S[5 0) g A () (€)1 P 5) (5.1)

(satisfying VOCDZT (k,k1)yo = ®%(k1,k)). Performing the integrations dk~ d*k, and dk; d*ki, one finds,
using kT =z P and kf =y P, the lightcone correlation functions corresponding to multiparton matrix
elements,

Gi(zy) = P+/d/f d’ky dk; d°kyr ©% 5 (k, k1 P,S)
v (A€ dnT ke tik. 7 a
2r 27 J Le

where the subscript LC refers to 'lightcone’, €T = T = £, = nr = 0. Up to the twist three level it is
often not necessary to consider this general three-field matrix element, but it is sufficient to consider the
bilocal matrix elements obtained after integration over d*k;,

di¢
(2m)*
- /d4k1 %k, ks P, S), (5.3)

d* .
5 el k-§

(2m)*
_ / diky @, (k, ks P, S). (5.4)

0| g
— =

P § P

G,k P.S) = / e ME(P. [, (0) AT (I P, S)

(0% 7o)y (k; P,.S) = / (P, S[5,(0) gAS (0} (€) P, S)

Figure 5.1: The quark-quark-gluon correlation function

401
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We already mention here a third possible bilocal matrix element,

4
BipPS) = [ s RS 0)0) sATOIP.S)

_ /d4k1 % + k1, ki3 P, S). (5.5)
One-argument lightcone correlation functions are obtained after integration over dk~d?k-,
Gij(r) = /dk— d’kr @G ;i (k; P, S). (5.6)

A factor PT has been included in the definition of ®%(x,y), such that one has for the one-argument
lightcone correlation functions ®%(z) = [ dy ®%(x,y), etc. First, as before the same constraints as before
from parity and time reversal invariance can be used. Including only terms that potentially contribute at
the twist three level one obtains using only parity the general form

F(k,P,S) = Ci1PkT+MCo[y", Pl+ (C3/M) [P L] kT +iCy e, 07" 1P kT
+M Cs PysST + (Ce /M) PyskS (k- S) + C7 [P,7*]vs (k- S)
+Cs [fL, Plys 5%+ Co [F1, Plvs kT + (Cro/M?) kL, Plvs kS (k- S)
FiM Cyy €%, 7 PPST +i(Cra/M) €qupey" PY R, ST kS
+i(Crs/M) €57 PPk (k - ) (5.7)

Pk, P,S) = 20(Cr PR = MC3 1, P+ )0, (5.8)

All amplitudes only depend on P-k and k2. By choosing our conventions such that the the Dirac structures
multiplying Cy, C3, Cy, and C11, Cia, C13 are antihermitean (I'" = —¢I'yp) and hermitean (I'f = ~oT'y)
otherwise, all amplitudes are real when time reversal invariance applies.

Before starting with the twist-analysis we will discuss the issue of color gauge invariance. First of all, we
of course need to employ correlation functions containing the covariant derivative i D, (§) =0, + g A, (§)
and field strength tensor G, (§) = (i/9)[D,(§), Dy (£)] instead of the A, fields. These are

o d4§ d477 ik1-(§—n)+ikn - - o
btk ki P.S) = [t e (P SIT,0iD°e©IPS),  (59)
and s @
a N iki-(€—n)+ik- - a
G 5 (ki b3 P, 8) = / Ei i TP S (0) gG T i ©IPS),  (5.10)
and as before the lightcone correlation functions
o A&~ dn™ ki (e—m) ik — a
bigley) = [ L ks p G (0)iD” (e (©)|P.S) (5.11)
2T 27 Lo
o A€~ dn™ ke tik. — N
o) = [ S Y btk p ST (0) G () )] P.S) (5.12)
27 27 Lo
Bilocal correlation functions are again obtained after integration over one momentum,
«@ . _ d4£ ik-§ - N aYel X
(I)Dij(kapa S) - (271')4 € <Pv S|w3(0) ZDT(f)%(f”Pa S>
= /d4k1 ®%,;(k, k1; P, S). (5.13)
and the function
G,k PS) = a¢ RE(P,S[P,(0)9;(0) G (9| P, S
dij(k; P.S) = G © (P, S[¢;(0)¥i(0) GT*(&)| P, S).
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The above expressions (without link) are only useful in the gauge AT = 0, in which case the relation
between A% and G is simple, Gt* = 9t A% = 9_A%. Possible inversions are (only considering the
dependence on the minus component),

Az(n™) = AZ(c0) - d¢™ 0(¢™ —n7) G
= Az(-o0)+ d¢™ 0(n~ —¢) G
AN A0 L7 ae e et (5.15)
or using the representation for the #-function,
. dk  e*s ) dk _ e’k
sif(xe) = [ 55 ze(ﬁ)-/EPPT, (5.16)

one obtains (omitting the hadron momenta and spin vectors)

1

(¢} — + + « «
@A(kykl) - 5(](3 _kl )(I)A(oo)(k7k1)+mq>G(k7kl)
_ + _ .+ «@ i o
= Ok — k) PY L)k, k1) + [ O (k, k1)
% (kK k1) + D%, _ (kK1) ;
_ + _ .4y _A(2) A(=0) ¢ a
= 4(k k) 5 + PPkJr e D& (k, k1), (5.17)
where
6(k+ - kii_) (I)Z(:I:oo) ij (ka kl)
= [ S ke R [ 0) A5 oo, ) (OIPS), (5.19)
(271.)4 (27‘[’)4 ) J T ) I 9 9
and
O™ = ) [ @y (ks F1) = DYy (ks Kr) | = 2w 0k = k) @k, ) (5.19)
The constraints following from hermiticity, parity and time-reversal are the following,
%1 (k, k1 P, S) = 70 ®% (k1, ks P, S)o, (5.20)
% (k, k13 P, S) =% ‘I’Da(f%/%l;p, —S')’Yo, (5.21)
(I)%* (k, k‘l; P, S) = (—7:’}/50) ‘I)Da(k, /2'1; p, S)(—i’}%C). (522)

Similar properties hold for ® 4 and with a minus sign for the last relation (time reversal) also for ®¢. We
note the following for the boundary condition terms defined in Eq. 5.18 under time-reversal:

(2m) 6(k™ = k1) ®5ey (P, S5 K k1) = (2m) 6(kT — k)7) (—i75C) @Yoo (P, Sk, Kr) (—insC). (5.23)

This is the consequence of the fact that the point = = oo is defined by n - ny = oo, which after time
reversal transforms into the point -7, = —oo. Since the component 77~ is not integrated over the minus
sign is not removed by a change of variables as is the case in ® 4(k, k1) (analoguously to the case spelled
out for ® in the first paragraph of chapter 2). Thus we see that the left and right sides of Eqs 5.17 are
consistent.

Integrating over dk~ d?k, and dk; d*ki, one finds

1

Po(zy) = 0z —y) Y () + pr— ¢ (z,y)
= 0z —y) PY(ooy(@) + T ytic e (z,y)
1 « « Z’ «
= 3 6(z —y) D% o0y () + P o0y () +PPx—_y ¢ (2, y), (5.24)

=27 0% (2)
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where

6z —y) q’j(ioo) 13(33)

- pt / B AN ik i G—k)m( P, ST (0) gA (00, 0, 00)055(€)| P, S) (5.25)
27 2w J o
8z = y) [#%00) (@) = DYy (@)] = 27m6(x — 1) D (). (5.26)
2 03 (2,2)

We note that the constraints from hermiticity, parity and time reversal relate functions at different mo-
menta. However, for the lightcone fractions x and y the same fraction appears right and left since they are
expansions of quark momenta in hadron momenta, k =z P + ... and k = 2 P + .. ., all of which become
bar-ed. Further, we note that if ®¢(z,x) # 0 a pole appears in ® 4, hence the name ’gluonic pole’.

In order to define color gauge invariant functions it is necessary to include the link operator,

e

U, €) = Pexp (—ig [ ac A,Ao)) , (5.27)

where we will implicitly understand that the path runs along the minus direction with £+ = n* = 0 and
&, = n,. Of course this means that relations hereafter need to be integrated over the minus components
of the momenta. The path-ordered integral is defined as

ue) = Poso (~ig [ s 0 a,icis)

1 i
= 1-ig [ s a0

+igp” [ ds L a0 [ an B 4 g+ 060, 629

d51 s1 dSQ

where ((s) is a path running from 1 = {(0) to £ = {(1). The path ordered exponential is just the (infinite)
product of infinitesimal link operators of the form

U E+dE) =1 —igdEHAL(E). (5.29)
From this infinitesimal form one checks that a counter-clockwise plaquette of four links, is given by
U(§,§+dU(E + d€, &+ d§ +dn)U(§ + dE + dn, E+dn)U(§ +dn,§) = 1 —igdEPdn” Gpe(€).  (5.30)

From the infinitesimal forms of links and plaquettes the following properties follow

0UME = UM.E)iD*(E) (5.31)
.
IDEOULE) = UROIDHO + [ dC U D (O DHOIUC)
.
= UBLOIDHE) +ig [ UM G OUCE), (5.52)

where a = 1,2 (transverse), and hence along the link (where (7 = &r) iD3(() = i0¢ + g AZ(().
Including links we start with the gauge invariant definition of ®;;(x, k+),

By(okr) = [ BESEE R SIT(0)U0, 00U, O UOIP.S) _ (5.33)

A note can be made at this point about the behavior of the correlation functions with a link (to be
discussed in more detail below). Under time reversal the correlation function ®;;(z, k+) will not transform
into itself, but the link will run via £~ = —oo instead of £~ = oo. Only when the matrix element in
Eq. 5.18 vanishes or after integration over transverse momenta time reversal can be used to constrain the
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parametrization of ® and similarly other correlation functions. Multiplying the correlation function with
the quark momentum we obtain,

2
Wyl ke) = [ EoEEE P fT OU0) U uORS)| L (53

e+=0

where i0" can be read as i 9 or i 62‘ . Depending on the Lorentz index of the derivative, one can use
the link relations given before to rewrite the derivative in terms of correlation functions containing the
covariant derivative,

d¢—d*¢,

(D) (2, kr) = /W e (P, S (0) U0, 00) U(00,€) iD5 (€)vi(€)| P, S) (5.35)

£t =0

First of all, one of the correlation functions (with covariant derivative) is trivial. Because of the choice of
link, which lies along the minus direction in the point £ (except for the points {~ = o00), one has for the
+-component the relation

¢~ d’¢,

kY@ (v, ky) = /W e (P, S[1h;(0) U0, 00) U(0,€) iD T ;(€)| P, S) (5.36)

e+=0

For the transverse component one finds

kY @i, kr) = (5)ij(x, kr)
_ dé. dQéT 1k 13 T )X/, _ o .
- T [(9.\3 <P S|’$ ( ) (Oa OO)ZDT¢Z(€)|P7S> ((I)A(oo))ij(kaT)
(2m) £+=0
_ &
(RS OU0%) [ e sGung veirs)| | e
oo £+=0
Performing the k, integration this leads to
B (2) = P (z) = By (0) — [ Iy —— D(a.9) = B (o) — B3 (2). (5.39)

The sensitivity to background gluonic fields appears through the boundary terms, i.e. the
matrix elements @Z[(Fi]oo) (z). We have already encountered the antisymmetric combination.
We define also the symmetric combination. Thus

21 D5 () = [Ph(00) (%) + PU(— o0y (2)]
21 B (2, 1) = [ (00) () — PU(— o) (2)]
where the important observation is that these two combinations have opposite behavior

under time-reversal (even and odd, respectively). In later calculations we will typically see
the following combination showing up,

/dyx— = CI’Aﬂﬂy /dy#._iefbc(l’,y),
—@D( ) @3( )-W@Bc( )-TK‘@G(‘T},‘TJ)

Considering the above as one object, @a(ef d )(x) one needs in the parametrization T-odd
functions if ®&(z,z) # 0. It is consistent with the observation that the presence of links

prohibits the use of T-reversal constraints for ®(x, kr).

The projections obtained for the quark-gluon corrrelation functions with transverse gluon fields are
not independent from the ones defined for the quark-quark correlation functions, either. They can be
connected to quark-quark correlation functions with one good and one bad quark field using the QCD
equation of motion, (¢D —m)i(x) = 0. From this equation it is straightforward to derive the relations

1D + o Dyip — mAyHah = 0, (5.39)
iy D" — iy DHp 4+ im a* ) + i€ P vy 1D ph = 0. (5.40)
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or explicitly
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iD e —ioT T iDT 4+ i0*T iDyth — my Ty = 0, 5.41)
YT iDY) — i€y Tys iDgyp = im o Tep + 4 iD ) — iePygys iD T, 5.42)
where €2? = ¢=+8_ This immediately leads to the (T-even) relations
G _ aficF 5] — _ kST b
O5, (2, kr) =€rap Pp (2, kr) =i (Mze—m f1) + erij kySL ahy 5.43)
@I[)iga+75] (x,kr) = Mxhs —mgs, (5.44)
O3 N ker) — i @ 57 (@ o) = kg g = ieheg (agt - 27 bi)
€885 (Mx g —mhyr) . (5.45)
or including the T-odd possibilities
q)[[)o:ﬂ(fvv kT) = €rap (I)%[idﬁ+'y5] (557 kT) =1 (Mxe -m f1 —iMz h)
+ ey k2SI (xh% +i% ffT) (5.46)
(blgiga+75](makT) =Mzhs —mgis +iMzes, (547)
q)a[’Yﬂ k _‘aﬁq)[’)’Jr’Ys] k) = k& €L ﬁhj_ _~a5k J__ﬁhj__~/\ 1
p (z, k) —ier D (z,kr) = k7 (xf +ZM 1 er Rrg \LYs s iAx f],
— i€ S5 (Mx gl — mhir — iMzx fr). (5.48)

These relations for ®p can actually be considered as defining relations for the twist three correla-
tion functions, again including k,-dependence. Integrating the k,-dependence the most general form for

®% (z,y) actually is

M

oh(zy) = ”ﬁ{GD(xa y) i€’ Septhy + Gp(,y) ST st

+ Hp(z,y) \ysy2 4 + Ep(z,y) 7?ﬁ+}-

with hermiticity leading to

Gp(z,y) = —Gply, ),
Gp(z,y) = Gp(y, ),
Hp(z,y) = Hp(y, ),

The equations of motion are then giving the relations

/ dy Gpl(z,y) = Gp(x) = C(x) + iz fr(x),

[y Gotw.y) = Gple) = C@) + 292(0) — 77 (o),
2/dy Hp(x,y)=2Hp(z) =xhp(z) — %gl(x) +izer(x),

2/dy Ep(z,y) =2FEp(x) = —ze(z) + % fi(z) +ix h(x),

where the function C(z) cannot be given in terms of quark-quark correlation functions.
From ®p, we can get ® 4, in essence as P4 = Pp - Py. For the T-even case this leads to

(5.49)

(5.55)
(5.56)

(5.57)
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oot alic?t
g0 17 (2, k) = erap g3 (2, ko)

=iMz e+ epyj ki Sj xﬁ%‘

=i(Mze—mfi) — epij k2SI (hir — xhT) (5.58)
or
9@ k) — g0 (0 k)

=ie?? Mxé — (S2kS — k2S2) xhy,

=ie?’ (Mze—m f1) + (S2kS — kSP) (har — zhy), (5.59)
g0 7N @ k) = Mahy = Mahy —mgr, — (ke - Sr) g — £ 17 M (5.60)

g@zhﬂ(x,k )_ Zeaﬁ gCI) At ’Ys](fv k )
= kS aft — legﬁkw xgt —i€2P S5 Mz gl
a7 m .
= K2 (of* = f1) = €8 ke (293 — g1 — T2 b ) = i€8” S (Ma gy — mbar),
(5.61)

which are useful objects as they appear as soft quark-quark-gluon parts in a diagrammatic expansion of

hard scattering processes. As the operators I' used in (I)jm are hermitean in the sense that I'f = 4Ty
one has .
(1095T50)™ = (@57) " (5.62)

Integrated over k; the above relations become

g<I>A[U;+](x) = €rap g(bj[wﬂ%] (x)=iMzée=i(Mze—mfi), (5.63)

or

g@j[wm%] (x) — g@i[wwm (z) = ieP Mz é =ie?® (Mze—mf), (5.64)

g0 7" @) = AMwhy, = X (Mahy, —mgy +2M M) (5.65)

g(bjhﬂ(a:) — ie2h g(I)f{’yﬁ*Vs](gj) = PS5 Mx gr = —ie?PSrs (Ma: gr —mhy — Mg1 ) (5.66)

where the upper index (1) denotes

2
10w = [ Pl k), (5.67)

The tilde functions are precisely the parts vanishing for the free quark case. This was the way they have
been introduced in chapter 2.

With the same parametrization for ®%(z,y) as the one for &% (z, y) given above one obtains (including
now the T-odd functions)

[ 0 Gat9) = Galo) = Cla) + i fr(o) + 1) (5.68)
[ty Gae9) = Gate) = Cla) + 29r() = 17 o) - 97 @), (5.69)
2/dy Ha(e,y) =2 Ha(z) =« hy(z) - %gl( 2) + 20D (@) + iz ep (x), (5.70)
2/dy Eae,y) =2 Ba(r) = —we(a) + 1 fi(e) + iz h(z) +2i b Oe). (5.71)

For the antiquarks one needs to consider matrix elements

@5, (k, P,S) = € e HE(P S|y (€)AL(€)D;(0)|P, S) = —0% ,;(—k, P, S), (5.72)

(0% 70)s5 (K, P, ) /d4 € e (P, Sl () A2(0)¥;(0)| P, S). (5.73)
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For them one obtains, using for the nonlocal quark-quark matrix element
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£ e (P, Slpi( Ui UD;(0)| P, S) = —kH i (k, P, S) (5.74)
(where i0" can be read as ¢ 62‘ or i 9%') and the equations of motion, the relations
= [0%7] —alic? ™ ys]
g(I)Acx (ﬂi,k ) eTaﬁgq)A (mva)
=1 (M{EE -m fl) — €rij leS; (EIT - {EE;:) (575)
or
alio? —Blic* " s
g3 k) — g8 (k)
ape] = T o a T -1
= —ie2? (Mze—mf) — (SekL — k2SP) (hir — xhy), (5.76)
- |10 - k2
9840 k) = MR+ mgy, + (b - ) + 35 o, (5.77)
g@j[f](x, k) + ie2? g@j} ] (x,kr)
—1 m —1 o _ —
=—kg(xf =T+ ze?ﬁkTg (xgj‘ — 915 — M hls) + ZGTBSTﬁ (M;v g7 — mth) .
(5.78)
The k. -integrated result is
o N =alic’ ], — -
9Ps0  (¥) = —€rap 9Py () =i (Mze—mf,), (5.79)
or
—alic? 5] —=B[ic™ ™ vs5] _ i ap _ -
9P 4 () — gDy (z) = —iel’ (Mze—m f,), (5.80)
e )= -\ (Mahy —mg, —2M hfL(”) , (5.81)
giz[f](ﬂc) + ieo‘ﬁ g<I>Ahﬁ 75]( ) = ie?ﬁsw (ngT —mhy — Mgg )) . (5.82)
For the fragmentation part one needs to consider the matrix elements
Al (ks ks P Sn) = gty et R IR 0] () A2 () afantd; (0)]0), (5.83)
or after integration over k; the bilocal matrix elements
%ij (K, Phy i) = € e (01(€) A3 () ajanth; (0)[0), (5.84)
(10251 50)35 (k. Pa, Sh) = € €004, (€) afan A% (0) T;(0)]0)- (5.85)
The twist analysis for the projections
1
A k) = = /dk* Tr (
A ! 4z k==P; /2, kr
a2 e
———= " Tr (0 0)I'0 5.86
[ e T OWE© A3 ahanTOTIO)| (5.86)
is completely analogous to the distribution part. The equation of motion together with
& e (0l (€) 10" afan ;(0)|0) = k" Ay (k, Pr, S) (5.87)

— —

where 10" can be read as i 9% or ¢ d%'), now give the relations
¢ 0
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o [To et . M ~ M
3 = a1 =i (Me g 2 )
z z
1 -~
ey kST (2 H%HM%DfT)
M;, h k2
=i|—E-mD) —i—H+i-—~ Hi
z( 2 mby —1 —l—th 1
o 1 .m
or
alic” ™ 10 5 . My, ~ M ~
QAA[ 8 75]_9Ai[ %]:—Zegﬁ <—hE—Z—hH)
z z
e « 1 - .M~
- (Sthg - kTS}?T) <;HTJ: +ZMD%T)
o [(Mn . My k2
:—zeTﬁ (7E—mD1—z7H+zMTth‘
a 1.8 agf Lo, . m
+ (Shok — k2S5, Hyr — S Hf —i g Dir ). (5.89)
0¥ s My - M, -
gAf{a ) :_hHs+Z_hEs
z z
M M 2
= ThHS—mGlS—H'ThES—(kT-ShT)HlT—VThHlLS, (5.90)
ol aB A bl _ e (DY moz Kokl + 5 k3 97) €xijSiy -
gAAh ]—HeTﬁgAAhﬂ %]:kT <7+ZMH1L> _ ( Thr T 3 ]\T4hT) Tij hTDf_T
Gt Dt My, = D
. af s YL - af Mh o _T
+i€, kT5< . i A\p . )—I—ZET Sh5< . GT i My, >
afloe TN k3 iQJ L
= kT ;D — D1 —+1 Mh Hl — MheijkTShT DlT
1 m D+
- _af ol " 1 _ - L
+ iex ko <ZGS G1s 3, Hi, —i\p . )
M, D
+i€?ﬁSth (%G}—mHlT—iMh 7T), (5.91)

and A% = (AG™)*. Note that the twist two profile functions D7, Hi and the twist three profile

functions Er, Er and H, that are odd under time reversal, enter as the imaginary parts in Ajm. Again
the tilde functions are the "interaction-dependent’ distribution functions. Note that the time reveral odd
functions are interaction-dependent, e.g. Di; = Diz, etc. We have, however, made the choices Dy =

Dy — lelT(l) and H = H — zHlL(l) which guarantee the absence of Di; and Hi- in the integrated results.
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The k,-integrated results are
4 alic?~ My - M
gAA[a (2) = —eap gy o 75]( ):Z< zhE zh H)

M, H
“rE—mD, —iM, [;+2H1“1)]>
M,

2
2

My i L gt
E—m D —iM— [zH D (5.92)
or
alic® ™ ic*T M ad M
gAA[ 7] (2) — gAg[ Vs](z) = —zeo‘ﬁ ( E— Zh H)
M, H
= —jeoB <7hE —mDy —i M, [ + 2H“1)] ) , (5.93)

0“5 M, M, M . M,
gA el ) = N, (_h Hy 402 EL> =\ <7hHL —mGy +i ThEL — 2M,, HfL“)) ,(5.94)

o , My, ~ .M, ~
o3 et gA f ) = it Sy (P2 G i 22 Dr )
M D
:ie;‘ﬁSth<7hGT—mHl My G2 + i M, [7T+DfT<”]>

Ca M , d
=27 Shrp <7h Gr —mH;, — M, Gﬁ,z - ZMhZ% {D#l)}>, (5.95)

where )
DW(z) = 22/d2k 2’;\42 Di(z, —zky). (5.96)
For the antiquark fragmentation part one needs to consider the matrix elements
Bk Pr 1) = sy [ 1€ € 0T,(0) A3(E) anthl©]0) = Al (< P S). (597)
(085 70)i5 (k. Pa. 5h) = (21)4 § 701, (0) ajan A2(0) ¥i(€)10)- (5.98)
Using the equation of motion together with
ﬁ /d‘*g e~ *€(0[1;(0) 10" a}yan ¥i(€)|0) = —k" Ay;(k, Pp., S) (5.99)

— —

(where i0" can be read as i 9y or i J), now give the relations
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— [0t —alicPt My, — — M, — k2
08,7 = cap gAY '(—hE—leJrz'—hH—z—Hf)
z z M;,

i oi T 1—1 m —1
teijkiS) (Hir — =Hyp +i=— Dip), (5.100)
z M;,
or

—a[ioﬁ+

—Blic™t M;, — — M;, — k2
At el Rl ”“:iegﬁ(—hE—leJri—hH—' I, )
z z My,

o o - 11 =~ m =1
~ Stk —KS0) (Hur = - Hy +igr Dip). (5.101)

ioot My — — .My — I7 k2 —
gA[ ] :——Zh H5+mG1s+z—hEs+(k’T'ShT)H1T+ﬁThH1lsa (5.102)
—ay*] s ol l=1 e kS PR —
gy — i€’ gA 4 ! = —k7 <;D —Dl—ZM H1> __]\4Th €ijkr Sz Dir

—1
1— — Dy,
—ie ﬂ/%g( Gl—Gls—ﬁHu—H/\h —>

My, — — My, —
— €8 Shag (7h G —mHr +i—" DT> . (5.103)
The k -integrated results are
oot —alic? s M My,
A LT0) = eag BT () = (_h E-mD, +i-"H 2 M,H, (”> (5.104)
z
or
—alic?t —Blicet M M
gAA[ Vs](z) - gAi[ 7] (2) = ie2P (— E—mD;+i—=H —2i M, Hi—(l)) , (5.105)
10Ty M, —
gA Sl Ly — Ly, <_hHL_mal—z—EL—2MthL(”), (5.106)
—a . My, — M,
g e) — e gB N (z) = —ie S (7’10T—mﬂl M, Gy —i M, Dyy” +i =" Dr )
(5.107)

5.2 Gluon distribution functions (new)

The simplest gauge invariant correlator involving two gluon fields are the lightfront correlator

T (2, prin, C,C') = / = ézjjr))g—% e (PG (0) Ul S Gree) US| P) L (5.108)
where a color trace over the operator is understood, and the lightcone correlator
' (x;n) = /dng T* (z, pr;n, C,C")
/ % e =P (PIG™ (0) Ujglk G™(€) UM (¢, 0)| P) . (5.109)

For a proper treatment of the transverse moments we need the weighted correlator

g (z;n, C,C") = /dng pe T (2, prin, C,C") (5.110)
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and the three-gluon correlators

TS () — / d(é Wf ) cinre (piGme(0) Ul (D2 (€), G (e) UL |P) PR
TG (@, —a'sn) = / d(é;:;) d((g;j) el (@=a VP& gia'Py

x (P|G™ (0) UG G (), Ul G (UL U 1P) 'LC, (5.112)
F?g;f(fv,:c —a'in) = / d(é;;) d((g;rf) el (@=a VP& gia' Py

x (PIG™(0) Ul {G™* (n), U g G™ (U U | P)

o (5.113)

LC

Of the latter two matrix elements given as multi-parton correlator, we actually need the case z’ = 0,
the gluonic pole matrix elements. Making the (suppressed) color trace in the latter two matrix elements
explicit one sees that one deals with fully antisymmetric or fully symmetric matrix elements, in lightcone
gauge

i fave (P|G¥(0) Gy () GeH(§)|1P)

3

LC
and
dave (P|GRY(0) Gy (n) G*(§)|P)

LC

5.3 Gluon distribution functions

When one considers QCD corrections to the tree-level results one will also encounter gluon-gluon correlation
functions, leading to gluon distributions. In a diagram one needs

1
(2m)*

but the gauge invariant object to consider is

/d4§ e ME(P, S|AY(0)AH(€)|P, S), (5.114)

1
@)

DR (15 P.S) = oy [ di PSP O)U(.€) P OIPS). (5.115)

The constraints following from hermiticity, parity and time reversal are

LPomv*(k, P, S) = DM (k, P, S) [Hermiticity] (5.116)
IH3re (P, S) = FW;M(E7 pP,—S) [Parity] (5.117)
P * (ke P, S) = T pepo (K, P, S) [Time reversal] (5.118)

where k = (K%, —k).

In order to find antisymmetric structures we use the following tensor structures and relations
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between tensors,
GNVPU,
g9, = = g%9"% —9%9"%,
A[Mgl’] ol — g"PAF BT + gM7 AV BP — gMP AV BY — ¢V A*BP.
ehvalB €poaf _9 g[upgl/]m
oA 6pa'OtB =1 e,uz/ozﬂ epaaﬁ gAB _ B[,ugl/][pAo]
HVAB poCD  _ 1 euuaﬁ epoaﬂ (gACgBD _ gADgBC)
—C[“gl’] lp go] g°" + C[ugu] le gl g + D[ugV] lp go] g°° — D[ugV] le gol g*°
—cleprl gl el
6p,l/A[o’Bp] + GPUA[VBN] — Mvpo gAB’
6;LVA[aBp] _ ep.l/B[G‘Ap] — ¢ABYVO g,up + eABHP gl/U _ ¢ABuO gup _
— eABu[pgo]v _6ABV[pgo]u — gp[ueu]oAB _
For changing from matrix elements with F),,, to matrix elements containing F w=-— /2)e wwpaEP7,
we note that
—5 € €T = (g'Pg" — g"g"?),
e N = g
_% 6#«1/}{A 6N)\ozA GpgaB _ EPUB[VAN],
_% 6#«1/}{A 6N)\ABGpUC‘D — A[MBV] epo'CD’
_% EEN iAalo gl — _A[ugu] lrgol.
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A possible parametrization of T'#¥3P7 ig

[wee (ks P,S) = M Xy e 7
+ Xy P[#gV][PPU]
+ X5 k[NgV][PkU]
+ (X4 +1i X5) Plrgrllegel
+ (X4 —i X5) ke gvlle pol
+ (X¢/M?) Plrg¥) plogel
—2M X7 €7 (k- S)
+iM Xg etvrlogel
+i M Xg e*vsloprl
+i M X e"vFlo gFl
+i M Xy, evslofr)
+ i (X1o/M) e Ploprl (k. 9)
—|—z(X13/M) etvRlo el (k. S)
+ i (X1a/M) VPl el (k. 9)
| (X15/M) eMvklo pel (k- S)
X6 +ZX17)/ ) etvrsile pol
)/M) eP7FS |l pYl
) M) euuksk pPo]
) M) 6po—ksk[upu]
) M) e,uukPP[pSo
)/M) ePokP plr gyl
99 + 1 Xo3) /M) e"FrElr gl
Xog — i Xoz)/M) ePF klrgY]
24+ Xos) /M3 eV*P Rl pl (k. S)
Xog — i Xo5)/M?) ePo*P e pYI (k. 9), (5.119)

»

ottt
>

with X5, X7, X16, X185, Xog, Xo2 and Xo4 being T-odd. The constraints from hermiticity imply that one
finds real amplitudes X; if the tensors symmetric under uv < po are multiplied with 1, while the tensors
antisymmetric under pv < po are multiplied with ¢; the constraint from parity requires that even numbers
of e-tensors are combined only with vectors k and P, while odd numbers of e-tensors are combined with
the axial vector S and furthermore vectors k, P; finally the constraint from time-reversal requires that any
e-tensor appears multiplied with 7 and for the rest real stuff.

