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Could the 3D structure of QCD and the symmetries of ,T:Y
the Standard Model be linked to entanglement? ©

Look at a possible emergence of symmetries in 17
the standard model from a simpler basis and

less dimensions. Even if at this stage it @
may not make striking predictions, —(r- -1/2
my hope is that it could shed light on @
the peculiarities of the spectrum and ’
symmetries of the Standard Model and . -

simplify our understanding of the 3D quark and
gluon structure of hadrons at low and high energies.



A selection of basic questions about Standard Model

Why are leptons color-blind while quarks have electroweak structure?
How is a pure nucleon state entangled, leading to ensemble of partons?
= Nucleons are composite and resolved at high energies!
Partons are pure states that fragment into an ensemble of hadrons?
What about the jet structure and substructure in QCD?
Why is SCET so successful and are transverse modes less relevant? &
m Confinement and scale of QCD! Q
Phenomena at low x (saturation, color glass condensate)? @

Where is basic supersymmetry (essential, even showing up in hadron spectrum,
nuclear spectra)?

What about scalar sector, naturalness, ... (Higgs, XQCD, ...)
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Motivation
(NOT) HAPPY WITH STANDARD MODEL

In spite of the success of Standard Model!
Three families, colors, space dimensions!
Left-right (a)symmetry? B-L?
Naturalness? Missing supersymmetry?
Confinement and Collinearity in QCD?

PIJM 1601.00300 (POETIC)
PIJM 1801.03664 (Lightcone)
PIJM 1806.09797 (Phys. Lett. B)




\‘ J QCD - entangled states and QIT

m Parton-hadron duality in hard QCD scattering: PDFs x FFs
m nucleon is pure state &> ensemble of partons (good light-front states)
[see for instance Kharzeev & Levin (1702.03489)]
m hard (short distance) process: partons = partons
m emerging partons are pure state(s) 2 ensemble of hadron states

m Entangled (pure) states |®> in multipartite space, with a density matrix
p = |®><d|, lead to ensembles (non-pure state) in the reduced spaces.

m EPR bipartite pure state leads to a 50% - 50% ensemble in both subspaces.
m Both hadrons and partons might live in a tripartite %4 @ H” @ HC space!

m Possibly combined with a principle of maximal entanglement (MaxEnt), such as
hinted at in Cervera-Lierta, Latorre, Rojo & Rottoli (1703.02989): maximally
entangled chiral left/right two-particle states are consistent with QED (g,=0) &
electroweak (g,=0), at least if sin ©,, = 2



\‘ J Conjecture

m My conjectures goes one step further:

m Quarks and leptons are entangled states belonging to different classes of
maximally entangled (MaxEnt) states in a multipartite space H @ H @ ‘H

m Criterion for these classes is equivalence under Stochastic Local Operations
and Classical Communication (SLOCC), for our purposes Local Unitary (LU)
equivalence

m Nonequivalence of classes (not locally connected) corresponds to absence of
leptoquarks in SM

m Furthermore spatial degrees of freedom and internal degrees of freedom are
intrinsically connected (as is the concept LOCAL in QIT). This corresponds to
local gauge invariance in SM



Bipartite entangled states

m Bell states are maximally entangled (MaxEnt) states in product space HA @ HE :
|RR) 4+ e*?|LL) or |RL) + e'?|LR)

m They belong to the same class (SLOCC, for us local unitary, local = subspace)
p = [Bell)(Bell] = pa = 5 (IR){(R] +|L){L|)

Bell
|®) = a|RR) + b|RL) + ¢|LR) + d|LL)
l = v/P1la1b1) + /palazba) (Schmidt decomp.)
oo entanglement measure:
AxB 0 <A =+/2(1—Tr(p?) = 2Jad — be| = 2¢/p1pz < 1

m Symmetry eigenstates are in general aligned and/or entangled

aigned =~ «— Generators 7%° =T ® T

4

singlet triplet «— generators TRI+1IxT

Ny '
Bell



Symmetries and multipartite states

Relevant symmetry in tripartite space is Z(3), S(3), SO(3), and SU(3)
= Example: a 3D harmonic oscillator: states |n,nn,> or |nIm>

level | degeneracy (Ngy My, M) SO(3) (n.£) SU(3) (n)
0 1 (0,0,0) 0s 1
1 3 (1,0,0), ... Op 3
9 6 (2,0,0), (1,1,0), . .. 1s @ 0d 6
3 10 (3,0,0), (2,1,0), (1,1,1), ... 1p @ Of 10
4 15 2@ 1d & 0g 15,

m 3D HO is separable, has rotational [SO(3)] and more [SU(3)] symmetry. Symmetry
eigenstates are in general entangled states (see H. Georgi, Group Theory, Ch. 13)

m Bosons & Fermions

W T w
H— 5;{6%,6%}4—5
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> [0k, bi] +52d— 3 +5/24
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+1/2- +12d — 3%
-1/2- -124—— 3
~3/24 32— 1



