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Introduction 2

Voorwoord

Het college Quantummechanica wordt dit najaar verzorgd door Prof. Piet Mulders geassisteerd door Drs.
Jorn Boomsma bij het werkcollege.

Het college volgt in grote lijnen het boek Quantum Mechanics van F. Mandl (Cambridge University
Press). De aantekeningen geven soms een iets andere kijk op de stof, maar bevatten in essentie geen stof
die niet ook in het boek te vinden is. In een appendix worden een aantal essentiële vaardigheden gegeven,
die de student in de meeste gevallen al in een ander college gezien zal hebben.

Het gehele vak beslaat 8 studiepunten en wordt gegeven in periodes 2, 3 en 4. Wekelijks worden 2 uur
hoorcollege gegeven, 1 uur wordt besteed aan een presentatie van een van de studenten en vragen, terwijl er
2 uur werkcollege zijn. Daarnaast moeten er opgaven worden ingeleverd, die worden beoordeeld. Na blok 3
wordt een deeltentamen afgenomen (schriftelijk). De opgaven en het deeltentamen vormen onderdeel van
de toetsing. Het geheel wordt afgesloten met een (mondeling) tentamen. Dit tentamen, waarbij boek en
uitgewerkte opgaven geraadpleegd mogen worden, gaat behalve over theoretische aspecten (afleidingen
niet van buiten leren!) ook over opgaven die tijdens het werkcollege zijn behandeld. De hierboven
genoemde regeling geldt voor studenten die actief deelnemen aan colleges en werkcolleges.

Piet Mulders
Oktober 2008
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1 Observables and states

For the description of an event or an object, to which we will refer as a physical system, we use observations
and physical quantities. In classical mechanics we are used to coordinates r and velocities v = ṙ or
momenta p = mv. All of these quantities are (real) numbers, attributed to the system, e.g. an electron.
There are several other possible properties, like the energy of the system, in the case that the electron is
moving freely given by E = p2/2m, or its angular momentum, ℓ = r × p, with respect to some origin,
e.g. the atomic nucleus for an electron in an atom. Classically the state of an electron can be specified
by a (minimal set of) measurable quantities, for instance {r(t),p(t), s, . . .}, where s denotes the intrinsic
angular momentum (spin) and in the . . . things like charge and mass can be specified.

The above is no longer true in quantum mechanics. In particular for an electron in an atom the above
classical description in which the observables are tied to the electron as a series of numbers it is carrying
around becomes more subtle. In the quantum mechanical description the observables are not tied to the
system, but they refer to an appropriate measuring device or production mechanism. Mathematically,
such devices are described by operators. The physical system is then described by a wave function, that
is not observable!

Nevertheless, the notion that an electron is at a position r1 at time t1 and at a position r2 at
time t2 makes sense. This is e.g. the case in the well-known two-slit experiment, if we produce an
electron at position r1 (the source) at time t1 and detect it at position r2 (the screen) at time t2.
Such states are specified by |r1, t1〉 and |r2, t2〉. While classically an electron will follow one path from
r1(t1) to r2(t2), determined by the equations of motion, there is not such a thing as a unique path in
quantum mechanics. Feynman has shown that one can formulate the outcome of a quantum mechanical
measurement (probability to go from point 1 to 2) in terms of a weighted superposition of paths, of which
the classical path is the most probable one. The amazing thing of quantum mechanics is that even for one
electron more paths are possible. The path integral formulation of quantum mechanics will be discussed
in advanced treatments.

The weight of the possible paths are determined by the action, a concept which may have been
discussed in the context of classical mechanics. The path for which the action is minimal is the classical
path. Other paths for which the deviations of the action are smaller or of the order of Planck’s constant,
however, still contribute. This also determines the domain where quantum mechanics is needed to get a
good description of nature, namely that where the action itself is of the order of Planck’s constant,

h = 6.626× 10−34 J s.

The action along a path (and the unit of h) corresponds to energy× time and/or to momentum× distance.
Often it turns out to be convenient to use the reduced Planck’s constant ~ = h/2π = 1.055× 10−34 J s =
6.582× 10−16 eV s in equations.

1.1 States ↔ wave functions

As stated already, the state of a system is specified by the wave function. Denoting the state of a system
as |ψ〉, it in general does not correspond to a fixed position. Rather, it is determined by a complex
function depending on the position and the time,

ψ(r, t) ∈ C,

which contains all information on the system. This is one of the basic assumptions of quantum mechanics.
For instance its modulus squared gives the probability per volume, or precisely

P (r, t) d3r = ψ∗(r, t)ψ(r, t) d3r = |ψ(r, t)|2 d3r, (1)
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gives the probability to find the particle in a volume element d3r around the point r. This definition
implies that the wave functions are normalized,

∫

d3r |ψ(r, t)|2 = 1. (2)

The spreading of the wave function corresponds to the fact that in quantum mechanics paths are not
unique. For an electron being in a state |r1, t1〉 the wave function would for t = t1 be a sharp peak
around r1, but with time progressing the wave function will spread. At time t = t2 there is a probability
(less than one) to find the electron at r2. But when finding the electron there, we have a new starting
point. The state collapses into |r2, t2〉.

The states or the wave functions describing a system form a linear space, called a Hilbert space H .
The Hilbert space of wave functions is that of square integrable functions, denoted H = L2(R3).

The normalization condition can be slightly relaxed. For example, for plane waves

ψ(r, t) = exp (ik · r − i ωt) ,

the normalization integral diverges, but the probability |ψ|2 is still finite. We will see how we
can work with these states without problems.

In the Hilbert space of wave functions one can add states, i.e. if ψ1 ∈H and ψ2 ∈H then also

ψ = c1 ψ1 + c2 ψ2 (3)

is a possible state of the system, ψ ∈ H . This is what linear space means. But note that for the linear
combination the probability

|ψ|2 = |c1 ψ1 + c2 ψ2|2 = (c∗1 ψ
∗
1 + c∗2 ψ

∗
2)(c1 ψ1 + c2 ψ2)

= |c1|2 |ψ1|2 + |c2|2 |ψ2|2 + 2 Re [c∗1c2 ψ
∗
1ψ2] 6= |c1|2 |ψ1|2 + |c2|2 |ψ2|2,

is not additive! This feature is characteristic for quantum mechanics. Probabilities play the same role
as intensities of light waves which are proportional to the amplitude squared. The consequence of this
is that the probability shows the phenomenon of interference, illustrated in the scattering of electrons
in the two-slit experiment. As lightwaves do, the probability of electrons hitting the screen shows an
interference pattern.

Note that multiplying a normalized wave function with an overall phase factor (a complex
number with modulus 1) has no consequences. for the probabilities!

It is the function ψ that determines the state of a system, one talks about ”the state ψ” which is denoted
by |ψ〉 and is referred to as a ket. The ket-notation is useful in many manipulations.

One of these manipulations is the definition of a scalar product defined in the Hilbert space of (ket)
states,

〈ψ1|ψ2〉 ≡
∫

d3r ψ∗
1(r, t)ψ2(r, t). (4)

This socalled bracket satisfies 〈ψ1|ψ2〉 = 〈ψ2|ψ1〉∗. The object 〈ψ| is called a bra. Two states for which
the scalar product gives zero are called orthogonal. With the scalar product we can write Eq. 2 as 〈ψ|ψ〉
= 1. Another relation, that we will encounter later is that the value of the wave function is the scalar
product of states |ψ〉 and |r, t〉,

ψ(r, t) = 〈r, t|ψ〉. (5)

An important feature of linear spaces is that one can construct a basis of states. The scalar product,
moreover, makes it possible to choose an orthonormal basis. This is in particular convenient when the
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space is small, for instance two-dimensional. An example of this could be an electron trapped in a fixed
position with two spin orientations (or what is in a laboratory nowadays easier an atom with two spin
possibilities). Then one can describe the system in terms of two basis states | ↑〉 and | ↓〉. If these two
states are orthogonal (as in general spin states are, something we will see later) and normalized we may
use them as basis states,

| ↑〉 ≡
(

1
0

)

, | ↓〉 ≡
(

0
1

)

, (6)

and it is possible to denote a general spin state as a superposition of these two, thus as a 2-component
(complex) vector,

|1〉 = a1| ↑〉+ a2| ↓〉 = χ1 =

(
a1

a2

)

.

In this two-dimensional spinor space one can add any two spinors and multiply them with complex
numbers,

c1χ1 + c2χ2 = c1

(
a1

a2

)

+ c2

(
b1
b2

)

=

(
c1 a1 + c2 b1
c1 a2 + c2 b2

)

, (7)

to get another spinor and one can define a scalar product of two spinors,

〈1|2〉 = χ†
1χ2 =

(
a∗1 a

∗
2

)(
b1
b2

)

= a∗1b1 + a∗2b2, (8)

in which the bra 〈1| is the (adjoint) row vector χ†
1 ≡ (a∗1 a

∗
2). It is trivial to check that the basis states

in Eq. 6 are indeed orthonormal.

1.2 Observables ↔ operators

What about the observables. Given a system (e.g. an atom) we want to know some things, the position,
the momentum or angular momentum. In quantum mechanics these observables are no longer numbers
that are uniquely tied to the system. As mentioned before they correspond with operators. If Â is such
an operator1 and ψ gives a state of the system, then also Âψ is a possible state:

Â : H −→H

ψ −→ Âψ

The operators that we will be concerned with in quantum mechanics are linear operators, which means

Â(c1ψ1 + c2ψ2) = c1 Âψ1 + c2 Âψ2. (9)

Examples of operators and their action are the position operator r̂ and the momentum operator p̂:

r̂ψ(r, t) ≡ rψ(r, t), (10)

p̂ψ(r, t) ≡ −i~∇ψ(r, t). (11)

Actually r̂ and p̂ each stand for three operators, e.g. r̂ = (x̂, ŷ, ẑ). The quantity x̂ψ thus is a
function in H of which the value in a particular point r is given by xψ(r),

x̂ψ(x, y, z, t) = xψ(x, y, z, t).

When our states are denoted as n-component spinors the operators are (of course) n× n matrices.

1The hat characterizing operators is usually omitted, but we will keep it in the first few sections
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Expectation values and hermitean operators

However, the action of an operator, such as the position operator, does not give us the position of the
system. The fundamental connection between the observable properties of a system and its state is given
by the following basic property of quantum mechanics (one of the postulates):

For a system in a normed state ψ, the expectation value of the observable A, represented by the
operator Â, is given by the quantity,

〈A〉ψ = 〈ψ|Â|ψ〉 = 〈ψ|Â ψ〉 =

∫

d3r ψ∗(r, t) Âψ(r, t). (12)

This expectation value is the average outcome of a (large) number of measurements.

Because measurements yield real numbers, suitable operators in quantum mechanics are those that lead
to real expectation values. Such operators are called hermitean or self-adjoint operators, thus

Definition: A hermitean operator Â is an operator for which 〈A〉ψ is real for all states ψ ∈H ,

〈A〉ψ = 〈A〉∗ψ or
∫
d3r ψ∗(r, t) Âψ(r, t) =

∫
d3r (Âψ)∗(r, t)ψ(r, t).