For the amplitudes with an odd number of e-tensors, it is useful to realize that the quantity

D57 (ks P, S) =

(2717)4 /d4€ e M E(P, SIFM (0)U(0,€) FP ()| P, S). (5.120)
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has the structure

Lo (k P,S) = ...+ MX; ewﬁ e 5 (k- S)
— i M Xg Plrg¥ 1lp go]
—iM Xo S[“ 1le pol
— i M Xy kltgHle o)
— i M Xy, S ”1 Pk"]
— i (X12/M) Plrg"le pol (k- )
— i (X13/M) k[u v][pko] (k-S)
— i (X14/M) Plrgillegel (k. S)
(X15/M) Klig - PPl (k- S)

—1
+ ((X16 +i X17)/M) Plg" o po)
— ((X16 — i X17)/M) eV epors
+ (X184 i X19) /M) Elr sV gl po
— ((X18 — i X19) /M) VP epoks
+ ((Xa0 + i Xo1) /M) Kt PPl )
_ ((Xgo _ ngl)/M) eHvPs 6pcrkP
+ ((Xag + i Xo3) /M) klH PrIElP 571
— ((Xog — i Xo3)/ M) etvkS pakr
+ ((Xoa + i Xo5)/M?) Kl PIEP Po) (- S)
— ((Xa4 — i Xos)/M3) kP erokP (. 5). (5.121)

In the next step we try to isolate the dominant parts by expanding the vectors in lightlike and transverse
vectors, and the invariants o = 2k - P and 7 = k2,

M2
— xM? — 2o M?
k:xAn’fr—i—k‘T‘—i—%n’i, or k—mP:k‘T‘—l—%n’i, (5.123)
A M P M
A2 u oM I Wy~ I
S )\Mn++5' )\2An or S )\M Sk )\P-n_n_’ (5.124)
and we have "
o—2x
k-SZ/\T-FkT'ST- (5.125)
The tensors can be expressed as
g = a4 g, (5.126)
ehvro — TLBL_LTLV] epa + n[# P] _ n[#ni] egp
[V n’! e + n[ n_ ] el — n[fni] el (5.127)

The dominant parts are the ones containing the hightest powers of A = P*, e.g. for the unpolarized
part we have in order of importance,

. ko kS

rtotb(k, P S) = AQ{ [Xg +2x X4+ Xg} 2 X6}7 (5.128)
— 22 M2

T+t (5, P,S) = AkS [(X4 +aXs) — i X5+ <U27 — m) Xe] (5.129)

r+ef (g, P,S) = Ag2lPk} [(X4 +rXs)+i X5} , (5.130)
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ete. Integrating over k~ we then find that the leading functions (o and 3 being transverse) are

5%z, ky) = / dk~ THo+08(k; P, S)
x Pt €7 kriSr
= (—g;‘fﬁG(w,kT)—g?ﬁ%GT(MT)

1 H (2, k
+ (g 4 gapa ) L)

kr-S

—i e [A AG (2, k) + L AGy(z, kT)]

e ke k., -
% [AAHf(m,kTH i STAHTl(x,kT)]
{o ﬂ}z {a 5}1
k T T T Tz
S, 4}45 € [AHT(x,kT)—AHI%(l)(x,kT)D. (5.131)

These give the leading (twist two) distribution functions, Gr, AH} and AHr being T-odd. Note that
the tensor multiplying G is actually the antisymmetric version of the tensor multiplying AHz. The use
of the combination AH} = AHp + AH%(D where AH%(U = (k2/2M?)AH# will become clear when we
consider explicit representations. At subleading order we have

I8 (x, ky) = /dk* r+et=(k; P, S)

ie2P

v M 4l Rrs AGL (2 k) + %G (z,k )), (5.132)

= <Z€ B Sr 5 AGh (k) +

2 M

where the imaginary parts of these functions are T-odd. Furthermore

Fg;m (xv kT)

/ dk™ THPY(k: P, S)

alBq7] &
e M [ 2Pk By e - oy K
= ( o Ha(w k) + i€ S A (v k) + i€ 17 AH (v, k )>Q5-133)

where the imaginary parts of these functions are T-odd.
After integration over the transverse momenta, we obtain

+
5% (z) = “; (—ggﬂ G(z) +iexP AAG(:C)) , (5.134)
M
T9(z) = i e2? S 5 AGar(z), (5.135)
ng;BV(x) _ 3:;\4 i €87 S AHyr (), (5.136)

where AGsr = AGY, + AGL(l and AHsp = AH, + AH;‘T(U, of which the imaginary parts are T-odd.
Examples of the amphtude expansion for the various functions are

k2
xG(x7kT):/... X2+2;vX4+x2X3+2—J\;2X61, (5.137)
cH* (z,ky) :/...[Xﬁ], (5.138)
— 22 M?
RexG§(x,kT)=/... (Xa+2X3) + | 222 ) X, (5.139)
2M?
Ime§(m,kT):/...[—X5] (5.140)
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where
/...:/dadr S(kZ 4+ 2 M?* + 1 — z0).

From the matrix elements and the commutation properties of the gluon fields one immediately gets
symmetry relations like G(—x) = —G(x), etc. This differs from the case of quarks, where similar relations
connect quark and antiquark distributions at positive and negative x-values. About the normalization, we
note that for an unpolarized target

+y2 oo
/ dkt T9% (z) = —g2P % / dz 2G(x). (5.141)

The left-handside is equal to
/d‘*k [+t (k; P, S) = (P|FT*(0)F#(0)|P). (5.142)

Contracting « and [, using the support restrictions —1 < z < 1 and the symmetry relation G(—z) =
—G(z), one finds that

1
/d4k et (kP S) =2(Pt)? /0 dx xG(z) = (P| FT*(0)F*,(0) |P) (5.143)
N————
pe 057(0)

and realizing that the right-handside is only the gluonic part of the energy momentum tensor, fol dz 2G(z) =
€éc < 1, while the chosen normalization assures the complementarity with the quark part of the energy
momentum tensor discussed earlier, €; +€eg = 1.

5.4 Explicit spin representation

The correlator I‘S‘B contains two transverse gluon fields and can be interpreted in terms of gluon distribution
functions. To make the gluon spin explicit, it is useful to consider the explicit matrix M*? = (2/zP)I'g?
with « and 3 being transverse indices. The result for M is

2 2
G—i—w]\/éSTGT—i-;f\}Q cos2¢ H+ —ZS’LAGL—szSTAG +2’§42 sin2¢ H+
+Rn sin2g AHL ¢ GESEHESD Apy _Kr oo apt - BESEREST) A gy

15, AGL +i kSt AGy + Fr sin2g mt G+ keoSz Gy ~ K cos2p HE
2’X/[2 cos 2(;5 AH: - %]\fﬂ AH) —2’X42 sin2¢ AHE — % AH)
(5.144)

where (for later convenience given also in spherical vector components and in matrix form in the nucleon
spin-space)

kr- Sy =kLSE+ k282 = —gkS — (k1 ST + k7 ST) = [ |kT|06+i¢ lkTIOe‘W ] . (5.145)
ki NSy = kpS; —kiSp =5 = —i(kf S, —k;85) = [ i| kT?em - "“TO' o ] , (5.146)
kLSL — k282 = kFSE + Ky S, = [ |kT|2_i¢ |le06”¢ ] 7 (5.147)
FLS2 4 k251 — —i(kt ST — ko So) = [ i|kT?e“¢ - |’“B| e ] . (5.148)

We now have used transverse gluon polarizations. Instead we can use circular polarizations,
1
+)=——(lz) +1 ,
+) 7 (lz) +ily))
1
—y=—(z) —1 , 5.149
|- 7 (lz) = ily)) (5.149)
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and we obtain

MYt Mt %(Mll + M22) _ ImM12 —%(Mll _ M22) +iRe M12
— (5.150)
M=+ M~ —5 (M — M??) —iReM'?  F(M'" + M??) +Im M*?
For the above matrix we find for circularly polarized gluons
2 X [
G+ koSt G5, AGy + B8 AGy  — Er o0 (gt 4 iAHY] - i 525t Am,
2 ) + o+
— Ry o (g i ALY i S AL G BenSe g - 5, A6, - BrS A,
(5.151)
Extended into a 4 x 4 matrix in gluon ® nucleon spin space we obtain
G+AG brle 2 (AGr —iGr] e [HH0 4 ian; )] _lbrle M A gt
Brle?™ (NG + i G G- AG —ilkrle ™ Ap, —e @ [0~ an; 0]
20 [Hm QA HL“”] bzl ™ App G- AG el (AGr + i G
i\kT‘stm AH%(U _et2id [HJ_(l) —|—iAHLL(1)] _ \le‘f;rw (AGr — i Grl G+ AG
(5.152)

5.5 Gluon fragmentation functions
For the fragmentation functions one needs the matrix element

N 1 ik y o

DP9 (k2 Py, Sp) = @i Z/d% e B E(O|FH (€)| Py, X)) (P, X|FP°(0)]0). (5.153)

X

In this case no constraints arise from time reversal invariance and the most general expansion of the matrix
element becomes,

057 (2, k) = /kor =B (k; Py, Sp)

ij
aB €7 kri

Py <—g?ﬁ Gles—2kr) — g5 TEE Gz, sk

1 G (z, —zky)
+<kakﬁ+_gaﬁk2> )
TvT 2 T T M}%

kT ' ShT

i, AGy(z, —sz)]

+i €2P [)\h AGL(z,—zky) +

k{a ﬁ}ik ; .
+L2T {/\h AGi(z, —zky) +
M,
+kT{a6§}iShm + Sl
2M;,

kT . ShT

AGH (2, —zkr
T AGH k)|

T AGH (2, —sz)> . (5.154)

These give the leading (twist two) fragmentation functions. At subleading order we have
05(z, —zks) = /dk+ ;% T (k; P,S)

. i 2P L .
= M, <z 62‘5 Shrp AGy (2, —zkr) + ZeTTTﬁ AGgLS(z, —zk;)

+ L G1(z, —sz)> . (5.155)
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Furthermore
099 (z, —zk,) = / dikt =P (k; P, S)

k[ﬂs’Y] €Sk R
2T Yhr e Rrs H3LT(Z7_ZkT)

g?[ﬁkl] s
= My A, Hi(z,—zks) + M, N,
- 3 a 204 - B k? agn
+iel " Sy AHyp(z, —zky) + i€} A AH; (z,—zks) ). (5.156)
h

After integration over the transverse momenta, we obtain

- P A N

19°(2) = z_g <—g$5 G(z) +ie2P N, AG(z)). (5.157)
. M, .

I5(2) = —5 € Shnp AGsr(2), (5.158)
Ao M, .

0577 (z) = Z—thﬁgv Shr AHzr(2), (5.159)

with AGsr = AGYy + AG" | and AHsp = AHY, + AHGY.



Chapter 6

Drell-Yan up to 0(1/Q)

6.1 The hadron tensor

Up to 0(1/Q) one needs to include the contributions of the handbag diagram, now calculated up to this
order with in addition irreducible diagrams with one gluon coupling either to the soft part involving hadron
A or the soft part involving hadron B. The expressions thus involve the quark-gluon correlation functions.
The full result is neglecting 1/Q? contributions given by

oMWy = / dk, dk; kot dkyr 6% (kar + ko — q4)
{Tr (®(ka)yu®(kp)7)
1y (P B (kB ) ) - Tr (T B (), 3
I\ Yo —2q_% A( a)'Yu ( b) '\ Y _2q_"/a ( b)%/ A ( a)

o @%mwmﬁfw) h (w%vﬁi(’%)vﬁ(%) } (6.1)

Here the terms with 94 arise from fermion propagators in the hard part neglecting contributions that will
appear suppressed by powers of Q2 i.e.

Pr—d+m _ (i —a ) T e mala 6.2)
(m—9?  —20f —qN)g 20 —2¢= Q? '
q_}é1+m _ (qi_kl_)’yJr _ ,\/Jr _ ,/L* :_xBPB (6 3)
(g—k1)?  2(g—ky)gt  (2¢7)  (2¢7) Q? '

501
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The full result expressed in terms of the twist two and twist three distribution functions and perpendicular
tensors and vectors is [Check sign of g; g1 and 1/Q terms]

1 g )
W = 3 /d2kaT Pk 6% (ko + kyr — qr) ¥ {—gﬁ fifi +9139131
kR (kas k) g hiRL RS+ (ks - Sa1) g BT
MaMp Mg e

k{” S" wl - S Ky _ v v 7
_kaiOp) (M: 51)g1 hiyhar — (SiﬁSB}L"'(SAl'SBL)gﬁ ] furhir

A{Mk_u} B B
z
+ QGL [_f1f1+2$A fo1+glsgls _2$Agjgls
MB ka_
——2 h D 2higrs — h h
My e A M B9l T N,
kyi-Sa1 - kyi -Sp1 ;5 kyi -Sa1 =
S v hirhi, — . hihir + By 21, hirhi,

—Sa1-SpiLhirhir +8Sal - Sp1 22, hihir

g{ukﬁ
Q

+ fifi =225 fift — 915915 + 225 91505

M _
+M—A 22, hshi, —

m _ k2
2 Shj_ al hJ_ hJ_
PR VIV
a S 7 a S a N S -
pRar - Sas harhi, + Eas -Sp1 hi Ry _kar-SpL, hi- h:
MB A A

+8a1 - SpL hithir —Sa1 - Sp1 2%, thh%‘|

LMy zlughd

M - m
0 —2% 4 §rgis — 8 90y harhs + —— 2 hirgis

My My

kiL =1 kel ke, -1 kel -kpo 1Tl
_ Ol gy gk Bel By g1 Fal TR0l o plh
Madp T T s T T e Ava hphag

kot -SBl1 - kv, -Ss1 - kot -SB1 1z
—————— hithit — ——— hithit — ———2x 4, h7h
+ Mo 1Thir Ma iThir Ma TahphiT

—= 22, hshir + 225 91507 — 2 gishir

Mg

k 1 17 kaJ_ ka_ 17 kaj_'ka_ 171
ol plp o Jal BbLglp oy Jal B o hih
MaMg " T TN Mg S VPt

+MBZ{HSBJ_ [

m
Q Mp

+

kot -Sal - kvl -Sal - kyi - Sal _
———— hithit — ——————— hyth ——————2x5 hiTh 4
+ i irhir My irhir + e xghirhz | ¢, (6.4)

where the quark distribution functions in hadron A depend on x, and kaT, fi(za, k2p) ete., while the
antiquark distribution functions in hadron B depend on x5 and k:bT, fi(zs, k:l%T) etc., and we use the
shorthand notations

kot -Sa1
p— A -
Jis Ag1L + Mo gir,
_ _ kv, -Sp1 _
J1s = ABGiL + ———— GiT-

Mp
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(DY)
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Table 6.1: Contractions of the lepton tensor L, ’ with tensor structures appearing in the hadron tensor.

whv L, wh
—g1" 1Q% (3 -y +v°)
a "y —(ar b)) g —4Q%y (1 — y) || [by| cos(¢a + bb)

L(alre?bi, +0(me?a,) | 4Q%y (1 - y) las] b sin(6a + o)

gleg) —4Q* (1 - 2y)\/y(T = y) |a.| cos a
slueay, 4Q% (1 - 2y)/y(1 — y) |a.| sing,

In many cases it is convenient to express the tensors with respect to measured directions, i.e. & and g, g*

el Z,. One can use

>

cal) it + (€z,a10) 9"

alj (
(A aL)i“—F(a?:/\aL)g)“
(

¢-a)i’+(y-an)y”
g,

where ay Aby = €7ai,bi,. Other combinations give

e’ar,=—a’i" +a” g*,
ai“bi} —(ar -b1) g = (a"b" — a¥b) [256“:%” + gﬁ”]
+ (abY + a¥b®) & rgt,
aj_“bi] = (a®b¥ — a¥b") i[ugu],
% (aj{_uéj_}plup n bJ{_NEj_}paLp) = — (" + a¥b®) (25:“@” + giy]
+ (a"b" — a¥bV) & rg¥h,

Because the transverse direction is fixed by g = Q1 &, one has specifically

kay kL = Qrd,
kffl _ "7 ka_ ) ﬂ kZLka_

QT Qr

A
kal

This allows one to pull the tensor structure outside the integration over transverse momenta.

(6.10)

(6.11)

The contractions with the lepton tensor, given in Table 6.1 use azimuthal angles defined with respect

to the orthogonal momentum ¢,

{-a, = —la]| cos(da),

(u’ay, = |ay| sin(¢,).

(6.12)
(6.13)
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6.2 Drell-Yan after integration over transverse momenta

The hadronic tensor simplifies to

e =

W =

{_giy [fl (xA)fl(l’B) +AaAB 91(T4) 0 (335)]

— (SHLSHL — Sar - SmLgt) Maeah(es)

—Ap %ﬂsﬁ Ta (9r(za) + g7 (24)) G1(75)
s %ﬂsﬁ epha(es) (ho(es) + T (es)
+A4 %ﬂsﬁl A (hL(l’A) + BL(xA)) hi(x5)
+Aa %ﬂ% g1(x4) (gr(zs) +§T(IB))}, (6.14)
where the twist three functions are the ones given in chapter 2,
gr(z) = gr(z) - /d2kT 2’;\32 ng(i’ ko) _ %hlix), (6.15)
hr(z) = /d2 k2 hllL(T k1) %glg(cx). (6.16)

We will consider the various possibilities for unpolarized (O) and longitudinally (L) or transversely polar-
ized (T) target hadrons.

6.2.1 Drell-Yan cross sections for unpolarized hadrons

Integrated over the transverse momenta of the produced mu pair one has for unpolarized hadrons,

1 , _
WNV — g (_gﬁi ) fl(wA)fl(xB), (617)
and the cross section up to €(1/Q) is given by
b8 i X) e (1Y s
- 2 1
dr, dxys dy 3Q2 2 y+y | filea) fr(@s), (6.18)
and integrated over the muon angular distribution,
dooo(AB — M+LL_X) 41 o? _
B . Nl
dr,dzg 9Q2 fi(@a) f1(@s) (6.19)

6.2.2 Longitudinal double spin asymmetry in Drell-Yan scattering

Integrated over transverse momenta, there are no single spin asymmetries. For the case that both hadrons
are longitudinally polarized, the hadronic tensor is

1 , )
P =2 Aap (=g"") g1(z)71(25), (6.20)

and the cross section up to €(1/Q) is given by

dULL(A'B' — utu=X) _ 4 o [1
dz 4 dxy dy - 3@2 2

and integrated over the muon angular distribution,

—y+y2] Aa A5 01(2.) Tr (), (6.21)

do,L(AB — ptp=X) _Ama?

dzr, dx T 9Q2 AaAB 91(74) G1(75). (6.22)
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6.2.3 Transverse double spin asymmetry in Drell-Yan scattering

For the case that both hadrons are transversely polarized, the hadronic tensor is
o= L (sl 50, Sp ™) hi(ea)h 6.23
3 ALPBL AL ©OBLY] 1(@a)ha(7z) (6.23)

and the cross section up to €(1/Q) is given by

dorp(AB — ptp=X) _Ama?

g = o 1Sa IS (1 v) cos(el + 07 e Fa(ea). (620

and integrated over the muon angular distribution,

dorr(AB — ptp=X) _ 2ma?
de , dry 92

1SaLl|SpL| cos(dd + &) ha(wa) ha(ws). (6.25)

6.2.4 Longitudinal-transverse double spin asymmetry in Drell-Yan scattering

For the case that one hadron is longitudinally polarized and the second transverse, the hadronic tensor is

{u vt B
- %/\A {JWAZT#SBL;UA (hL(;UA) + hL(ZUA)) hi(2s)
{ v} _
4-MBZTHSBL Zp g1(x ) (QT(xs) +§T($B))}v (6.26)

and the cross section up to €(1/Q) is given by

d L A'_'—> tu— 2
o T(d;jdeﬂdyu X) _ _‘;WC;; AalSeil (1 —2y)v/y(l —y) cos(¢p?)
X [ngA (hL(xA) + ﬁL(xA)) hi(zs) + ngB g1(z4) (gr(25) +§T(x8))‘|-

(6.27)

which vanishes upon integration over the muon angle.

6.3 Azimuthal asymmetries in Drell-Yan scattering

We will consider separately the various possibilities involving unpolarized (O), longitudinally polarized (L)
and transversely polarized (T) hadrons.

6.3.1 Azimuthal asymmetries in unpolarized Drell-Yan scattering

The relevant result expressed in terms of the twist two and twist three distribution functions and perpen-
dicular tensors and vectors is

WH = %/d2kaT kyr 6% (kar + kor — q7) ¥ {_gﬁu [flfl]
+{ v} B B 2{ v} _ _
: ”C’;al [—ifi+ 20 0] + 2 “5“ (11— 200 1] }

v r AV MA ktf
= —gt"Ififi] + 28 }<?I l:MA

za(f* +Ju)f1]

_%I[J\Z—iaﬁefl (fL+?l):|>v (628)
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where the last expression involves integrals of the type
_ 1 _
I[KE f A1) (wa,2m,ar) = 3 /koaT dkor 8 (kar + kor — @) kg f (@4, kar) fi (@5, ko). (6.29)

Note that a contribution proportional to 2 {“e vipg Z, appears, but it is multiplied with integrals of the type

IKY f(xa, ko) [1(25, |Qr & — kar])], Wthh vambh
The cross section is given by

dooo(AB — ptu~X) A1 o? 1 , B
dw, drg dy d*qr D [§—y+y ] I[f1f]

-2V ) cosas(% i [ ea(f 4 7Y fl]

_%z {M_xBﬁ(fl +7 D} (6.30)

6.3.2 Azimuthal asymmetries in singly polarized Drell-Yan scattering

There is at tree level up to order 1/Q no azimuthal asymmetry in single spin asymmetries.

6.3.3 Azimuthal asymmetries in doubly polarized LL-asymmetries

The relevant result expressed in terms of the twist two and twist three distribution functions and perpen-
dicular tensors and vectors is

1
W — §/d2kaT dkyr 52(kaT+ka —qr)
e k”} + (ka1 - kv1) 9"

)\ A _ HV|: = :|_ al Vb L a L h h

X A4 B{ 97 |91L91L Mg
A{Mku} Mp k2 _

+ 0 [gnglL —2@a gL — M. 225 hiphr + — i thLglL ST hiphiz,
caalo il + 20y gt + A o i — g it 4 koL hi R,

0 g1Lg1L B 91LI], Mp OIS Mp giLhay, MaMp ,

k2kE — kYK
_ o _ _ JTS Zab — MaTp
/\A)\B{ 91 T91011] (296 gl ] I[ MaMp ki }

NI M kZ e M kX
+2irg }<_?AI [MA A(9f+9f)91L] _?BI[ Ach hlL(hL+hL)]

M k M k ~ -
S [MB 2o 9115t m} + I [M—Z’B (he + hL>hfLD } (6.31)

The cross section is given by
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do.r(AB — ptp=X 4 o 1
L P X) = /\A)\B{[§—y+y2] Ig1G11]

dx , dxp dyd?qr Q2

A
MA kg 1 ~1\ =
+(1 —2y)vy(1 —y) cos¢ ?I T (92 +92) 91
M [ kT
QB I TR hiy (hr + hL):|
My [k -
—UB I ]\fB r5 910(97 +9L]

i o
]\Z; _MbB T (hL+hL)hfLD}. (6.32)

6.3.4 Azimuthal asymmetries in doubly polarized LT-asymmetries

The relevant result expressed in terms of the twist two and twist three distribution functions and perpen-
dicular tensors and vectors is

kyr-Sp1

Mp giL ng‘|

1
o = 3 /dgkaT d*kyr 6% (kor + ko — qr) Aa { g [

ki‘ik”} + (koL ~ko1) 91" koo - Spl s kiﬁsjé}i + (kar - Sp1)
MAMB MB MA

kv -Sp1 _ kv -Sp1 Mp ky, - SBL
giL 91T — ——; 2z 4 gL aiT — — h hT
MB MB

I L oy

g{ukﬁ
Q

My Mg

— = TP opt
+ 1L 91T — MaiMp My Ma

m kyi - SB1L kl, k. -Spi kv -SBL
Mo P h h h th

0 M5 giL g1T + e 225 g11 97

My kyy - Spl1 _ m kp - Spi
VAR OBL o py R, — B OB
MB MB MB MB

+2{“/€ﬁ l_ kor-Sp1. koi - Sp1

2011 Bf_T

k2, ky-Sp. kol -SBl1 koi -SB1
a hiy b, + 222 2BL plp Sl "2BL oy hiy hik
MiMg Mg Ma S VN s T

MBZ{“SBJ_

0 [M— 22, hphir + 275 gngT — M— 2gthlT

k2, kai - koL kay - ko
a Bal Tl Bal Bl .
MMy hiyfur — MaMp hiyfur + MaMp 7o hiyhy (6.33)
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This can be rewritten as

1

y ky - SB1L _
Wy 3 /d2k:aT d’kyr 6% (kar + kyr — q7) Aa {—gﬁ [QIL MTB‘A ng]

_kiﬁkﬁ + (kai -kvi) 9" Koy - Sl n

KNS 4 (Kas - Sp1) g L
MsMp Mp

Lpl

1
1Lh1T

- g{ukﬁ
Q
slugt [kbl . Sp.
+ bl

kv -Sp1
Mp

kv -Sp1
My

xa (9% +31) e + x5 hiy (hr + hr)

=1 My ky, - S -
2p 911 (9% + 97) + e = 2P g (hy o+ hy) By
Mp Mp

Q Mp

ko -SBy

_ =1
S e hin (i + )

| My zlungy)
Q

kol -kyo

— TJ—
MaMp xp hig, (h7 + hy)

s

= M 7 T
[xa g1z (G + G7) + M—z x4 (hy +hr) hair +

or

X

v oox k _ A v T v k
o = /\A{—gi SBI[M—ngnglT] - (m{”SB}L"'SBgi ] I{

X
a

-~ ( (25:#5:” + gﬁ”] Sg — @ trg S%)

AKE(kE)? — 2kF (Koo -kpy) — k%K, | -
x I [ b 2bMA Mé = hiphir

o (M .M -
+2{“SB}l (UB xpl [glL(gT —|—gT)] + ?AQ:AI [(hL +hr) hl}

Mp kol - kyy - — = =1
—?I {mﬂﬁs hf—L (hT—h%"‘hT —hT)

kol - kyo I
0 I[ZMAMB va(9z +91) 1

Mp [2(k§)* — ki

+ (g{u;gv} Sz — slngrt 5%] <?BI[ ( b2)M% bL

Ma 20—k, -
— Il |\—5 s h hr)h

+QI_ 5 M2 za(he +hr)hip

—%I [2kIkY —kai - kyo
Q | 2MaMp

M [2k%kT — ko, - k .
__AI a™b 1 bl !EA(gf-f-gf)ng])}- (6.34)

— :J—
x5 911 (7 + QT)}

—_ — == Tl
x5 hip (hp + hi + hp + hT)]

Q | 2MaMp

The cross section is given by
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doyr(AB — ptp~X) _ 4ma? [1 2] -
= - o _ B I
0z, dvs dy qr 0 AalSpLly (g —y+y | cos(@—¢) I ST
B kg 1 7
+y(1 —y) cos(¢ + @) I | 3 high
A
4 k= r2_2zka .k —zk2
Pl =) con(so — o) 1 | HHEES 2 E e ) R L

171
2MA M% hthlT:|

~(1 = 29) V5T~ 3] cos 6 (% eI (230 +30)] + "5 e T [(he + )

Q
Mp IR I - - = =1
—?I [m Tp hf—L (hT —h%ﬁ + hr —hT)]

My {kar -kpL I
_ A | ZeL 0L
Q {ZMAMB Talgr +9z) g

M kE)? — ki -
(1= 2)V/olT =) cos(2 - 65) (UB r[ 2O o o 05+ 3]

Ma o [2(k))* —Kpy F V31
Q _WxA (hL+hL)h1T

Mp  [2k%kE — Koy - koL
QR | 2MaMp

M4 -2kg]€$—kaj_'kbj_ s
-5 I SMAMB x4 (g1 + gf)ngD } (6.35)

—_ — == Tl
x5 hip (hp + hit + hp + hT)]
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6.3.5 Azimuthal asymmetries in doubly polarized TT-asymmetries

The relevant result expressed in terms of the twist two and twist three distribution functions and perpen-
dicular tensors and vectors is

1 kel - S k. - S -
W = —/dzkaT dkyr 6% (kar + kor — qp) % —g L PAL L 2B i
3 My Mp
_kilikzﬁ + (kar -ko1) 9" kar-Sai koy-Spi Bl 7L
MAMB MA MB 1r'rTr
_kéﬁsﬁ +(kos - Sar)gy” kos - SpLy, o0
Mg Mg T
k{# Sl/} + ka . S Nz ku, . S B , , -
CkISEL + (ka1 - SB1) gl ka1l - Sal [ —— (S£i531+ (SaL-Spi)g" ] hyrhir
M4 M 4
2k [kt - Sat Koy -Spy _kar-Sas koL - SpL, oL
9] M, Mg air g1t Ma Mg Aag9r giT
Mp ko1 -Sas ki -SB1 13 m kg1 -Sai key -SB1 ., -
- 225 hyr h —_— 2h
MA MA MB Ty T + MA MA MB 1T 9117
_ kl%J_ kol -S4l ka_'SBJ_hJ_ B _ka_'SAJ_ ka_'SBJ_h A
MMy Ma M5 iT it Mg M 17 har
kyi -Spi kot -Sa1 ;| + kyi -Sai ky -Sgp1 L
— hih 224 hT h
Ma Ma irhiar + M5 My Ta hy hip