Basic Hilbert space for Standard Model

m Basic Hilbert space needs right- and left-states (Rand L): H = Hr & Hr
m Basic Hilbert space needs SU(3) symmetry eigenstates: (1, 2, 3) or (+, -, 0)

Y
1 q 1 o
‘ ¢3L ‘§3L
‘¢20R T L ‘¢1§2 ‘gzoR T L ‘gl;{
‘ ¢1_L T ‘¢20L ‘ §1_L ‘ SZOL
(9. &
| HOHOH |
m Spectrum in SM (quarks, leptons, gauge bosons, Higgs) is CP symmetric, thus also starting
basis
m Supersymmetry is natural (bosons ¢ and fermions €) in basic space(s), but will be hidden in

tripartite space



Tripartite entangled chiral states

m Two classes of maximally entangled ABC states: IGHZ) = %(\RR@ + |LLL))
(Dur, Vidal, Cirac 2000) 1
(W) = #(LRR) + |RLR) + |RRL))
ABC ABC
GHZ W
AB-C BC-A AC-B
i U, Yy V., Yy

IGHZ) = pap = 5 (|RR)(RR| + |LL){(LL|)

CABC W) = pap = 2[Bell)(Bell| + }|RR)(RR|
SU(3)
GHZ: fragile
W: robust

m Beyond tripartites there is an infinite number of classes!
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EMERGENCE OF SPACE-TIME DEPENDENCE
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All Possible Symmetries of the S Matrix™

SipNEY COLEMANT AND JEFFREY MANDULAJ
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachuseits
(Received 16 March 1967)

We prove a new theorem on the impossibility of combining space-time and internal symmetries in any

but a trivial way. The theorem is an improvement on known results in that it is applicable to infinite-param-
eter groups, instead of just to Lie groups. This improvement is gained by using information about the S
matrix; previous investigations used only information about the single-particle spectrum. We define a sym-
metry group of the S matrix as a group of unitary operators which turn one-particle states into one-particle
states, transform many-particle states as if they were tensor products, and commute with the S matrix. Let
G be a connected symmetry group of the .S matrix, and let the following five conditions hold: (1) G contains
a subgroup locally isomorphic to the Poincaré group. (2) For any M >0, there are only a finite number of
one-particle states with mass less than M. (3) Elastic scattering amplitudes are analytic functions of s and ¢,
in some neighborhood of the physical region. (4) The S matrix is nontrivial in the sense that any two one-
particle momentum eigenstates scatter (into something), except perhaps at isolated values of s. (5) The gen-
erators of G, written as integral operators in momentum space, have distributions for their kernels. Then,
we show that G is necessarily locally isomorphic to the direct product of an internal symmetry group and

the Poincaré group.

I. INTRODUCTION

NTIL a few years ago, most physicists believed
that the exact or approximate symmetry groups

of the world were (locally) isomorphic to direct products
of the Poincaré group and compact Lie groups. This
world-view changed drastically with the publication of
the first papers on SU(6)!; these raised the dazzling
possibility of a relativistic symmetry group which was
not simply such a direct product. Unfortunately, all

attempts to find such a group came to disastrous ends,
and the situation was finallv settled hv the discoverv nf

symmetry group of the .S matrix, which contains the
Poincaré group and which puts a finite number of
particles in a supermultiplet. Let the .S matrix be non-
trivial and let elastic scattering amplitudes be analytic
functions of s and ¢ in some neighborhood of the physical
region. Finally, let the generators of G be representable
as integral operators in momentum space, with kernels
that are distributions. Then G is locally isomorphic to

the direct product of the Poincaré group and an in-

ternal symmetry group. (I'his 1S a loose statement ol

the theorem; a more precise one follows below.)
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w Basic symmetries including SUSY

m Hilbert space

{(a")™10),T]0)} a,a’] =1, {b,b"} =1
m Supercharges
Qlx = biaj, and Qi1 = blay QL @i} = $di{al, ar} + § 60}, b))
Q; QI
a}; =% bf};L al = b;'r hamiltonian/number operators (i=j, k=I)
m For boson and fermion fields & unitary rotations
1 1
= f d ¢=-—=(b+0
v V2w (Ta - aT) and - § V2 ( ) Single (free) field
Q=+vw(a'b—1>b"a) F = [, H]
EW] =¢  {Q.&={Q.[Q.¢l} =F =iDy = iDyp = i)
Q, F| =1Q,{Q,&}] = iD¢
1D =10 + gA
m Implement symmetries via constraints F T

... and a nontrivial vacuum (not everything is for free!)