Expectation values are in fact special examples of what are called the matrix elements of Â,

〈ψ1|Â|ψ2〉 = 〈ψ1|Âψ2〉 =
∫

d3r ψ∗
1(r, t) Âψ2(r, t), (13)

namely those where ψ1 = ψ2. An expectation value 〈A〉ψ = 〈ψ|Â|ψ〉 is also referred to as a diagonal matrix
element of Â in the state ψ, while 〈ψ1|Â|ψ2〉 for different states, ψ1 6= ψ2, is referred to as a transition
matrix element. For linear operators we can derive the following property for the matrix elements of a
hermitean operator:

Theorem: = Â is hermitean ⇐⇒ 〈ψ1|Â|ψ2〉 = 〈ψ2|Â|ψ1〉∗ = 〈Âψ1|ψ2〉

or formulated with functions,

Theorem: Â is hermitean ⇐⇒
∫
d3r ψ∗

1(r, t) Âψ2(r, t) =
∫
d3r (Âψ1)

∗(r, t)ψ2(r, t)

Proof: Consider the definition for the state ψ = c1ψ1 + c2ψ2, where c1 and c2 are arbitrary.
Then

2∑

m,n=1

c∗mcn
[

〈ψm|Â|ψn〉 − 〈ψn|Â|ψm〉∗
]

= 0.

Since c1 and c2 are arbitrary complex numbers each term in the sum must be zero.

Standard deviation

In order to decide if the result of measurements of an observable is unique we consider the standard
deviation (∆A)ψ .

Definition: (∆A)2ψ ≡ 〈ψ|(Â − 〈Â〉)2|ψ〉 =
∫
d3r ψ∗(r, t) (Â− 〈Â〉)2ψ(r, t).

Note that Â − 〈Â〉 means subtracting a constant from an operator, which more neatly should read =
Â− 〈Â〉 I. It is straightforward to show that

(∆A)2 = 〈(Â− 〈Â〉)2〉 = 〈Â2〉 − 〈Â〉2, (14)
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where the subscript ψ on ∆A is omitted, as is usually done if it is clear within the context. When in a
given state ψ the observable A has a unique value the standard deviation must be zero. For a hermitean
operator - for which 〈Â〉 is real - one can rewrite

(∆A)2 =

∫

d3r ψ∗ (Â− 〈Â〉)2ψ

=

∫

d3r [(Â− 〈Â〉)ψ]∗ (Â− 〈Â〉)ψ =

∫

d3r |(Â− 〈Â〉)ψ|2, (15)

From this result one immediately gets the following theorem

Theorem: (∆A) = 0 ⇐⇒ Âψ = aψ
for some number a, which in that case is precisely the expectation value of 〈A〉.

The equation Âψ = aψ is an eigenvalue equation for the operator Â. Functions with this property are
called eigenfunctions or eigenstates of the operator Â. The numbers a are called the eigenvalues of Â.
The collection of eigenvalues is called the spectrum of Â.

1.3 Eigenvalues and eigenstates of hermitean operators

For hermitean operators we will proof some theorems for the eigenvalues and eigenstates.

Theorem: Given Âψ = aψ and Â hermitean =⇒ a is real.

The proof of this is trivial. Next one considers eigenfunctions.

Theorem: The eigenfunctions of a hermitean operator are orthogonal, by which we mean
〈ψ1|ψ2〉 =

∫
d3r ψ∗

1(r, t)ψ2(r, t) = 0.

Proof: First consider two different (nondegenerate) eigenvalues, i.e. Âψ1 = a1ψ1 and Âψ2 =
a2ψ2 with a1 6= a2. In that case both a1 and a2 are real and one has

∫

d3r ψ∗
1 Âψ2 = a2

∫

d3r ψ∗
1 ψ2,

∫

d3r (Âψ1)
∗ ψ2 = a∗1

∫

d3r ψ∗
1 ψ2 = a1

∫

d3r ψ∗
1 ψ2.

Hermiticity equates both lines, thus (a1 − a2)
∫
d3r ψ∗

1 ψ2 = 0 and thus
∫
d3r ψ∗

1 ψ2 = 0.

A special case need to be considered namely the case of degenerate eigenvalues. We note that if φ1 and φ2

are eigenstates with the same eigenvalue a, then any linear combination c1φ1 + c2φ2 also has eigenvalue
a. One defines:

Definition: An eigenvalue is called s-fold degenerate if there exist s linearly independent,
eigenfunctions, φ1, . . . , φs, with that particular eigenvalue.

The above proof for the orthogonality does not work for degenerate eigenvalues. But a set of s linearly
independent eigenstates can be made orthogonal, e.g. via a Gramm-Schmidt procedure. Normalizing a
set of orthogonal eigenstates, leads to the following conclusion2

Theorem: The eigenfunctions of a hermitean operator can be choosen as an orthonormal set,
〈ψm|ψn〉 =

∫
d3r ψ∗

m ψn = δmn.

2The Kronecker delta symbol is given by δmn = 1 if m = n, while the outcome is zero if m 6= n.
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The eigenfunctions, moreover, form a complete set of functions, which means that any state ψ can be
expanded in eigenstates,

ψ =
∑

n

cn ψn, (16)

where it is trivial to use the orthonormality of the basis to proof that

cn = 〈ψn|ψ〉 =
∫

d3r ψ∗
n ψ. (17)

For a normed state the normalization condition 〈ψ|ψ〉 =
∫
d3r ψ∗ ψ = 1 implies that

∑

n

|cn|2 = 1. (18)

Using the expansion theorem it is straightforward to write

〈A〉ψ = 〈ψ|Â|ψ〉 =
∑

n

|cn|2 〈A〉ψn
=
∑

n

|cn|2 an = a, (19)

(∆A)2ψ =
∑

n

|cn|2 (an − 〈A〉)2 =
∑

n

|cn|2 (an − a)2, (20)

where an are the eigenvalues corresponding to the eigenfunctions in the orthonormal set. We have
assumed this to be a discrete set, but we will encounter other examples, where the summation will be
changed into an integration.

Summarizing measurements in quantum mechanics

• Any state ψ can be expressed as a superposition of eigenstates ψn of the operator Â, with
coefficients cn (Eq. 16) given by cn = 〈ψn|ψ〉 (Eq. 17).

• The average outcome of a number of measurement, the expectation value of the operator Â and
its standard deviation are given by Eqs 19 and 20, which leads to the unavoidable interpretation
that the outcome of a single measurement is an with probability P (an) = |cn|2. This is the
central issue in quantum mechanics!

• Thus only the eigenvalues of Â are observed! The expression for the expectation value (Eq. 19)
can be rewritten

〈A〉ψ =
∑

n

|cn|2 an =
∑

n

P (an) an, (21)

where the probability to find the state ψ in an eigenstate is given by

P (an) = |cn|2 = |〈ψn|ψ〉|2. (22)

If there are degenerate eigenvalues we get P (an) =
∑s

r=1 |cnr|2, where cnr with r = 1, . . . , s are
the coefficients of s eigenstates with the same eigenvalue an.

• After a measurement the system is in the eigenstate ψn (or in a linear combination of eigenstates
ψnr in case of degeneracy of an). This phenomenon is referred to as ”collapse of the wave
function”. Although it seems crazy, it shouldn’t worry us as wave functions are not observable!
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Appendix: Basic Knowledge

Complex numbers

Complex numbers z with real part and imaginary part and complex conjugate z∗,

z = Re z + i Im z, z∗ = Rez − i Imz,

absolute value or modulus squared |z|2 = zz∗ and representation in terms of phase angle ϕ,

z = |z| eiϕ = |z|(cosϕ+ i sinϕ).

Linear Algebra

Basic concepts from linear algebra: linear space over the complex numbers, vectors in a linear space, linear
independence, inner product, basis, completeness and orthogonality, linear operators. Also representation
of operators as matrices and determination of eigenvalues and eigenvectors of the matrices.

Differentiation and integration

Principles of differentiation and integration for functions including those with more than one argument.
Chain rule for differentiation. Partial integration,

∫ b

a

dx f(x) dg(x) = f(x) g(x)
∣
∣
∣

b

a
−
∫ b

a

dx g(x) df(x).

Change of variables

Change of variables and corresponding Jacobian, including for instance the transition from Cartesian
(x, y, z) to cilindrical coordinates (ρ, ϕ, z), where ρ =

√

x2 + y2 or to polar coordinates (r, θ, ϕ) with

r =
√

x2 + y2 + z2,

x = ρ cosϕ = r sin θ cosϕ,

y = ρ sinϕ = r sin θ sinϕ,

z = r cos θ,

with as result
∫

d3r =

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz

=

∫ ∞

0

r2 dr

∫ 1

−1

d cos θ

∫ 2π

0

dϕ =

∫ ∞

0

r2 dr

∫ π

0

sin θ dθ

∫ 2π

0

dϕ

=

∫ ∞

−∞
dz

∫ ∞

0

ρ dρ

∫ 2π

0

dϕ .

Statistics

Basic concepts from statistics, such as mean and standard deviation,

x =
1

N

∑

i

xi, ∆x =

√∑

i(xi − x)2
N

.
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Questions

1. Why is there an i and an ~ in p̂x = −i~ d
dx .

2. Give differences between classical mechanics and quantum mechanics in the way a system is char-
acterized and in measuring properties.

3. The outcome of measurements are real numbers. What is the implication for operators in quantum
mechanics?

4. What do we learn from the outcome of a single measurement?

5. When is the outcome of a measurement unique?

6. What is the meaning of the expectation value of an operator?

7. Show for a given state ψ that (∆A)2 = 〈A2〉 − 〈A〉2.

Exercises

Exercise 1.1

Consider the one-dimensional wave Gaussian wave function in the domain −∞ < x <∞,

ψ(x, t) = N e−λ(x−a)2/2 e−iωt,

with constants N , a and λ.

(a) Determine N .

(b) Find 〈x〉, 〈x2〉, and ∆x.

(c) Sketch the graph of ρ(x) = |ψ(x)|2.

Useful integrals (also for later applications) are

∫ ∞

0

dx e−px
2

=
1

2

√
π

p
,

∫ ∞

0

dx x2n e−px
2

=
(2n− 1)!!

2 (2p)n

√
π

p
(for p > 0, n = 1, 3, . . .)

∫ ∞

0

dx x2n+1 e−px
2

=
n!

2 pn+1
(for p > 0, n = 0, 1, . . .).

Be aware of the domain of integration. Note that n! = n(n−1) . . .1 (with 0! = 1), (2n)!! = 2n(2n−2) . . .2,
(2n− 1)!! = (2n− 1)(2n− 3) . . . 1.
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Exercise 1.2

At time t = 0 a one dimensional system is described by the wave function

φ(x) =







Ax/a
A(b− x)/(b − a)
0

0 < x < a
a ≤ x < b
otherwise,

with A, a and b constants.

(a) Normalize φ (i.e. find A in terms of a and b).

(b) Sketch φ(x) as a function of x.

(c) What is the probability of finding the system to the left of a? Check your result in the limiting
cases b = a and b = 2a.

(d) What is the expectation value of x?

Exercise 1.3

(a) Show that the spinor

|χ1〉 =





√
2
3

√
1
3





is normalized

(b) Find a spinor that is orthogonal to the spinor under (a).

Exercise 1.4

Consider the one dimensional wave function in the domain −∞ < x <∞,

ψ(x, t) = Ae−λ|x| e−iωt,

where A, λ and ω are real, positive constants.

(a) Normalize ψ.

(b) Determine the expectation values of x and x2.

(c) Find the standard deviation of x. Sketch the graph of |ψ|2, as a function of x, and mark the points
〈x〉+ ∆x and 〈x〉 −∆x. What is the probability that the particle is found outside this range?

Useful integrals (also for later applications) are

∫

dx e−x = −e−x and

∫

dx xn e−x = −xn e−x + n

∫

dx xn−1 e−x for n ≥ 1,

∫ ∞

0

dx xn e−x = n!
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Exercise 1.5

Consider the (3-dimensional) spartial wave function of an electron in the groundstate of Hydrogen,
φ000(r) = N e−r/a0 (we will discuss the quantum numbers, the subscript ’000’ and the scale a0 later).