—S 41 -8Spi hirhir +8SaL - Spi 2z, hthir

s [ kar - Sal koS ko, -SalL ky-Sp. N
Q | Mg Mp giT G117 + i i 225 17 GT
%_2 kaLMfAL kbLMjBL 924 hy R — MEB kaLMfAL kbLMjBL 2 gur ity
n MIZZJ\E[B kaJ_MfAJ_ ka_MjBJ_ LRt kaJ_MBSAJ_ ka_MjBJ_ hog
+kaLMfBL kaLMfAL B g — kaLMfBl kzquAl Yoy b

+841 - SpL hirhir — Say - Sy 225 hirhy

My [ Ky, - S Mg ky, - S _
A 5 AL | bLMBBL 22 4 ¢ 1T — Vj MTBBl 2% hyp
m kpi - SBL _ kl, k. -Spi _
B 2B o - hir b
Ma Mg TOT T A r My Mg Tmr

kot -ky1 kyr - SplL
MasMp Mp

kot -kyl kyr - Spl1

har hisn —
MaMp Mg 1T ™r

22 4 hiz hip

ko1 -SB1 - ky - SB1L - ko1 -SB1 17
—————— hithit — ———— hithit — ———— 2%, h+h
+ Ma 1Thir Ma iThir Ma TahphiT
Mp 287 [ Ma ko1 - S _ koo - S .
% M—g # 224 hy hyr + # 25 17T

m kg1 -Sa1
Mp My
Ckai kpi kol - SaL

MaMp My

k2, ke -Sal b
MaMp — My
kai -kyy ka1 -Sa1
MaMp My

2 girhar +

LT
1Th1T

21 hiphy

thth +

kol -Sal - kyi -Sal - kpi -Sal _
+TB hirhir — My hirhit + Y 225 harhz | ¢, (6.36)
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which can be rewritten as

1 koi -Sa1 kpy - Spi _
v = = | Pker Pkyr 62(kar + kyr — g | et
3/ 7 d*kyr % (kar + kor —qp) % ¢ —g') i e 91T 91T
kR + (Kot ki) 0 ko Sas kel Spy Wi 7l
MAMB MA MB 1r'rTr
_kéfsﬁ + (kpi - Sa1)g)” kvi-Spi B T
RS 4 (ko - Sp1) g™ kol - S - , , _
ka1 SEL (M: BL) Y J_MAAJ_ B T — [SgiSB}L—'_ (SaL Sp1)g" ] -
A0k | kot - Sai kyi - S
R, a A bl s
+ 0 L l— lMA = MBBL T4 (97 + 97) Gir
Mp ko, -Sa. ky, - S I
_M_j LMA Al bLMB Bl Tp hlLT (hT + hT)
ky -Sa ky -S S S
AL SAL L SIL  ( ) dy+ (Sa S0 (b + ) /m]
Anpt [yt - SaL Kyt - S _
z al Al bl Bl _ —1
+ Q“ [ i L Se o (97 + 97)
My ko -Sal kyy - S o
M_g J_MA AL bJ_MB B1l T (hT + hT) hi_T
k, -Sp. ko, -S _ =1 _ =1
— LMA == 22 2 by (hif + hy) = (Say - Sp1)ws har (hf + hy)
A AR o Mg ky, - S e
A ) B l— bLMBBL x4 (97 + 97) 911 — F]j MTBM zp har (hp + hr)
kot -kyi ki - Sel1 koi -SBl1

24 (b + h) hiy —

 MaMp Mg My
Mp 288% [ Ma ko1 - S S koo - S -
+% [M—z # Ta (hT + hT) hir + # T ng(g% =+ g/T)
kot - ky1 kot -Sal . =L kyl -Sal . =L
Mily M. ' hir (b + hy) + 0 har (b + hy) }
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or

v v koi - kyy _ ¢ on kTkE — kYK _
= —gf <(SAJ_ -Sp1)I [m ngng] + [SASB —S,‘ZS}%] I {W 91T 91T

v y _ k2 k
Si{j_SB}J_‘F(SAL'SBL)gﬁL_] <I [h1hi] — {4]\22]\% hip hi D

sz_ kyQ -~
{“S}+5Ag ]S [{%’}+S}11 ]S%)I{%hlhtp}
2 M2

[
_< {“SBJ_"’SBQ ]S ({“S} +Sy ;w] SZ)j{Mh h1:|

(283" +gt") (845 — S4sh) —a 'ty (sasy+ Sgsg)>

k2)2 — (k¥)?] (kD)2 — (KY)?] — 4kZkVkT kY
><I|:[(a) (a)][(i;])wzj\é%b)] aa'b h h :|

ipert on [ M K} M k¥
- {HSA}L SB <?A I [M—B x4 (g7 + g7) gm] + ?B I [M—B x5 hy (hr + hﬂ})

k _ =1
+zlnen }pSAlpSy Q {M—beB hq (h%+hT)}

s{psv T QT s{p v T M ky kg?_kg2 ~ pu
- (z{“x S A }S%SB] ( QA I[ : [(ZZ\)L%M; ) ]xA (97 +9§F)91T}

kS [(k2)2 — (kY)>2 _ =
Mo [0, o)

kEkY kY T
_?B I [MQM; x5 hip (ht + hT)D
A

e e o M kX EYEY R
- [z{”a: b 548Y 4 zlng }SAS%] <?AI [MQMb 24 (97 +9%)91T]

—I
Mo

Mp  [[(k3)* — (k¥)?| k¢ 1 7t
-5 I[ 33 M b x5 hip (hs + hyp)

. v M kZ -~ - M kZ _ -
+z{”53} S ( QA I [—MA 24 (hr + hr) hl] + —QB I |:MA xp 17 (g7 + 9T)}>

k%
0551, 5% Q {

kakUk] o=
[MQM x5 hig (hr + hT)]

x4 (h + hT)h1:|

s{psv T QT s{pav T kz [(kI)Q - (ky)Q] — =Ll
+ (50 s555 — 21y 535% ) < 3 I{ SararE e (@7 +ir)

k2 [(k§)? = (K))?] 5T
+—= ) 1{ 23\4AM%I’ x4 (hr + hr) hip
kVEkP kY S
U I {MAZJJ\J% T A (h% + h%ﬁ‘fT])

s{nsvy v oy 4 s{nsv) U o kaki Ky
+[z T SYSE 4+ 2y SASB] 0 &y MM ﬂnglT(gT‘f'gT)

kYkPEY e
+? |:MAM2 T A (hT + hT) hf—T:|

kZ[(k§)? — (k)2 _
_UI[ 2bMAM§b xA(h%ﬂLh%)h%TD (6.37)
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The cross section is given by

513

daTT(AB—>,u 1 X) 47ra [1 ] 5
dr.drn dy o, 1SaLllSpLlq |5 —y+y ) cos(ér — 7)1
1 kZkE kyky
+(§—y+y2] cos(pf + @2 — [ 2;;4 My ngng]

_ k2 k
+y(1 —y) cos(] +¢f)<f [habn] =1 [ﬁh ha, D

x\2 _ Yy B
ralt =) coszo-+ o7 — 60 1| BB by
x\2 _ 2
falt =) cost2o o+ o)1 [ S i

+...

kot - kyo

MMy T
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—y(1 —y) cos(d¢ — o7 —¢J) 1

(G S G0N (A R R A LA A
MQM% 1T '1T7

+(1 = 2y)\/y(1 — y) cos @y cos(¢5 — ¢) <% I [AZ—B ra (g7 + gT)ng]

Mg

—i-? 1 [AZ—Z zp hy (hr + hT):|>
ky

1= 2T = 9] s sin(o! - ) 22 1 [M—B 2o by (i +Z§>}
T z\2 _ y\2
+(1 - 29) Vg1~ p) cos(26 — 67) cos(6? — ) (% I [’“b k) 3M(:a) ]

o [ G2

x4 (97 + 07) ng}

xp hip (hr + ZT)}

Q 2 M2 Mp
My [kERIEY S
Mo [ aﬁw)})
A

kERYKY
M2ZMp "

(1L 29T =7 sin(26 — 6) sin(6? — ) (? i [

B kZkYE)
M3%Mp

z\2 _ (1.Y)\2] L.z _ =
[kl SR )

24 (g% + ) m}

x5 hip (hr + BT)}

ke o
I |:]\4GA XA (hT+hT)h1:|

k= —
+—1 [J\/;A s 917 (T + gﬂ])

~(1 = 2V =) s sin(o? —6) b1 [ q

—(1—2y)V/y(1 — y) cos(2¢ — ¢7) cos(¢? — ¢) (5 I

ki [(ky)? = (k)2
+UI{ 21}\4AM]_?3b

Ma  [kVETEY -
My { e 0+ h%)thD

v (k1 B%)hl}

[k;’f [(k§)? — (kp)?]
2 MAM?

_ =1
zp g17 (97 + gT)]

. (hr + hr) th]

kYET ky
—(1=2y)Vy(1 —y) sin(2¢ — ¢;) sin(¢y — ¢) ( 0 [M 3\42 T4 o117 (97 +9T)]
kYkP k)
+U {MAMQ T p (hT + hT) th:|

My Thyl(k7)? — (k)7 7
_UI[ 2bMAM%b a:A(h%p‘+h%p‘)hf‘T]>}. (6.38)
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6.4 Convolutions and gaussian distributions

In order to study the behavior of the convolutions of distribution, it is useful to consider gaussian distri-
butions,

R2
f(@a, kar) = f(24,07) exp(—Rikor) = f(x.4) —- exp(= R2k2,), (6.39)
_ _ R2
f(@s,kor) = f(x5,07) exp(—Rikir) = f(x5) f exp(—Rpki,), (6.40)
2 (kyr,Ry)

In that case the convolution becomes

1f f] = /d2kaT ’kyr 52(kaT +kor —qr) f(@a4,ka )JZ(CUB; kvr)
™ RZR? _
_ m exp [ 612%7;—1—]%2 ] f(z4,07) f(x5,07)

= flaa) f(zs) P (a3 R) (6.41)

with R? = RZR2/(R2? + R?). The other convolutions that appear in the cross sections are of the form

15 17] - ﬁ—i @1 115 §) (6.42)
(B8 1] sl -0 107
M (k;’f;M; Kar fﬂ :I[%N} gi 262\;2 I[ff], (6.44)
o[k [(’% ;422’“3’ e RRR g Affw @R 117, (6.40)
I:kjf[(kb) —2%)]\4]5— 2kbkyk;j ; f}

I[[(kff)z—(k%{)?] [(kﬂzg—ﬂgl% |- sk £7] - Rf; A%M 511/ 1) (6.49)
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Another way to deconvolute the results are using the following weighted quantities,

[#a, Za[5E 1] =280 fo) (6.50)
[ #a, M%bf["’]\; 1 1] = 4 0w) T ), (651)
[0, TR ] <2 00 fo), (652
[a, g [PRE R 7] 00 £ ), (6:53)
[ ar g RS 1] = 8 10000 1O e (6:54)
[ ar i 1S 1] =410 ), (6:55)
[ #ay it [ 2 e RSB ) 00 PO, (050
0y 3y [ OEPU R 08— MK 1 g e 5

where f(")(z,) indicate the (k2,/2M2)"-moments of f(z.,k>,),

n'

n) /d2 at (2M2) f(mA;kiT) = Wf(ﬂu). (6.58)




Chapter 7

Lepton-hadron up to 0(1/Q)

7.1 Inclusion of gluon contributions

We will consider in this section the inclusion of diagrams with gluons connecting the soft and hard part.
The additional contribution is given by four diagrams. Two of them have gluons connected to the lower
soft part (the hadron — quark part), the others gluons connected to the upper soft part (the quark —
hadron part). Including the contribution of the handbag one has

M Ay = / dpdik 54 (p + g — k) Te [@(p)7.A (k)]

(F —pr +m)

(k—p1)?> —m? +ie

—/d4p d*kd*p15*(p+q — /f){Tr [’ya Y @4 (p, p — p1) VA

(k—p1)?2 —m?

+Tr [’Yu Ui +m)_i YaA(k)7 @%(p — p1,p }
—/d4pd4/€d4k1 54(p—|—q—k){Tr l:’YV (}6_%‘1 J"m) — Y ( )’Y,LLAO‘ k kh :|

(p—Fk1)? —m? +ie
10 o P ARk k) 0(0)| }m)

[Note that we have for a quark-quark-gluon blob used momentum p; (or k1) for the gluon and p — p; (or
k — k1) for the quark. This is easier to extend when we consider multiple gluon correlation functions.] The
momenta p; and k; connected to the soft hadronic parts are parametrized according to

_ 1 Q
= , —, , 7.2
b1 [P1 V2 P1T} (7.2)
z
ko= [ \1/;2 ky, le} , (7.3)
The momentum appearing in the extra fermion propagator is p —p; +q = k —p; with (k—p1)? = —21 Q2,

ork—k; —q=p—k; with (p — k1)? = —21 Q2. Thus one has in leading order in 1/Q,

}é_isl—’_m _ v N ,-er +’7T'(kT_p1T)_m (74)
(k —p1)? —m? +ie QV2  (z1 —ie)QV?2 (x1 —i€) Q2 ’ '

ﬁ_kl"’_m _ A/Jr . v +7T-(pT_k:1T)_m (75)
(p— k1)2 — m2 + ie QV2 (21 —i€) QV2 (21 —i€)Q* '

701
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This can be used to consider separately the contributions of transverse (A$) and longitudinal (A™) gluons.
For the transverse gluons, the trace of the first gluonic contribution becomes

B 4 o o 4 T | F—p1+m
/dpd kd*pyo*(p+q—k) r{'y (k—p1)2 — m2 + ie

d* . )
[atvatkstorq-n) [ G2 [ate [y comesing

X (P, S[$(0)7, Ak >’g} Y 9AL(y) b (x)| P, S),

which starts off at order 1/Q and at this order requires leading parts from ®% (proportional to Py ®% P_)
and leading parts from A (proportional to P_AP,). As {y 7,72} =0 and vy~ Py = P_y~ = 0 only the
v~ = Pyy~ P_ part in Eq. 7.4 contributes. This term is independent of any of the components of p;, and
we thus can immediately consider the distributions [ d*p1 ®% (p, p — p1), or explicitly

Y ®% (P, p — p1)VuA(k)

/d4p d'k o' (p+q— k) /d4x e'P (P, S[y(0)7.A(k) 75\2 Vv gAZ(x) ()| P, S). (7.6)

This contribution will be studied in the next section. Note that it can be written in terms of the covariant
derivative as

/ dpd'k 6 (p+q — k) / di P <P,S|E<o>m<k>’g—};%w%(x)wnp, s)

— /d4p d*k o (p+q— k)pg/d‘*x e'PT (P, S[((0)y, Ak) g‘\’/g Y ()| P, S). (7.7)

In this section we consider next the contributions of longitudinal gluons (A"). They lead to traces of
the form

F—p1+m

(k—p1)2 —m?2 + i€

— / d*pd*kd*p, 6*(p+q—k) Tr {7_ % ®h (. p — p1)vuA(k)

The first term in Eq. 7.4 does not contribute. The second term contributes at ¢ (1) as the dominant

contribution in ®% is the part projected out by [ dpy P, &% P_ which is of 0(Q). Explicitly, we get for
the first correction in Eq. 7.1

—/d4pd4k54(p+q— / dpl /d4 /d4y ez(p p1)-c+ip1-y
X (P, S[1(0)y, (k)’Y_m%gA (y) ()| P, S)

7@11;0 (z7=y7)
= /d4pd4k54p+q— /d;vl/d4 /dy —e””
T — 1€

< (P.STO1.AR) T 5, gA* (1) (@) P.5)

= /d4pd4k54(p+q—k)/d4x/dy_ Oy~ —x)e'P”

X(P, S| (0)7,A(k) Py v, igA™ (y ™) 9 ()| P, S)
= —/d4pd4k54(p+q— k)/d‘*m elre

yt=zt, yr=zr

x

< (P, S[5(0)1,A(K) Py v ig / dy~ A* () ()| P, S). (7.8)

oo
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The second term in Eq. 7.1 gives

(k=P +m)

“A(k)y,dt (p —
(k—pl)2—m2—ie’y (k)7 @4 (p — p1.p)

—/d4pd4k d*p1 6 (p+q—k)Tr [w
= /d4pd4k54(p+q—k)/d4x et
0
% (P, S[5(0)ig / dy~ A* () 7 P A(K) 7 (z) [P, S) (7.9)

The last two terms in Eq. 7.1 give

- / d*'pd*kd*ky 6*(p+q — k) {Tr {% v _@kl_)flfm?zr pRALLORITI k)}

+ Tr [Aﬁ > _(pkl_)flfm@_  TuBalk,k— kl)%@(p)} }

= /d4pd4k64(p+q—k)/d4x etk

0
{Tr<0|¢( )ahamg/ dy™ A= (y*) 9 (0) v Py ®(p) 7,0)

—Tr (0]¢p(x) ig /f dy*t A~ (y") a} an $(0) v, ®(p) P- wl0>}-

The result of multiple AT- or A™-gluons together with the tree-level result gives in leading order in 1/Q
(when the projectors Py and P_ don’t matter) the exponentiated path-ordered result

2M A, = / d*pd*k 5 (p+q — k) Tr[@(p)7,A ()] (7.10)
with

Q,i(p, P,S) = o x eip'm<P,SWJ-(O)%(O,oo;OT)%(oo,x_;a:T)wi(xﬂP, Sy, (7.11)

Ak, Py, Sp) = o x e (0|9 (—o00, 2t xp )1 () a;flah Ej(())%((), —00;07)]0). (7.12)

Provided we assume that matrix elements containing bilocal operators ¢(0) A, (y* = Foo, yr) 1 (x) vanish
for physical states, the above links can be connected resulting in a color gauge-invariant matrix element
that must be used in the definition of the correlation functions.

Before considering the transverse gluons let us check the case of two AT gluons. For instance considering
a gauge choice A~ = 0, one needs only to consider the absorption of the A™ gluons in the ’distribution’
part. Dressing the diagram leading to the first of the four terms above with another 'parallel’ gluon one
obtains a contribution

/d4pd4k54(p—|—q—k)/ d4p1 d4p2 /d4x/d4y1 d4y2 ei(p—pl_pQ).z+¢pl.yl+ip2.y2
(2m)* (2m)*

+ +

(332 —’:6 Q\/— $1 + xQA/_ Zé) Q\/— T QA+(Z/2)QA+(y1) ¢($)|P, S>

dxy dxs el (z1+z2)pT (2™ —y1) e—irgp*(yf—y;) .
= d*p d*k 6% —k /— /d4 /d d ipx
/ p (pta—k) [ 55> Yy dyy s e

(P, S[1b(0)7, A(K) P v gAT (y2) AT (11) ¥ (@)| P, S). (7.13)

(P, S[ip(0)7, A k)Y~

The integration over x; and zo gives

0y —x)i0(ys —y1 ), (7.14)
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leading to the path ordering.
Dressing a diagram with an A%-gluon with a longitudinal gluon leads to one contribution of the form

d d4k54( _k d4p1 d4p2 d* d*ys dt i (p—p1—p2)-z+ip1-y1+ipz-y2
D p+q—k) @n)t @) x y1diyz e

+

<P SO AR s Q”ﬁ W 9A* (12) 9 A (91) ¥() P, S)

d —izapt (@7 —yy)
/d4pd4k54(p+q—k)/%/d‘lm/dy; € T ire
s T — 1€

X (P, S| (0), A (k) Py Z;:g W gAT (y2) g AT (2) ()| P, ). (7.15)

The x5 integration gives 6(y, — z~), the first term of the link. Note that the AT (y;)A%(y2) contribution
vanishes at €/(1/Q) because of the nonmatching Dirac structure.

As a final note of this section, we look for the contribution that combines with Eq. 7.15 into a covariant
derivative. Since the term we consider is @(g?) and €(1/Q) we expect the i0% to be in the (g) contribution
also at 0(1/Q). Again considering the A~ = 0 gauge, the only part at €(1/Q) that we sofar neglected is
coming from the ~y, part of the fermion propagator instead of the v in Eq. 7.8,

[ dpd* ki p gk d*p, dz [ dty el -r)etivey
2m)

< (P S[E(O0) A (k)y~ % Y 9AH () Y(@)| P, S)

—111;0 (z7—y7) )
/d4pd4k54(p—|—q— /dml /d4 /dy —e”"r
1 — 1€

< (P, S[$(0)7, A (k) g’yf Y gAT (y) i029(x) P, S)

—zzlp (z7—y7) )
+/d4pd4k64<p+q—k)<k;‘— S R e
1 — 1€

% (P, S[H(0)1uA(k) 20, gA*(y) $ ()| P, 5). (7.16)

Q\/—

We correctly obtain the first term in the link for the covariant derivative and the p$-term in Eq. 7.7 (and
for as far as we now performed the calculation, namely in A~ = 0 gauge the link contribution for the
pr-term arising from g Ay = iD; — i0r in the fragmentation part).
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7.2 The 0(1/Q) contribution from transverse gluons

Up to 0(1/Q) one needs to include the contributions of the handbag diagram, now calculated up to this
order with in addition irreducible diagrams with one gluon coupling either to the soft part involving hadron
H or the soft part involving hadron h. The expressions thus involve the quark-gluon correlation functions.
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The full expression for the symmetric and antisymmetric parts of the hadronic tensor are,

MWL = 22, / ky d®p, 8(py + 4y — k)

. {_g
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(k{uel P, +piﬂ€i}plﬂp) " (kj_uej_}pSLp"f'Sj_uej_}pkLp)
2M M), s 2M),

L2t {n) l D+ Gt

—fiD1+ fi— — 1:G1s + g1s——
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(7.17)
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and

MWL = 22, / Pky d®p, 8(py + qy — kr)

.k [#SV]
+1 LMth gllelT

X {ielf [flGls + g91sD1

M m D+ k,-S
—op T eHi + 1 AHE = Mg+ L P g Diy
h Zh
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P ShJ_mh Lt P - Shi

1
Mh Thxxa s D%T

M m
-8 -SuL i, Tp gpDip + 81 - Shi i thDle

2t[#pj M, 2M 15" E,
pi B EMETSL My | B

Q M Q M 2n
2M,, EmsY)

+17 0

DT ki L, ki-p.m
—g1s—— “n M2 glsD -

ki -p, n ki-S, M N
M2 x5 gy Dip + A thsg%Dn"— M, M,

+

.25[“61]’)/@_,,
2 "L e
Q

i2tA[MGTPPLp

Q
2aMikels,, l M, E ]

Gt D+ M
] Gis + grs— — g1sD1 + —— ap eHf5 — leﬁ]
Zh M h

m
le frGis + x5 gDy + i oy v hﬁm]

+i zp gpDy + —- th—h - — thDl

2 S, [ 7 Gr

Q —|—£x3 eHlT——lelT]} (718)

Zh Mh

Note that one can make the replacement f[“ei]p a1, = €**?a,4o. The quark distribution functions in

hadron H depend on z; and p2, fi(zs,p2) etc., while the quark fragmentation functions into hadron
h depend on z, and —zpk; (the perpendicular momentum of hadron h with respect to the quark),
D1 (zp, —znkzr) etc., and we use the shorthand notations

p
g1s = Agip + —= 91T,

M
ki-Sni
Gis = A GiL + v Gir.
h
The contractions with the lepton tensor, given in Table 7.1 use azimuthal angles defined with respect to
the scattering plane and the (spacelike) virtual photon momentum,

[ S9%

cay = —l-a; = —|ay| cos(¢a), (7.19)
éAeJ_ a, = (AhNa, = la | sin(¢,), (7.20)

where we have used a; Ab| = Cigaj_pbj_o—. In many cases it is convenient to express the tensors in #*
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Table 7.1: Contractions of the lepton tensor L, with tensor structures appearing in the hadron tensor.

wh?

L, wh

g
aj_”bj_} —(aL-b1)g"”

1 {n vip

2 (‘h € b1y + b{fei}palp)

w vip o v
zaﬂ_ eJ_} bip—(7aipbis) g

=adi b, +V e ar,+(ar-b)€e”
f{“ai}
fin ej_}p ai,
i€’
z'a[fbi]
if[“af

I vip
itl €,a1,

P (1-y+307)
2
9 (1—y)|ar||bL| cos(da + dp)

—19° (1= y) laL|[bL] sin(¢a + &)

_%z—y)mm €S Pa

9% (2 — y)vT—yla] sin g,

A9y (1- 1)

A 4% y(1—Y) ay||bL|sin(¢p — ¢a)

2 .
_>\e %y\/ 1 _y|aJ_| Sln¢a

2
A28y T lau] cos e

with respect to measured directions, i.e. # = —h and g* = ez,
Kl —pl = —Pui/z = —Q. ¥, (7.21)
al = (fL-aL)lAL”—F(fAL/\aL)e’i”/A%p, (7.22)
May, = —(hAay) " + (h-ay)é h,, (7.23)
a M0 —(aL-b1) gt = {2 (h-ay)(h-b.)—(aL- bL)} [2/5”/3" + giy]
+[(h-a)(hAb)+ (R Aay)(h-bi)| W€y, (7.24)
% (al e, + 0l ar,) = —[(h-an)(hnbe)+ (hnas)(h-bo)| (200" +g1")
+ [2 (h-a)(h-b.)—(aL - bl)] hlnetdeg, (7.25)
'y = [(ﬁ ca)(hAbL) — (hray)(h- bl)] hEeVPh, = (a) AbL) e (7.26)

This allows one to pull the tensor structure outside the integration over transverse momenta. A useful

relation is h - (p, +ki)= (pi - ki)/QT-

In the next sections we will consider the cases of production of unpolarized and polarized leptoproduc-
tion separately, that means either one sums over all final state configurations of, say, a produced particle,
or one determines from the final state configurations the spin vector S} (characterized by A;, and Spr)
that determines the production matrix. For each of the above cases we will consider separately the case of
unpolarized (O) and longitudinally polarized (L) leptons and of unpolarized (O), longitudinally polarized

(L) or transversely polarized initial hadron state (T).
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7.3 Lepto-production integrated over transverse momenta

The hadronic tensor simplifies to
20 / PP W = 2zh{—gi” (1D + 00 01Gr] = (S1S7 + (S0 Sh) gt ) b
+1 Eliu |:f1/\h Gl + )\ng1:|

oM {{ng") M H
+/\h7L ngTGl-f——hhl [—L-I—Hl(l)—ﬁGl]
Q My,
\ oM, st
Q
oM, i lne}P s H oM, i lne}P S D
n ptte J_phl [_+H1L(1)]+ pttte hJ_pfl[_T_’_DlL,lEl)]
Q Zn Q Zn
oMilns M, B oM, {157 D
L h L i\ h hJ_gl (Z—T'FDL(D]
h

G 1 m
et o (%ol

Hidy e Sy 2R

Q M oz Q

2M, iP5, [ M Gr 1 m
9w, eH L -Gy -—H
+i 0 rpeHy + fi [Zh Gir M, 1]

M,
oM il lPs M, E
il Rt 25 gr D1+ =2y [— - Dl] ) (7.27)

Q M

where the quark distribution functions in hadron H depend on z 5, while the quark fragmentation functions
into hadron h depend on zj.

7.3.1 Unpolarized leptons and hadrons

The relevant part of the hadronic tensor is

2Mn €l Shiy 22 f1(z5) [DT
(P

2M /dzPu W = —g"" 2z fi(zs)Di(z) + 0 Py (2) +D1LT(1)(Z)] - (7.28)

The semi-inclusive cross section is given by

dooo((H — U'hX) _ Ama?s
dry dydz Q4

{[%2+1_y] 2o fi(w) Di(2)

121831 ] (2 — y)v/I =g sin(g?) Ag o fi(zs) [f—:@ + i) }(729)

We remind that ijgl) is related to Dt via

1
D
= —z/ ay 2rly) (7.30)
or equivalently
Dr L) d 1)
—E(2) + DV () = 2 DY, (7.31)
7.3.2 Unpolarized leptons and longitudinally polarized hadrons
The relevant part of the hadronic tensor is
2M /dzPhl W = =g A2z 91(2)G1(2)
2M, t{x M ¢
+h75hl ML g by (o) Hy () + 22 1 (20) S2E | (732
Q My, z
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where -
GT(Z) GT(Z) _ (1) m

o= G () - - ) (7.33)

is a pure quark-quark-gluon (twist-three) matrix element. The semi-inclusive cross section is given by

dAoop (CH — 'hX) _ Ama?s
dry dydz Q4

/\{)\h (4 +1-) mmnte Git2)

Q Q

—2I811| 2 — )Ty cos(9h) [% 2 i (20) Hy (2) + 22 0y g1 (1) GTZ(Z)] }7-3@

where Ao,y indicates that only the part involving polarization is given, which can be extracted as a cross
section difference, e.g. between A = 1 and A = -1.