W ~Tesp (i [ ) @

unitary rotations
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w Emerging symmetries and space-time

Generators
Fields Space-time & Internal
m Real/Majorana: ¢ ¢ and (¢) =1 = H
B ¢r Eryr and (¢p) = (¢L)=1/V2 m P+, P K, SU(3)

(Wess-Zumino)
U(1)g x U(1), x SU(3)

14



w Emerging symmetries and space-time

Generators
Fields Space-time & Internal
m Real/Majorana: ¢ ¢ and (¢) =1 = H
® ¢r/r Eryp and (pg) = (¢r) =1/vV2 m PP K, SUG3)
(Wess-Zumino - gauge theory) Z(2)
m 1D:¢s oPp—> AT VU m H P K SU(3)

iDgt)' =i, + g0 Y AL(To)ie
a=1,...8 P(l,l) X SU(3)
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w Emerging symmetries and space-time

Generators
Fields Space-time & Internal
m Real/Majorana: ¢ ¢ and (¢) =1 = H
® ¢r/r Eryp and (pg) = (¢r) =1/vV2 m PP K, SUG3)
(Wess-Zumino - gauge theory) Z(2)
m 1D: g gbp—>/A§ W m H P K SU@3) =

Dot — 0 vy 3 AT [SO(3),SU()xU(1)]
ey = 10 go o\La);

{ a=1,...8 / / 2(3)

m 3D: 95 A m H P K] SU(2)xU(1)

iD= 8,4 + g A%(T,) 57
g g azg;,g,g S P(1,3) x SU(2) x U(1)

16



\‘ J Emerging symmetries and space-time

Generators
Fields Space-time & Internal
m Real/Majorana: ¢ ¢ and (¢) =1 = H
B or/r Eryroand (9p) = () =1/V2 m P* P K, SU(3)
(Wess-Zumino - gauge theory) Z(2)
m 1D:¢s ¢p—> A W) m H P K SUQ3) =
/
. . o [SO(3),SU(2)xU(1)]
iDgt)' = i0p0 + g0 Y AL(Ta)i0
a=1,...8
/ / / Z(3)
m 3D: 95 Ap ¥ m H,P,K3J  SUQ2)XU(1)
iD, " =0, + g AT, o))
' g azg;,g,g ulTa)y P(1,3) x SU(2) x U(1)
m and .... A(4)
o _oon e | O 02 o [0 o
Nt O ng 0 T T ar 0

in order to match space-time and field symmetries and respect Coleman-Mandula

17



DYNAMICS
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o I N

m Right-Left symmetry
m Supersymmetry (Wess-Zumino structure)
m Bosons:  ¢V2 =€ tpr +e g,
= ¢s +igp = xe”

evi=| S|

m Fermions:
—1&r
m Wess-Zumino in 1+1 dim including
potential and vev determining symmetry

V(g) = gM* (4¢5dp + (1 — 65 + ¢p)?)
= L M? (x*sin®(26) + (x* cos(26) — 1)?)

m Pseudoscalar fields (6) = gauge fields

¢Taa¢ — %XTDUX
m ... + masses through symmetry breaking SO(3) symmetry via vev
m Link to gravity (?) via constraint

A (x? cos®(260) — 1)

19



FERMIONS AND BOSONS AS TRIPARTITE STATES
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“/ Leptons

m GHZclass, |GHZ) = %(|RRR> + |LLL)) has same symmetry as basis (including chirality)

Y Y
1 1
E A @ A

‘5201( i ‘ 51; ‘ Vi *7 (er

®3
: —> 1 : —> |3
1/2 12 ° - -1/2 1/2

‘gl_L T ‘gzoL (e; / T LLg"
é. (e';‘
| |
m Using ¢; = (I, Y;)note that {7 ® ty @ty is LU equivalent to ¢; ® t; ® t; and the aligned
GHZ states can be SO(3) multiplets (living in 3D) identified with leptons
m Embedding symmetry A(4) has three singlet representations: families

m This gives tri-bimaximal family - electroweak mixing [slightly different from the way
obtained by Fritsch & Xing, or Harrison, Perkins & Scott]