(a) Show that the normalization is given by N = 1/
√

π a3
0.

(b) What is the probability to find the electron at r < a0.

(c) What is the probability to find the electron at a0 < r < 2 a0.

(d) Calculate the expectation values of x, r and r2, x2.

(e) Calculate the expectation values of px = −i~ ∂/∂x, p2
x and p2.

[Hint: Note that ∂r/∂x = x/r.]

Exercise 1.6

Consider the angular momentum operator

ℓz = −i~
(

x
∂

∂y
− y ∂

∂x

)

.

(a) Show that ℓz acting on a function depending only on r =
√

x2 + y2 + z2 gives zero.

(b) Show that
ψz±(r) = N (x± i y) f(r)

are eigenfunctions of the operator ℓz. What are the eigenvalues?
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2 Time evolution

2.1 The Hamiltonian

The most important operator in quantum mechanics is the Hamiltonian or energy operator Ĥ. It is the
operator that determines the time evolution of the system,

i~
∂ψ

∂t
≡ Ĥψ(r, t). (23)

This is referred to as the Schrödinger equation. The normalization condition on wave functions (conser-
vation of probability) requires Ĥ to be a hermitean operator.

Proof: Since the normalization states 〈ψ|ψ〉 = 1, we have

∂

∂t

∫

d3r ψ∗(r, t)ψ(r, t) = 0,

which translates immediately into

1

−i~

∫

d3r
[

(Ĥψ)∗ψ − ψ∗(Ĥψ)
]

= 0, (24)

i.e. Ĥ is hermitean.

Next suppose that we actually know the Hamiltonian in terms of other operators, Ĥ = H(r̂, p̂, . . .),
e.g. for a particle with mass m in a potential V (r) not depending on time,

Ĥ =
p̂2

2m
+ V (r̂) = − ~2

2m
∇

2 + V (r). (25)

We can then look for the eigenvalues and eigenstates of this Hamiltonian,

Ĥ(r̂, p̂, . . .)φn(r) = Enφn(r). (26)

The eigenvalues are called the energies En. Since Ĥ is a hermitean operator it provides a complete
orthonormal set of states in the Hilbert space with

∫
d3r φ∗mφn = δmn. which we (for simplicity) have

taken to be countable.
In that case the full time-dependent solutions of the Schrödinger equation are easily obtained. The

Hamiltonian on the RHS of Eq. 23 only affects the spatial dependence, the left hand side doesn’t care
about spatial dependence. Using completeness we can at any time write

ψ(r, t) =
∑

n

cn(t)φn(r). (27)

Inserting this expansion in Eq. 23 we find with the knowledge of Eq. 26 that the coefficients cn(t) satisfy

i~φn(r)
dcn
dt

= En φn(r) cn(t) =⇒ i~
dcn
dt

= En cn(t) (28)

giving immediately the time-dependent solutions

ψ(r, t) =
∑

n

cn(0)φn(r) e−iEnt/~ =
∑

n

cn(0)ψn(r, t), (29)

with time-dependent solutions
ψn(r, t) = φn(r) e−iEnt/~, (30)

Each of these ψn-solutions is referred to as a stationary state.
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Let us consider the case that the potential is zero. In that case the solutions of

− ~2

2m
∇

2 φ(r) = E φ(r) (31)

are the plane waves

φk(r) = exp(ik · r) with E(k) =
~

2k2

2m
. (32)

They form an infinite set of solutions characterized by the wave vector k. The full time-
dependent solution is

ψk(r, t) = exp(ik · r − iω t), (33)

where ω = ω(k) = ~k2/2m.

2.2 Time dependence of expectation values

In general, a physical system is not necessarily in an eigenstate of the Hamiltonian. We consider two
situations:

(1) The state of the system is one of the eigenstates of the Hamiltonian (thus we have a stationary state),

ψn(r, 0) = φn(r), (34)

ψn(r, t) = φn(r) e−iEnt/~. (35)

In that case the probability to find the system at a particular place is time-independent,

P (r) d3r = |ψn(r, t)|2 d3r = |φn(r)|2 d3r.

More generally, if Â is an operator without explicit time dependence (e.g. I, r̂, p̂) then

〈A〉n(t) =

∫

d3r ψ∗
n(r, t)Âψn(r, t) =

∫

d3r φ∗n(r)Âφn(r) = 〈A〉n,

independent of the time.

(2) The state of the system is a superposition of eigenstates of the Hamiltonian, for simplicity consider
two states and use En ≡ ~ωn,

ψ(r, 0) = c1 φ1(r) + c2 φ2(r), (36)

ψ(r, t) = c1 φ1(r) e−iE1t/~ + c2 φ2(r) e−iE2t/~. (37)

The expectation value of an operator Â in this case is not time-independent. Defining the matrix elements

∫

d3r φ∗1(r) Âφ1(r) = A11, (38)

∫

d3r φ∗2(r) Âφ2(r) = A22, (39)

∫

d3r φ∗1(r) Âφ2(r) = A12, (40)

∫

d3r φ∗2(r) Âφ1(r) = A21 = A∗
12, (41)
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one obtains

〈A〉(t) =

∫

d3r ψ∗(r, t)Âψ(r, t)

= |c1|2A11 + |c2|2A22 + 2 Re
[

c∗1c2A12 e
i(ω1−ω2)t

]

. (42)

One sees the occurrence of oscillations with a frequency

ωosc = ω1 − ω2 =
E1 − E2

~
. (43)

2.3 Probability and current

The local probability in a state described with the wave function ψ(r, t) is given by

ρ(r, t) = |ψ(r, t)|2. (44)

The time-dependence indicates that locally the probability can change, implying a current j(r, t). This
current should be such that it satisfies the continuity equation,

∂

∂t
ρ+ ∇ · j = 0, (45)

since this implies for a finite volume V surrounded by a surface S one has (using Stokes’ law) the property

− d

dt

∫

V

d3r ρ(r, t) =

∫

V

d3r ∇ · j(r, t) =

∫

S

d2s · j(r, t), (46)

i.e. what leaks out of the volume V must appear as a current flowing through the surface S. Using the
fact that the time-evolution of the wave function and thus the density is determined by the hamiltonian
(see Eq. 24) one finds that for a commonly used hamiltonian like the one in Eq. 25 the current is given
by

j(r, t) =
i~

2m
[(∇ψ)∗ψ − ψ∗(∇ψ)] . (47)

Note that in one dimension the current is given by

j(x, t) =
i~

2m

[(
dψ

dx

)∗
ψ − ψ∗

(
dψ

dx

)]

. (48)

2.4 Multi-particle systems

For more than one particle (or more general a system with more degrees of freedom) the state is described
by a (complex-valued) wave function

ψ(r1, r2, . . . , rN , t) ∈ C.

The wave function now is a function in a configuration space R3 ⊗R3 ⊗ . . . . The probability to find the
system is given by

P (r1, . . . , rN , t) d
3r1 . . . d

3rN = |ψ(r1, . . . , rN , t)|2 d3r1 . . . d
3rN . (49)

Operators acting on the wave function are e.g. r̂1, r̂2, . . . or p̂1 = −i~∇1, etc. Note that r̂1 only works
in one (the first) of the subspaces of the full configuration space. Formally this operator should read
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r̂1 ⊗ I2 ⊗ . . ., but you can imagine that we will not often use this notation. The hamiltonian again
determines the time evolution,

Ĥ = i~
∂

∂t
, (50)

and we are in business when we also know the hamiltonian in terms of the other operators,

Ĥ = H(r̂1, p̂1, r̂2, p̂2, . . .). (51)

A particular easy multi-particle system is the one for which the hamiltonian is separable, e.g. if for
two particles

H(r̂1, p̂1, r̂2, p̂2) = H1(r̂1, p̂1) +H2(r̂2, p̂2). (52)

It is trivial to proof the following theorem.

Theorem: If we know the solutions for Ĥ1 and Ĥ2,

Ĥ1 φ
(1)
m (r1) = E(1)

m φ(1)
m (r1),

Ĥ2 φ
(2)
n (r2) = E(2)

n φ(2)
n (r2),

then the eigenstates and eigenvalues in Ĥ φ = E φ are given by

φm,n(r1, r2) = φ(1)
m (r1)φ

(2)
n (r2),

Em,n = E(1)
m + E(2)

n .

But although simple to deal with this is of course not a very interesting case. Usually we have interac-
tions involving potentials that involve the coordinates of many of the particles, e.g. an atom with many
electrons.

2.5 Center of mass and relative coordinates for two particles

In the case of two particles one frequently encounters the situation that the potential depends on the
distance between the particles,

Ĥ =
p̂1

2

2m1
+

p̂2
2

2m2
+ V (r̂1 − r̂2) = − ~2

2m1
∇

2
1 −

~2

2m2
∇

2
2 + V (r1 − r2). (53)

This hamiltonian is non-separable, but with a little but of work it can be made separable. After changing
to center of mass and relative coordinates,

R ≡ m1

M
r1 +

m2

M
r2, (54)

r ≡ r1 − r2, (55)

where M = m1 +m2, it is easy to proof that

Ĥ = − ~2

2M
∇

2
R

︸ ︷︷ ︸

HCM

− ~2

2µ
∇

2
r + V (r)

︸ ︷︷ ︸

Hrel

, (56)

with reduced mass µ = m1m2/M . Thus we end up with a separable problem in terms of the hamiltonian
HCM (R,P ) for the CM coordinates and the hamiltonian Hrel(r,p) for the relative coordinates, where

P̂ ≡ −i~ ∇R = −i~ (∇1 + ∇2) = p̂1 + p̂2, (57)

p̂ ≡ −i~ ∇r = −i~
(m2

M
∇1 −

m1

M
∇2

)

=
m2

M
p̂1 −

m1

M
p̂2, (58)

a relation that is identical to the classical one.
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Appendix: Basic Knowledge

Gradient of functions

∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

,

with for example ∇(a · r) = a and using ∂r/∂x = x/r, etc. the result

∇r = r/r = r̂ and ∇f(r) = f ′(r) r̂.

Basic differential equations

Examples are differential equations of the form

f ′(x) = a f(x) =⇒ f(x) = C eax.

Elementary vector calculus

Inner and outer product of vectors and divergence and curl of vector field

∇ · V =
∂Vx
∂x

+
∂Vy
∂y

+
∂Vz
∂z

∇× V =

∣
∣
∣
∣
∣
∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Vx Vy Vz

∣
∣
∣
∣
∣
∣

=

(
∂Vz
∂y
− ∂Vy

∂z
,
∂Vx
∂z
− ∂Vz

∂x
,
∂Vy
∂x
− ∂Vx

∂y

)

,

with as specific examples ∇ · r = 3 and ∇ · r̂ = 2/r.
Stokes equation states ∫

volume

d3r ∇ · V (r) =

∫

surface

d2s · V (r).

Questions

1. Which operator describes the time dependence of states in quantum mechanics?

2. What are stationary states?

3. Give the time dependence of stationary states.

4. What is the time dependence of the expectation value of a (time independent) operator for stationary
states?

5. Which phenomenon occurs when an initial states is not a stationary state? What oscillates? What
is the frequency of oscillations?