7.3.3 Unpolarized leptons and transversely polarized hadrons

The relevant part of the hadronic tensor is

2M /dgphL W“V = — [SJ{_HSZi + (SL . Shl)giy] 2Zh1($B)H1(Z)
oM EingY} M Hy(z
+7Q L\, ZszgT(a:B)Gl(z)—Fﬁhlthl(mB) LZ( )
oM, £ {re?s i
+% 22 hy () i’z), (7.35)
where
Hy(z) _ Hi(2) / o Ko m
o, + [ dkr 2N Hi;(z,—zky) A G1(z) (7.36)
H(z) H(2) / 2y, ki1
= + [ &kr =5 Hi (2, —zkr) (7.37)
z z M? 1

are pure quark-quark-gluon matrix elements. The semi-inclusive cross section is given by

dAoor(tH — 0'hX)  Ama®s My H(z)
de dy dZ - Q4 |SJ_| 2 (2 y) ]' Yy Sln(¢8) Q Tp hl(xB) P
M M, H
22 (2 )y Ty cos(s) [5 7 gr(e0)G1(2) + Tt g () T
—|Sh1l (1 —y) cos(¢s + ¢L) w5 hl(xB)Hl(z)}. (7.38)
7.3.4 Polarized leptons and unpolarized hadrons
The relevant part of the hadronic tensor is
2M / PPy W = il My 22 fi(z)Gi(2)
Fuevle A
4i2MntTer Snip lﬁ 2 pze(zs)Hi(2) + 22 fi (xB)GT(Z) (7.39)
Q My, z

The semi-inclusive cross section is given by
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5) @a fil@n) Ga(2)

2

dAoo(lH — 'hX) _Ama?s NS [ B
dzry dydz R T h

-2 |ShL|y\/ 1 —y cos( ¢h [6 332 e(rs)Hi(z) + % rs f1(zs)

7.3.5 Polarized leptons and longitudinally polarized hadrons

The relevant part of the hadronic tensor is

oM, £11nSY)

2M /d2PhJ_ W =ie" XN2zg1(xp)D1 — i 0 hL X2z g1 (wp) (&(2) + qugl)(z)] . (7.41)
%h

The semi-inclusive cross section is given by

dAaLL(Zﬁ — é’f_iX) dra? s
= Ae A 1—
drg dydz Q4 y [

5) weg(@a) Da(2)

+2[Sh1|yy/1 —y sin(o") Q P g1(zs) (g—;(z) + qugl)(z)] } (7.42)

7.3.6 Polarized leptons and transversely polarized hadrons

The relevant part of the hadronic tensor is

IM, £
oM /d2phl Vi #SL Ay 22 hl(wB)EL_(Z)
z
oM il Ps M, E
M Sy ) D) + M 2 h ) BB | (.43
Q M z
where -
= — D . .44
-2 ne) (1.44)
The semi-inclusive cross section is given by
dAo,p(fH — 'hX) B
dxg dydz N
Ao s M E(z
Ae |SLIS —2y+/1 —y cos(¢s) x 2 gr(zs)D1(z )+—hx3h1(;v3) (2)
Tt Q Q
=2 yy/1 —y sin(es) Q xB hi(xp) EL(Z)} (7.45)
z
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7.4 Transverse momenta in lepto-production without polariza-
tion in the final state

In the case that no polarization in the final state is observed or for the case that a spin 0 particle is
produced (e.g. semi-inclusive leptopionproduction, the hadronic tensor simplifies to:

MY = /dsz PPky 6*(pr + @ — bz X {_gﬁy 2z fiDy +i€)” 229101
P G V) I GV Ak S IVlt) SN
zhigHy Tty
QMMh 2]\4'h

Pl Pluprt
+ L {—4zf1D1+4f1DL} +%4$2JMD1

kj_pei{'ufu} M 1 m 1

el U g hgHE + T dr g H
+ 0 M Tz 1+ 7, Z 015417

gy 2
t M k k,-S

J% l_ﬁh AhiH — Mz\l@ Az hiHiE — LMh = 4az h%Hll]

MSLpei{”f”} M;p, ki L ki-p 1rrl

— P L M yhyrH — —= 4z hirH drxzhp H
e, ar CTH T ag, e gy, et

A [ M m
+1 QJ- [_m 4oz er‘ + m 4z lef‘]

k P [Nfl/]
—i—i% {4 ngDL — 4z ngDl}

pleru]
t M,

—H'% [4xz gDy + ﬁh 4 hf‘SE — % 4z hf5D1‘|

MS, B M

ZLPTH Az gDy + ﬁh AhipE — % 42 hyp Dy (7.46)

We will again consider all situations separately for different polarizations of the lepton and target hadrons.

7.4.1 |(H — {'hX | (unpolarized hadrons)

The hadronic tensor is given by

QM wr = /dng dng 62(]’7‘ + qr — kT) X {_giy 2z lel
f{#kl’} iu v}
LA [—42 f1D; +4f1DL} + 2P e fip,
Q Q
= —g1"2z1[f1 D]
Hojw) : D! -
+ 4z1[(h-m)f1 [T—Dln +4xz1[(h-pL)f Dl} (747

where the last expression involves integrals of the type
I |:(’t" ! pL) fLD1:| (va Z) = /dsz dsz 52(pT +q, — kT) (il ' pT) fL(vapT)Dl(Z7 _ZkT)a (748)

with q, = —Pri/z = Qr h. Note that a contribution proportional to inep {niv}t appears, but it is
multiplied with integrals of the type I[(h Ap ) fi(zs,|p |)D(z,2|Qrh — p | |)], which vanish.
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The most explicit differential cross section is immediately obtained from the first expression for the
hadronic tensor and is given by

dooo(l+H — V' +h+jet+ X)
desdydzd?>Pr, d?p | o

Ara? s 2
{[y_+1_y] x5 f1 Dy

Q* 2
L

2(2 - y)\/1—y |1?5| cos(¢n) s fi [% - Dl]

€
—2(2 - y)\/l - y% COS(¢j) [m2BfJ‘D1 - xBlel +$Bf1D7] }, (749)

where the arguments of distribution and fragmentation functions are fi(zp,p, ), D1(z, Pn1 — zp, ), etc.

The semi-inclusive cross section where the jet direction is not determined can be found also from the
(first) most general expression above, but this is cumbersome, since one must be aware that integrating
over d?p | , the argument of the fragmentation functions depend on P, — zp, . It is easier to start with
the second expression for the hadronic tensor and obtain

dooo(l+H — ' +h+X)
drydydzd?Py, o

2
47T548{[—+1—y] [esfi D

L
y)\/1 —y cos(¢n) <Q I[hMIzlefl [%—Dl]}

.
+% I[ ]\;’i xfaprlD } (7.50)

which involves the above defined convolutions over distribution and fragmentation functions.
Returning to the previous cross section, one can integrate over the transverse momenta of the produced
hadrons in the jet and find

dooo(l+H — '+ h+jet + X)
des dydzd?p | o

9 2
4734 : { [y? +1 _y] 2af1(25,p1) D1 ()

—2(2—y)y/1—y % cos(¢;) wifL(wB,m)Dl(Z)}, (7.51)

where the arguments of distribution and fragmentation functions are fi(x5,p ), D1(2), etc. Integrating
also over the transverse momentum of the jet we obtain the result discussed earlier,

daoo(€+H—>€’+X) 4ra? s [y_2

dp dy dz oL 7 T1- y] Ty f1(25)D1(2).
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7.4.2 |(H — ('hX

(longitudinally polarized target)

The hadronic tensor is given by

oM W / p, Pk 82 (p, + gy — k)
{ (lﬂ ep{“pJ_} L, ep{“ki})

A 2zhi HE
x 2M M, ML

kL EP{HtV} m
gy
Pl1p€) t Mh kj_
—_— 4h . H — 4 h H
0 l M MM, 1

_ A{ﬁpei{wm[“h-kiﬂh-m kLpy H]

MM,

—ﬁpeﬁ_{“f”} <% 4zl[ﬁMlzL [th - %gm] HH
M;p,

g () o

The most explicit differential cross section is given by

dAoor((+H — '+ h+jet + X)
dry dydzd?Pyp, d?p o

4o s |Phillpy] .
7)\ {—(1 —y) W Sln(QSh +¢J)IB hf_LHlJ_

2
P .
+(1—-vy) M]t[h sin(2¢;) x5 hllLHL

P M
_2(2—y)\/ l_ylz—hj_' Sin¢h MxB (37}3

hL—MglL] Hi

. M m
202 — y) % |pJ_| sin ¢; lﬁh Tp (thL — MglL] Hf‘

M, H k2
+ﬁx3hﬂ [— 7 Hi ]H (7.53)

where the arguments of distribution and fragmentation functions are hij (z5,p ), etc. and Hi-(z, P, —
zp, ), etc. The cross section averaged over the jet angle is found from the second form for %+

dAoor(0+H — 0 +h+X)
dry dydz d? Py, o

4734_8 A {(1 —y) sin(2¢p) I [2 ok llbpi) ey zphiy Hi 1

MM,

+2(2 = y)y/1 — y singy, (ﬁl [h"il
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Integrating over the transverse momenta of the produced hadrons in the jet one obtains

715

dAoor(6+H — 0 + h+ jet + X)
drgdydzd?p |

dra? s

Q4

. M,
A {+2(2 —yV1-y % sin ¢; ﬁh rshiy(zs,p))

H(z)

z

}, (7.55)

where hi; (z5,p,) is a leading twist’ distribution and the fragmentation function H (z),

Ae) [, Ak

z z

is a 'twist three’ quark-quark-gluon matrix element.

:/koT [

H
=+
z

L3

My

Hll],

(7.56)
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7.4.3 |(H — ('hX (transversely polarized target)

The hadronic tensor is given by
N

{ (lﬂpei{upl} +pr€p{uki}) b S,

X 22hipHi:

2M My, M

(kLpeﬁ)_{NSj_} n SLpeﬁ_{Nlﬁj_})
2My,

klpe’j_{”f”} V2 SJ_ Ay [

-+ 22h1TIT[1L

m
CChT_Mng] Hi

M2 h

M S et [ M K> k. -
T oLee P —Fdhur [H+—2Hl ] 2L Pl g ndHY

k2 k,-S
Mn 4 hiz {H+ Hl] iM l4xzh%ﬁHf‘]

Q M? MM,

.y h-k
(h g 4 g, ep{“hl}) 1[7( Mhl)
7 p{;ﬂu} P 4(75'1&)2(’5"‘&)—171 (ﬁ'kL)_z(ﬁ'pL)(kl'pL) 1 gl
+ hyet R (h SL)I{ I 22 hik H: }

1
5 22 thﬂ

[2h”h”+g‘“’] (hAS.)
2(h-p)(kL-p)+pi(h-ki)—4(h-p)*(h- k1)
AT 22 hi Hl}

XI[

Q L2,

—i—%[[ﬁlzhl [H ]'\CFH1 ]})

. M, h- - H ki
— hye Y (b S)) (Uh 1[% 4z h, [ 31 Hi ]}

M 1k, - m
S’J_pep{”t”} ( I [J-ipl Az (thT —f 9T - th%] HH

h-k.)(h ki - m
+61[ : L)(2M€\}: e (”“BhT—WlT”Bh%]HfD
e e M, —2(h-p,)? H K
g }(MSQ(Q 1[#42;@ [_+M2H1 N
k —2(h -k)(h- m
Q I{ S AR 2Z§4Mhl)( pl)4z (thT—Mng—Fth%] Hﬂ)

(7.57)

The most explicit differential cross section is given by
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dAoor(C+H — 0+ h+jet + X)  4ma’s
drvy dydz d?2Py, d?p | Q4

51| {( )2 ino, + 00 mm i

|P¢|3
2 M2 M;,

—(1-vy) |ZJ\}Z| sin(¢p + ¢s) xphi Hi

+(1—-1y) sin(3¢; — QSS)th Hl

1 P [P _
(1—y)sE 5 sin(2¢; + ¢ — ¢s) TphipHi-

2 M2 My,
My H
22 = y)V1 -y 75 sin(os) wahn —
M, p? 7
+2(2-y)V1-y 0 m sin(26; — ¢s) xshiy

2

D .
+2(2—y)/1—y 2MLQ sin(2¢; — ¢s) =5 (thT - Mng xsh%] H1L

m
22-y)y1-vy 2MQSln¢s)$B [thT_Mng‘i‘th%] H:Ll

m
2 y \/—|pJ_|| hJ—' (¢ _|_¢j ¢S) Tg [thT——ng_th%] H1L

22 My, Q M
2(2 — y\/—u;-']\b ’S' n(¢n — 5 + ¢s) T [thT_%ng—"irBh%] Hll}a
(7.58)

where the distribution functions depend on x5 and p, and the fragmentation functions depend on z and
22k% = (Phy — 2p,)* We have used or can use

hi(rs,p;) = har(zs,p;) + 2M2 hir(zs,pyr),
2ol (25 Pr) = 37 07 (@0 py) = wahi(@n.pr) = ~2h(@e.pr) + 2ahiy (@6, p).
wsh(es.p;) = 37 017(0nP,) + 2ahi (@n,p;) =

—]’Cf—% hir(@s.pr) + 20 (hr(es.p,) + b (2a,pr)) . (7.59)

Integrating only over the jet directions one obtains

dAa()T(€+ﬁ—>€’+h+X) dma? s
drydydzd? Py, Q4

4(h-p ) (h-ki)—2(h-p,)(ki-p)— P2 (h k1)
2 M2 M,

S| {( —y) sin(¢n + ¢s) I[hM’ZL mBthﬂ

+(1— ) sin(3¢y —¢S)I[ eohi: Hl]

+2(2 —y)y/1 — y sin(¢s) (% I[;vBhl H}

M 2(ﬁ'P¢)(ﬁ'kl)—kL'PL m n 1
+6I[ oMM, Ls (‘”BhT - Mng”BhT] Hl}

+2(2 = y)\/I =y sin(2pn — ¢5) <% I{(’l'm—)?—l’z b H}

Q 2 M2
M ki -p, —2(h-p)(h ki) m 1 1
—0—61[ MM, Tp [mBhT—Mng—a:BhT] Hl} .

(7.60)
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The cross section integrated over the transverse momenta of hadrons h within the jet becomes

dAoor(t+ H — 0 + h + jet + X)
desdydzd?p |

dra? s

M, H
7 1S 1] {2(2 —y)V1- yah sings xph1 (25, P ) )

z

M, p? H
+22—y)V/1—y ?h 2’;\22 sin(2¢; — és) rphiz(r5,p)) iz) } (7.61)

where the fragmentation function is integrated over transverse momenta. Integrating further over the jet
angle one finds

dAoor(l focgj;—'_ h+X) 47r542 s 151|202 y)m% sin g 2 b () ﬁiz) (7.62)
7.4.4 |(H — ('hX| (unpolarized hadrons)
The hadronic tensor is given by
MY = /deT k2 6°(py + 4 — kr)
x{ii[lgi} l—% 4oz eHi + Mﬂh 4zf1H1l] }
= i Mg [P (e 75 ] (7.63)

The most explicit differential cross section is given by

dAo,o(0+ H — ' + h + jet + X)
dry dydzd?Pyy d’p |

4o’ s lp,| . M m
oL {2)\6y\/1—y 0 sm(bjmx]g [xBe—M

fl] Hi-

Pyl . M m
_2/\ey\/1—yw sin ¢y, MJ:B (3356— Mfl] H1L , (7.64)

where the arguments of distribution and fragmentation functions are é(x 5, p | ), etc. and Hi- (2, Pp1—zp ).
Integrating over the transverse momenta of the produced hadrons in the jet one obtains zero. Integrating
over the jet angle the result is

dAc,o(f+H — '+ h+ X)
drg dydz d2Pp

h k.
M,

4ma? s M
—— 2y l—ysin(bh—l{
Q* Q

Tp (;vBe— %fl] Hﬂ (7.65)
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7.45 |(H— (hX (longitudinally polarized target)

The hadronic tensor is given by

IM W = /deT ks 6% (pr +q, —kr) x A {ieﬁ” 22g1.D1

) kLpeﬁ_[Mfy]
1
Q
Py
t
-H'% [4952 gt D1+ —+

M h-k D+
)\{zel 2ZI{Q1LD1:| +2hj_p6l[“t”] <6h42[[ th_ agir [T_Dl]:|

+]Qw [ﬁ]'é’ ngD1}+%4zI[EJL L [g—%m”)}.(mﬁ)

[4 gDt — 4z glLDl}

Mh
4hi E — i 4zhfLD1] }

— 4z 1

The most explicit differential cross section is given by

dAo (0 +H — 0 + h+jet+X)
dry dydzd?Ppy d?p | o

ety (1- ) zaon

Ip, | 22 gt D+
—2y+/1 — —cos 597 D1 +x5 911 7—D1

M E m
+ﬁhx3hﬁ [———Dl]l

1
+2y\/1—y% cos(¢p) Ts 911 [DT —Dl] }, (7.67)

where the distribution functions depend on x and p, and the fragmentation functions depend on z and
22k = (Ph1 — zp, )% Integrating only over the jet angle one finds

dAo,,((+H — 0 + h+ X) B
drgdydzd? P B

47T5 Y /\{ (1 - g) Ixp g1 Di]

. N
—2y+/1 —y cos(¢p) <%I{ M, Tp J1L [%_Dl]}

Integrating over the transverse momenta of the produced hadrons we obtain
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dAo (0 +H — 0 +h+jet+X)
drydydzd?p,| n

47T5 5 A )\{ (1 — %) T g1 D1

_23/1/1—3/% Cos(qu)[ 2 g LD1+]>\44 vy bl [g—%Dl]]}(TGQ)

with the fragmentation function integrated over k., and thus only depending on z. Integrating also over
the transverse jet momentum, one is left with the leading result for longitudinally polarized targets,

do, (C+H — 0 +h+X) 47ras/\/\(

Y
de, dy dz T 1- —) x5 g1(z5) D1(2). (7.70)

2

7.4.6 |(H — ('hX (transversely polarized target)

The hadronic tensor is given by

S
oM = / *p, d*ky 8% (D + 4y — k) X {ze‘i” P 22Dy

ikLpeﬁ_[NtAu] pJ_ . SJ_
Q M
EP [l‘fu]

[4 girD*+ — 4z ngD1:|

pSL

-le

M,
4:cngD1+ 4hizE — 4zh1lTD1]

+ MSJ_p [l"tl/ [

Tz gTD1 + —_— 4 hirE — — 42 thD1‘| }

= e (h- SL)ZzI[ TDJ

M 91

h 2 1
2 plugu] (g My, 2(h-p)(h-k1)—p, ki D+
+ihyef Mt (b Sl)(Q 42—7[ SN, gir | = D, }
M {2(’5 p.)? —m

—4z1
—|—Q z SYE

My, 2h-p )*-p2,, (E m
+U4ZI{ 2M?2 th(Z__Dl]}

e M, 2h-p)(h-ki)—p, ki D+
1] h Py L _
+it"h (h/\SL)<Q 42[{ 5 ; g | — D, }

TgT Dl}

M, r2hepy)® Pl
+6421{Wxg%

My (E'PL)Q—PQL 1 E m
+6“[—2M2 th[z‘—Dlﬂ

M M, E
Sy e <5 421 |agrDi] + ?’1 121[h [; - Dl] ]

My, k. D+
+?4 I[2MM gir [7—D1H>- (7.71)

The most explicit differential cross section is given by
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dAo (0 +H — ¢ +h+jet+X)
dry dydzd?Pyp, dp | -

4””A|SL|{( ) ol cos(s; — 6) o gur D1

Q4 M
M;, E
—2y+/1 — y cos(¢s) lQ BgTD1 + — 0 Tshy — -
2

P M, E
_2y\/ 1_y2]\jQ COS(2¢j _¢s) l BgT Dy + — M Tp hL

P D*
—2y\/1—y 510 cos(¢;) cos(¢; — ¢s) Tp 1T —

SlpLl1Pn | Dt
+2y+/1 ; MO cos(¢p) cos(¢; — @s) s 11 ~ (7.72)

where the distribution functions depend on x5 and p; and the fragmentation functions depend on z and
22k% = (Pj. — zp, )?. Integrating only over the jet angle one obtains

dAoyr((+H — 0 +h+X)
drydydzd?Py, o

visil{y (1= ) o 0 122 g

dra? s

ot

—2y~/1 — y cos(¢s) <Q [a: gTDl} ]\éh I[xhl g}

M k Dt
+ 3 5, o 7])

Q 2M My,
oy /T= cos M _r2(h-p)*=p2 , |
Yy Yy cos(26n — ¢s) 0 [ W x gTDl}

M, [ (ﬁ‘pj_) -p whi EN‘}

M
t0 WE

L M 1[2(’%.]%)(’1 ki) = py ky TgiT %D } e

Q 2M M,

Integrating over the transverse momenta of the produced hadrons we obtain

dAoyr(C+H — 0 +h+jet+X)
desdydzd?p | B

472; i Ae |SL|{ (1 - y) .| cos(¢j — ¢s) s g17 D1

My, E
—2y\/1—ycos¢s lQ BgTD1+ Q thl;

M;, E
z? gTD1+ th/J_

+2y4/1 — ZMQ cos(2¢; + ¢s) i

}, (7.74)
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with the fragmentation function integrated over k,, and thus only depending on z. Integrating also over
the transverse jet momentum, one is left with

dAo,r((+H — 0+ h+ X)

drg dydz
: ~
NS 20V T g coson) | 5 gre) Da(a) + g vl EL | (113

7.5 Transverse momenta in lepto-production with polarization
in the final state
For the case that polarization in the final state is measured, we will restrict ourselves to the leading

order (parton model) results. The hadronic tensor, omitting the unpolarized contribution discussed in the
previous section becomes

My = /dng d’p,. *(p, +q, — k)

X {—gj‘_y

kMY (kL) g .

po
€] klpShLo

2z f1D1 + 22 g1sG1s
z [1iD1 + 22 g1,G1s + M,

2z fl D%T‘|

ST+ (k1 -8 1)

ynZ
Lol 91 1
MM, 1 His M, 2zhirHi,
pE_HSil:i + (pl : ShL)glj_u 1 {n v} v
— v 2z hi,Hir — [SL Spy +(S1-Sh1) gy ] 2z Hip
k[#SV]
+ieh” 22 fiGys + ZLT:L 22 g1s D1 ¢ (7.76)

As before we will consider the various possibilities separately.

751 |(H—(hX

The hadronic tensor relevant for this situation is

loa
€k1pShio

oM = / Che &P, (b, + 4 — i) (—91) S 22 DY (7.77)
The cross section is given by
dAooo(0+ H — 0 + h+jet + X)
desdydzd?>Pyr, d?p |
4dma? s 1 |Pri| .
ot ISkl { [1 —y+ §y2] M, sin(gn — o) ws frDir
_ _ 1, Pl . ik 1
l-y+ 5y sin(¢; — ¢5) zp f1Diy ¢ (7.78)
2 My,

Averaged over the transverse momenta of the hadrons h in the jet this gives zero.
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7.5.2 |(H — ('hX (longitudinally polarized target)

The symmetric hadronic tensor relevant for this situation is

QM Y™ = /koT dsz 62(])7" +q,— kT) A {_gﬁV 2z glLGls

R kgt
MM,

{NSV} . S pv
PSP Sh) gL, HlT}. (7.79)

1 1
1LH15

We will give only the cross section averaged over the transverse momenta of the hadrons in the jet. This
is

dAoor(0+ H — U + h + jet + X)
drp dydzd?p

dra? s

2
7)\ {)\h [1 -y — y?] Tp glL(vapL) Gl(z)

~ISni (L=y) S cos(d; +65) ws hiz(ws, L) Hl(Z)}- (7.80)

Integrating over the jet directions one obtains

dAoor((+H — 0 +h+X) 4ma®s y?
= A |1—y— = . .81
dep dydz Q4 h Y 5 zp g1(zs) G1(2) (7.81)
7.5.3 |(H — ('hX (transversely polarized target)
The symmetric tensor relevant in this case is
uyo 2 2 2 v P, SL
2MW - d kT d Dr d (pT + qr — kT) -9 Vi ZZngGls
kY (ke p ) g Dy oS -
MMh M 1T++1s
k{NSV} k., -S v
kTSP 4+ (k- S1)gl 2% hap HE
M,
_p{j‘Sﬁ +(L-Sni)g) P -S1 22 hi H
M M Zhrtar
- [SE_“SZi +(S1- ShL)glj_V] 2z thHlT}- (7.82)

We will give only the cross section averaged over the transverse momenta of the hadrons in the jet. This
is
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dAoor((+H — ' + h+ jet + X)
drsdydzd?p |

4 2 2
15 {Ah (1-0= 2 ) Bk sty = 6w enp) G1(2)

—|Shi| | (1 —y) cos(¢s + &) x5 hir(zs,p, ) Hi(2)

2
(1= y) 325 cos(@; + 01) cos(d; — 6.) @ hir(@s. ) Hl(Z)] }

(7.83)

Integrating over the jet directions one obtains

dAoor((+H — 0 +h+ X) _ dma?s

o dydz 0 IS 1 |1Shi] (1 —y) cos(¢s + ") x5 ha(xs) Hi(2) (7.84)

754 |(H—(hX

The hadronic tensor relevant for this situation is the antisymmetric tensor

2M WM = /koT &py 6°(pr + ar — kr) (1)) 22 f1Ghs. (7.85)

The cross section is given by

dAo,o((+ H— 0 +h+jet +X)
dry dydzd?Pyy d?p |

dra? 1
ﬂAe{m[l——y] 25 1GhL

Q* 2

1
+|Shil |y [1 — —y] Ip.| cos(¢; + ¢! xp f1Grr

2

P
v (1-39) 22 coston + ot s flalTl } (7.86)

where the distributions depend on x5 and p, and the fragmentation functions depend on z and zzki.
Averaged over the hadrons in the jet, one obtains

dAULo(Z—i—H—%'—i—ﬁ—i—jet—i—X) _ Ama?s
drg dydzd?p | Q4

Ay (1-39) 20 fileap )G (78T)

where GG1(z) is obtained by integrating G1;, over the transverse momenta. A similar expression discussed
earlier is obtained after integrating over the transverse momentum of the jet.

7.5.5 |(H— ('hX (longitudinally polarized target)

The antisymmetric hadronic tensor relevant for this situation is

k[#SV]
MW = / Pk d*p, 6 (P + @p — k) (ziT:L A2z g1 Dir. (7.88)

An asymmetry is obtained in
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dAo ({4 H — 0 4+ h + jet + X)

drp dydz d?Ppy d?p |
dra’ s vy Ipo| .
o Ae A {|5m| [—y [1 - 5] Wi sin(¢; — @) x5 g1 Dir

y) [Pnsl
 (1-5) Sy sinlon —ol) a:BglLD%T] } (7.89)

which vanishes upon integration over the transverse momenta of the produced hadrons.

7.5.6 |(H — ('hX| (transversely polarized target)

The antisymmetric tensor relevant in this case is

My = ko d2 52 —k kiﬂszh y SJ_ DL
2 = 7 & Pr (pT +4; T) t M, M 2217 1T (790)

An asymmetry is obtained in

dAo,p((+ H — 0 + h+ jet + X)
desdydzd?>Pyr, d?p |

dra? s y pz .
o Ae [SL]]ShL] [—y [1 — 5] —M&h sin(¢; — @) cos(¢j — bs) x5 g17 Diy
Yy Pl - i

y ! 2 ZMMh Sln(¢h ¢3) COS(¢J ¢s) Tp 1T V1T >

(7.91)

which again vanishes upon integration over the transverse momenta of the produced hadrons.

7.6 Convolutions and gaussian distributions

In order to study the behavior of the convolutions of distribution and fragmentation functions it is useful
to consider gaussian distributions,

f(x7pT) = f(ﬂ?, OT) exp(—R%pi)
R2
= @) "L exp(~Ryp2) = f(@) P (p; o) (7.92)
D(z,—zk;) = D(z,0;) exp(—R2E2).
R? 9 D(z) Ry,
= D(z) 7r—zh2 exp(—Rik2) = = P(kr;Ry) = D(z2) <—sz; 7) ,  (7.93)
In that case the convolution becomes
1fD] — /dsz Phy 52(py + Qy — kr) f(@n,py) D(z, —2kr)
x Q2 R%LR2 ]
= ————exp |———2] f(z,04) D(2,04)
R + R [ R% + R
= flzs)D(2) 2 ) R), (7.94)

22
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where R? = R?, R?/(R% + R3?). The other convolutions that appear in the cross sections are of the form

1] = 2 Sy )= 1 % e D) 2O, (7.95)
I:ﬁMﬁT fD} - —g—;%[[fDL (7.96)
I:%;Zf | = W@%Rz)(l—@iﬁ”) 11 D, (7.97)
I:Wﬂ)} = gj 2]\;2 11f D), (7.98)
I:W;T)gkifD} - g—; 2%”}3 11f D), (7.99)
J:Z(i"pT) (SM’;\;Z_”T"@T fD} = —%;% 2]\%& I1[f D], (7.100)
1:4(5-%)2(’1-%)—2(2%§ﬁh(pT-kT)—pi (ﬁ-kT)fD} _ —%%IUD].
(7.101)
Another way to deconvolute the results are the following weighted quantities,
/quT %I[E'pT fD} =2 () D(2), (7.102)
[ #a. f@; ok } =27(a) DV (), (7.103)
/dqu MMh { } 4 fW(z) DO (), (7.104)
/d2qT [ 2(h ’2’;;2_ r fD] — 2@ () D(2), (7.105)
/d2qT a7 I{("’;T)gwp} =2 f(z) DP(2), (7.106)
/d2qT J\fﬂi 1[2@ P) (;M'EZ —Pe ke pl o g f (@) DO (2), (7.107)
/dqu M622]3T\4h 1[4(’1-2%)2(’1-%) —2(2%§ﬁh(pT-kT) —p2(h-ky) £] = ~12 () DO (o),
(7.108)

where f(")(z) indicate the (k2/2M?)"-moments of f(z,kZ2), and similarly D(™(z) indicate the (k2 /2M?)"-
moments of D(z, 22k2), in terms of the Gaussian parametrizations given by

2 n '
f(")(x)=/d2pT (21;;2> flz,pl) = @M+Wf(x)7 (7.109)
2 n

7.7 Lepton-hadron semi-inclusive DIS including Z-exchange

[Rainer Jakob, October 9, 1997]
Differential cross section for semi-inclusive lepton hadron scattering e + H — e’ +h + X
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2
dl‘deciZ#QQT = gaQST Y 2h LELVV’Y)%;’%)
I T Y
+ 2 (Q2 _ ]\Zgw_a:?ZMZ) 0? Yz LEZIZ)%{;VZ)
2

leptonic tensors for ete™

11+ My ¢

1
Lfylj) - 5Tr [“/u Iy A ;

} = 20,0, + 20,0}, — 8,,Q + 21 X €1,ps 0”17

1 . .
L) = 5T [w /(g% +ghrs)n l'} = gh (20,0, + 20,0, — 2., Q%) + 2igleLpe P07 + N ..

1 .
LGP = STr [(ffv +8475) 7 £ l"} =gh (20,0, + 20,0, — 2, Q%) + 2ig\ €Lnpo 07 + A ..

2

1 ,
LiZ?) = S Tr [(gfz + g4 75) 7 £ (8% + ghs) e f } =

(95" + 9v7) (20,8, + 20,6, — 9, Q?) + (2949%)2i€po 707 + X ..