] 1 1 1 ] 102‘] { 2/3 1/3 0
Ug=WUg=-—F©=|w> 1 w |—=|0 1 0 |=]| —-/1/6 /1/3 —/1/2
’ ﬁ{w 1 w2]ﬂ{1 0 VI VI VP2
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m For W-class chirality is more complex |IGHZ) =

m again employ SU(3) and SU(2) x U(1) (W) = %
subgroups (I, U, V) in bipartite classes

B RtyRty D thetIet)

AB-C BC-A AC-B AB-C
Ly, Uy V.Y I[=1I.Y
A-B-C
SU(3)

m A(4) symmetry: three singlets and three triplets
m Construct SU(3) root diagram to see all GHZ- and W-states

22



Fermionic excitations: tripartite entanglement

m Tripartite states (R: 123 &L:123) U®3

3
|
m Aligned (RRR, LLL): GHZ states 13=—1/zi
m I, U, andV allowed .. !
m SO(3) > asymptotic/space T 22
m Three A(4) singlets ,//
221
m Mingled (RRL, RLL): W-states - 112
m I, U, orV allowed V13~
®m non-asymptotic - t

m Three A(4) triplets (color)

23



Tripartite states (R: 1 23 & L: 12 3) Y'=Y

I8 o
Aligned (RRR, LLL): LEPTONS \ g CL =
= 1, U, andV allowed D
m SO(3) - asymptotic/space VR . / gmm CR
= Three A(4) singlets L di, gt HE
() sing QY dr, dr ,/dR ur I = I
€ mmn-~--- SRR \ —
Mingled (RRL, RLL): QUARKS ;- W o
= I, U, orV allowed UR dr % UR

® non-asymptotic b = i L
m Three A(4) triplets (color) / . dp 5 \

ur
€R
| | zg/
Resembles the rishon model (Harari &
Seiberg 1982, Shupe 1979)

24



\‘/ Bosons

m Boson fields appear as Higgs field and in covariant derivatives:
VI=xe 51056 = 53" Do

m Depending on implementation:
1D iDgp' =0, + g0 Y AL(T.)i

a=1,...8
30 D =0t g Y ANTL)
a=1,2,3,8
m Gauge fields linked to symmetry leptons quarks
generators v, L, W ~gluons

m More or less like SM starting with

m sinfy = 1/2 AB-C BC-A AC-B
| MZ\/é = MH = Mtop/\/§ Y Z7W gllJ.OIlS s Z,W gllJ.OIlS Y Z7W
= Need for radiative corrections

A-B-C

H gluons

25



Composites & local versus global symmetries

m Strong Interactions: resembles XQCD, ,; (analogous to Kaplan 1306.5818), while dynamics
governed via Wilson loop (including freezing of color at small x/high energies)

WI[C] = exp (—ig 7{; ds* AH(S)) lightcone (PDF) = light-front (TMD)

9t = 5W[C]/5JTU < T* .E <
> l > > —

m Elementary constituents only involve entanglement in discrete R/L and 1,2,3 degrees of
freedom; composites entangled in the continuous space-time degrees of freedom

m Quark-entangled states form hadrons ete™
that are global SU(3) color singlets. hadrons
Color local in 1D and global in 3D it ~ LW quarks
valence - current quarks v, Z,W gluons

(ontological basis choice, G 't Hooft)
m More to incorporate in QCD:

= collinearity and TMD AB-C BC-A AC-B

m light-front dominance, OPE ~,Z,W ' gluons ﬁijZi,W gluons v, Z,W
m jets, SCET

m AdS/CFT

m color-kinematic dualities A-B-C

H gluons 26



SUMMARY AND OUTLOOK
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Emergence in Standard Model

m Choice of basic ‘internal’ degrees of freedom and embedding them in R4t or R1:3
via tripartite entanglement:

m Advantageous for convergence: d[¢] = (d-2)/2 = 0, d[E] = (d-1)/2 > >,
naturalness, ... [see Stojkovic — 1406.2696]

m What are consequences in higher order corrections, e.g. g-2, EW+strong, ...
m Supersymmetry included, but invisible in 3D !
m Gravity also emerges in 1D - 3D.

m Does it provide a consistent framework to look at family structure and symmetries
of standard model as emergent phenomena?

m e.g. tri-bimaximal mixing for leptons, zeroth order parameters in SM

m Tripartite space for quarks naturally has color dual to space/electroweak:
m explains why color decoupled from electroweak interactions (no lepto-quarks)
m color invisible in 3D: local gauge invariance! No asymptotic quarks or gluons!

m global color remains visible in 3D via color factors such as N vs 1/N, fx D
(distribution x fragmentation)

28
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Let’s continue to look for new ways out
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