6. Which are the solutions of the Schrödinger equation for a free particle? What is the spatial behavior,
what is the time dependence? What is the wave length, what is the frequency?
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Exercises

Exercise 2.1

We investigate the situation in which we have two eigenstates φ1 and φ2 of the Hamiltonian with energies
E1 and E2 and τ ≡ h/(E1 − E2). The expectation values of A are given by A11 = a, A22 = −a and
A12 = a

√
3. Give ψ(r, t) and determine (plot) the time dependence of 〈A〉(t) for the case that at t = 0

(a) ψ(r, 0) = φ1(r).

(b) Same for ψ(r, 0) = 1
2

√
3φ1(r) + 1

2φ2(r).

(c) Under (a) and (b) the expectation value of A is considered as a function of time. What are (assuming
no other states than φ1 and φ2 to be relevant) the possible outcomes and corresponding probabilities
of a measurement at time t = 0.

Exercise 2.2

A quite common situation in physics is the appearance of two degenerate configurations with the same
energy (e.g. two mirror molecules), for which there is an interaction term in the hamiltonian that couples
these two configurations. Labeling these two states as |1〉 and |2〉 one then has 〈1|H |1〉 = 〈2|H |2〉 = E0,
while 〈1|H |2〉 = 〈2|H |1〉 = E1 (taken real). Assume the states |1〉 and |2〉 to be orthonormal.

(a) Denote the states as two-component spinors, write H as a 2× 2 matrix.

(b) Determine the eigenvalues of the hamiltonian, give the eigenstates |φ+〉 and |φ−〉

(c) Give the most general time-dependent solution |ψ(t)〉.

(d) Given that |ψ(0)〉 = |1〉, calculate the time t for which |ψ(t)〉 = |2〉.

Exercise 2.3

Calculate the density and the flux for

(a) a plane wave φ(x) = Ae±ikx in one dimension;

(b) a plane wave, φ(r) = A exp(ik · r) in three dimensions;

(c) a wave function of the kind φ(r) = (x+ i y) f(r) (take f(r) real).

Exercise 2.4

Given the Hamiltonian
H = α · pc+mc2 = −i~c α ·∇ +mc2.

in which α is a constant vector. Derive from the Schrödinger equation and the continuity equation what
is the current belonging to the density ρ = ψ∗ψ.
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Exercise 2.5

Consider in one dimension the coordinate transformation

X ≡ m1

M
x1 +

m2

M
x2,

x ≡ x1 − x2.

Show that

d

dX
=

d

dx1
+

d

dx2
,

d

dx
=
m2

M

d

dx1
− m1

M

d

dx2
,

and derive from this Equation 56.
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3 One dimensional Schrödinger equation

3.1 Spectrum and behavior of solutions

Given the one-dimensional hamiltonian H = −p̂2
x/2m+ V (x̂), stationary solutions of the form ψ(x, t) =

φ(x) exp(−iEt/~), are obtained by solving

[

− ~2

2m

d2

dx2
+ V (x)

]

φ(x) = E φ(x),

rewritten as
d2

dx2
φ = − 2m

~2
(E − V (x))

︸ ︷︷ ︸

k2(x)

φ(x). (59)

κ2 (x)~

k2(x)~

V(x)

E

(x) exponentialoscillatory

x

x

φ

We distinguish two situations:
(i) k2(x) ≥ 0 in the region where E ≥ V (x). In that case the change of slope is opposite to the sign of
the wave function, which implies that the solution always bends towards the axis. Looking at the case
that k2(x) = k2 = 2m(E − V0)/~

2 (constant potential V0) one has:

φ(x) = A sinkx+B cos kx, (60)

or
φ(x) = A′ ei kx +B′ e−i kx. (61)

(ii) k2(x) = −κ2(x) ≤ 0 in the region where E ≤ V (x). In that case the change of slope has the same
sign as the wave function, which implies that the solution always bends away from the axis. Looking at
the case that k2(x) = −κ2 = −2m(V0 − E)/~2 (constant potential V0) one has:

φ(x) = A sinhκx+B coshκx, (62)

or
φ(x) = A′ eκx +B′ e−κx. (63)
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3.2 Boundary conditions and matching conditions

In order to find proper solutions of the Schrödinger equation, which is a second order (linear) differential
equation, one needs d2φ/dx2, hence φ(x) and dφ/dx must be continuous. The second condition implies

dφ

dx

∣
∣
∣
∣
a+ǫ

− dφ

dx

∣
∣
∣
∣
a−ǫ

=

∫ a+ǫ

a−ǫ
dx

d2φ

dx2
=

2m

~2

∫ a+ǫ

a−ǫ
dx (V (x)− E)φ(x) = 0

Thus continuity not necessarily requires a continuous potential, but it is necessary that the potential
remains finite. In points where the potential becomes infinite one must be careful, e.g. by studying it as
a limiting case.

Cases in which the potential makes a jump are studied by imposing matching conditions from both
sides, namely equating the wave function and its derivative. Because one in quantum mechanics often
takes some freedom in the normalization (to be imposed later) or one uses the (non-renormalizable) plane
waves, one often chooses to equate the ratio of derivative and wave function, the socalled logarithmic
derivative. Thus:

lim
ǫ→0

φ(a− ǫ) = lim
ǫ→0

φ(a+ ǫ) (64)

lim
ǫ→0

dφ

dx

∣
∣
∣
∣
a−ǫ

= lim
ǫ→0

(dφ

dx

∣
∣
∣
∣
a+ǫ

, (65)

or instead of the latter

lim
ǫ→0

(dφ/dx)

φ(x)

∣
∣
∣
∣
a−ǫ

= lim
ǫ→0

(dφ/dx)

φ(x)

∣
∣
∣
∣
a+ǫ

. (66)

The behavior at infinity (let’s simply assume the potential to be zero) depends on the energy, e.g. if
E = −~2κ2/2m < 0 one must have

lim
x→∞

φ(x) = C e−κx −→ 0, (67)

lim
x→−∞

φ(x) = C eκx −→ 0. (68)

If the energy E = ~2k2/2m > 0 one could have in case of an wave from the left with incoming flux ~k/m
(allowing to be general for a reflected wave) the boundary condition

lim
x→−∞

φ(x) = ei kx +AR e
−i kx. (69)

In a particular physics problem, one might look for a solution with only a transmitted wave

lim
x→∞

φ(x) = AT e
i kx. (70)

with a transmitted flux |AT |2 ~k/m and thus a transmission probability (transmitted/incoming flux)
T = |AT |2. With the above ingredients several one-dimensional problems can be solved. Some examples
of potential wells and barriers will be discussed below. In the case of reflection and transmission one
will find conservation of probability (fluxes), T + R = 1. If the potential for x → ∞ happens to go to a
constant value V (∞) > E, the solutions in the region V (−∞) < E < V (∞) will for x→∞ behave like

lim
x→∞

φ(x) = C e−κx (71)

with E−V (∞) = −~2κ2/2m. In that case current conservation requires R = |AR|2 = 1 and the reflection
amplitude can be written as a simple phase. Defining AR = −e2iδ we find the asymptotic behavior

lim
x→−∞

φ(x) = ei kx − e2iδ e−i kx ∝ sin(kx− δ). (72)
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Given a particular potential we note three domains:
(i) No solutions exist when E ≤ Vmin. In that case one has everywhere k2(x) ≤ 0 and there is no way
that the exponentially behaving solutions at ±∞ can be matched without a region where the solution
bends back towards the axis, i.e. a region where E ≥ V (x).
(ii) In the regin Vmin < E < Vasym (where Vasym is the lowest asymptotic value of the potential) one
has a discrete energy spectrum corresponding to a discrete set of solutions: starting with a vanishing
exponential at, say, x = −∞, one will find in general a solution that at x = +∞ behaves as a linear
combination of two exponential functions (as in Eq. 63). Only for very specific energies the coefficient of
the growing exponential eκx will be zero and one finds a normalizable solution. These localized solutions,
found for discrete energies, are referred to as bound states.
(iii) In the region E ≥ Vasym one has a continuous spectrum of which the solutions at infinity oscillate
or equivalently are complex-valued plane waves (with definite momentum). One always can find such a
solution. This is even true if the asymptotic values of the potential at x = ±∞ are not equal.

Finally, considering an infinitely high potential (e.g. for x > 0) as the limit of a large potential V0 for
x > 0 one must match on to the solution e−κx with κ2 = 2mV0/~

2, leading to

lim
x↑0

(dφ/dx)

φ(x)
= lim

V0→∞

√

2mV0

~2
=∞, (73)

which requires φ(0) = 0 and a finite derivative as only nontrivial possibility.

3.3 The infinite square well

We start by considering the potential

V (x) = 0 for |x| < a and V (x) =∞ for |x| ≥ a.

As discussed in the previous section, the wave function is zero for |x| > a. For E ≤ 0 one would have
solutions of the form

φ(x) = Aeκx +B e−κx,

with κ2 = 2m|E|/~2, which does not have a solution (one finds A = B = 0 from the conditions φ(a) =
φ(−a) = 0).

For E > 0 one has solutions, which in general are of the form

φ(x) = A sin(kx) +B cos(kx),

with k2 = 2mE/~2, which leads to either A = 0 or B = 0. Check that the solutions separate into
(including normalisation) the even solutions

φn(x) =
1√
a

cos
(nπ

2a
x
)

with En = n2 π2~2

8ma2
(odd n values), (74)

and the odd solutions

φn(x) =
1√
a

sin
(nπ

2a
x
)

with En = n2 π2~2

8ma2
(even n values). (75)

The number of nodes is given by n− 1. It is easy to check that the solutions are orthogonal,

∫ ∞

−∞
dx φ∗n(x)φm(x) = δmn. (76)
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3.4 Bound states and scattering solutions for a square well potential

We consider the potential

V (x) = −V0 for |x| < a and V (x) = 0 for |x| ≥ a.

One does not find a finite solution for E < −V0. One would have exponential behavior in all x-ranges
and since k2(x) < 0 everywhere, one must have a solution which everywhere either has a positive or a
negative derivative. For −V0 < E < V0, finite solutions are of the form

φ(x) = C′ eκx for x ≤ −a, (77)

φ(x) = A sin(kx) +B cos(kx) for |x| ≤ a, (78)

φ(x) = C e−κx for x ≥ a (79)

(see Eq. 71), where E = −~
2κ2/2m and E+V0 = ~

2k2/2m. The matching conditions for wave functions
and derivatives give

C′ e−κa = −A sin(ka) +B cos(ka),

A sin(ka) +B cos(ka) = C e−κa,

(κ/k)C′ e−κa = A cos(ka) +B sin(ka),

A cos(ka)−B sin(ka) = (κ/k)C e−κa.

It is easy to convince one self that there are two classes of solutions,

• even solutions with A = 0 and C′ = C,

• odd solutions with B = 0 and C′ = −C.

For the solutions one obtains from the matching of logarithmic derivatives in the point x = a

k tan(ka) = κ (even), (80)

k cot(ka) = −κ (odd). (81)

Introducing the dimensionless variable ξ = ka and writing ξ0 =
√

2mV0a2/~2, one has κa =
√

ξ20 − ξ2
and E = −~2 (ξ20 − ξ2)/2ma2. The variable ξ runs from 0 ≤ ξ ≤ ξ0. The conditions become

tan(ξ) =

√

ξ20 − ξ2
ξ

(even), (82)

tan(ξ) = − ξ
√

ξ20 − ξ2
(odd). (83)

One sees that there always is an even bound state in the region 0 ≤ ξ ≤ minimum{ξ0, π/2}, and then
depending on the depth of the potential (i.e. as long as ξ ≤ ξ0) a first odd bound state (with one node)
between π/2 ≤ ξ ≤ π, a second even bound state (with two nodes) between π ≤ ξ ≤ 3π/2, etc.