727

(7.111)

(7.112)

(7.113)

(7.114)

(7.115)
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October 9, 1997
hadronic tensor for semi-inclusive lepton hadron scattering e + H — ¢’ + h + X

2MA) = / dp~dk* d*p,d’k,. 6° (P, + Ky — q,) Tt [‘I’(p)v“A(k)v”} (7.116)

ML, = 2zh/d2k &’p, 6*(py + kr — qT){

EpUpJ_ SJ_G'
fiDip — LTpff:rl%

o
Gi kJ_pShJ_U

— g | f1D <G1s
gy [fl 1+ 915G1s + A

_ Pp1kyL S1-Shi —p1-Shi ki-SL
MM,

ffTDfT]

kj_u +9J_ ki-pi

—(Stsy 4 g4 81 -Shi YhirHir — (hisHi; + hi Hi)

M My,
p{fS +9/" pL-Shy Py K1Y 4+ g kL-S) b L
Vi 1T — M, 1Tt

k{“ V}ppL —|—p{”e Py
L L e - it i)

p{Ne }pShL + S 6 pl k.{ﬂelf}l)sL + S{Méy}pkl N
L Prey P hJ_J_ Py — SLEL Pl oL €1 Bloy (7.117)

2M 2Mp,

2M W () = 2Zh/d2kT &*p, 6 (pr + kr — qT){

[MS k[MSV]
(f1G1s + g1sD1) — pJ‘ L firGus + l]w:l 91sD1 (7.118)
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2M Wz = /dp‘dk+d2pTd2kT 0*(py + by — gr) Tr {‘P(p) (8v +8a75) W“A(k)v”] (7.119)

2M W57,y = 220 / kr d*p, 0% (P, + by — qT){

5 k1,510 p1,S14
— g [gv (f1D1 + g1sG1s + %lefT - %]ﬂfﬁ“Dl)

o
Ei kJ_pShJ_U
My,

o
6/1 pJ_pSJ_O'

M flLTGls)
~ prky S1-Sh —pL-Shy ki-SL £ D
gv MM, 1T

—ga <f1Gls +915D1 + glleLT -

— (818 + 4" 81 -Shi gvhirHir
_ k{fpi} +9" k1L -pL

[gv (hauHy + hi Hi) — i ga(hi Hi — hi Hi)]

M My,
{#SV} pv
+ .8 ,
- P — 8 P 2R (gy b Hir +i gaht Hir)
A ,
_ALSL T PO (gvharHis — i gahir Hi")
My
k{fei}pplp +p{f€i}pklp 1ol 1yl . 1ol 1ol
- SMM, gv (hisHi — by Hiy) +iga (b Hiy + by Hi)

{n_vip {n _vip
e’"S + Sie .
_’_pl 1 hJ_p2M hi€1 Plp (gvhlle—ZgAhszw)
RS, + 81k,
2M;,

S{H V}PS S{H V}PS
—iga hL€L Lp‘; LEL Phlpy

(gvharHi" + i gahir Hiy)

(7.120)

2M W:(VZ’Y) - 2Zh/d2kT dsz 52(pT + kT - qT){

+i e | +gv(f1iGis + 91sD1) — ga(f1D1 + g15G1s)

pr-ki S1-Shy — p1L-Shi ki1-S1 Py
A MM, irDir
_i p[fsj’_] k[#SV]

i (9v firG1s — gafiz D) +i =% (gvg1sDig — gAlefT)} (7.121)

+yg

My,

note: for the interference of v and Z exchange there are the simple relations for the symmetric (S) and
anti-symmetric (A) parts

Wg(u'yZ) = (Wg(VZv)) and WX(VWZ) = (WZE/Z’Y)) (7.122)
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MYy = / dp~dk*d*p,d*k,. 5*(p, + k., —q,)

xTr [‘b(P) (gv +gavs) Y Ak) (gv +gavs) 7" | (7.123)

2MAL g = 2zh/d2kT d*p, 6*(p, + ks — qT){

log log
pipSis VkLpShio

- gj‘j’ (9\2/ + 9124) <f1-D1 + glsGls + i flJ_T.Dl - M, fl‘Df_T
p1-ky S1-Sht — p1L-Shi k1-S1
+ N, firDix
k1,510 e’ Sie
+2gvga (flGls +g1.D1 + %gls% - MT“f%TGls)
. k{u l’} + "k, -
+<ga_gg>l (S5 4 g1 S-St Yo Hyp — L Mgﬁh LPL (hLHE +niHE)
{NSV} .S k{NSV} 1224 k,-S
+9"pL- hi, Lo RIS g kL Ly L
M 1s411T Mh 174174
k{uev}/op {ue }p]ﬂ
B PL PG R (i nia)
{n vip {u }p { vip
Pl €L Ship+ Siuﬂ Plp, 1 kY Sip,+ SV kL,
Hqir Hit 124
+ 2M hi 2Mh hir Hy 7 )
2M W}y = 220 / d’k, &p, 6*(p, + ks — qT){
k. S-S — -Sp1 k,-S
i el l 29V (f1D1 +g1,Gy — DAL L T Mfi hi BL1OL fprfT)

+ (9v + 92) (f1G1s + glsDn]

[ SV]
i 2L v D - (6 + sG]
RS

A {+ 29vgafiDir — (g + 9,24)913D1LT:| } (7.125)



Chapter 8

Calculations of distribution and
fragmentation functions

8.1 Quark distribution functions in the bag model
The starting point is the calculation of the lightcone correlation function for a target at rest P = (M, 0),
expressed as a spatial integral,

1

oz, kp) = S / da~ d*ar exp (—mMa*/\/i +ikT-aT) (PPp(a)Ty(0)[P)|,

= (2 )13\/—/d3a exp (ixtMa; + ikr - ar) (Pl(—a.,a)Ty(0)|P)

1
= da exp (izMa, + ikt - a P a,,a)l’ P 8.1
el KA r-az) (Pi(-a..a)H(0)|P). (5.1
The kr-integrated distribution functions become
1 _
) (z) = / da exp (izMa) (P[B(—a,0,0,a)T(0)|P). (8.2)
212

In the bag model one can consider the bag as a wave packet, i.e. a superposition of plane waves centered
around P = 0. The forward scattering off a bag gives the distribution function,

@ng(x,kT) = (ZT/d a exp (ixMa, + ikt - ar)
[ agi(-az,r+ @)Lt bag). 83)
bag

Assuming that all quarks in the bag are in the lowest eigenmode, i.e. ¥(z) = >, ¥n(x) a,, is restricted to
one mode,

bo(t,r) = ho(r) e /R, (8.4)

with for massless quarks w being the solution of jo(w) = j1(w), i.e. w ~ 2.043, one obtains
o) (z,kr) = / d*a exp(ik-a) | d*r Po(r +a)lo(r), (8.5)
bag (27'(' 3\/— bag 0

where k = (kr, (*M R — w)/R). This can be rewritten as

o (2 kr) = M 0 (k) (k , 8.6
bag(ir T) (271_)31/]0( )\/5%( )kz:(rMR_w)/R ( )

where
Yo(k) = d’r exp (—ik - 1) Yo (7). (8.7)

bag

801
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8.2 Quark distribution functions in the spectator model

To illustrate the calculation we will consider a simple nucleon-quark-diquark vertex connecting a nucleon
with momentum P and mass M, a quark with momentum %k and mass m and a scalar diquark. The
essence of the model is that the diquark will be considered as an on-mass-shell spectator, i.e. (P — k)2
= Mgiquark. The quark-quark correlation function is then obtained as the product of the tree graph for
N — q + diquark.

The matrix element of a quark field interpolating between the nucleon state and a diquark state is

(X[:(0)|P, S) = (K +m)ik Y Ui(P, 5). (8.8)

i
k2 +m? +ie
For a scalar diquark (with mass M), the vertex will be taken

Y5 (Pk, P —k) = (1)i; gs(k*) (8.9)

(to be discussed later). The quark-quark correlation function for a scalar diquark becomes

boy(k) = v e (PS[T, (2)4:(0)|PS)
g ViU (P.S) (2m)8 (P~ K = M2) Tu(P.S) oY ol g
(k4 m) P+M)(1+75$)(%+ m) . (271r)3 (kzg_(i)g)25((P—k)2—M§)
2 ) (P4 MY )]y s L) sy ar2) (5.10)

9 2(2m)3 (k2 — m2)2
which gives for an unpolarized nucleon

1 9*(k?)
2(2m)3 (k% — m?2)?

P, (k) o ((P—k)* = M?)

x{(mM2 +m*M —mMZ2 + (M + m)k?)

— (K =m?) P+ (M +m)* — M2+ k* —m?) }é}. (8.11)
The result for ®4(k) can be used to calculate the projections

ol (z, k) = % /dk* Tr(I'®,) , (8.12)

kt=zPt

which depend on z = k*/P* and k2. The integration over k= can be rewritten in covariant form as

) Tr(CD,)
oz k) = /d(Qk -P)dk* § (2z k- P — 2> M? — k2 — k%) — P
= /de dk® § (z(1 — 2)M? — k3 — (1 — z) k* — 2 P?) %, (8.13)

where P; = P — k and the latter form is suitable in the spectator model where one has the delta function
§(P? — M?) in the integrand. For the k,-integrated functions,

oll(z) = = / dk~ k7 Tr(T'D,) : (8.14)
2 kt=xP+
one has
Tr(T®,
olll(z) = w/de dk? 0 (v(1 — 2)M? — (1 — 2) k? — 2 P2) %
e M THIP,)
= dP? dk? 8.15
7T/Pg(rm*n) ° /ﬂo 4Pt (8.15)
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where P?(min) is the minimum mass contributing in the antiquark-nucleon spectral function, which is
larger than (M — m)? in order to render the nucleon stable.

Writing )
we get the ’spectator model’ results
Tr(I'dq
oz k) = /dk2 5 (z(1 —a)M? — k2 — (1 — ) k* — 2z M?) %
Tr(T'D,)
= — , (8.17)
4(1 —=x) Pt
A=) PT o _ poy k2)
with
2 2 k] M2 M2 8.18
—k*(z, k) = 1—a:+1—a: s—xz M. (8.18)
The k -integrated result is
Tr(ID
W) = o [
VP2 2 20 k2)
Tr(F<I> )
= d(—k? . 8.19
wflwg_zMz (-#7) o) (8.19)

For the practical calculations it is convenient to introduce the quantities

p2(x) =m*(1 — ) + aM? — z(1 — x)M?, (8.20)
M(x) = A*(1 —z) + aM? — 2(1 — 2)M?, (8.21)

such that we have for the often appearing denominators,

k7 4 u?

m2 — k2 = %x(a:) (8.22)
k7 + \2

A% — k2 = Tl%f) (8.23)

The function p?(z) has endpoints p?(0) = m? and p?(1) = M2, acquiring a minimum at the point
xo = (M? +m? — M?)/2M? with the value

m 2 g2 2 _ (m— 2
12 (o) = ((m + ) M4)M(iw (m — M) ), (8.24)

which should be positive to avoid problems, i.e. |M —m| < My < M +m and |M — Ms| <m < M+ M,
at least if 0 < 29 < 1, implying [M2 — m?| < M?. The condition for a valid application of the spectator
approach for distribution functions becomes

M, > M —m, (8.25)
M, > M — A. (8.26)

The condition on the quark mass m is only relevant if the 'quark propagator’ pole is kept. In many cases
it is convenient to cancel it by the choice of the vertex function g(k?).
8.3 Quark-hadron vertices

The simplest way to construct valid quark-hadron vertices is to start with nonrelativistic (two-component)
spinors and replace them by a (rest frame) Dirac spinor multiplied with the appropriate projection operator.
Furthermore, to get the correct charge conjugation behavior, it is safest to start with the charge conjugation
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operator acting on positive energy spinors. Thirdly, one starts writing down everything in the hadron rest
frame. Technically, the ingredients are for the (renormalized) spinors (in the rest frame),

1 0 0 0
m_ |0 @_ |1 m_ |0 @_ |0
U o | U E v E v N E (8.27)
0 0 0 1
and for the charge conjugated u-spinors with C' = iy2+9,
Cu) = @ Cu® = M, (8.28)
Projection operators involving these spinors are in the hadron rest frame given by
2
_ 1+9° P+ M
(e)(e) — = 8.29
R T (520
2 0
(@) ~ L —L_P—M 8.30
O;v v 5 ViR (8.30)
2 0
@) _ A+ (P+M)ys 831
O;u v 5 S (8.31)
2 0
(@) _ 1= (P=M)s 3.3
;U " 2 oM (8:32)
For spin 1, the rest-system spin states are e, = —(e, + i€,)/V2, €0 = €, and e_ = (e, — ie,)/V/2, or
explicitly
Y 0 L (8.33)
er=—| — , € = , ee=—| - , .
vzl 1 V2
and the summation over states is P p
Z el(f)el(,o‘)* =—guw+ # (8.34)

The pion — quark-antiquark spin-space vertex is e.g. obtained by constructing a spin zero quark-
antiquark combination,

1
Y(n)i; = % (ugl)(c W)~ (C u(l));-r)
_ % (u§1>@;1> + uEQ)ﬁf)) : (8.35)
ie.
1 (Pfr"’MTr) _ 1 (PW_MW)
T(m) o _ﬁ W’% = ﬁ% oM. (8.36)
L (Pt M) 1 (Pe— Mg)
T _ -
YWY (M) o NG TTA N A (8.37)

The expression for ®(k) is similar as for the nucleon with scalar diquark case with the expression between
square brackets,

) ED o p o ay gy P gy
= 210+ m) (P M) (k4 m)]. (839)

In this expression the ’spectator-antiquark’ sum is taken to be P — M.
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Combining the spinors to spin 1 one obtains the p — quark-antiquark spin-space vertex, e.g. for the
spin 0 component one has

Ti(piS: =0) = —= (uPCu®)] +u®(Cu)T)
(ugl)ggl) - u§2)6§-2))
- % ((Uzu(l))iﬂg-l) + (Uzu@))iig»z)) , (8.39)

which using that o,u = v.75((1 4 70)/2)u gives the vertex for a vector meson,

Sl =Sl

TH(p) % ~H 7(’&2;41\@), (8.40)
WY (o) o % (’P”Q_Ti\m . (8.41)
The ’spin’ part in ®(k) becomes (for an unpolarized p-meson)
1 (P M) P+ M) a  PHPY
sy p-an E s | (-4 B
= S+ m) (P M) (k4 m)]. (8.4

In this expression the ’spectator-antiquark’ sum is taken to be —P + M.
In order to find the baryon — quark-diquark vertex it is useful to first build a nucleon spinor either
from a quark and a diquark with spin zero,

Ut =M, (8.43)

K2

or to build a nucleon spinor from a quark and a diquark with spin one, e.g.

Ui(l) _ \/> (1) \/j@r ul
= —\/;60( u(l))i—i—\/g@r (U u(l))l
= —\/g (0’ : eu(l))i , (8.44)

from which one obtains the vertices

T*(N) o 1, (8.45)
x \%75 (7 —i—%) (8.46)
WYX (N)yo o \%(7 +%) s (8.47)

For obtaining the short expressions note that a projection operator P + M on the 'nucleon side’, i.e. left
side, becomes irrelevant. From the symmetric SU(6) wave function one deduces that one (with the above
factor in T*) need both vertices T° and T* with equal relative strength. For the axial-vector diquark
contribution to ®(k) the part between brackets in the scalar diquark case is replaced by

—% [(}H-m)%%% (P +M) 1+;5$ (P;]er) Vs Y (}é+m)] <—9W+ le\;];V)
= | m) P a0 (5-58) (k). (5.45)

In this expression the spin-sum for the axial vector diquark is taken to be —g"" + P*PY /M?2.
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8.4 Quark fragmentation functions in the spectator model

To illustrate this calculation we will also consider the simple nucleon-quark-diquark vertex connecting a
nucleon with momentum P and mass M, a quark with momentum k and mass m and a scalar diquark.
The essence again is that the diquark will be considered as an on-mass-shell spectator, i.e. (k — Pp)?
= Mgiquark. The quark-quark correlation function is then obtained as the product of the tree graph for
q — N + diquark.

For a scalar diquark (with mass M), the vertex is as for the distribution functions,

T3Pk, P — k) = (1)i; g5 (k?), (8.49)
The correlation function that is the starting point for the calculation of the fragmentation functions is
1 . —
Agij(k) = T /d4x e (0[t)i (w)a] anip; (0)|0)
1 +m); m);
= ( 4 (k ) k T;fck/ Uk/ (Ph, Sh) (27’(’) ) ((k - Ph)2 — ) Ul’ (Ph, Sh)%T”% (k )2
_ (1 +755n) 1 9*(k*) 2 2
_ [ (P MG )| s 6 (k= P )

[+ m)(Po -+ My + m)], 2<1> (K = )>

which is the same expression as for the distribution function and gives for the production of an unpolarized
nucleon

IIE
Il
=]

§((k—Py)? —M2), (8.50)

1 2(k2 9 9
AS(k:) = 2(27‘1’)3 (kzg_(m)z)g 5((k_Ph) _Ms)

x{(mM,% +m2M,, — mMS2 + (My, + m)kQ)

— (K> =m?) Po+ (M +m)> = MZ + k> —m?) ;{:}. (8.51)
The result for Az(k) can be used to calculate the projections

AN Poy) = - [kt Te(0A,) (5.52)

k_:P};/Z; kT:—PhJ_/Z

which depend on z = P, /k~ and P? | or k?p The integration over k™ can be rewritten in covariant form
as

1 2k-P, M} Tr(TA,
AN Py = & [aee-pya s (2P My g2 o) THTA)
22 z 2;2 4Ph kT:*PhL/Z
- _/dpzdkg ( —z)kQ_(l—z)Mﬁ_kg_P_§> Tr(TA,)
z z2 T z 4P}: kT:—PhJ_/Z
= —(I) (l/z Phl/z) (853)

2z

where P; = k— Pj, and the second form is suitable in the spectator model where one has the delta function
§(P? — M?2) in the integrand.
For the P} -integrated functions,

2
All(z) = T2 / di™" dk; Tr(TA,) , (8.54)
k==P, /z
one has
Al = E/dPQde 9 (1-2)k* (1—2z)M7 P\ Tu(TA)
s 2 s > 22 P 4Ph—
> > Tr(TA,) 1
P2(min) h+ 1 ~ P2 4Ph
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where P?(min) is the minimum mass contributing in the antiquark-nucleon spectral function, which is
larger than (M}, — m)? in order to render the hadron h stable.

Writing }
A(k) = Ay (k) 5(P? — M?), (8.56)
we get the ’spectator model’ results
1 1- 1—2) M? M2\ Tr(PA,
Az, Pyy) = _/dk25( e G Ly ) l2,)
2z z z z 4 P, koe Py, /-
_ 1 Tx(TA) (8.57)
21-2) 4P, 2 _ 12 2y
k* = k*(z, kT)
with ) )
M M
2 k2 — z k2 S _h )
k= (2, k) T rr =T (8.58)
The Py, -integrated result is
2 0 A
= Iz a2 TLAs) (8.59)
2 J Mg 4P,

For the practical calculations it is convenient to use the functions also encountered for the distribution
functions,

l—2 o, M2 1-—z

2 —
ui(l/z) = = M + . S m (8.60)
1—=2 M 1—-=2
2 _ 1T %m0 5 _ 1T %0
A(1/z) = = My + . . A%, (8.61)

such that we have for the often appearing denominators,

z

— (K% + p2(1/2)), (8.62)

K2 - A2 = 1%2 (K2 + X2(1/2)) . (8.63)

kQ_mQZ

With the argument 1/z and 0 < z < 1, the function p2(1/2) has endpoints p?(1/z) — M?Z/z for 2 — 0
and p?(1) = M2, acquiring a minimum at the point zg = 2M? /(M7 + m? — M2) with the value
((m+ My)? — M?) (M} — (m — M,)?)

407 ’

W2 (1/70) = (8.64)

which should be positive to avoid problems, i.e |My, —m| < My < My +m and |Mjy, — M| < m < My, + M,
at least if 0 < zo < 1, implying m? — M2 > M?. This implies the following condition for employment of
the spectator model,

M, >m — My, (8.65)
M, > A — M, (8.66)

The first condition on the quark mass is not relevant if the pole in the quark propagator is cancelled by a
special choice of g(k?).



Chapter 9

Perturbative corrections

9.1 Inclusive leptoproduction

In order to illustrate the inclusion of perturbative QCD corrections, we start with inclusive lepton-hadron
scattering, for which the tree level result, corresponding to v*(¢) + q(p) — ¢(k) with k = p + ¢ in leading
order in 1/Q is given by

QMW (P,q) = /dp*dzﬁd?m T ((p) V" (p+d +m)7") & ((p+a)* —m?)
= d? ui v
dp~d”p, Tr( ®(p)y 5
1 _ v v
o hies) Tr (v ) = =gl filas) (9.1)
(Note that g5 = ¢/ in this case as gr = 0).
Perturbative corrections to this result for the nonsinglet structure functions come from the process

v*(q)+4q(p) — q(k)+G(1). This leads (omitting mass and vertex corrections) to the following contributions
at leading order in 1/Q,

Q

2M WH(P, q) /dp*dgpl 0(n* —pl) Tr <<1>(p) o % 7”)
92 Cr
(2m)3
X {9 (P2 — 1?) Te[®(p)y* kv k" K]/ F
+ Te[@ (p)y fsy oy By /8T
+ Tr[@(p)y* Fey Ky Rsy) /5
T (@) iy Ry 1/, (9.2)

where p/, = p, — 1, and where d,g(l) is the gluon summation in the final state. This depends on the
choice of gauge. For this a convenient choice is the axial gauge - A = 0, in which case one has

/d4p d*ld*15(1%) 6(k*) 6*(p+ g — k — 1) dap(l)

lags +dals  @*lals
lq (l-q?
For any gluon field linked to a matrix element or constituting a final state (which means essentially on-

mass-shell compared to Q?), the above gauge choice implies a polarization summation that is equivalent
to the gauge choice n; - A = 0, where n; is the lightlike vector constructed from [ and ¢,

n = x”f (z + 222'2" q) . (9.4)

As we have seen that gauge choice is important for a parton inpretation of the correlation functions. The

theta functions cutting off or taking into account the first rung of the ladder contribution avoids double
counting. Transverse momenta, larger than 2 are not included in the soft part.

dap(l) = —gap + (9.3)

901
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Implementing the energy-momentum conservation to eliminate integration over p*, k= and I, using
§(1?) to eliminate the integration over [+, introducing

filw) = [ @po 002 = pt) filop?) (95)
and going to components (assuming P and ¢ to have no perpendicular components) one finds
MW (Pq) = —gi" fi(ws, 1?)

c _ di-
+ f(’zﬂg/dp dk*dp, d*key S O(k?) das (1)

< {0 (k2 — u2) TH@ @)y Hir En” iy )/
+ Te[®(p)y" oy Fr ) /31
+ Tr[®(p)y ey By ] 51
+ TH@ () ey /3 . (9.6)

After this step we can parametrize the momenta

B o= _zk%,W%,kL], (9.7
= o G G k] 9:)
q = :%,—%,04, (9.9)
p = -p,&,m], (9-10)

and rewrite the integration for the &'(g?) correction as

pa CF QI/d‘”P/dzk/d%m@Q 2 Z’“) )/dp d*p, ... (0.11)

The transverse momentum of the outgoing quark thus satisfies

k2 2i(l — zp)(1 — x
kL _ &=z Z2p) (9.12)
QQ Tp
Positivity of ki restricts the domain for 2z, and x, to the regions 0 < z; <1 and 0 < z, < 1, while the
theta function provides (in the first term) a regularization near the endpoints, for z, not too close to unity

2 2
Tp M Tp
—F <y <1l- —. 9.13
1—pr2_zk_ 11—z, Q? (9.13)
It is useful to have explicit expressions for the vectors
[Q 1-1z, Q
ks = p+q:k+l: E’ - pﬁ’pj- (9.14)
L P
[ Q l1—zp+axpzr Q
ke = p—l=k—q=|-(1—2z)—=, ——— —, k.|, (9.15)
! L V2 Lp V2
[ Q  zptazm—apzm Q ]
kn = k—-p=q-l=|gpp—————"—""— k| — . 9.16
p=q v . N (9.16)
The Mandelstam variables for the subprocess are
1—
i = K2="_"r@? (9.17)
Tp
. 1-—
i = kf———xz’“ Q?, (9.18)
P
0 = kK2=-ZE? (9.19)
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satisfying § + £ + 4 + Q2 = 0 and the inverse relations are:

QQ
Lp = 8 4 an (920)
U
=——. 9.21
*="Tr o0 (9.21)
Useful inner products are:
1 R
2p-q = 5+Q* = —Q°=—(a+1),
Zp
. -1
2kq = ~(i+Q%) = ~PT QP =544,
Tp
20-q = ~(a+Q?) = T —LQ*=s+1, 9.22)
P
The vectors p o x,, 2/Q, k o Zp kv2/Q and [ Zp 1v/2/Q are lightlike vectors, e.g. p o n.
For the transverse and longitudinal structure function in
y PHpY
2M WH(P,q) = =2 Fr(z5,Q%) ¢ + 2 F1 (15, Q%) 12 (9.23)
(Note Fr = Fy = MWyr = MW; and 2 Ff, = F»/z; — 2 F1) we then obtain the results
2FT(£B?Q fl T,
1-— 1
dxp de kl(s <k2 2k ( Zk)( ‘IZD) Q2> 72 fl <_)
Tp (p k) Tp
5 { (1- acp) ( 2;vp Kk — 2032 + 32,1C t Zcpzk + 22227 — 4z} — dwp2) + 223) 0 (k2 — 1)

— 22z (xp—i—zk—i—xpzk—z,%)—i—

(1 —zp) (22 + 22) }

1-=,
= fi(zs, ,U

VO [ s - S0 (2 o

2 — 2ap + a2 — 22, + Axpzy — 2002k + 2 — 2xp2p + 22227

(1 —2p)(1 = 25)

Wxs, 1)
CF dx —zk) (1 —xp) o 9 Tp
b e (M ) 1 (32)
1+ a:p 1— 2z — 2z + 222 — 2zk3:127
{ (1—xp) (1 —2g) 1—uzp } (9-24)
2 Fy (a5, Q%) = (ZSF/ d‘”p/ dz d%ﬁ(kﬁ (1_'2;)(1_%) Q2> dzpzn i <i—3) .(9.25)
B p p

The lower limit in the x, integration comes from the support property of ®(p), namely P* — p* > 0 or
pt /Pt = xz/x, < 1. We note a singular part o< 1/(1 — z;) in Fr coming from the first term in the
calculation. This is a collinear singularity (k:i — 0) which is regulated by the theta function.

In order to perform the integration over z; one notes that

1-6 1
0

1— 2z 1—Zk

/ dzi, — £(1)In(5), (9.26)
1 — Zk
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or in a functional sense 1 1
= —0(1— In é. 9.27
1— 2z (1 — zk) ( Zk) ( )

2 1 2 2

9 g° Cp dz) Ty 1+ Q

. @y g (L2 (<
filws: )+ 82 /z Lp /i (x,,) {1_5% ! I

B
1+ a2 1— 1—2x, — 222
i ln( x”) g (928)

One obtains

2 Fr(zs,Q%)

I —ap Lp (1—xp)

1
L) o[ A 20 %2 fi(y). (9.29)

20 1
2FL(xBaQ2) = £ F/ d$P2$Pf1< 2 Y
x B

82 . Tp
The first expressions gives the scale dependence of fi(x;u?), the second the perturbative result for the
longitudinal structure function. The scale dependence of the structure function is determined by the

singular term and requires an appropriate treatment of the singularities near x, = 1.

1 2
fleni @) = hwi?) + 5 [ Lp, (%) Hiy) (%) , (9:30)
wher
o 1+ 22 3
Paq(2) = Cr [m T3 6(1— 2)] : (9.31)

Since the singular piece only comes from the first of the four terms in the calculation, it is possible to obtain
the evolution without considering the full process and only consider the gluon ladder graph contribution
in the quark-quark correlation function. Implicitly here is of course the use in a hard scattering process
with a large momentum scale, which defines the lightlike direction n_. Requiring that k™ = zP™ and
implementing momentum conservation, the momenta for ¢(p) — ¢q(k) + G(I) can be parametrized as

[ z, (kiL—p,)?
- __p Ptk
_p 1l—z, 22P*  TE L
[z (kL—pL)Q 1—2z
I = i Lapt -k
1—z, 2zPt = FEL PLTELL
[ =z
p = |p, =P p|. (9.32)
L Lp

The quantities k2, 2k - P and (P — k)? then can be expressed in k2 and Zp,

k1 k1

— k2 —opty _ T 2 _9k, . — ~— ) 9.33
T p 1_Ip(m 1°Py) =2, " T 1-a, (9.33)
k2
o=2k P=——"2 F1 02 (9.34)
l—2z, =
k2
M2 = P—kgz(@— )—T. 9.35
r= ) - . (9-35)

In Fig. 9.1 we show the region limited by 2 <z, <1 and ki < 12, which is described in the perturbative

calculation. Using the ’large’ (Q? > k3 ) vector
Q2

‘= [W’ _2 Pt 04 (9.36)
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//Iz o=2k.P

2 2
M. = (k-P)

Figure 9.1: The (dark-shaded) region k2 > u?2 and z < x, < 1 for £ = 1/2 which is described by the
T ,U, p

ladder diagram.

for the choice of gauge, one obtains

0@ ky) = 0 — k) el (@ k)
2 Y+ 1B
2_29(&1/ 7/ 2 2 Te[®(p)y*Frt Er"]
+0(k> — 1i?) @) 2 dk= [ di=dI*d*1, 6(1%) dyap(l) Bk
= 0(p?— k) e (2, kL)
2 + — 72 « + B
2_29Ch1/ﬂ_ Jdp~d’p, Tx[®(p)y* kv k"]
+9(kL M ) (27_‘_)3 2 21+ daﬁ(l) (kg)g
= 0(p*— k) e (2, kL)
2 e AYom+ 1hn/ B
2 2 90°Crl [dz, Jdp~d’p, Te[®(p)y*fr Ty
+9(kL M ) (27_‘_)3 4 .7312) 1_33;) daﬂ(l) (kg)g
or
a, C 1 1—z T
Aok = 002 = kD) Al k) 4062 —2) 5558 [, g ()
T 7wkl P Typ

X

Q*(1+22) (1 —,)2 +2Q% k7 23 (1

—zp) + kjl_ xﬁ

(@2 (1 ,)? — k2 a2)”

O — k7) fi(a, k%) + 0(kT — p®)

g (NQ)

1
k2

1dy
Y

/

- Py, (%) Fily, u2) +...(9.37)

where the last step includes the iteration of ladder graphs. The splitting function P,,(z) is as given above.