Next one might look for solutions with positive energy, in particular of the kind with boundary
conditions as in Eqs. 69 and 70,

φ(x) = ei kx +AR e
−i kx for x ≤ −a, (84)

φ(x) = A sin(Kx) +B cos(Kx) for |x| ≤ a, (85)

φ(x) = AT e
i kx for x ≥ a, (86)
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where E = ~2k2/2m and E + V0 = ~2K2/2m. The matching conditions become

e−i ka +AR e
i ka = −A sin(Ka) +B cos(Ka),

A sin(Ka) +B cos(Ka) = AT e
i ka,

i
k

K
e−i ka − i AR

k

K
ei ka = A cos(Ka) +B sin(Ka),

A cos(Ka)−B sin(Ka) = i AT
k

K
ei ka.

Eliminating A and B one obtains for the (complex) amplitudes of the reflected and transmitted waves,

AR = e−2i ka i(K2 − k2) sin(2Ka)

2kK cos(2Ka)− i (k2 +K2) sin(2Ka)
, (87)

AT = e−2i ka 2kK

2kK cos(2Ka)− i (k2 +K2) sin(2Ka)
. (88)

In contrast to negative energies, one has always solutions for positive energy. The interpretation of the
specific ansatz of the wave function is an incoming wave from the left, φi(x) = ei kx (with flux ji = k/m), a
reflected wave, φr(x) = AR e

−i kx (with flux jr = −|AR|2 k/m), and a transmitted wave, φr(x) = AT e
i kx

(with flux jt = |AT |2 k/m). The probabilities for reflection and transmission are

R = |AR|2 =
(K2 − k2)2 sin2(2Ka)

4k2K2 cos2(2Ka) + (k2 +K2)2 sin2(2Ka)

=
(K2 − k2)2 sin2(2Ka)

4k2K2 + (K2 − k2)2 sin2(2Ka)
(89)

T = |AT |2 =
4k2K2

4k2K2 cos2(2Ka) + (k2 +K2)2 sin2(2Ka)

=
4k2K2

4k2K2 + (K2 − k2)2 sin2(2Ka)
, (90)

satisfying 1 − R = T (flux from the left = flux to the right). Note that there exists particular energies,
for which the wave vector K satisfies 2Ka = nπ, in which case R = 0 and T = 1, i.e. the potential is
’invisible’ for those particular waves.

3.5 Reflection and transmission through a barrier

We consider the situation of a positive square potential, also called a barrier potential,

V (x) = +V0 for |x| < a and V (x) = 0 for |x| ≥ a.

In this case we only have scattering solutions for E > 0. The case E ≥ V0 is even completely similar to
the scattering solutions in the previous section. We have the same expression for k2 = 2mE/~2, but now
K2 = 2m(E−V0)/~

2. The quantities k and K are the wave numbers in the different regions, respectively.
In terms of k and K the expressions for reflection and transmission remain the same as in Eqs. 89 and
90. One again has the situation that there are energies for which 2Ka = nπ and the barrier is ’invisible’.

The case 0 ≤ E ≤ V0 appears at first sight different because the wave functions in the region −a ≤
x ≤ a become exponentional, e.g. linear combinations of cosh(κx) and sinh(κx) with κ2 = 2m(V0−E)/~2.
But this in fact is nothing else than using complex wave numbers, K → iκ (note that sign doesn’t matter),
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leading instead of Eqs. 87 and 88 to

AR = e−2i ka −i (k2 + κ2) sinh(2κa)

2kκ cosh(2κa)− i (k2 − κ2) sin(2κa)
, (91)

AT = e−2i ka 2kκ

2kκ cosh(2κa)− i (k2 − κ2) sinh(2κa)
. (92)

leading to the reflection and transmission probabilities through a barrier,

R = |AR|2 =
(k2 + κ2)2 sinh2(2κa)

4k2κ2 + (k2 + κ2)2 sinh2(2κa)
(93)

T = |AT |2 =
4k2κ2

4k2κ2 + (k2 + κ2)2 sinh2(2κa)
. (94)

In this situation one always has T < 1. In the case that κa ≫ 1, which is the case if E ≪ V0 and
2mV0 a

2/~2 ≫ 1, the transmission coefficient reduces to the tiny probability

T ≈ 16 k2κ2

(k2 + κ2)2
e−4κa ≈ 16

E

V0
e−4κa.

In fact, only the exponential is the important part in this probability. For a barrier with a variable poten-
tial, the result becomes the famous WKB formula for tunneling, which is the product of the consecutive
exponential factors for small barriers,

T ≈ exp

(

−2

∫ x2

x1

dx

(
2m

~2

)1/2

[V (x)− E]
1/2

)

, (95)

where x1 and x2 are the points where V (x1) = V (x2) = E with V (x) ≥ E in the region x1 ≤ x ≤ x2.

3.6 Three elementary properties of one-dimensional solutions

• In one dimension any attractive potential has always at least one bound state.

• For consecutive (in energy) solutions one has the node theorem, which states that the states can be
ordered according to the number of nodes (zeros) in the wave function. The lowest energy solution
has no node, the next has one node, etc.

• Bound state solutions of the one-dimensional Schrödinger equation are nondegenerate.

Proof: suppose that φ1 and φ2 are two solutions with the same energy. Construct

W (φ1, φ2) = φ1(x)
dφ2

dx
− φ2(x)

dφ1

dx
, (96)

known as the Wronskian. It is easy to see that

d

dx
W (φ1, φ2) = 0.

Hence one has W (φ1, φ2) = constant, where the constant because of the asymptotic van-
ishing of the wave functions must be zero. Thus

(dφ1/dx)

φ1
=

(dφ2/dx)

φ2
⇒ d

dx
lnφ1 =

d

dx
lnφ2

⇒ d

dx
ln

(
φ1

φ2

)

= 0 ⇒ ln

(
φ1

φ2

)

= constant ⇒ φ1 ∝ φ2,

and hence (when normalized) the functions are identical.
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Appendix: Basic Knowledge

Basic relations between sin, cos, sinh, cosh and (complex) exponentials,

sinx =
eix − e−ix

2i
= −i sinh(i x), and cosx =

eix + e−ix

2
= cosh(i x),

sinhx =
ex − e−x

2
= −i sin(i x), and coshx =

ex + e−x

2
= cos(i x),

and their behavior.

Questions

1. What is the behavior of wave functions in the region where V (x) < E, what in the region where
V (x) ≥ E. What are the explicit solutions for constant potentials?

2. Compare qualitatively the fall-off or wave lengths of wave functions with different energies.

3. Compare the wave lengths for the scattering solutions in the case of the attractive square well
potential and the repulsive one (barrier).

Exercises

Exercise 3.1

(a) Use Mathematica to find the wave numbers kna for the solutions of a square well potential for
which ξ0 =

√

2mV0a2/~2 = 7.

(b). Compare the spectrum of wave numbers with that of the infinite square well.

Exercise 3.2

We investigate the wave function in the case of the potential step

V (x) =

{
V0

0
x ≤ 0
x > 0

.

(a) Give the possible solutions of the Schrödinger equation for negative and positive x for energies
0 ≤ E ≤ V0.

(b) Write the wave function for x > 0 as

φ(x) = e−ikx +ARe
+ikx,

calculate AR and show that |AR| = 1.
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The phase shift δ of the reflected wave compared with the incoming wave is defined as

AR ≡ −e2iδ.

(d) Rewrite the wave function as a sine with the phase shift in the argument. Calculate for a given
energy E the phase shift δ(E) and sketch as a function of E/V0.

(e) Wat are AR and the complete wave function in the limit V0 →∞ and explain the result.

Exercise 3.3

Two wave functions with different energies are given below. These wave functions are both solutions
of the same one-dimensional Schrödinger equation in a potential V (x). This potential consists of step
functions.

-15 -10 -5 0 5 10 15

Wave function A

-15 -10 -5 0 5 10 15

Wave function B

(a) Give a sketch of V (x) and indicate the energy levels for the solutions A and B.

(b) How many wave functions belonging to V (x) exist with energies lower than solution B? Sketch one
of these wave functions.

Exercise 3.4

Given a one dimensional potential of the form in the figure

V

2∼ κ

~k2

0
x

V(x)

0

E

−a b−b a
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(a) Give the expressions for the wave functions in the various regions for the energy E indicated in the
figure. We can just as for the square well distinguish even and odd solutions (since the potential is
symmetric). This will considerably reduce the number of conditions.

(b) Sketch for both even and odd wave solutions the lowest one and give for each of these the matching
conditions.

(c) If the potential for |x| > a is equal to V0, sketch then a solution for E > V0 in such a way that it is
clear what its behavior is in the various regions.

Exercise 3.5

Given a one-dimensional potential of the form

V (x) = − ~2

ma
δ(x).

[See section 7.3 for the properties of the delta-function]

(a) Show that for a solution of the Schrödinger equation

lim
x↓0

φ′(x) − lim
x↑0

φ′(x) = −2φ(0)

a
.

(b) Show that there (always) exist one bound state solution. Give the wave function and the energy of
this solution.

(c) Calculate for positive energies the transmission and reflection coefficient (AT en AR) for a wave
coming from the left (from x→ −∞).

(d) Show that the flux is conserved.
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4 Angular momentum and spherical harmonics

In this section we study the (three) angular momentum operators ℓ̂ = r̂ × p̂ = −i~ r ×∇, looking for
eigenvalues and eigenstates. The angular momentum operators are best studied in polar coordinates,

x = r sin θ cosϕ, (97)

y = r sin θ sinϕ, (98)

z = r cos θ, (99)

from which one gets




∂
∂r

∂
∂θ

∂
∂ϕ





=





x/r y/r z/r

x cot θ y cot θ −r sin θ

−y x 0









∂
∂x

∂
∂y

∂
∂z





.

The ℓ̂ operators are given by

ℓ̂x = −i~
(

y
∂

∂z
− z ∂

∂y

)

= i~

(

sinϕ
∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

)

, (100)

ℓ̂y = −i~
(

z
∂

∂x
− x ∂

∂z

)

= i~

(

− cosϕ
∂

∂θ
+ cot θ sinϕ

∂

∂ϕ

)

, (101)

ℓ̂z = −i~
(

x
∂

∂y
− y ∂

∂x

)

= −i~ ∂

∂ϕ
, (102)

and the square ℓ̂2 becomes

ℓ̂2 = ℓ2x + ℓ2y + ℓ2z = −~
2

[
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂ϕ2

]

. (103)

From the expressions in polar coordinates, one immediately sees that the operators only acts on the
angular dependence. One has ℓ̂i f(r) = 0 for i = x, y, z and thus also ℓ̂2 f(r) = 0. Being a simple

differential operator (with respect to azimuthal angle about one of the axes) one has ℓ̂i(fg) = f (ℓ̂ig) +

(ℓ̂if) g.

4.1 Spherical harmonics

We first study the action of the angular momentum operator on the Cartesian combinations x/r, y/r
and z/r (only angular dependence). One finds

ℓ̂z

(x

r

)

= i~
(y

r

)

, ℓ̂z

(y

r

)

= −i~
(x

r

)

, ℓ̂z

(z

r

)

= 0,

which shows that the ℓ operators acting on polynomials of the form

(x

r

)n1
(y

r

)n2
(z

r

)n3

do not change the total degree n1 + n2 + n3 ≡ ℓ. They only change the degrees of the coordinates in the
expressions. For a particular degree ℓ, there are 2ℓ+ 1 functions. This is easy to see for ℓ = 0 and ℓ = 1.
For ℓ = 2 one must take some care and realize that (x2 + y2 + z2)/r2 = 1, i.e. there is one function less

than the six that one might have expected at first hand. The symmetry of ℓ̂2 in x, y and z immediately
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implies that polynomials of a particular total degree ℓ are eigenfunctions of ℓ̂2 with the same eigenvalue
~2 λ.

Using polar coordinates one easily sees that eigenfunctions of ℓz,

ℓ̂z Y (θ, ϕ) = −i~ ∂

∂ϕ
Y (θ, ϕ),

are of the form Ym(θ, ϕ) = Θm(θ) eimϕ, where the actual eigenvalue is m~ and in order that the eigen-
function is univalued m must be integer. For fixed degree ℓ of the polynomials m can at most be equal
to ℓ, in which case the θ-dependence is sinℓ θ. It is easy to calculate the ℓ̂2 eigenvalue for this function,
for which one finds ~2ℓ(ℓ + 1). The rest is a matter of normalisation and convention and can be found
in many books. Summarizing the eigenfunctions of ℓ2 and ℓz, referred to as the spherical harmonics, are
given by

ℓ̂2 Y mℓ (θ, ϕ) = ℓ(ℓ+ 1)~2 Y mℓ (θ, ϕ), (104)

ℓ̂z Y
m
ℓ (θ, ϕ) = m~Y mℓ (θ, ϕ), (105)

with the value ℓ = 0, 1, 2, . . . and for given ℓ (called orbital angular momentum) 2ℓ+1 possibilities for the
value of m (the magnetic quantum number), m = −ℓ,−ℓ+ 1, . . . , ℓ. Given one of the operators, ℓ2 or ℓz,
there are degenerate eigenfunctions, but with the eigenvalues of both operators one has a unique labeling
(we will come back to this). Note that these functions are not eigenfunctions of ℓx and ℓy. Using kets to
denote the states one uses |ℓ,m〉 rather than |Y ℓm〉. From the polynomial structure, one immediately sees
that the behavior of the spherical harmonics under space inversion (r → −r) is determined by ℓ. This
behavior under space inversion, known as the parity, of the Y mℓ ’s is (−)ℓ.

The explicit result for ℓ = 0 is

Y 0
0 (θ, ϕ) =

1√
4π
. (106)

Explicit results for ℓ = 1 are

Y 1
1 (θ, ϕ) = −

√

3

8π

x+ iy

r
= −

√

3

8π
sin θ eiϕ, (107)

Y 0
1 (θ, ϕ) =

√

3

4π

z

r
=

√

3

4π
cos θ, (108)

Y −1
1 (θ, ϕ) =

√

3

8π

x− iy
r

=

√

3

8π
sin θ e−iϕ. (109)
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The ℓ = 2 spherical harmonics are the (five!) quadratic polynomials of degree
two,

Y ±2
2 (θ, ϕ) =

√

15

32π

(x2 − y2)± 2i xy

r2
=

√

15

32π
sin2 θ e±2iϕ, (110)

Y ±1
2 (θ, ϕ) = ∓

√

15

8π

z(x± iy)
r2

= ∓
√

15

8π
sin θ cos θ e±iϕ. (111)

Y 0
2 (θ, ϕ) =

√

5

16π

3 z2 − r2
r2

=

√

5

16π

(
3 cos2 θ − 1

)
, (112)

where the picture of |Y 0
2 | is produced using Mathematica,

SphericalPlot3D[Abs[SphericalHarmonicY[2,0,theta,phi]],

{theta,0,Pi},{phi,0,2*Pi}].
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The spherical harmonics form a complete set of functions on the sphere, satisfying the orthonormality
relations ∫

dΩ Y m∗
ℓ (θ, ϕ)Y m

′

ℓ′ (θ, ϕ) = δℓℓ′ δmm′ . (113)

Any function f(θ, ϕ) can be expanded in these functions,

f(θ, ϕ) =
∑

ℓ,m

cℓm Y
m
ℓ (θ, ϕ),

with cℓm =
∫
dΩY m∗

ℓ (θ, ϕ) f(θ, ϕ). Useful relations are the following,

Y mℓ (θ, ϕ) = (−)(m+|m|)/2

√

2ℓ+ 1

4π

(ℓ− |m|)!
(ℓ+ |m|)! P

|m|
ℓ (cos θ) eimϕ, (114)

where ℓ = 0, 1, 2, . . . and m = ℓ, ℓ− 1, . . . ,−ℓ, and the associated Legendre polynomials are given by

P
|m|
ℓ (x) =

1

2ℓ ℓ!
(1− x2)|m|/2 dℓ+|m|

dxℓ+|m|
[
(x2 − 1)ℓ

]
. (115)

The m = 0 states are related to the (orthogonal) Legendre polynomials, Pℓ = P 0
ℓ , given by

Pℓ(cos θ) =

√

4π

2ℓ+ 1
Y 0
ℓ (θ). (116)

They are defined on the [−1, 1] interval. They can be used to expand functions that only depend on θ
(see chapter on scattering theory).

The lowest order Legendre polynomials Pn(x)
(LegendreP[n,x]) are

P0(x) = 1,

P1(x) = x,

P2(x) =
1

2
(3x2 − 1)

(given in the figure to the right).
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Some of the associated Legendre polynomials
Pmn (x) (LegendreP[n,m,x]) are

P 1
1 (x) = −

√

1− x2,

P 1
2 (x) = −3x

√

1− x2,

P 2
2 (x) = 3 (1− x2)

(shown in the figure Pm2 (x) for m = 0, 1 en
2).
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4.2 Measuring angular momentum and the Stern-Gerlach experiment

Measurements in quantum mechanics can be splendidly illustrated with angular momentum, which clas-
sically is a continuous variable and quantummechanically is an operator with discrete eigenvalues. The
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type of experiments are usually referred to as Stern-Gerlach experiment, although the original experiment
is different from our discussion below.

A charged particle (say an electron with charge−e) with angular momentum ℓ has a magnetic moment
µ = −(e/2m) ℓ. In a magnetic field the interaction energy is U = µ ·B. In a varying magnetic field the
particle experiences a force F = −∇(µ ·B) proportional to ℓB, where ℓB is the component of ℓ along
B. Classically the effect is a continuous spreading of the electrons. Quantummechanically, we have seen
that the eigenvalues of ℓz (let’s choose B along the z-axis) are m~ with m integer, thus depending on
(the gradient of) B a discrete set of possibilities.

Let’s consider the example of ℓ = 1. There are three possible eigenvalues of ℓz with m = -1, 0, or 1.
Thus starting with a beam of electrons with no prejudice (equal amounts of all states) the Stern-Gerlach
apparatus with B along the z-axis (a measurement of ℓz) produces 3 beams (see figure).

y

z

x
B

B

The state in each of the beams is described by a wave function for which the angular momentum part is

∝ Y m1 (θ, ϕ). Let us denote these states with ψ
(z)
m . Summarizing this with

state→ measurement → eigenvalue→ state

we have

ψ → ℓz →







ℓz = 1 ~ → ψ
(z)
1 ∼ −(x+ i y)/

√
2

ℓz = 0 → ψ
(z)
0 ∼ z

ℓz = −1 ~→ ψ
(z)
−1 ∼ (x− i y)/

√
2

We can now (as in the figure) block two of the beams and perform a different measurement, e.g. of ℓx
(rotating the apparatus). The result of the measurement is a splitting into two beams, as postulated
for a quantum mechanical measurement. Namely we get as a result of the measurement the possible
eigenvalues of ℓx, again m~ with m = -1, 0, or 1. To determine the probabilities in the beam, we have to

decompose the wave function z/r into eigenfunctions ψ
(x)
m of ℓx. Symmetry considerations show that

ψ
(x)
1 ∼ −(y + i z)/

√
2 ψ

(x)
0 ∼ x ψ

(x)
−1 ∼ (y − i z)/

√
2,

Decomposing

z =
1

i
√

2

y + i z√
2
− 1

i
√

2

y − i z√
2

,

gives coefficients ±i/
√

2. Squaring leads to probabilities 1/2. Thus after the second measurement the
beam splits into two beams with equal probabilities. Thus:

ψ ∼ z → ℓx →







ℓx = 1 ~ 50% → ψ
(x)
1 ∼ −(y + i z)/

√
2

ℓx = 0 0% → ψ
(x)
0 ∼ x

ℓx = −1 ~ 50% → ψ
(x)
−1 ∼ (y − i z)/

√
2
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4.3 The radial Schrödinger equation in three dimensions

In three dimensions the eigenstates of the Hamiltonian for a particle in a potential are found from

H ψ(r) =

[

− ~2

2m
∇

2 + V (r)

]

ψ(r) = E ψ(r). (117)

In particular in the case of a central potential, V (r) = V (r) it is convenient to use spherical coordinates.
Introducing polar coordinates one has

∇
2 =

1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂ϕ2
(118)

=
1

r2
∂

∂r

(

r2
∂

∂r

)

− ℓ2

~2 r2
. (119)

where ℓ are the three angular momentum operators. If the potential has no angular dependence, the
eigenfunctions can be written as

ψnℓm(r) = Rnℓm(r)Y mℓ (θ, ϕ). (120)

Inserting this in the eigenvalue equation one obtains

[

− ~
2

2mr2
∂

∂r

(

r2
∂

∂r

)

+

(
~

2 ℓ(ℓ+ 1)

2mr2
+ V (r)

)]

Rnℓ(r) = EnℓRnℓ(r), (121)

in which the radial function R and energy E turn out to be independent of the magnetic quantum number
m.

In order to investigate the behavior of the wave function for r → 0, let us assume that near zero one
has R(r) ∼ C rs. Substituting this in the equation one finds for a decent potential (limr→0 r

2 V (r) = 0)
immediately that s(s+1) = ℓ(ℓ+1), which allows two types of solutions, namely s = ℓ (regular solutions)
or s = −(ℓ + 1) (irregular solutions). The irregular solutions cannot be properly normalized and are
rejected3.

For the regular solutions, it is convenient to write

ψ(r) = R(r)Y mℓ (θ, ϕ) =
u(r)

r
Y mℓ (θ, ϕ). (122)

Inserting this in the eigenvalue equation for R one obtains the radial Schrödinger equation

[

− ~2

2m

d2

dr2
+

~2 ℓ(ℓ+ 1)

2mr2
+ V (r)

︸ ︷︷ ︸

Veff (r)

−Enℓ
]

unℓ(r) = 0, (123)

with boundary condition unℓ(0) = 0, since u(r) ∼ C rℓ+1 for r → 0. This is simply a one-dimensional
Schrödinger equation on the positive axis with a boundary condition at zero and an effective potential
consisting of the central potential and an angular momentum barrier.

3Actually, in the case ℓ = 0, the irregular solution R(r) ∼ 1/r is special. One might say that it could be normalized, but
we note that it is not a solution of ∇

2R(r) = 0, rather one has ∇
2 1

r
= δ3(r) as may be known from courses on electricity

and magnetism.



Questions and Exercises 32

Questions

1. Considering the Y mℓ as polynomials of degree ℓ, argue why the ℓz eigenvalue m can be at most ℓ.

Exercises

Exercise 4.1

(a) Show that the functions sinℓ θ e±iℓφ are eigenfunctions of ℓ̂2 with eigenvalue ~
2 ℓ(ℓ+ 1).

(b) Normalize this solution.

Exercise 4.2

Describe the measurement of ℓy in section 4.2 if we let the beam with ℓz = −~ pass after the first
measurement.

Exercise 4.3

Consider a ’square well’ potential in three dimensions with V (r) = −V0 if r = |r| ≤ a and V (r) = 0 if
r > a.