The appropriate coefficient of the ¢ function 6(1 — z2) is
a free quark. This requires that [ dz Pyy(z) = 0.

easily found by using the result for f;(z, k) for
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9.2 Semi-inclusive leptoproduction

For 1-particle inclusive lepton-hadron scattering the tree-level result is given by

2M AWM (q, P, P,) = /d4p d*k6*(p+q — k) Tr ((p) v A(k) ") 0 (u* — pT) 0 (b — k)

/d2PT ¢ (M2 - P%) /dsz 0 (M2 - k%) 52(PT +qr — kr)
/ dp~ / di™ Tr [(p) v A(K) 7). (9.38)

The natural frame to work in is the one in which the two hadrons do not have transverse components
(frame II). The momenta of the photon and the hadrons can be parametrized

I A 2
P, = _Zh%’zhgf/ﬁ’%}’ (9.39)
_ e @
q = _\/57 \/§7qT‘|7 (940)
_ Jaa 1@
P = N T] (9.41)

We note that Q2 = Q2 + Q2, where Q2 = ¢2 = ¢"’¢.q,. We do not assume that Q2 is small at this
T T T T du T
point. Up to &(1/Q?) corrections one has

Jr
_ q Py -q
-4 __“n'q 42
Tp Pt P, P’ (9 )
B Ph_ P- P,
¢ P-gq 643)
while the usual scaling variables become
Q@ @ Y
xB:2P,q:xB@:xB 1—@ y (944)
2Py-q  _ Q* Q7
Zh = — QQ = Zn @ = Zp — Q—g . (945)

The quark momenta are parametrized as

N

pv_ yPr
l p\/—

with for the tree-level calculation after implementing energy-momentum conservation z; = x, = 1. This
condition must be dropped when one considers perturbative corrections, in which case one obtains the
additional contribution

2k \%,/ﬁ,sz] , (9.46)
w

; (9.47)

3
I

2M WM (q, P, Pp)
92 Cr
(2m)3

d*pd*kd*l 5*(p+q—k—1)6(1%) das(l)

x {0(pF — 1) 0(4® — k) Te[@(p)y " A(k)y" Fy ) /12
+0(u” — p7) 0(1* — k) Te[@(p)y" kv * ARy fiy”) /58
+0(u® — p7) 0(1® — k) Te[®(p)y* iy A(k)y far”]/ 5t
+0(u® — p3) O(KT — 1) Te[@(p)y" kv A(k)Y kv"]/3% ), (9.48)

— .II

+



16 March 2001 907

where p/. = py — lr and k. = kr + lp. Implementing energy-momentum conservation we get
2M W}Ll’(q’ Pa Ph) -
e
+ —?27{_)]; /d]f dkt d2pT dng dl~dit dng 52(pT +qp — kp — lT) 5([2) daﬁ(l)

x {0(p7 — 1®) 0(1® — k) Te[@(p)y* " A(k)y" iy /12

+0(u® — p7) 0(1* — k) Te[@ ()Y fsr ™ A(k)y" Fer”] /3
+0(u® — p7) 0(1® — k) Te[@(p)y* fury™ Alk)Y k] /3
+0(p? = p7) O(KT — 1) T[@ ()Y kA ARy ks7"]/57 ), (9.49)
and the appropriate parametrization for the gluon momentum /[ is
Q 11— Q
I=1(1=-2) —=,—— —, 1|, 9.50
(1 —2) 5o B (9.50)
First we consider the Mandelstam variables starting with
[ Q 1- Tp Q ’
ks = p+q=k+1l=|—7, — k|, 9.51
p q \/5 xp \/5 T ( )
i Q Q
kk = p—l=k—q=|—-(1- — , 9.52
¢ p q (1= z) 5 5 PT (9.52)
Q@ 1Q
k, = p—k=l—-q=|-2r—=,— —=,pp — k7| . 9.53
p q * 5 7 ya P kT (9.53)
The Mandelstam variables for the subprocess are
1—2, ~ 1-— 2
R T k. o Y T M e R P (9.54)
Tp Lp Tp
. 1 -2z, ~
i = k= _x—k Q> +2pp-lr=—(1—2)Q° — 2 Q7 + 2kr - qr, (9.55)
p
. 2k ~ z
i o= k= Q= - (Q* - QY), (9.56)
Tp Tp
satisfying § + ¢ + 4 + Q% = 0 and the inverse relations are:
QQ
== ) 9.57
T INQ r2pr ar (8:57)
t+Q> 2k -
o QT 2k gy (9.58)

0?2
The implementation of the [-integration and §(I?) depends on which of the four terms one considers. For
the first term,

dit 1 [t de, 1
in term 1: /dr di™ a1 §(1%) :/— /d2p' = —/ — —/d2p' : (9.59)
20+ T2 s Tp 1—Tp T

(the range in x, coming from the support of ®(p)) leading to the contribution

20p 1 (Y dz, 1
2 /2 2\ 2k 2 _ k2 §2(p! —k g CF _/ axp
[ OR k02 ) g k) G [
< / A Ppr [ kY dos() THB() b Ak i) (9.60)
with ) )
l o
nterm 11—z o % (Pr—pr) (9.61)

l—prQ_l—;Up 0?2
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For the fourth term we rewrite

dl~ 1t 1
in term 4:  dl~dIT d®ly 6(1%) = /— d’kly = —/ dzy, /d2k’T, (9.62)
21 2 Js, 1— 2z

(the support in z; coming from the support of A(k)) and obtain

201 (1 1
+/d2pT 0(p> — p2) Pkl O(KZ — 12) 8*(py + ap — ki) T—L / dz
Zp

(27)3 2 1— 2
x / dp~ / Ak Ak das () TYO (p)y ey A ()7 sy ] /52 (9.63)
with ) , )
in term 4: l_—xp = i —1= 1 lN—T = 1 (kp _ kr) . (9.64)
Tp Tp 11—z Q2 1— 2z Q2

For the other two terms we use

in term 2 & 3: /dl dit 2Ly 8(1 / dzk/ dzy /d2 ( - M) (9.65)
P

leading to the contribution

2C
+I =L /d2pT 0(u* - p}) d*kr O(p® — ki)

(2m)? / de/i d;p o /dle6<é?~_g;_(1_zkg)j(1—xp))’

x / dp~ / A" s (1) T () ™ A (k) Fir )38

+ TH{@(p)y” iy A (k)1 K151 | (9.66)

in which to use Iy = py + g — kr and consequently pfr = kr — g and ki = pr+qy.

9.3 Evolution and transverse momentum dependence

In order to investigate generally the high p,-tails of the distribution and fragmentation functions, we
separate the transverse momentum dependence and Lorentz structure, relevant to determine the leading
or subleading character of the correlation functions from the Dirac and target spin structure. Using p$
and

1
i =pepk = 5797’ (9.67)
in order to make an angular expansion in the transverse momenta, we write (we use y* = and v~ = P
with a dimensionful n-vector, satisfying P -n = 1)
p (e le% p (63 [e%
O(z,pr) = [@2(3@ p2) P+ ( ;4 ) S (x,p2) + ( ;425) @25(;3,]93) +..|P

+M {@g(x,pi) + (p;;) Y (z,p2) + .. }

+ 22 [@a(a,p2) + (B2) @5 p?) +.. |

+... (9.68)

where the quantities ®¢(z,p2) are symmetric and traceless in the transverse indices («...) and depend
on the arguments r and p2 and get the (transverse) Lorentz structure from the Dirac gamma-matrices
and the spin vectors. The integrated and p,-weighted quantities are given by

_ /deT Bz, pr) = Bo(z) P+ M By(z) + M2 By(z) (9.69)

i%%w) = /dsz (%) ®(z,pr) = 95V (2) P+ MY (2) + ... (9.70)

<I>g§ /deT p”‘f Oz, p2) = 05" P @) P+ ... (9.71)
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with the transverse moments defined as

2 n
a...(n —P a...
R e (9.72)

Similarly we have the (integrated) quark-quark-gluon correlation functions

G (z,21) = M @4 5(z, 21) P+ M? @G 4 (z,21) + ..., (9.73)
O (w1, w0) = M2 @55, (2,21, 22) P+ ..., (9.74)

and similarly ®%(z,z1), etc. Of course, the non-integrated correlation functions can be expanded in the
transverse momenta as done above. Some parts of ®% (z, z1) can after integration over one of the arguments
be related to the (twist-three) quark-quark correlation functions ®3(z) via the QCD equations of motion.
In the above parametrization, the functions on the right-hand side depending on x and p2 have canonical
dimension -2, while functions depending on = are dimensionless. Graphically represented we have

x,kT

Hk The quantity ®(x,k;) = [dk - P ®(k; P, S) with canonical di-
mension -1 or after further integration the quantities ®(z) and

kw
?LJ—H a7 5 ().

LR e

‘bjix(l’, 1, 332)

A hard part can be connected to the soft parts via an integration over the momenta of the soft part,
J d*k d*k, ... Taking the dimensions following from this integration into account we get for the simplest
kernel, starting with two quarks with the relevant momentum components being y and k; and leaving two
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quarks with non-integrated momentum components x and p,
/d4k . H(p;k) =
/ dy ks .. (i Ho o) P+ Hi o) + P Hoaly: ) )
as 2
— — [ dydkr ... P Hys(y,x) P

Lo pm / dy &k . {f H (y.2) P+ Hily () + P H(y,2) 1}

Qg 1 i ii y
o /dy d*ky {’fm WH S (y, ) P+ ki Hy (y, @) + krij PHL (y, ) ?’L}

T T

T T

+%p”/d 2k ..

Oés 1
/dyd2 {kT Hio(y,) P+ hri PHi (5, 2) |

tE / dy &k, {kT PHYE (g, 2) P+ by HYS (9,2) + oy PHYS (v, 0) 1}

H o P+PH43(Z/7 )}

)

+ —p [ v {00 + Hy (w00}
/ dy b . { ki g, ) + brs Y (5, 21
(9.75)
(the Dirac structure preceding H refers to the fermions with momentum k, the structure following H

to the fermions with momentum p). The kernel connecting the soft quark-quark-gluon correlator to a
quark-quark correlator can be analyzed to contain (we now make the k; dependence implicit)

/d4kd4k1 CHS(pyk k) =

ag 1 o o

o [ dydys o {Hatmia) P+ PHS (i)}

Pr Pr

Qs Prs «;t «;t

_2 ~ /dydyl - {?/LHAV:; 2 (Y, Y15 )P+HA;473(y,y1;x)+PHA;574(y,y1;x);/L}
T

Qg a; «;l

— —/dydy1 . km?’lHAgz(y Y )P + kg Hig3 s (y,y152) + kes PHUS (y, 5152 );’L}
T

g «a «

+ 2 /dy dyp ... {'ﬂHA;&S(yayl;x) + HA;4,4(y7yl§x)7/l}

T

Do » »
Tg” /dydy1 ---{TZLHZ;?;;(?J,Z/N%)"’HX;ZJA(%QU%)?IL}
T

Qs
2
T
Qg 1 a;, ;ig
+ = —2/dy dyr - .. km PH Sy, y1s @) + kg H,Q;i,i(yvyl;w)ﬁ}
T
Qs Pri 1oy, 1103,
—2 /dydy1 ooy Fory ﬁHAss (Y, Y15 @) + krj HA;4,4 (yayl;x)ﬁ}
T
+ % e [ dydyn - AH i)

4o / dydys - s RS (s )
4o (9.76)
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To include the qqGG soft contributions we need
/d4kd4k1 d*ky ... HSS (ps Ky by, ko) =
Qg af
— [ dydyidys .. . pH 4 4(y,y1, Y25 2)
T

g 1 o « o
to —2/dydy1 dys --'{ﬁHAiA,Q(yvylayQ;x)P+HAi;573(yaylvy2;x) +PHAQ;6,4(y,y1,y2;$)ﬁ}
T

Qs Pri . H

~ Zz/dydyl dys --'{ﬁHﬁ‘ﬁ’;Z,s(%yl,yz;x)+Hjﬁ;%,4(y’y1’y2;m)ﬁ}

T T

o 5
_;_Q/dydyl dys .. {’fmﬁHﬁﬁig( yhyg;x)+kTiHﬁg;g,zx(y’yl’yQ;xm}
T

s Pri afB;i
+_2 Tj/dydyldygﬁHAﬁi4(y Y1, Y252 )ﬁ

D7 pT
as 1 1aB;ig .
+p_2 — dydyr dys ... krij ?/lHAA;4,4(y7 Y1, Y2; )
T
aS 1 « (]
+— Pri /dydy1 dyz - kg RH SO0 (g, 91, s )
+... (9.77)

Graphically the kernels are represented by

Pw X'?T [p
[ [d*k ... H(p;k)
kw y’;(T [k
pl X"TT |p
: [d*kd*ky ... HS(p; k, k1)

“ %Tk—kl |

A
Pl e Ip

fd4k' d4/€1 d4k2 .. (p,k kl,kg)

le é Eé jk AA

Y Y, Y%

Combining the contributions we can extract the large-p,-behavior For instance, for the corrections to ®,
we find leading contributions proportional to as/p2. Collecting these and similarly for other quark-quark
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correlators, we get
A(I)Z (xvpg")

A (z,p2)

AP (z, p7)

A(I)B(xvpi)

ADY(z,p?)

A®Y (z,p2)

A(I’4($,pi)

AP (z,p?)

AP (z,p})

dy @2(y) PhHa,2(y; v)

Qg ]\42 i i
v g we) + [ dy va) ] s02)
T Pr
+/dydy1 ‘I’Aa;s(y,yl)PﬁHZ%,z(yayl;x)}
Qg ]\42 id
o [ av @) P i)

P2 p2
as )
[ [ dy @a) Haatysn) + [ dy 98P0 )
T
+/dydy1 ‘I’Aa;s(y,yl)PﬁHX;a,s(yayl;x)}
R ;
% [y wa) P (0i2)
P
oy M? r 5
I av e i) + [ dy 2uhP L 050
p3 pi
+/dydy1 @Ay, y1) Hily 5y, 15 7)
/dydy1 oY) () PREASS (g, 0)
+/dydy1 dys <1>AAa5;4(y,yl,yz)PﬁHi‘iﬁ,g(y,yl,yz;m)H
045 M2
/dy (1)3 33 Z/v )
+/dy ®Aa;3(y7y1)7pﬁHji?3(y7yl;m):|
as
Sl [ v oswmpHat) + [ ay 820t sa)
+/dydy1 D a0y, y1)HA.44(y,y157)
+/dydy1 (I)Eaxllt;si(yayl)PﬁH,/ﬁéfzx(yayl;x)
+/dydy1 dyz CI’AAaﬁ;4(y,y17y2)PﬁHZi;4,4(yay17y2;$)
R ;
— [/ dy ®3(y)Hj 4(y; )
P
+/dydy1 <I’Aa;3(y,yl)PﬁHX%A(y,yl;x)}
g ij
S| dy eapPH, (4 0)
P
+/dydy1 D pau(y, y1)HYY (v 013 0)

—|—/dy dy: dy q)AAaﬁ;4(yaylaQ?)PﬁHjilAf4(yaylay2§x)

912

(9.78)

(9.79)

(9.80)

(9.81)

(9.82)

(9.83)

(9.84)

(9.85)

(9.86)
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9.4 Equations of motion for various parts

For the matrix elements we write

M M\?
¢ = 7_‘1’2+—@3+< >A/+<I>4 (9.87)
P
1 [ M 1 M M\?
= —~ATAT |47 P —ATAT | —=—® —_— T 9.88
RERAN R = 3}+277 Jo 3+<P+> Y 4], (9.88)
1 [ M
+® — At Mo+
T = 57" _2<I>2+P+’y <I>3]7 (9.89)
1 Y M2
-5 — -t
7R = SRR bl ‘I’3+2<P+) q’417 (9.90)
M(I)D = 7 (I)D,3+P+ D4+<P+> 7O 5 (9.91)
1 . M 1 M M\ |
= 37 vt [7 (I)D73+P+ (I’D4:|+2'Y v ﬁ‘I’DA"'(F) 7+(I’D75‘|- (9.92)
The equations of motion imply:
+iDtp + 4~ iDYp + 4% iDath — mrp = 0. (9.93)

Multiplying with a good projector v~ vT /2, we get for the matrix elements

1 1

3 YAV P, + 7 O —m ] = B Y [aPT TR+ 0 @H —m @] =0 (9.94)
or for the leading (twist-3) part in the expansion

m
Yo P =P — 77 Po. (9.95)

9.5 The unpolarized case

The quark-quark correlation function depending on k+ = zP™ and k. is for a spin 0 or unpolarized
hadron, including only leading (M/P*)° and subleading (M/P™*)! contributions, given by

Oz, ky) = %{fl(m,kT)+ihf(m,kT)kMT}7_

M fr . [y, 7]
+ W{e(m, k) + fH(z k) i +ih(x, kr) 5 } (9.96)

The k -integrated results are

o) = 5h()y
-
+ %{e(x)ﬂh(x) b o ]}, (9.97)
@) = i)
b PO (9.98)
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The relevant projections are (we do use the tensor ot~ = (i/2)[y", 7] but we use y¢v' instead of the
tensor o%t = jy2yT),
ol (2, kr) = fi(w, k), (9.99)
M
oM(z, ky) = 57 €@ kr), (9.100)
- M
ol (2 ky) = Srih(e kr) (9.101)
N (4 ky) = —i kS hit(z,kr), and @207 V(@) = —igof D (a), (9.102)
o M al~B w3 M
OO (0, ky) = 57 kS f (o k). and @57 (@) = 957 o 0 (a). (9.103)

For the 1(0)iD%)(z) correlation function (bilocal, i.e. integrated over dk;) one obtains from the
equations of motion

1 a0t k< .
— 03 (k) = 25 (x i % hf) (9.104)
Lol g k) = (we—m fr —iah 9.105
M Da Ty T 1 tx ) ( . )
Using the quark-quark correlations multiplied with k%,
ko kS
- o (2, k) = o7 il k), (9.106)
k a a 1 & .
e gl ) = ol (1, ky) = 20 b D (2, k), (9.107)
the difference ®§ = ®¢ — k% @ is given by
L o] k3 i mo
M(I)A (,kr) = i xf _f1+ZMh1 (9.108)
zfL
1 o . .
- o N ky) = we- % fi—izh—2ihi® (9.109)
E/—/—’_/

z8 —ixh

The most general form of quark-quark-gluon correlation functions integrated over all transverse mo-
menta but not integrated over x; are

o M o _
q)D(xﬂxl): FED(%fCl)VT"/ ’ (9].].0)
from which one finds that
1
2 2o(@) = /d:v1 Ep(z,x1) vy~ (9.111)

(similarly for @ 4(z,z1)). The projections are

o, + M
OO (2, 21) = 257 Ep(z,11) (9.112)
]_ o3
Vi o () = 2/dx1 Ep(x,a1). (9.113)

9.6 Sample calculations

9.6.1 The fermion propagator

We will demonstrate perturbative calculations, in particular when one uses a lightcone gauge in detail for
the example of the self-energy contribution to I'® (p). Writing the (truncated) Green’s function as

PO(k) = ~i (Sp) ™" (k) = ik — mo — S(k)], (9-114)
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one has the expansion
1 1 1
+ Yk + ... 9.115

The contribution of the one-loop diagram,

Sr(k) =

to the self-energy in the lightcone gauge is given by

Al A =T+ mo)y” dap(l)

_ 2 11
(k) = —ig CF/ 2m)* (2 +i€) (k — )2 — m2 + ie)’ (9.116)
with 5 5
1o a
doB(l) = g°f — % (9.117)

The numerator can be written as

+ k= V+mo)l/ Jk—f+mo)

numerator = —2(f — J) + 4mo + o

Because of the expansion around the zeroth order result, it is convenient to rewrite J/as (f—mo)—(f—]—my),
leading for the numerator to

numerator = —2(f —J) +4myg
+ (B=T+mo)(f —mo) (f—mo)(f—J+mo) |
I+ I+ 7
e G f ) T o))

We consider the case k; ~ k=~ ~ 0 and kT = x P*, while [~ = ali/ZP* and [T = y PT. We need the
following integrals!

g 1
Bik) = Sl / M T = )
d?l, 1
B 471'2/ / /27rz (ay — 1 +ie)(a(y —x) — 1 + ie)

Qg
= m/ /dy@nyy )
d2
- 471'2/li

= %A (9.118)
2

47
g /d4z i
(2r) (2 +ie) (k — )2 —m2 + ie) I+

B 4w2/ / /2m ay—1+ie)(a(1y—x)—1+ie)
= 4772/ /dy @uyy )

= E1/? xen(y y— ). (9.119)

Yo(k)

—1

'reminder: 69, (y,y — z) = % [0(y) O(z —y) — 6(—y) O(y — «)], thus one has for the y-integration (for positive z) [ dy
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We also need the integral

92

—i 4
(2m)4 /d ! (12 +ie) (k= 1)2 —m +ie) kT
d?l, 1
47r2/ / /27rz (ay — 1+ ie)(a(y —x) — 1 + ie)

Qg T
:m/l—gfdy Eegl(yay_x)

1
=551 (9.120)

It

It is useful to have the following integrals

— . g 4 J
falk) = (2 )4 /dl (12 +ie) ((k — 1)%2 — m2 + ie)
_ %}62 (9.121)
— —J—mo
Falk) = (1% +ie) (k — )2 — m2 + ie)
= %%‘21 — my 21, (9122)
— . g 4 F—J—mo
fulk) = =i (2m)* /dl (12 +i€) (k—1)2 —m2 +ie) I+
- k% [ (82— £1) —mo S, (9.123)
33
_ g F— 7+ mo
falk) = =i (2m)* /d4l (12 +i€) (k—1)2 —m2 +ie) I+
1 2m
= k(2= B0 +mo 3] = R (k) + S5 el 7 (9.124)
33
where one should realize that the only nonvanishing contribution in Jis J = ITy~ = % k. Note that
vt Ra(k) = 283 — Ri(k)yT and Ra(k)yT = 225 — vt R1(k). Tt is now straightforward to find the result
S(k) = kX1 +4mo S — (F —mo) Ra(k)y" — 7" Ra(k) (F — mo)
= —(F—mo) X1+ 3mo X1 — 483 (f —mo) + (F —mo) v Ru(k) + Ri(k)y™ (F — mo)
(9.125)
Inserting in the expansion for Sp(k) one obtains
o (1=%) 1 m 1
) = g g T
1 4 _ +_ 1
1 Falb) — Pl s
= (- Bart) o B (1 (k)
—_———— (%‘ - mo(l + 321)) ~—_———
Uy (k) Ui (k)
iy =)
= Uy (k) F—m) Ur(k) (9.126)
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with m = mg(1 + 3%1) and up to the required (first order) precision

Ui(k) = 1—7"Ra(k)=1-283+ Ri(k)y*

= 1—%23( )y }é——ZQ( )y + (9.127)
Up(k) = 14 Ra(k)y" =1+42%83 — " Ru(k)

- 1+ki+23( VBT T ek (9.128)

9.7 Evolution of fi(x)

The tree level contribution is given by

fel@y = i fi(@) Tr [y~ 7] (9.129)
= fi(z). (9.130)
The ladder graph gives using
k= [% kika} (9.131)
- [% K2,z —y, kT}, (9.132)
p=1[0,y,04], (9.133)
and the trace
+)2 - t L.
Te [y Ky §y7] dapl) = —8Kk7 - 32 (& z)+ SR T be
B 2 a 332 x
= K2 { 8 16a—(x_y) +16r_y)
o Bxty) — 16 az?
= kr @=9) (9.134)
the result
ol ladder] _ . ¢*Cr [ dyda d®ky 2(x +y) — 422
h @) = —im gy / 2 K2 (w—y)la@—y) —1+id oz —1+id? h)
- A’k T +y) 222
- gmor [ S [ [ e - - s el -]
- “—2 or [ [an [YED etwa =)+ 2o i
d2k
- g [ fa +f @%( e
s -
. 2% Cr / s [T y ) ) o) (9.135)

(note that the support of fi(y) is —1 <y < 1). For the self-energy graphs on the two fermion legs we need
the traces

Tr [w+ . m:)} —n [w+ (CRD: o+ BR + v+R<k>%>}

= Tr [’y_’y"' % <—}621 - }é}éz Y3 — k_i k23>}

4%, 165 =435, — 4%,), (9.136)
Tr [’yE(k)er %] = 4(3%; —4%,). (9.137)
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Then (taking into account a factor 1/2)

1[a1,self] () = (=% —4%3) fi(z) = (351 —4 %) f1(z) (9.138)

= <3—4/% 209Y, (y,y — )) fi(z)

A’k (3
- o5 cF/H {§f1(x) ~2 fi(x) /dy mi_y@?l(y,y—x)} (9.139)
Using
[ v =[Oy )+ O — )] =0, (9.140)

the total result becomes

ol s koT 2 2
A = gmor [ [an| 25 f) -

The integral runs from z < y < oo, but for the first term it is limited to x < y < 1 using the support
properties of f1. In the next step we introduce 8 = x/y and find that

2 h@)] Ohwa -0+ 5 Ao}

r<y<l < r<p<1,
r<y<oo <— 0<p<1,

Thus

L 2
) = o [ [0 120 f(B) 20) [ 09 75+ o)

- /é/fw e
B[4 on)

9.8 Gribov-Lipatov reciprocity and evolution of D,

For the fragmentation function D1, the tree level contribution is given by

(z) = iDl(Z) Tr [y'y~] = Di(2). (9.142)

We note that the result can be obtained from the distribution functions by interchanging everywhere the
+ and — components and then later make replacements x — 1/z and f1(z) — f1(1/2) — D1(2).
The momenta for the ladder graph in the case of fragmentation can be written

1
k= [x g K2, kT} s [;, % K2, kT] : (9.143)
I = [x —y, g k2, kT} (9.144)
p=[y,0,04], (9.145)

involving also simply an interchange of the lightcone components.
We now look at the evolution equations of fragmentation functions (FF) by looking at those for distri-

1
bution functions (DF) in the domain x > 1. Starting with the result for DF’s obtained via fl[as](x)7

L i) = 2o /Omdy %@f@)—%m Onle,e—y),  (9.146)

allowing for different numerators in order to treat the various distribution functions (f1, g1 and hi). We
consider .4 '(3) = 2 P, which will make it easy to get the results for A4 (3) = 1+ 32 or A (3) = 26. In
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all these cases A'(1) = 2, the numerator result coming from the fermion self energy. We find (defining
B = z/y) for the DF

d oy [ldp[2p” ,(w 2
@) = o G L—ﬁf (B) —mf(x)}. (9.147)
z<p<1 0<B<1

For the FF we employ an continuation to the region x > 1 and then a substitution x — 1/z. For a quark
with k= = x P, to produce a hadron with P, the radiated gluon can have momentum ¢~ = (x — y)P,
with 1 <y < z. This is obtained via the generalized ©-functions if one uses for the timelike fragmenting
quark a propagator prescription 1/(p? —m? — i€). Thus one has

_ [ de 1 _ [0(21) 0(=22) — O(—1)6(x2)]
@(1)1(2101,252)—/% (axy — 1 +ie)(axe — 1 +1i€) 1 ;1—332 1 :
_ O(x) —O(x) _ O(=m2) — O(—21)
0 _ [ do 1 __[0(21) O(x2) — 6(—21)0(—22)]
Onlnz2) = / 2mi (axy — 1 —ie)(amy — 1 +ide) 1 — T2
__0(@) —0(—xa) _ O(xz) —O(—21)

and for positive z-values

>0
@gl(xﬂx_y) = )

@Bl(m,a}—y) =

This modification happens only for the ladder graph, not for the self-energy. With the further replacements
z — 1/x and f(x) — f(1/2) — D(z) one obtains

w0 = g 05 an(5)- [ 5 e
CRLAN)

w s B B-1"\p po1-p
1<p<=
d _as [®dB AN (B) tdg (1)
R e S S
—_—
1<B<1/2 0<8<1
_a, [MdB [BA(B) (g)_Mm }
- s[5 iy e ()T
2<3<1 0<p<1
_as [YdBBAN(YB) (=
- = [ 7550 (3) 1
We find the splitting functions
A (B)
gy = )
PY(B) 1-0), (9.149)
plP] (3) = w (9.150)

(1=05)+
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For a polynomial .4 (8) = 2 8P the moments become

93P
FHe) = ﬁ
671 1+p_1 B n— 1+p _ "1 2 2
+97(n)
247!
P””“):wﬁ—iu
D pr-1
Al _2/1 R
231
P =
o ﬁw—l - - 2
AlP /dﬂ 22 22 L |

+97(—n)



Appendix A

Lightcone coordinates

We use two different notations for four-vectors,

a* = (a’ a',d? d®) = (d°, a), (A1)

a* = [a",a",ad"d®] =[a",a",ay). (A.2)

The metric tensor is given by goo = —g11 = —g22 = —gss =1l or g1y =g-— =0 and g, =1 and defines
the scalar product

a-b=g,,adb =g (A.3)

The first vector notation corresponds to the expansion of a vector in a Cartesian basis with orthogonal
vectors t#, &, §*, 2 with ¢ timelike (¢* = 1) and the others spacelike (22 = -1, etc.), the second notation

with an expansion in two lightlike vectors n/y and n” (n% =n? =0and ny -n_ =1).
The antisymmetric tensor e*¥79 is fixed by
12 — =12 - (A4)
We employ the notation
e"P?a,b,cody = eabed, (A.5)

A useful property is the following way of bringing a vector into the antisymmetric combination,

eHvpo gaﬁ — Qavpo guﬁ + ehapo gVﬁ 4 eHvao gpﬁ 4 ehvpa gdﬁ' (A.6)

The following fourth rank tensor is also useful in many applications,
SHYPT = gl gP7 — g'? g7 + g1 g (A.7)

In several cases we will also be dealing only with transverse vectors, projected out by

g = g" —nlin? —ntnl, (A.B)
with as only nonvanishing elements g}! = g2 = —1 and the corresponding antisymmetric tensor with
€2 =1 given by

P = = Fob (A.9)

(or equivalently ¢/” and ¢/|"). Given a transverse vector a, in the appropriate frame determined by two
components (a',a?) or determined by its length |a,| = \/—a2 and an azimuthal angle ¢,, such that

a = (a',a®) = |az|(cos ¢a,sin ), (A.10)

we can consider the vector
at = et a, = (—a* at), (A.11)
which has the same length, |a;| = |ar| but an azimuthal angle ¢; = ¢, + m/2. We note that ay = —ay.