(a) Find the condition for s-wave (ℓ = 0) bound state solutions (with E = −~2 κ2/2m ≤ 0).

(b) Show that the condition to have at least one bound state is V0 a
2 ≥ π2~2/8m. Note that this

condition can be derived without using the result of (a).

Exercise 4.4

(a) Derive the Schrödinger equation in cylindrical coordinates (ρ, φ, z), following the steps for spherical
coordinates, starting with

x = ρ cosϕ,

y = ρ sinϕ,

z = z.

(b) Give the most general solution for a cylindrically symmetric potential only depending on ρ, us-
ing eigenfunctions of pz = −i~ ∂/∂z and ℓz = −i~ ∂/∂ϕ and give the Schrödinger equation that
determines the ρ-dependence. Try to simplify this into a ’one-dimensional’ Schrödinger equation.
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5 The hydrogen atom

5.1 Transformation to the center of mass

For a hydrogen-like atom, one starts with the hamiltonian for the nucleus with charge +Ze (mass mN )
and the electron with charge −e (mass me),

H = − ~2

2mN
∇

2
p −

~2

2me
∇

2
e −

Ze2

4πǫ0 |re − rp|
. (124)

This can using total mass M = me +mN and reduced mass m = memN/M be rewritten in terms of the
center of mass and relative coordinates,

MR = mNrN +mere, (125)

r = re − rN , (126)

and dito momenta

P = pe + pN = −i~∇R, (127)
p

m
=

pe
me
− pN
mN

= −i~∇r. (128)

One obtains

H = − ~2

2M
∇

2
R

︸ ︷︷ ︸

Hcm

− ~2

2m
∇

2
r −

Ze2

4πǫ0 r
︸ ︷︷ ︸

Hrel

. (129)

The hamiltonian is separable, the eigenfunction ψE(R, r) is the product of the solutions ψEcm(R) of Hcm

and ψErel
(r) of Hrel, while the eigenvalue is the sum of the eigenvalues. In particular one knows that

ψEcm(R) = exp (iP ·R) with Ecm = P 2/2M , leaving a one-particle problem in the relative coordinate
r for a particle with reduced mass m.

5.2 Solving the eigenvalue equation

The (one-dimensional) radial Schrödinger equation for the relative wave function in the Hydrogen atom
reads [

− ~2

2m

d2

dr2
+

~2 ℓ(ℓ+ 1)

2mr2
+ Vc(r)

︸ ︷︷ ︸

Veff (r)

−E
]

unℓ(r) = 0, (130)

with boundary condition unℓ(0) = 0. First of all it is useful to make this into a dimensionless differential
equation for which we then can use our knowledge of mathematics. Define ρ = r/a0 with for the time
being a0 still unspecified. Multiplying the radial Schrödinger equation with 2ma2

0/~
2 we get

[

− d2

dρ2
+
ℓ(ℓ+ 1)

ρ2
− e2

4πǫ0

2ma0

~2

Z

ρ
− 2ma2

0E

~2

]

uEℓ(ρ) = 0. (131)

From this dimensionless equation we find that the coefficient multiplying 1/ρ is a number. Since we
haven’t yet specified a0, this is a good place to do so and one defines the Bohr radius

a0 ≡
4πǫ0 ~2

me2
. (132)
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The stuff in the last term in the equation multiplying E must be of the form 1/energy. One defines the
Rydberg energy

R∞ =
~2

2ma2
0

=
1

2

e2

4πǫ0 a0
=

me4

32π2ǫ20 ~2
. (133)

One then obtains the dimensionless equation
[

− d2

dρ2
+
ℓ(ℓ+ 1)

ρ2
− 2Z

ρ
− ǫ
]

uǫℓ(ρ) = 0 (134)

with ρ = r/a0 and ǫ = E/R∞.
Before solving this equation let us look at the magnitude of the numbers with which the energies and

distances in the problem are compared. Using the dimensionless fine structure constant one can express
the distances and energies in the electron Compton wavelength,

α =
e2

4π ǫ0 ~c
≈ 1/137, (135)

a0 ≡
4πǫ0 ~2

me2
=

4πǫ0 ~c

e2
~c

mc2
=

1

α

~c

mc2
≈ 0.53× 10−10 m, (136)

R∞ =
~2

2ma2
0

=
1

2
α

(
~c

a0

)

=
1

2
α2mc2 ≈ 13.6 eV. (137)

One thing to be noticed is that the defining expressions for a0 and R∞ involve the electromagnetic
charge e/

√
ǫ0 and Planck’s constant ~, but it does not involve c. The hydrogen atom invokes quantum

mechanics, but not relativity! The nonrelativistic nature of the hydrogen atom is confirmed in the
characteristic energy scale being R∞. We see that it is of the order α2 ∼ 10−4 − 10−5 of the restenergy
of the electron, i.e. very tiny!

To find the solutions in general, we can turn to an algebraic manipulation program or a mathematical
handbook to look for the solutions of the dimensionless differential equation (see subsection on Laguerre
polynomials). We see from this treatment that (using p → n − ℓ − 1, a → 2ℓ + 1 and x → 2Zρ/n) the
solutions for hydrogen are

unℓ(ρ) =

(
2Z

na0

)1/2
√

(n− ℓ− 1)!

2n (n+ ℓ)!
e−Zρ/n

(
2Zρ

n

)ℓ+1

L2ℓ+1
n−ℓ−1

(
2Zρ

n

)

(138)

with eigenvalues (energies)

Enℓ = −Z
2

n2
R∞, (139)

labeled by a principal quantum number number n, choosen such that the energy only depends on n. For
a given ℓ one has n ≥ ℓ+ 1. Actually nr = n− ℓ− 1 is the number of nodes in the wave function.

-1

-1/9
-1/4

l = 0

3s 3d3p
2p2s

1s

l = 1 l = 2

(2x)

(2x)
(2x)

(6x)
(6x) (10x)

E [Rydberg]
The spectrum of the hydrogen atom.
For a given n one has degenerate ℓ-levels
with ℓ = 0, 1, . . . , n−1. The degeneracy,
including the electron spin, adds up to
2n2. The hamiltonian is invariant under
inversion, hence its eigenstates are also
parity eigenstates. The parity of ψnlm
is given by Π = (−)ℓ.
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Some aspects of the solution can be easily understood. For instance, looking at equation 134 one sees
that the asymptotic behavior of the wave function is found from

u′′(ρ) + ǫ u(ρ) = 0,

so one expects for ρ → ∞ the result u(ρ) ∼ e−ρ
√

|ǫ|. For ℓ = 0 one expects for ρ → 0 that u(ρ) ∼ ρ.
Indeed it is easy to check that u10(ρ) ∼ ρ e−Zρ is a solution with ǫ = −Z2.

Explicitly, the lowest solutions are:

u10(r) = 2

(
Z

a0

)1/2

e−Zr/a0

(
Zr

a0

)

, (140)

u20(r) =
1√
2

(
Z

a0

)1/2

e−Zr/2a0

(
Zr

a0

)(

1− 1

2

Zr

a0

)

(141)

u21(r) =
1

2
√

6

(
Z

a0

)1/2

e−Zr/2a0

(
Zr

a0

)2

(142)

u30(r) =
2

3
√

3

(
Z

a0

)1/2

e−Zr/3a0

(
Zr

a0

)(

1− 2

3

Zr

a0
+

2

27

(
Zr

a0

)2
)

(143)

u31(r) =
8

27
√

6

(
Z

a0

)1/2

e−Zr/3a0

(
Zr

a0

)2(

1− 1

6

Zr

a0

)

(144)

u32(r) =
4

81
√

30

(
Z

a0

)1/2

e−Zr/3a0

(
Zr

a0

)3

(145)

Useful integrals involving the solutions are expectation values like

〈 r
2

a2
0

〉 = n2

2Z2

[
5n2 − 3 ℓ(ℓ+ 1) + 1

]
, (146)

〈 r
a0
〉 = 1

2Z

[
3n2 − ℓ(ℓ+ 1)

]
, (147)

〈a0

r
〉 = Z

n2
, (148)

〈a
2
0

r2
〉 = 2Z2

n3(2ℓ+ 1)
, (149)

〈a
3
0

r3
〉 = 2Z3

n3 ℓ(ℓ+ 1)(2ℓ+ 1)
. (150)

The full hamiltonian for the Hydrogen atom has a number of additional terms, which give rise to
splittings in the spectrum. These level splittings give rise to splitting of lines in emission and absorption
spectra. Some of the fine structure and hyperfine structure will be discussed after the treatment of spin
or as applications of perturbation theory.

5.3 Appendix: Generalized Laguerre polynomials

For the solution of a dimensionless equation such as that for the Hydrogen atom we can turn to an
algebraic manipulation program or a mathematical handbook. The solutions of the equation

y′′ + g0(x) y = 0 with g0(x) =

[
2p+ a+ 1

2x
+

1− a2

4x2
− 1

4

]

, (151)
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are given by
y(x) = e−x/2 x(a+1)/2 Lap(x). (152)

where Lap are polynomials of degree p. They are normalized as

∫ ∞

0

dx xa+1 e−x
[
Lap(x)

]2
= (2p+ a+ 1)

(p+ a)!

p!
, (153)

and also satisfy the differential equation

[

x
d2

dx2
+ (a+ 1− x) d

dx
+ p

]

Lap(x) = 0. (154)

Note that depending on books, different conventions are around, differing in the indices of the polynomials,
the normalization, etc. Some useful properties are

Lp(x) ≡ L0
p(x) =

ex

p!

dp

dxp
[
xp e−x

]
=

1

p!

(
d

dx
− 1

)p

xp, (155)

Lap(x) = (−)a
da

dxa
[Lp+a(x)] . (156)

Some general expressions are
La0(x) = 1, La1(x) = 1 + a− x.

Some recursion relations are

(p+ 1)Lap+1(x) = (2p+ a+ 1− x)Lap(x) − (p+ a)Lap−1(x), (157)

xLa+1
p (x) = (x− p)Lap(x) + (p+ a)Lap−1(x), (158)

Lap(x) = La−1
p (x) + Lap−1(x). (159)

Some explicit polynomials are

L0(x) = 1,

L1(x) = 1− x,

L2(x) = 1− 2x+
1

2
x2,

L3(x) = 1− 3x+
3

2
x2 − 1

6
x3,

L1
0(x) = 1,

L1
1 = 2

(

1− 1

2
x

)

,

L1
2(x) = 3

(

1− x+
1

6
x2

)

.

1 2 3 4
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2

The Lp(x) or LaguerreL[p,x] functions for p
= 0, 1, 2, and 3.

1 2 3 4
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-1

1

2

3

The Lap(x) or LaguerreL[p,a,x] functions for a
= 1 and p = 0, 1, and 2.
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5.4 A note on Bohr quantization

The model of Bohr of the atom imposes quantization in an ad hoc way by requiring ℓ = n ~ with n being
integer. For the electron in the atom one uses the condition that the central force to bind the electron is
provided by the Coulomb attraction,

mv2

r
=

Z e2

4πǫ0 r2
, (160)

We can solve this for classical (circular) orbits and find

E(r) =
1

2
mv2 − Z e2

4πǫ0 r
= −1

2

Z e2

4πǫ0 r
,

ℓ2(r) = m2v2r2 = Z r
me2

4πǫ0

Using the quantization condition on ℓ to eliminate v one finds

rn =
n2

Z

4πǫ0 ~
2

me2
, (161)

En =
Z2

n2

me4

32πǫ20~
2
, (162)

which turns out to give the correct (quantized) energy levels and also a good estimate of the radii. At
the classical level the Sommerfeld model of the atom even includes quantization conditions for treating
elliptical orbits.