Again we use the notation with vectors as indices, e.g.

g¥ = g aub, = ar - br = —ar - by, (A.12)
e‘;b = e arybry = ar Nbr =ar - br, (A.13)
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and we note that we can write a* = g% and a4 = ¢gi=€"*. The symmetric traceless tensor constructed
from two (transverse) four vectors is denoted

ganby alrprt (ar - by) g (A.14)
In terms of the azimuthal angles,
97" = —laz|[br| cos(dy — ), (A.15)
€2 = |ar| |br| sin(¢p — ¢a), (A.16)
S2bed = |a,| by |er| |dr| cos(¢p + da — da — de). (A.17)

For products of tensors we have the relations

g7 97 = g7 gT +e el (A.18)
” ab = gT gT - gT ngaa (Alg)
ab g;g =€l g% 4 €2 ghi, (A.20)

Employing two unit-length transverse vectors ## and §* = Z*, one easily derives the expansions

alf = g = g g — g g = B+ ¥ (A21)
ah = e = g = g7V g7 — 95" g¥' = —a¥ " +a" Y. (A.22)
where a* = —(ar - &) = ar - & and a¥ = —(ar - §) = & A ar. For second rank tensors one obtains

a§ub;} _ (aT . bT) _ S;,ubl/ _ S;sz Sz,uzv + Sarby Si,uyu

= (a®b® — a¥b) (213" + g) + (a®bY + a®bY) &g, (A.23)
[“bul . ga[ugu] 6ab e = (a®b¥ — a¥b") e, (A.24)
{uzv} {# awby TUTV | azbr Qrpyv
5 ( b + bl ) Sauav 4 gasbs Go
= —(a®bY + a®bY) (28137 + ') + (a®b® — a¥bY) 2Py, (A.25)
]- v -V
5 (ol —olralh) = e g = (ab¥ — a7 gi”, (A.26)

Finally we want to give the following useful way of transforming a tensor involving external momenta
qr into quark transverse momenta k, and pr. Having pr + k- = qr one sees that

Saeal = Gporl 4 Ghekl 4 9 gpaks,
Spepl . Ghakl 4 9 gpachy, g . (A.27)



Appendix B

Frames in leptoproduction

B.1 The inclusive case

Consider ¢(k) + H(P) — ¢(k') + X in which the momentum transfer is ¢ = k — k’. Using lightcone
coordinates the momenta k, ¢ and P satisfying ¢> = —Q? 2P -q¢=Q?/x and P-q =y P - k are given by

1 Q yb&r 1 T—y;
= |- —, ,— g, + lrl, B.1
Lr

Q Q-
== X = , B.2
=5 5m ) (B.2)

M Q
P= , ——, 041, B.3
[<Q\/§> /2 T} (B3)
where P~ = M?/2P* will be neglected in the rest. Here we have allowed for an arbitrary transverse

momentum in ¢ being q, = @+ ¢r. We note that the parton momenta satisfying p? = (p + ¢)> = 0 (up to
mass effects and with |p,.| < @) and the final state remnant momenta are given by

p=oP 0= 0.2 (p,)] (B.4)
p=p+tq= [%,5—\%7%]7 (B.5)
P=P_p= [o, (1;;5) %,OT}, (B.6)
Pty = [% Q7 4;6(21\/—;)@2 , qT]. (B.7)
Note that the hadronic mass is given by
W2 = (1;“") Q> o z= %QQ?. (B.8)

Specific frames are:

(1) QT =0.
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In this frame one has for the momenta

1Q (1-y @Q -y,
_[te 9 0], B.
[y v2'oy \/i’Q y (B9)
q= [%;_%;OT]7 (BlO)
_ o9
P= [o, x\/ﬁ’OT}’ (B.11)
1— 1 1—19) -
K =k-gq=[t y”%;%@%&} (B.12)
P =P +q= [\%,O,OT}. (B.13)
(2) ¢, = —QvT—yl, (HERA frame).
In this frame the electron and target hadron are parallel and one has
10
k= b %,O,OT}, (B.14)
q= [%a_y%v_Q\/l_yéT}a (B15)
_[o. <
P= [o, x\/i’OT}’ (B.16)
1— 1—9) ,
K =k-q=[t y”%y%@—%”a}, (B.17)
1— ~
(3) QT = Q
In this frame one has in essence that ¢ is transverse, implying for the hadronic momenta
q= [%,O,QQT}, (B.19)
p= [o, %,OT] (B.20)

(4) Qr | Q (Bjorken frame).
First boosting the original momenta by multiplying the plus components with a factor 1/Q2 — Q?/Q and
the minus components with the inverse factor one obtains

g= {\/Q%;Qz,\/Q%;Qz,Qq}], (B.21)
pP= [O,N%,OT] (B.22)

In the limit @, | @ this frame has a purely transverse momentum exchange and an infinite momentum
for the target hadron.
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B.2 Diffractive scattering

For diffractive scattering one can proceed in steps by starting with the hadron momentum P, taking out
a momentum z P, from which one takes a parton momentum Gz ,P. One has

Note that

W2 = (p/ +pl + P')? =

My = (p' + k) =

P:[O,ﬁ’%}’

kp:a:pP:{Ov%’oT}’

p:,@k,::ﬂ:vPP:[Ov%’OT}’

= [%,_%,OT],

p’:p—#q:{%’o’oT]

kp =kp—p= [0, Ogﬁ) %’OT}’

p’:P—kPZ[Ovl;PxP%’OT}’

Qo = g

(1;[3)622 or ﬁ:ﬁ

(B.23)
(B.24)
(B.25)
(B.26)
(B.27)
(B.28)

(B.29)

(B.30)

(B.31)



Appendix C

Kinematics

C.1 Single parton case: absorption of hard momentum

| 0
— p"N‘-O7E,0T:|
0 ]
kE~|——=, 0, 0,

pPP=k=0 V2

p‘ 1 Q
T pN[O, Lt_pﬁ’ OT]
B I !~ [(I_Zk)%, (1;%)%’ B L)
p/% _(1_Zk)g Q P /2:_ 1 p2
P12 =0 V2 v2ltT (1—axp) " "

C.3 Single-parton fragmentation: branching

Tk k=~ lzk %, 07 OT‘|
T o I~ l(l—zk)%, 0= 2) % kT] g2 = L=l Z ) 5
k Tp Zp
Iy Q (1—=p) Q 2 Fk 2
k2—l2—0 B [\/ﬁ Tp \/i7 kT‘| K (1_Zk) kT
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C.4 Single-parton

case: absorption and branching

[, 1
Tk DR _Oax—p%a OT‘|
T‘T q =~ % —%7 qu ¢ =-Q*=—(Q*+Q7)
Tp ko500, OT] (a7 =@3)
2 _ 2 2 _ ~ _ Q (1—%)Q (1—2)(1 — ) »
p _k: _l _0 lN [(1 Zk) \/57 l‘p \/§7qT‘| Qi_ mp Q2
ps = ptq=k+I i )
- - _2:zk — Tp ~2_ Zk 2
~ |5 L qu I A R R
L P
pe = k—p=q+l
- ~ _ _ _ ﬁ ~ B 2k
~ |z %’ L %v OT] == Tp v = (1 —ap)(1 — 2) Qr
Tp
pu = p—l=k—g
r ~ ~ .2 _ (1—2k) A2 L 2
~ _(]‘_Zk)%? %7 qT‘| b Lp Q (1_5311) QT
C.5 Multi-parton distribution: absorption
~lo <
p=[o. 5 o
pl ~ |:07 X1 %7 OT:|
q~ [% —%, OT} ¢ =-Q°
Q
pi=p’=p-p=k=0 kz[ﬁ 0 OT}
In general (p = > pi):
k—p; [%, ffi%a 0T:| (k—pi)* = —2; Q
q+p1 ~ [%7 _(1 (Ei) %7 0T:| (q+pz)2 = —(1—[131)@2
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C.6 Multi-parton fragmentation: absorption

S oo § o]
g o~ [ - T
Tp ey ~ [zl% 0, OT}
W=k =k ki=p"=0 /W:%&OT}
In general (k = Y k;):
ki—pr~ {z% —%, OT] (ki —p)? = —2; Q*
ki —q= [—(l—zz-)%, %, OT] (q—ki)? = —(1—2)Q?

C.7 Multi-parton distribution: branching

Ty V2’
ml(l_ k)%’ (1;::,,)%’_4 i:(l—zkiil—srp)é2
Pi=p=ppn=0=0 p’%[—(l—zk)\/gy %, Pr /2:_1_1:vppi
In general (p = 3 py):
Yo [—(1—7:0% St} pT] R (AL

Equivalently one can also use the following parametrization (where ! defines the minus direction)

o, 2 o]

NG
D, } D, | D
pA~ |0, 21 72X, 0y l-pi~ | —F—, —2;,—=, —0r
' [ 'z Pl )2 e
P, ]
z~l L. 0,0, .| 2
1_ 2 f l% - L 71 i—TvoT
(1 —azp)v2 por l(l_x,,)ﬁ( R
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C.8 Multi-parton fragmentation: branching

kek

k i Q (1—=z) Q o (L—z)(1—xp) »9

T '~ [(1 %) V2 x, V2 kT] K = T <
B =kl=k ki =12=0 , Q@ (-=) @ o Zk 2
i [\/5’ Tp \/57 kT‘| M= (1—Zk) kT

In general (k =Y k;):

Q (1—zp) Q 2 = Zi %k 2

ki+l=|[(1—(1-2z)2k) 757 Zp ﬁv kT] (L + ki) _(1—zk) ki
- 0 (150 o Umma,
ki — K ~ l— (1—zz) B A —kT] (ki = ) (1—2) ke



Appendix D

Useful formulae

D.1 Combining denominators

Feynman trick:

1 ! 1

— = dx . D.1

AB /0 (zA+ (1 — z)B)? (D-1)
1 ! (n—1)!

T e 8 (Sn-1) (D2)

D.2 Some indefinite integrals

(D =2) /dp \/p2:|:m2:%p\/p2:|:M2+%M2 ln(p+\/p2:tM2) (D.3)

1
_ — 2 2
(D=0) /dp\/m 1n(p+\/p :I:M) (D.4)
(D=0) E/dpL:wln(pQ:I:Mz) (D.5)
2 p? £ M2
1 1 1 (D
D=-1 - - = L D.
( ) /dp 2 (M)’ (D-6)
1 1 p—M
D.3 Special functions
Beta function
1
B(u,v) = / dr 2" 1(1 — z)r 1 (D.8)
0
= / dyy" "t (L +y)ThY (D.9)
0
/2
= 2/ df sin®*~1 0 cos® 10 (D.10)
0
I'(w)l(v)
= . D.11
PR (D4
The Gamma function is defined for Re(z) > 0 as
I'(2) :/ dx 771 exp(—z) (D.12)
0

10
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and satisfies I'(n) = (n — 1)!, I'(3) = 7/2 and the relation

2T(z) =T(2+1). (D.13)
The function has simple poles with residue (—)"(1/n!) at the points z = —n. Near negative integers the
expansion can be obtained from
o 1
P(l+e) = 1+ / dz (e Inz + 3 eI’z +...) exp(—z) (D.14)
0
o L (D.15)
E 2 12 ce ey .

where vy =~ 0.5772 is Euler’s constant. One has

(z) = % —vp +0(2), (D.16)
F(z)mé”%—7E+1+...+%+ﬁ(2+n), (D.17)

D.4 Dimensional regularization

Minkowski space integrals can easily be turned into Euclidean integrals using

i k% = kO, (D.18)
id"ky = d"k (D.19)
—k% = k2. (D.20)

Basically n-dimensional Euclidean integrals are performed via the angular decomposition and integration

[e%e) T T 27
/d"x :/ dr 7‘"—1/ df,,—1 sin" 2 Gn,l/ dbp—o sin" 20, .. / dbq, (D.21)
0 0 0 0

T sumg — =L (7)
/Od9 sin H—ﬁr(mTH). (D.22)

Radial and one-dimensional integrals are

/d"x Fr 271'"/2 /dr L E (), (D.23)
()T (- 252
/ o ﬁ N % I‘((of) (Z@Q)Sj(ﬂ+1)2/2)' (D.24)

A basic integral is

/dn M2+ZG) - i/dnkE(_k%%Mg)s (D.25)
= i(_)sﬂmr(;%)%)(M?)"/“ (D.26)
= i((;)_s;/z 3 (;(;)%) (M2 (D.27)
~ % % (1= (s=5) be+m@a)]+.. ], ©2)

where the last expansion is near n = 2s, or with n = 2s — ¢,

/dsz (k2 — Mlz Fie)p i(;():)ﬂs E ~ 7~ In(m MY + ﬁ(e)] ' (D29
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Note that one needs to be careful with factors like

Meé=esnM =1 4 % In M? + 0(e),

1 1 1 €
@ = @~ @ L )+ o)

Thus one has

Y — TS —l
Including numerators we have for instance
/dnk ((k—p)? —1M2 Ta - (E(;)%) e
/dnk ((k=p)? T r - (;(;)EL) LA
/dnk G _p)gkik]@z il [pupu - % % M? gW]
s

Actually the above integrals can be obtained by realizing that the proper averaging requires

1.2
kuky — k% guv,
w _)n 9u

kukykoko — m (K*)* (guvGpo + GupGro + GuoGup) -
This leads to
e g = e
[ g = O e
/d”k % — i (=) a2 n(n4—|— 2) I' (s ;(f)— 2) YL
/dnk % =i(=) " i (9uv oo + GupGvo + GuoGup) F(S;(if)

Finally because g, 9" = g!i = n one has in n dimensions

Y =n,

Y’ = —(n —2)97,

Yyt =497 — (4 —n)y7,

Y VP YTAt = =297 + (4 = d) P

D.5 Some useful relations involving distributions

The integral representation of the step functions are

da eiaas
O(xx) ==+ | —
(+z) 2mi o Fie’
e iy Ty T

T, o«

12

(D.30)

(D.31)

(D.32)

(D.33)

(D.38)

(D.39)



August 4, 2000 13

The derivatives satisfy 0’ (x) = §(z) and € (x) = 26(x).
Other useful relations are
1
T — i€

In(z —ie) = In|z| —in 0(—2x). (D.41)

—pLliins), (D.40)
x

In order to treat endpoint singularities in [ dz f(z)/(1 — ) near = 1 one usually employs the ”+”
prescription,

1-8
(F@)s = lim |F@) 61 -5 -)+50-5-2) [ dyF( (D.42)
- 0
satisfying fol dz(F(x))4+ = 0. Note that for an integral not running between 0 and 1 one has
1 1-8 1-8
G(z) / G(z) / 1
dz ——— = d - G(1—- d
[ ata Z(l—z) ¢ =5 Zl—z
= / g. G =G0 / dz -
1-=z2
= / dz w +G(1) In(1 — ) (D.43)
m -z
One thus has regularized via the endpoint of the integration leading to
1
—— =—Ing (1 - — + 0(P). D.44
o= WA (=) + T+ 009) (D.44)
One can also use
1 1 1
W :——5(1—l‘)+ (1—l‘)+ +ﬁ(€)

To see how this works, consider for a small e

LG _ [, GG Lo
Ld” Ao ~ [ -2y *G(”/z e

Il
ﬁ
IS
8

«Q

Another useful ”+” function is

! n(l—=z ! z) — n(l—=z 5
/ dz G(2) (M> _ / g, (€)= G)In(l )+%G(1) m’(1—z). (D.45)
z + z

1—2

D.6 Theta functions

Often it is useful to attack loop-integrals via lightcone variables leading to specific integrals of the type

da a™
er )= — . D.46
ning. ($17$2; ) / o (Ole — 14+ ie)"l (OéiCQ — 1+ ie)”2 . ( )
In these integrals m can be reduced via
m 1 m— m—
ony (1,22, 25,...) = (00 V(s ag,..) = O V(w0 (D.47)
(1 — x2)
Proof:
o711 (z1,22,23) = da e
TR 2,88 = 2ni (az1 — 1 +ie)(aze — 1 +ie)(azs — 1 + ic)
_ 1 /d_a (ax1 —1) — (axz2 — 1)
T (x1—x2) ) 2mi (amy — 14 i€)(axe — 1 +de)(axs — 1 + i€)



August 4, 2000 14

The lower index can be lowered together with an upper index via

. d (-
O @1 ) = =(m = 1) = o) (x1,..). (D.48)
Proof:
do @

O3 (z1,32) =

2mi (oxy — 1+ i€)?(axs — 1 + ie)

_L/d_a !
dr1 ) 2mi (az1 — 14 d€)(awe — 1+ ie)

The reduction of ©Y;; to ©1;. . is achieved via

2200, (w2,23) — 2100 (w1, 3)

eY T1, T2, X3, ...) = . D.49
111, (T1,m2,23,...) P ( )
Proof:
0% (x1,22,23) = da !
T AT 28] 2w (az1 — 14 ie)(awe — 1+ ie)(az1 — 1 + i€)
/d_a ar: — (ax1 — 1)
2ri (ax1 — 1 +i€)(axe — 1 +i€)(ax1 — 1 + ie)

1 0
x1 O111... (%1, T2, T3) — O11 (22, 3)
and using the previous relation.

Finally we can reduce n = 2 (for m = 0) via

/ dy ©Y,(y, z2) = (21 — 70) O, (z0, 71, 72) (D.50)
o

Proof:

T z1 do 1
dy ©%:(y,z2) = / dy | — , _
/zo y 21y, 72) 20 Y] ori (ay — 1 4 i€)?(ax2 — 1 + i€)
da 1 [ 1
2mi «a /aro d(ay) (ay — 1 4ie)?(ax2 — 1 + i€)

and then using that

1 1 a(z1 — x0)

(axzog—1) (ax1—1) (axo—1)(ax1 —1)
Further reduction for n = 2 and m = 0 then is possible, giving

d
09, (x1,22) = ~ [21 07, (21, 22)] . (D.51)

The only integral to be calculated actually is ©Y; (z1, z2), which is easily done via a contour integration in
the complex plane. The explicit results for the simplest functions are then

0(331)0(—332) — 9(—581)0(332) _ 0(331) — 9(582)

0 _
@11(3;1,3;2) — xl — 1.2 xl — x2 9 (D52)
05 (x) = (=), (D.53)
X X
0% 1 (21, 2, 23) = m O (z2,x3) — m 0% (w1, 23), (D.54)
0%, (x1,72) = —2—— 0% (21, 22) — —2— §(a1), (D.55)
(z1 — 22) (z1 — x2)
1 1
1 0
_ ot D.
621(3;173;2) (xl — $2) @11(3:1)3:2) (iCl — $2) 5(331), ( 56)
1
@%11(331, 332,.233) = [@(1)1(332, 333) — @?1(x1,x3)] . (D57)

(x1 —x2)
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We also will use the following equality for ©Y; functions, seen using a principal value prescription,
x
/dy " (O3 (y,y — x) + Y (z,2 —y)] = 0. (D.58)

The singularities in the two terms come from y T x (first term) and y | = (right term) respectively.
Notes on the i¢ prescription:

da 1 1
O (a1, 22) = /% (axy — 1+ ie)(axe — 1 + ie) T (0(z1) 6(=2) = 6(=w1)6(w2)]
981 (w1,72) = /% (axy —1— ie)l(axg — 1+ ie) T i332 0(z1) 6(rz) = 0(=21)6(=w2)]

D.7 IR and UV singularities

In a D = 0 divergent integral one can separate the singularities e.g. as follows

d*k M? 1
/ b _ /d%T{ — +— ] (D.59)
kT kT(kT J’_ M2) kT + M2
Regularized one sees that
d*>=<k M? 1
ME/—2T = Me/dQ_ekT ﬁ"‘Me/dQ_ekT 72, as2 (DGO)
k. ko.(ks + M?) ki+M
—27/e 27 /e

(IR-divergence) (UV-divergence)



Appendix E
Spin

E.1 Density matrices: definition and example for spin 1/2

In many applications in quantum mechanics one does not have a pure state to begin with. An impure
state is described with a density operator

p = li)pi il (1)

where |i) are pure states, not necessarily orthogonal, and p; are the probabilities (e.g. a beam of spin 1/2
electrons with 50 % spin along the z-axis, 25 % spin along x-axis and 25 % spin along y-axis). We do know

0<p;i<1l and Zpizl,

It is straightforward to obtain the following properties:
« Trp=Y,pi=1,
o (A) =3, pi(ilAli) = Tr (pA) = Tr (Ap) and Tr(p?) <1,
e pis a positive definite, self-adjoint (p! = p) operator,

e For a pure state p? = p <= Tr(p?) = 1. In that case p is a projection operator.

E.2 Spherical tensor operators

More general, for spin s one can use the spherical tensor operators RJLM, defined as
<S? m|RJL\/I|Sa m/> = (Rﬁ/[)mm/ = V2L +1 Csz/%/[?sn
= (_)L V2L +1 016[7751/571
()" VBT Gt A

(=)~ /@5 DEL+ 1) ( N ) (E.2)

The last expression involves the so-called 3j-symbol. The properties of these tensor operators are:
o Tr RJIQ[ = (28 + ].) 5L0 6M07
L pLty _
o Tr (R RY)=(2s+1)0LL S,
e RE, arereal (2s+ 1) x (25 + 1) matrices,

T
o Ry =(=)"RLy.

16
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Expanding the density matrix p,

2s L 2s L
_ 1 L *plL 1 L prt
P=2S+1E > i RM:m§ > Ry (E.3)
I—oM=——1 L=oM=——1L

the quantities p, are (complex) numbers satisfying
o pi; = Tr (pRYy),
o ok = ()MpL ., ie. pk real (because p is self-adjoint),
e pY =1 (because Tr p = 1)

* XM Ipk, |2 < 25+ 1 (because Tr p? < 1).

E.3 Spin 1/2

Besides the tensor operators a Cartesian set is used, the Pauli matrices,

ar:[(l)(l)],ay:[?_oi],az:[(l)_ol]. (E.4)

The explicit tensor operators and their relation to the Cartesian operators are

RO — [ - ] _1, (E.5)
R} = [ 8 _5/5 ] :—%(%H%), (E.6)
Rj = [ (1) _01 ] =0, (E.7)
R, = [ \% : ] _ %(% _ioy), (E.8)

The R}, are precisely the spherical components of the spin vector o. The explicit form of the density
matrix is

X L( 1+P. P-iP,
p = z+o P)=1 (E.9)
P, +iP, 1-P,
(E.10)
1 L L T 1 1+p(1) pl—l\/§
- 52 > phiRl =3 , (E.11)
L=0 M=—L —piv2 1-p}

The vector P is called the polarization vector or also the spin vector of a state. For a pure state |P| =
1, for an unpolarized state |P| = 0 corresponding with p = %1. The numbers pl, are just the spherical
components of the polarization vector,

1

pr = ——2(Pw +iP,), (E.12)

pp = P, (E.13)
1 .

P E(Pg@ —iP,). (E.14)

One has Trp? = (1 + P?) < 1. The degree of polarization is 0 < |P| < 1.
We note that any matrix M in the spin-space can be transformed into a function depending on the
polarization vector P, which we write as

(P = (SL,S52,8,). (E.15)
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Explicitly we have

M(S) =Tt (p(S) M) . (E.16)
where the density matrix is written as
L 148 sh-is? st3S 550
p(S) = 3 = . (E.17)
Si+is?z 1-5, —%S;r i-1s,

The equivalence is

M(S) =My + S, M, +SL M} + 852 M2 =M, + S, M, — S M — S M] (E.18)

Mmm’ - -
~M}V2 M, — M,

i Mo+M, M;V2 Mo+ M, M} —iM;
(E.19)

ML+iM2 M, — M,

if the matrix M is written on the basis of eigenstates of o.

The parameters in the density matrix in Eq. E.17 can be given an explicit probabilistic interpretation.
Introducing p,,, (0, ¢) as the probabilities to have spin-component m along the direction specified by 6 and
¢, we have

P, =8, =p1y2(2) —p_1/2(%) (E.20)
P, = S; = p1/2(5€) —p—1/2(5€) (E.21)
Py =52 =p12(§) — p-1/2(9), (E.22)

showing all these parameters to lie in the interval [—1, 1].

E.4 Spin 1

A Cartesian set transforming like a vector is given by the matrices

1 010 1 [ 0 —i 0 ] [ 1 0 O ]
Y= — 1011, ¥=—7 i 0 =], X,= 0 0 O . (E.23)
V2 010 V2 0 ¢ O 0 0 -1

A set of tensor operators of rank two (symmetric and traceless) is the set ¥;; = % Yy — %515 1,

(-1 o0 3 L -1 0 -3 (1 00
S=g | 02 0 |, my=cf0 2 0 [Losa=gfo —2 0| (B2
3 0 -1 3 0 -1 0 0 1
L0 0 i L(0 10 . [o i 0]
YSey==|0 0 0  Yp=—= |1 0 -1 ]|,%.=—%=]14¢ 0 i |.(E25)
21 0 o 2V2 o -1 o 2V2 | o Zi o
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The explicit tensor operators and their relation to the Cartesian operators are

1 00
Ry = 01 0 =1
0 0 1
0 -1 0 3
Ri= /210 0 -1 :—\/;(zzﬂ'zy),
0 0 0
1 0 0 3
1 3 —
R} = 5100 = \/;zz
00 —1
00 0 3
R, = 51100 :\/;(zz—izy),
0 1 0
0 0 1 3
Rs= V3|10 00 :\/;(EM—EWHEW)
000
0 —1 0
R= /3lo o0 1 = —V3 (S +i%y2)
0 0 0
1 0 9
2
Rj = sl o —20 =[5 5=
0 1
0 0 0
R? | = 3511 0 o = V3 (2. —i%y.)
0 —1 0
0 0 0 3
R:,= V3|0 00 = \/;(Em = Xyy = 2i %y
1 00
The explicit form of the density matrix can be written in one of the following forms,
1 3
1, P | T. Pp—iPy | Too—iTy: Tww—Tyy —2i Tuy
3t 7T +3 2v2 + V2 2
_ Pu+iPy | TuostiTy: 1 Pr—iPy  Tur—iTy:
= e T 5~ L= 22 7z
Tpoe—Tyy+21 Ty Py+i Py _ Ty-+1Ty. 1 P + T,.
2 22 V2 3 2 2

12 L ’
= §Z Z pk[RJLV[
L=0 M=—1L

NV R VE R ORSVE ERVE I

1
= 3| WA A2 iR
P33 SR ERRE R N e

19

(E.26)

(E.27)

(E.28)

(E.29)

(E.30)

(E.31)

(E.32)

(E.33)

(E.34)

(E.35)

(E.36)

(E.37)

(E.38)
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where T is a traceless, symmetric tensor. One identifies

3
1= —\/;(Pm +iP,), (E.39)
1 3
Po=1\/3 P., (E.40)
1 3 ,
pmr =07 (B —iBy), (E.41)
2 3 .
Pa = Z (Tww - Tyy + 21 Twy) (E42)
p% = —\/§ (T$z +i Tyz) ) (E43)
o= gTw (E.44)
p2—1 = \/g (Tocz - iTyz) ) (E.45)
3 ‘
p2—2 = \/; (Tww - Tyy — 21 Twy) (E46)

Ome has Trp? = (14 2 P'P" + 3T%T%) < 1. The degree of polarization is defined as 0 < [2 PP, +
5Ty ? < 1.

Again one can establish the equivalence between a spin-dependent function M (S) and a matrix M in
spin-space. If

(P = (S1,52,5,) (E.47)
Str— 3 SuL St Sir
1
(T = 5 S2L S2.—-28,, S |, (E.48)
Sir Sir 35uL
with S22 = —SI1 and S!Z = S2L.. Explicitly we have
M(S) = Tr (p(S’) M) . (E.49)

where the density matrix is written as

$+3S.+350  3(Sy+Sip) 25 Sor

pS)=| —5(SE+S5) 535w 557 =S |- (E.50)

S 5 (SE-S%) §-3Si+3Su

Note that % Sry = 2(SH. —iSk2) = L(SH. — 522 — 2i S12.). The equivalence is
M(S) = Mo+ Sy My +2S,. M, p + Si Mi+ Siqp Mig + Sty MY (E.51)

Mo+ M, + My, Mg+ M, My V2
My = | —(MjF + M) My —2M,y My — M, (E.52)

—M, V2 —(MF = M}y) Mo — M, + My

if the matrix M is written on the basis of eigenstates of ¥..
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The parameters in the density matrix in Eq. E.50 can be given an explicit probabilistic interpretation.
Introducing p,,, (0, ¢) as the probabilities to have spin-component m along the direction specified by 6 and
¢, we see from the diagonal elements

Si =3 [ +pa(3)] = (o), (E:53)
Sy =p1(8) — p-1(%), (E.54)

implying —1 < S, <1/2and -1< 5, <1.

E.5 Reaction parameters

In general one can express the initial state density matrix as

1
S ()L R (E.55)
l,m

Pi= o 1

and obtain from that, given a transition matrix 7', the final state density matrix

TT o TNy (ol T (7 BE 1)
B 1 V4 V4 T
- 2Sf +1 Zgn:/(pf)m’Rm’ ’ (E57)

with
v Do) T (7R IR,

(1) = T (E.58)
b () T (7 BT 1)
Defining spin transfer parameters
o Tr (9‘ R 7t Rf;;,)
(', m'|t,m) = T (7 77 , (E.59)
one gets
, ) (0 m![m
v Si )l (€ m) ©00)

(Pf )i >0 (p1)5, (0, 0]¢,m)

To illustrate the reaction parameters, let us consider the reaction parameters for a process with one spin
1/2 particle in initial and one spin 1/2 particle in the final state. in that case it is actually more common
to use the Euclidean vector notation instead of the tensor operators. With the 2 x 2 scattering matrix
given by 7 and

pi== (1+0-Py),

N~

one finds
B Tpi Tt TIN+PLT o Tt (E.61)
P T N (Tp 7)) (7Tt + PLT o T '

or introducing the C' spin transfer parameters,

iy Tr(yainUj)
CV=— E.62
(7Tt ( )
with arguments 4, j = 0, 1,2, 3 using also the matrix ¢® = 1 one obtains:
1
pf:§ (1+U'Pout)7
with o ]
. C 7 PJ Cji
pi AT (E.63)

t = 00 L Dk kO
ou C% 4 Pk Ck0
(C% =1). Note that the final state density matrix p ¢ can be used as the input density matrix for a decay
process, in this way enabling polarimetry.
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E.6 Spin vectors

In situations such as deep inelastic scattering one likes to work with spin vectors in the cross sections just
as with the momenta, e.g. one considers the hadronic tensor W+ (q, P, S), where ¢ is the virtual photon
momentum, P is the target momentum and S the spin vector. We will discuss the meaning of such spin
vectors in initial and final state.

We start with a hadron in the initial state with momentum P, which is specified by a density matriz,
for an ensemble of initial states indicated with «,

(pi)ap(P,S) = Z(P; ali) pi (il P; B)
H restEframe % (5a[3 4 Tas - S) (E64)

Note that this in a general frame generalizes to a vector S*(P) which satisfies P+ S =0 and —1 < §? < 0.

Then, let’s assume that a particle h is produced in the final state with momentum P}, which is analyzed
via its decay products, e.g. a A decaying into pw—. In that case the probability of finding a specific final
state configuration (f) is contained in the decay matriz

RIS 2 T, (1) Toreons (1)
Af

= Y (P | T 05) (F: M| T | P B). (E.65)

Af

In this matrix one has summed over all final state spins or helicities (Af) in the decay channel (in the
example the proton polarizations). The decay matrix depends on the phase space (f) of the decay channel
(in the example 9;’;1). This and other examples are given below. In general we may write

h rest frame

deca;
BRSSP f) "M () (b + 0w - An()

eneral frame

—— (28 + 1) w(f) parpr (P, An(Phs £)), (E.66)
normal.ize.d to w(f) =1 and.zf A;.I (P, f) w(f)=0,0r ¢ Rap(f) = 50/.5/. Note that the summation
over f is just symbolic for all kinematic variables (usually angles) appearing in the decay. Sometimes one
only integrates over a particular subset in f, in which case the righthandside is multiplied with a function
depending on the remaining variables. This defines Aj as the analyzing power of the decay channel. Note
that Ay depends on P, and f, i.e. Ap(Pr, f). In general it satisfies Py, - A, = 0. For a decaying particle
h with a polarization state determined by a density matrix p(P, Sy) defined in the same way as pi,, with
P,-S, =0and —1< S,QL < 0, the probability of a final state is given by

W(h = f)=Tr (p(Ph S) R (P )" = w(f) L+ Sh - An(f)]
general frame

= =w(f)[1—Sn(Pn) - An(Pn, f)]. (E.67)

Starting with some (general) initial state, the result for a semi-inclusive measurement in which the decay
products of hadron h are detected employs the production matrix,

RV (PP = Tip(PPy) Taear (P, Pr)
= (P 81T Pu; B) (Pr; o' | 7| P; ). (E.68)

The S- and Sp-dependent matrix elements can be introduced as

rod rod
RESV(P,S; Py) = psa(P,S) RSN, (P Py), (E.69)
1 (prod) (prod)
PP = ,,P,P /0‘/1—‘)7 y E
25, +1 Rop (B3 Phy Sn) = Ropiany (B, Ph) pprar (P Sn) (E.70)
1 ro
RPdD(P S P, S)) = psa(P,S) R&%;j,)ﬁ,(}’, P1) pgrar (P, Sh), (E.71)

25, +1
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in which the spin vectors (thus) can only appear linearly. Note that because of the definition of the decay
matrix it is convenient to absorb a multiplicity factor in the final state spin-dependence. If this is not
done, it will explicitly appear in the following expressions.

The probability to produce the final state configuration f via the decay of h is

Wi —h— f) (pin)ga (P, S) R0 (P; Py) RS (Pa, f)

rod deca;
= RUSV(P,S; Py RS (P, f). (E.72)
Using the parametrization of R(4¢®) in terms of the analyzing power one has

W(i — h— f) = RP°V(P,S; Py, Ap(Py, f)) w(f), (E.73)

while summing (or integrating) over the decay products of h one is not able to measure the polarization
of h, and finds

SWi—h— )= ROV (P.S; Py) = RP(P,S; Py, 0). (E.74)

o

When the production is described as the product of a distribution and fragmentation part as in the case
of the hadronic tensor in deep inelastic scattering,

RV (P S P, S) = Trp ®(P,S)* H* A(Py, Sy)]
= Trp [(@O(P) +5- CI)s(P)) x H * (Ao(Ph) + Sh - @g, (Ph))] (E.75)
where the Trp indicates tracing (and possibly integrating) over internal space, e.g. tracing in Dirac space

and integrating over momenta for produced and fragmenting quarks including a hard part (H).

E.7 Examples of analyzing power in decays

E.7.1 A decay
The decay amplitude for A — N is given by

1 *
Trn(5,Q) = ,/% Ay DU (). (E.76)

Explicitly,

Frja(5,9) = \/; A (s) cos(0/2)

1 :
N j2——1/2(5,9Q) = — 7 A_(s) sin(0/2) e'?

/1 . —
9_1/2_,1/2(8, Q) = % A+(S) SIH(G/Q) e i

1
T 1/2——1/2(5,92) = o A_(s) cos(6/2)

For a spin up or down A one then finds respectively

Wel0.0) = o= (A2 cos(0/2) + A sin’(0/2)

= £(|A+IQ+IA |)+—(|A+|2—|A_|2) cosf (B.77)
Wo0,0) = o (1AL sin?(8/2) + |41 cos’(6/2)

= %(|A+IQ+IA I)—E(|A+|2—|A_|2) cos . (E.78)
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For more general use we calculate the so-called decay matrix (summed over the final state helicities ),

mn 5 Q Z m—>)\ 77,—»)\(5 Q)

which is equal to

o 1 2 2 1 2 2 cos sin@e‘id’

RO.0) = (AP +1AP)+ (142 - 1A P) | 00, 0

_ i 2 2 i 2 2 ~cm

= (AP HAP) 1 (AP AP) ™, (E.79)
appropriately normalized giving

]‘ ~ CIN
R(&d)):E(l—kaa-p ) (E.80)

where o = 0.642 for the decay A — pm~. Thus one has
A, (fo;’—) A rest-frame o po. (E.81)

Given a specific polarization for the decaying hadron (h = A) via a density matrix p(Sy) one finds a
CM distribution

W(Sh;0,¢) = Tr[p(Sh) R(6, )]

= 1+ 8, An(0,9)
= 1+a(S, cosf+ Sk sinf cosp + S2 sinf sin ¢). (E.82)

In covariant form (with Py = P, + Pr) one obtains for the analyzing power,
M3 — M2 + M? M} + M2 — M2
APy Pr) = a P T pro—— 2 P T puj (E.83)
0.642 |1.710 by 9.38 pu]
- [ M Mp

with A(MZ, M2, M?2) = (MR — (M + My)?) (M3 — (M, — Mr)?) = 4M3 | p™|?. This illustrates how
the analyzing power in the final state is determined from momenta of the decay products. For instance
the helicity Ax . = M A, /Py is given by

AAL =« (E.84)

— M2+ M2 zp M} + M2 — M? Z_ﬂ]
)

1/ M/Q\,Mg,M2 A(M3Z, M2, M2

which takes the values Ax, = « for the maximal value of z,, namely (z,)max = 0.936 zo and the value

App = —afor (2p)pin = 0.756 z5. Furthermore we have
P#
AR = AR — Ay, # (E.85)
A
E.7.2 p decay
The decay amplitude for p — 77 is given by
3 (1)
T (8,82) = yy A(s) D,y (£2). (E.86)
Explicitly,
J1(s,Q) = — iA sin@e’?
1\, - ]
To(5,2) = 1/ —= A cost
0(s,92) =4/ - A cos
T 1(5,9) = 3 Asingeio
~1(5,92) =4/ g Asinfe
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Next we calculate the decay matrix,
Ryn(s,9Q) < Tr(s, Q) Tn(s, ),

which is equal to

% sin? 6 ——2\3/5 sin 20 e~*¢ —% sin® @ e2i@
2 y .
R(0,¢) x |Ai8)| ——2\?’/5 sin 260 e*? 3 cos? 6 %5 sin20e "¢
T
—3 sin®fe2¢ % sin 26 ¢* ¢ 3 sin0

After normalization this gives
1
R(6,¢) = 1~ (1+ 3%y Ayy),

T
with the tensor
p rest-frame

ACIN ACIN

cm 1
(An)iz (Q77) 3 0 — 705

and the vector part being zero.

25

(E.87)

(E.88)

(E.89)

Given a specific polarization for the decaying hadron (h = p) via a density matrix p(S;) one finds a

CM distribution

W(Sh:0,0) = Tr[p(Sh) R(0, )]
= 3T (A0 6,9

Ar
sT\3 3

—SLk sin® 0 cos 2¢ — S12. sin” 6 sin 2¢> )

In covariant form (with P, = P; + P») we have

P —ry

Plom = ———,
/M2 — 4M?

giving
v 1 L otuord puot pluprt] L w  PEPY
A v s vl PR M I I U V-
2(M2 — M?2) 1 .
= P___ T lnprk {npr}t | plnpr} v
N 3M3(M3—4M3)Ph En © M2 42 [Pl SRR ]‘59“
2(M2_M§) o 1 o .
= 3M3(]\23 —4M7%) SH BPhaPhﬁ_ 7M3_4M7% [Sl‘ 5P1QP15+5“ QPQaPQL?]
2(M7 — M3) 1

_ SHPhVPh _

PivP; Pov P
3MZ(MZ — 4M32) ar =gz ST

3 (2 2
= <— — 28,1 (3cos?0 —1)— Sl sin26 cos ¢ — S2, sin 26 sin ¢

(E.90)

(E.91)

(E.92)
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E.8 Comment on BLT sumrule

Spin sum rules

There are two spin sum rules that relate integrals over distribution functions to (local) QCD operators.
One for longitudinal spin,

1
5 = —Z/ dxAq(z /dmAG()+Lq+LG
= —Z/ dz (Aq(z) + Ag(z / dr AG(z) + L9 + LC, (E.93)

and one for transverse spin (O. Teryaev, B. Pire and J. Soffer, hep-ph/9806502; P.G. Ratcliffe, hep-
ph/9811348)

1 1 1
= 52/7 d;vg%(x)—k/o dz AGr(x) + L% + LY

N =

= _Z/ dz (g / dx AGr(z) + L% + LS (E.94)

In fact these two sum rules are expected to have the same contributions, at least for the quark spin part,
where the equality is just the Burkhard-Cottingham sumrule. The equalities for the various terms are
a consequence of Lorentz invariance. At the operator level the transverse spin sum rule involves quark-
quark-gluon operators, exactly what one would expect since partons correspond to the quanta of good
quark and gluon fields in front form quantization.

Tensor charge

There is a sumrule for transverse spin polarization. It relates the integral over h{(z) = dq(z) = Arq(z) to
the tensor charge (local operator is ¥ o#"~y5 1),

Z/ da 6q(x Z/ dx (3q(x) — 6g(x)) = gr. (E.95)

Interpretation as spin densities

The leading twist distribution functions f}(z) = ¢(z), g1 (z) = Aq(z) and h¥(z) = dg(x) can be interpreted
as spin densities. They are ’quadratic’ operators for good fields, ¥y (x) = Pyyp(z) = %'y*'y’z/}(x) after
taking (spin) projections, P/, = %(1 +v5) and Py = %(1 +~195). These spin projectors commute with
P.. One has

q(z) = qr(z) + q(z) = ¢1(2) + q| (2), (E.96)
Aq(z) = qr(z) — qr(v) (E.97)
6q(z) = q1(z) — q,(2), (E.98)

Transverse spin

(a) From the interpretation one expects
1
3 / dr (5q(x) + 57(x)) (E.99)
0
q

to have a meaning as ’transverse spin’. It certainly is a measure for transverse polarization of quarks
and antiquarks, but there is no local operator to which it can be equated.

One can write down an operator expression, but it is nonlocal. The starting point is 0(x) dq(x) —

0(—x) bq(—x)
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(b) For an ensemble of free quarks (and gluons) the quantity entering in the transverse spin sumrule is
related to transverse spin density. One has

gr(z) = Mﬂm hi(x). (E.100)



Appendix F

Kinematics in hard processes

F.1 kinematics with a hard 2 — 2 subprocess
Consider the kinematics of a hard process, Hy + Ho — hy + ho + X, including momenta
Hl(P1)+H2(P2)—>h1(K1)—|—h2(K2)+X (Fl)

This is an inclusive process, for which we will use the variables,

s=(P+P)*~2P, - P, (F.2)
' = (K + K)? ~2K, - Ko, (F.3)
t=(P—K)?~-2P -K,, (F.4)
t' = (Py— K3)?> ~ —2 Py - K, (F.5)
' = (P — K3)?> ~ -2 P, - Ko, (F.6)
u=(P,—K|)?~-2P K, (F.7)

All these invariants are assumed to be of order s. The corrections are &(1), that means suppressed by two
orders of the hard scale, (1/s) indicated with the ~ symbol between the entries. The dot-products can be
used to expand the final state vectors K; and K5 in terms of P; and P, and orthogonal parts,

t
K]_':—EP]_—;PQ"‘Klj_, (Fg)

t/ u’
Kg_——Pl—;Pg-f—KQJ_, (F.9)

where K1, - Py =K1, P, =0and Ky, - P, = Ko, - P, = 0. Note that K?| ~ —tu/s and K3 ~ —t'u//s
with &(1) corrections, and

(F.10)

28
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In practice often used is the Feynman-z, z1, = K{®/K{.' (max) ~ 2K{™/\/s = ~ (t —u)/s. Scaling also
the transverse momentum in the CM frame and using z1, = 2|KST|//s ~ 2+/tu/s, or the CM scattering
angle 6, one has e; = 2 E{"/\/s ~ x1,/cosf1 ~ /23, + 21,. In terms of the CM (pseudo)-rapidity 7,
one has x1, = 17 sinhn; and €; ~ x1 coshny. It is related to 67 via n; ~ —Intan(#;/2). One has

. S S _
t o~ —2 E§\/s sin®(6, /2) ~ -5 (y/a:%p +x2, — a:lp) =—5ae m, (F.11)

u:—2E§(n1“\/§cos (01/2) ~ g( x1F+x1T+x1F) —%xlT m (F.12)
t'~ —2E% /s cos?(02/2) ~ g (\/ -t a3, —l—;ng) —%xQT +n2 (F.13)
' ~ —2 ER /s sin?(60/2) ~ g ( @2, + a3, — ) = —ga:QTe m (F.14)
(F.15)
and ,
Sg = 217 Toy cosh’ (771 5 772> (F.16)
The final state phase space can be expressed as
EE L dt 1 du
(2r)P2Eg,  (@rPF 2 T @mpPow M
_ 1 dtdudqb— 1 dtdu déy
T (@2n)? 4s ' 16w 4s 2m
1 dripdz?. d
= 3 \/:m da1p d|KTT dgy = : 2 ool 40
(271') 8 E§F 6472 (/a2 a2 2m
dér
~ iy da?, - (F.17)

Similar relations can be written down for the momentum K5 involving ', v/, x2z, and xap.

The incoming hadrons produce two partons with momenta p; and ps, the outcoming hadrons are
assumed to originate from partons k1 and ko, in which case we assume approximate collinearity, implying
p? ~ p; - P, ~ P? = M?. These partons participate in a hard process in which the momenta satisfy
p1 + p2 = k1 + ko. For the subprocess we use

§=(p1+p2)” = (k1 +k2)® = 2p1 - pa ~ 2k - ko, (F.18)
t=(pr—k1)> = (p2 — k2)® ~ —2p1 - k1 ~ —2pa - ko, (F.19)
@=(p1—k2)® = (p2 —k1)? >~ —2p1 - ko ~ —2py - ki, (F.20)

adding up to zero, § +t + @ ~ 0. For the initial/final state partons, we write

Pi = T B + pir + 05 04, (F.21)
K;

ki = — + kir + o5 ni, (F.22)
24

where the only condition on the vector n; is that P;-n; ~ K;-n; ~ \/s. The fraction z; = p; -n;/P;-n; is a

lightcone fraction. The quantity multiplying the vector n; is the lightcone component conjugate to p; - n;

and is given by

P} = Pi —apMP  pi P — i M}
2x; Py - my B P;-n; ’

0; =

(F.23)

(and similar expressions for K;), quantities which are of order 1/4/s. Note that we have the exact relations
p?2. = (p; — x; P;)? and p; - pir = p?,.. The integration over parton momenta is

d*pi = da; d°pir d(p; - Py). (F.24)
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If we only consider the (large) momenta, defining

K .
G =z P — — with Q3 ~ My t, (F.25)
21 21
K .
Qo =m3 Py — =2 with g5 ~ 2y~ t, (F.26)
22 Z2
their sum is of &'(1) and given by
q1+ g2 = —qr, (F.27)
where
qr = p1r + P2r — k1 — kar. (F28)

When we use the =~ symbol the expression gets corrections one order suppressed in the hard scale. The
small (1) momentum

K K
p = 1L 2L

F.2
i (F.29)

is actually just the projection of the (small) transverse momenta in the perpendicular plane, rj ~ qr,
but it requires knowledge of z; and z5. It is convenient to introduce the transverse energy k. , defined as
ki = |kil| = |koo| = |Kayi|/22 = |K11]|/z1 and its scaled version z; = 2k, /+/s.

F.2 parton momentum fractions
In the next step we want to see how to obtain the parton momentum fractions from the external momenta

using as basis the momentum conservation in the hard subprocess. By taking the product of the constraint
p1 +p2 — k1 — ke = 0 we get (omitting &'(1) corrections) the constraints

2P1'(p1+p2—k1—kz)ZOEIQS—F%t—F%U’—i—ZPl~qT, (F.30)
2P2'(p1+p2—k1—kz)=02x18+zilu+zi2t’+2pg-qﬂ (F.31)
2K1'(p1+p2—k1—k2)202—x1t—m2u—zi28/+2K1-qT, (F.32)
2K3 - (¢ +p2—k1—kz)202—fflu/—fvgt’—zils’+2K2-qT, (F.33)

Instead of the latter two conditions we get for the |-components

9 |K1.]? oKL - Koy

2K11 - (pr+p2—ki—ko) =0 =~ 2 +2K11 - qr,
z1 z9
tu 4+ uu — ss’
~ 2— 4+ — +2K1, - qr, (F'34)
Z18 zZ98

'yt +uu — ss’
L LY R (F.35)

2K -(pr+p2—ki—ko)=0 =~ 2
zZ98 zZ1S8

At leading order, the Mandelstam variables for the subprocess (3, £ and @) are related to variables in the
full process through

) s’ nm —1n2
~ ~ ~ 4k? cosh? F.36
S r1x92 S 7 2 7 COos < 2 > y ( )
P 22t s T2 t o~ _Qki e~ (m—m2)/2 oo (M) , (F.37)
Z1 zZ2 2

i T P 912 2 g (%) , (F.38)
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or
Vs = |22, (F.39)
T1X2
I e (F.40)
12

uu = —, | 172 1, (F.41)
X1T9

which are relations with &/(y/s) corrections. Looking only at the leading parts (~ s) in the above con-
straints, we obtain

58~ (\/ﬁ+ \/ﬂ)2 , (F.42)

and
st
~ , F.43
1 22 = (F.43)
! a!
T 29 = s U s (F44)
su

21 tu
. R “t’ - (F.45)

We note that in an analysis of the hadrons in the final state jets one can determine z; and 29 also when
the jet momentum is assumed to be known. In that case

K1 - K»

~ , F.46

Yk K, (F.46)
Ky Ky

~ . F.A7

25 K (F-47)

F.3 kinematics in the transverse plane

The approximations above (coming from the constraint p1 + pa — k1 — k2 = 0) lead to Eq. F.42, which
implies that

Ky, - Koy ~ Vit'uu'/s, (F.48)
i.e. the vectors K1, and Ko, are almost parallel. Hence, the directions
_ K{| S _ K5, S
6111: |K1l| ~ EK{LL and 6’21: |K2l| ~ WKQLL (F49)

are opposite in leading order, e; | = —es] . In the following we will keep the small part, thus using Eq. F.10
instead of Eq. F.48, or ey - ea) ~ —(tt' + uv’ — ss’)/2vtt'uu/, with corrections that are of &'(1/s), The
vectors

1

6LE§(€1L_GQJ_). and pn = (e11 +eal), (F.50)

are orthogonal ones. The small vector py has invariant length squared

[t / N2 _ / /
p?VZ(elJ_-f—@u)Q%—( +\/t:_u)l i z—21/% (\/tt’—i—vuu’—\/ss’). (F.51)
uu

where the last step again makes use of Eq. F.42.
We can define other (spacelike) vector in the transverse plane via

ePrP2Kap 2
P, - Py |Kq | stu
eP1P2Ko 2

PPy |Kai| st

ety ehbkn, (F.52)

€N PPk (F.53)
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and ey = (e1ny — ean)/2. We again note that e;y and esn are approximately opposite.

Connecting the vectors to the angles, we have using the angle
6¢p = ¢p2 — ¢p1 — m in the frame shown

€1l = (1, 0) e1IN = (0, 1)

ea; = —(cosdg, sindo) ean = (sind¢, —cosdg)
el = % (e11L — ea1) = cos (%5(;5) (cos (%5¢) ,sin (%5(;5))
en = 3 (e1n — ean) = cos (36¢) (—sin (30¢) ,cos (26¢))

PN =e1] +es; =2sin (%&b) (sin (%5(;5) , —COS (%5(;5))
= —2 tan (%5(;5) ey ~ —dpen,

and

/
§¢* ~ 4 sin® (6—¢) ~ 2y ; (\/t7+\/uu’—\/ss’).

2 tt'uu

One can also relate r; and pp, which in leading order (d¢ is small) are related (both are approximately
in the normal (N) direction),

Ky < 21 | Koy |
= 1L+ —
21 29 | K11 |

rL eu) ~kipn~—kiidpen (F.54)

where k‘L = |K2L|/ZQ ~ |K1L|/2’1.
Another quantity of interest is the volume spanned by the four vectors Py, P>, K7 and K5. From the
above definition of vectors one immediately sees that

BERERER RN % |K11 || Koy | sindep ~ % Vit sin 6. (F.55)
We can also calculate
(GERERE K2)2 ~ L (2ss'tt + 258"t + 2tt'un’ — 7 87 — 2% — wPu"?)
(—@+x/ﬁ+x/ﬁ) (\/EJH/W—\/W)
x (Vas' = Vit + V) (Vs + Vit + V). (F.56)

R
|

Since the first of these terms is explicitly €'(1/s) one can use the leading expressions for the other terms
to obtain

1 1
(e P21 K2)2 = Vs s'tt uu (vtt' +Vuu — \/ss’) i tt' uu’ 66> (F.57)
The normal direction can be expanded as

2 ppko
stu
2 21

Vstu T1 T2

Finally we give the results for the delta-function expressing momentum conservation for the partons using

Q

o
einN

Q

[_6P1P2k1 By €P1TP27€1 By €P1P2Tk1 By €plp2k1T #] (F.58)

S R)~Z26(R-P)6(R-P2)6(R-e11)6(R-e1n), (F.59)

[NCRRVA
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(similarly with eo; and esny or e; and ey) using for R = p; + p2 — k1 — ka. We find

K
R-e; ~ _| ;L' eil ezl +eil - qr, (F.60)
2
K
R-ep) ~ _| Z1L| €1l ezl +e21 - qr, (F.61)
1
K K 1 t'u' 1 t
R-eL%| 21| | u|%_ w4 _“, (F.62)
22 21 22 s 21V s
|Kay]| .
R-ejy ~ —=— sindp +e1n - qr, (F.63)
z2
K
R-ean =~ g6 1 ey -, (F.64)
21
1 t 1 t'u'
R-exy=en-qr+ — —usin&b%eN-qT—i—— —usin5¢ (F.65)
Z1 S zZ9 S

The parton momentum conservation delta-function thus can be written as

1 1 1 1
8 pr+p2— ki —ka) = 285<$28+—t+—u’> §(x1s+—u+—t’>
<1 2 21 22

Z
1 1o/l 1 1 !

X(;(_‘/t_u__ /&) 5<€N.QT+_,/t_“sma¢> (F.66)
29 s 21 S 22 B

2 5 1 /st 5 1 /s’y
_c I — —a ]2 Lo — —
Vstu ! zo V st 2 zoV su

|
»
g
IS
S
7N
-
|
8
= |5
3
=
SEES
NS
o
3
V)
~_
(<%
/N
8
(V]
|
8
=15
m|
3
=
]
QEES
Sk
|
3
V)
N~~~

(e o) (o= G )

x5<i—x—l> 5<6N-qT—|—§xL sin5¢>, (F.69)

2, <x1 oy et/ cosh (u))
2

Vvstu
) <x2 . e~ (m+m2)/2 oot <u>)
2

Xé(i—x—l>6<€N'qT+§$J_Sin6¢>, (F.70)

21 1T

where z; = 2k, /+/s. Note that the transverse energy can be easily brought into the phase space integra-
tion which involves

1 1 1 1 1
— dz; ' dzy dair dwar 8 (— - x—L) = dzrtdzy Vdoy doyy deor <_ - x_l> 5 <_ _ x_i>
1T 21 1T Tir T27 21 1T z22 ZT2r
(F.71)

which makes the kinematics nicely symmetric.

F.4 Explicit frame dependence and n-dependence

In order to illustrate the n-dependence we start with looking at the momenta in a two-to-two hard scattering
process, p1 + p2 = k1 + ko. In the CM system we have
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The Mandelstam variables for the (assumed massless) par-
X tons are:

>

e = 2p1-p2,
9 Z — 2k1'p1=§SiIl2 (%9),
—i 2k - p2 = § cos® (30),

/(k
1
P )e For the scattering angle in the parton CM system one has:

>
I

1 5 )
il
2 cosf = Au,
K, 8
2Vt
sinf = u'

The explicit parton momenta are

1 1 1 1
~| O = 0 ~| siné - —siné
pr=5V3s 0 |’ pr=3V5 0o |’ k=5 V8 0 k=g V3 0 » (72)
1 -1 cos —cosf
or in lightcone coordinates, [p~, p*,p.],
0 ~1/5 —u/5
711 3l o | —a/s s —i/s
frd — s = — s k = — =~ A ) k = - = A . F.73
p1 210 bz 210 ! \/; V2ti/8 ? 2| —V2ti/s ( )
0 0 0 0
For the momenta P; and P, we have (using m?, = 23M? — p?,.,
mi;/s 1
1 /3 1 m3, /3

1 5
“aVa | evaa |0 TV | eevaa | (E.74)
~plrV2/V3 ~PhrV2/V3

Using (p°, p*, p¥, p*) coordinates, one has for P; and the (over an angle #) rotated momentum K (fraction
x1 — 1/21),

(54+m2,)/3 ) (84 mh1r)/$ ,
1 Ve | —2p%,/V3 Vi | 2Via(s —m2,,)/3% —2(f — a)ki. /35
Plz—— T — 5 Klzzl— T y ’ 5 (F75)
1 2 _2P¥T/\/g 2 -2 le/\/g
(5 —mi,)/3 (£ —a) (5 —m2,,)/3% + AVia ks, /33
where m3,, = 272 M?, — ki,. In lightcone coordinates we get for K and Ko,
[ —i/5— 2@ kf%/é\/g —amy,, /3
K, = 21\/E ~ —ﬁ/é:i—2\/£l/ﬂfT/§\/§—tm%}T/§2 ; (F.76)
2 | Votu)s — (t —a)kiN2/5VE — V2tum?,, /5

—kY,V2/V3
/5 — 2\\//_% ki )8VE —tm32,, /52
8 —i/5+ 2Viu kL J5v/5 — am?2,, |52
Ky = 2 \ﬁ _ ) 2r har : F.77
? Vo | —Vafa/s — (- a)kEV2/5VE + Votam?,, /8 (E-77)
—kY,.V2/V5

We note that with n ~ py one finds exactly 1 = p1 -n/P;y - n = p1 - pa/ Py - p2, while one has

mi,
p1 =21 P +pir + — P (F.78)
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with p1r = p¥,2 + p{, 9. Similarly with n ~ ks one finds exactly 1/z; = k1 -n/Ky-n = ki - ko /K1 - ko,
while one has
M,
kq ZZl_lKl—f—k'lT—f— 3 T ko, (F79)

with ki = k%2 + kY 4. To see what is happening for a different n, we start with our 'reference’ case,
1T 1rY

¢ sinf/v/2 0
o . 2 2
Ki=znki—=x _le,Sme/\/i —21%/@%21 k1 — 2 " 5059
k%, cos@ s k]lT
k. —k{, sind
Using the choice n = py for K; one finds
Ki-ps i kf/ t m? ke m2
==z (142 22+ -2 | =z (1+2tan(§) =L +tan® (§), LT F.80
DT 23 N 21| 1+2 tan (3) NE an” (5) 3 (F.80)

which differs at O(1/+v/3) from z; but causes O(1) corrections to the 2-, z- and time-component of k..
We get,
ki, tan(6/2)

K1 ~ Zi kl — 21 lr
k¥ tan(6/2)

The transverse momentum vector acquires a piece along k1, but its length does not change.

F.5 Limiting cases

Limiting cases are:
o Hi(P1)+ Ha(P2) — ha(K1) +j(k2) + X:

Z9 = ].7 kQT =0 (kg = Kg) (FS].)

o Hi(P1)+ Ha(P2) — l1(k1) + l2(k2) + X (Drell-Yan like process):

21 = 29 = 1, k'lT = k‘QT = 07 (F82)
q=ki+ ks, (F.83)
qr = q—x1 P — 22 P> = pir + par, (F.84)

o (1(p1) + la(p2) — h1(K7) + ho(K2) + X (Annihilation type of process):

21 =22 =1, p1r = par =0, (F.85)

q = p1 + pa2, (F.86)
K K

qT:_1+_2_q:_le_k2T7 (FS?)
z1 zZ9

e {(p1)+ H(P) — ¢'(k1) + h(K) + X (Leptoproduction type of process):

T1=21=1, z9 =z, 29 =2, p1r = k1 = 0, (F.88)
q=p1—k, (F.89)

K
QT:?_ffP_q:pT_kT' (F.90)
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