It is interesting to observe that the Bohr quantization condition not only gives the right characteristic
size (a0) and energy (R∞) and the right power dependence on quantities like Z, but what is more
surprising also the right power behavior of the quantum numbers (n, ℓ). Note e.g. that the Bohr model
gives r ∝ n2 and (indeed) all the expectation values involving rp have a polynomial behavior in (n, ℓ) of
order 2p.

Exercises

Exercise 5.1

In this exercise the orthonormal eigenfunctions of the hamiltonian of the Hydrogen atoma are written as
|nℓm〉. Assume a particular Hydrogen atom is described by

|ψ〉 = C (2|100〉+ 3|211〉 − 4|210〉+ |21−1〉) .

Calculate the expectation values of the hamiltonian, ℓ2 and ℓz. Which values of ℓz can be measured with
what probabilities?

Exercise 5.2

(a) In general an operator, e.g. the Hamiltonian depends on some parameters (e.g. mass m, charge Z,
. . . ), denote this as H(α). Show that if φn is an eigenfunction of H , H |φn〉 = En|φn〉, one has

〈φn|
∂H

∂α
|φn〉 =

∂En
∂α

.

This is referred to as parametric parametrization. Note that not only H and En, but also |φn〉
depend on the parameters α.
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(b) Use parametric differentiation to find the expectation values 〈1/r〉nℓ and 〈p2〉nℓ in Hydrogen-like
atoms.

(c) Calculate the average velocity
√

〈v2〉nℓ and show the nonrelativistic nature of the Hydrogen atom.

Exercise 5.3

(a) Apply Bohr quantization to a gravitationally bound system. Estimate the quantum number for the
orbit of the Earth around the Sun.

(b) Apply Bohr quantization to the harmonic oscillator (potential ∝ r2, see section 6.3) and the linear
potential (V (r) = T0 r) and determine En and rn.

Exercise 5.4

Investigate the asymptotic (r →∞) behavior of the radial wave function for bound states in a potential
V (r)→ C rα with α > −2.
Show first that the asymptotic radial Schrödinger equation can be written in the following dimensionless
form

u′′(ξ) = (ξα − ǫ)u(ξ)
where ξ = r/r0 and ǫ = E/E0 with

r0 =

(
~

2

2mC

) 1
2+α

and E0 =
~

2

2mr20
.

Next consider separately the cases −2 < α < 0 and α > 0.

Exercise 5.5

As a starting point for the solution of the Hydrogen atom we can use

unℓ(ρ) = ρℓ+1 e−ρ
√

|ǫ|
nr∑

k=0

ck ρ
k.

where nr is the number of nodes.

(a) What are the (general) arguments that allow this ansatz.

(b) Insert the ansatz in the Schrödinger equation and show that ǫ = −Z/(nr + ℓ + 1)2 ≡ −Z/n2.
Furthermore you can derive recursion relations for the coefficients. Note that one coefficient should
be fixed first to calculate the others, e.g. c0 = 1. The normalization of the wave function can be
used afterwards to determine this coefficient.
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6 The harmonic oscillator

6.1 The one-dimensional harmonic oscillator

The Schrödinger equation for the harmonic oscillator in one dimension is written as
[

− ~2

2m

d2

dx2
+

1

2
mω2 x2

]

φ(x) = Eφ(x). (163)

The harmonic oscillator potential is encountered in very many applications. It is a natural approximation
for a system in equilibrium. Around the minimum of any potential function one can write

V (x) = V (xmin) +
1

2
k (x− xmin)

2 + . . . ,

and after a redefinition of the energy (shift) and the coordinates (choose xmin = 0), one has V (x) =
1
2 k x

2 ≡ 1
2 mω

2 x2.
The equation is made dimensionless by introducing ξ = αx, leading to

[

−~2α2

2m

d2

dξ2
+
mω2

2α2
ξ2
]

φ(ξ) = E φ(ξ).

To fix α one can equate
~2α2

m
=
mω2

α2
=⇒ α2 =

mω

~
,

leading to
[

−1

2
~ω

d2

dξ2
+

1

2
~ω ξ2

]

φ(ξ) = E φ(ξ).

or with ǫ ≡ E/~ω,
[

−1

2

d2

dξ2
+

1

2
ξ2 − ǫ

]

φ(ξ) = 0 (164)

One can now turn to a mathematics handbook (see appendix below). Actually one also can find the
solutions starting from the lowest one. It is easy to check that

φ0(ξ) = e−ξ
2/2, (165)

is a solution with ǫ0 = 1/2. Since the function has no nodes it must be the lowest one. Using the fact
that (

− d2

dξ2
+ ξ2 − 2 ǫ

)(
d

dξ
− ξ
)

φ−
(
d

dξ
− ξ
)(

− d2

dξ2
+ ξ2 − 2 ǫ

)

φ = 2

(
d

dξ
− ξ
)

φ,

and applying it to solution φn one sees that
(

− d2

dξ2
+ ξ2 − 2 ǫn

)(
d

dξ
− ξ
)

φn = 2

(
d

dξ
− ξ
)

φn,

which implies a new solution (next one in energy since it has one more node)

φn+1(x) =

(
d

dξ
− ξ
)

φn with ǫn+1 = ǫn + 1.

Starting with the lowest one has

φn(ξ) =

(

ξ − d

dξ

)n

e−ξ
2/2 ≡ Hn(ξ) e−ξ

2/2, (166)

with ǫn = (n+ 1
2 ). Note that the parity of these solutions is φn(−ξ) = (−)n φn(ξ).
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6.2 Appendix: Hermite polynomials

The problem of the one-dimensional harmonic oscillator in essence reduces to the differential equation

y′′ + g0(x) y = 0 with g0(x) = 2n+ 1− x2 (167)

for which the solutions are given by

y(x) = e−x
2/2Hn(x). (168)

where Hn are polynomials of degree n. They are normalized as
∫ ∞

−∞
dx e−x

2

[Hn(x)]2 = 2n n!
√
π, (169)

and satisfy the differential equation

[
d2

dx2
− 2x

d

dx
+ 2n

]

Hn(x) = 0. (170)

Some useful properties are

Hn(x) = (−)n ex
2 dn

dxn
e−x

2

, (171)

xHn(x) =
1

2
Hn+1(x) + nHn−1(x), (172)

d

dx
Hn(x) = 2nHn−1(x). (173)

Some explicit polynomials are

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x.

-1 -0.5 0.5 1

-4

-2

2

4

Plots of the Hn(x) or HermiteH[n,x] func-
tions for n = 0, 1, 2, and 3.

6.3 Three-dimensional harmonic oscillator

Because in the hamiltonian

H = − ~2

2m
∇

2 +
1

2
mω2 r2, (174)

now both the kinetic term and the potential are separable, one sees that the hamiltonian of the 3-
dimensional oscillator is the sum of three 1-dimensional oscillators. Thus the solution is given by

φnxnynz
(r) = φnx

(x)φny
(y)φnz

(z), (175)

with energy

Enxnynz
=

(

nx + ny + nz +
3

2

)

~ω. (176)
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The labels are integers and simple combinatorics show that a particular energy with N = nx + ny + nz
is 1

2 (N + 1)(N + 2)-fold degerate.

E/h

3/2

5/2

7/2

9/2

1/2 n=0

n=1

n=2

n=3

E/h

N=n  + n  + n

(1x)
3/2

5/2

7/2

9/2

(3x)

(6x) N=2

N=1

N=0

ω ω

x y z

E/h

l = 0 l = 1 l = 2

0s(1x)

(3x)

(5x)(1x)

3/2

5/2

7/2

9/2

2s 2d

1p

ω

The figures show the one-dimensional harmonic oscillator with energies E = (n + 1/2)~ω (left), the
degeneracy of the first three levels of the 3-dimensional harmonic oscillator (middle) and the assignment
of orbital angular momentum (right).

Questions and exercises

1. For the harmonic oscillator one can also use the angular momentum quantum number ℓ. Why?
Argue that for the three-dimensional harmonic oscillator the level N = 1 has ℓ = 1. What are the
possibilities for ℓ for the N = 2 levels.

2. How does one show what are the ℓ values for given N -levels for the three-dimensional harmonic
oscillator.

Exercise 6.1

Give the eigenstates and eigenvalues of the ’half’ oscillator with the potential

V (x) =

{
∞ x < 0
1
2mω

2x2 x ≥ 0
.

[Hint: use the results of the full oscillator.]

Exercise 6.2

The potential of the one-dimensional harmonic oscillator is given by

V (x) =
1

2
mω2x2.

(a) Show that H = p2/(2m) + V (x) expressed in terms of ξ = x
√

mω
~

is given by

H =
1

2
~ω

[

− d2

dξ2
+ ξ2

]

. (177)

Define the operators

a =
1√
2

[

ξ +
∂

∂ξ

]

and a† =
1√
2

[

ξ − ∂

∂ξ

]

.

(b) Determine the operators a†a and aa†.
[Hint: use a test function (e.g. φ) to calculate a†a φ.]
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(c) Show that H can be written as

H = ~ω
[
a†a+ 1/2

]
= ~ω

[
aa† − 1/2

]
.

(d) Show that if Hφ = Eφ (i.e. φ is a solution of the Schrödinger equation), it follows that

H(a†φ) = (E + ~ω)(a†φ) and H(aφ) = (E − ~ω)(aφ),

i.e. both aφ and a†φ are solutions of the Schrödinger equation as well, with shifted energies.
[Hint: use the expression for H under (c).]

(e) The solution with the lowest energy (φ0) satisfies aφ0 = 0. Show that

φ0(ξ) = Ne−ξ
2/2.

(f) Determine the energy of the (ground) state φ0.

(g) Give the general solution φn (up to a constant; don’t worry about the normalization) and give the
corresponding energy En.
[Hint: use the (creation) operator a†.]
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7 Momentum operator and plane waves

7.1 Plane waves

Plane wave states are the eigenstates of the hermitean operator p̂

p̂φ(r) = −i~ ∇φ(r). (178)

The eigenstates of the momentum operator are

φk(r) =
√
ρ exp (ik · r) , (179)

labeled by the vector k, referred to as wave number. The actual eigenvalue is p = ~k. We have left ρ
(interpreted as density) as an arbitrary normalization. Using the ket-notation one usually uses just |k〉
rather than |φk〉.

A convenient regularization is obtained by using box normalization, in which case one finds that for
one particle in a box with sides L, i.e. 0 ≤ x ≤ L, 0 ≤ y ≤ L and 0 ≤ z ≤ L (i.e. density ρ = 1/L3), the
wave function is found after imposing periodic boundary conditions4,

φk(r) =
1

L3/2
exp(ik · r), (180)

with k = (2π/L) (nx, ny, nz), showing a density of states in k-space given by (L/2π)3, which for instance
means that ’counting’ goes like

∑

(nx,ny,nz)

=

(
L

2π

)3 ∑

(kx,ky,kz)

−→
∫

d3k

(2π)3 ρ
=

∫
d3p

(2π ~)3 ρ
. (181)

We have the following orthogonality properties for plane waves (given in discrete and in continuous form):

〈k|k′〉 = δn,n′ −→ 〈k|k′〉 =

∫

d3r φ∗k(r)φk′ (r) = ρ (2π)3 δ3(k − k′). (182)

The plane waves form a complete set of states, hence we know that

φ(r) =
∑

k

φk(r) ck =

∫
d3k

(2π)3 ρ

√
ρ exp(ik · r) φ̃(k), (183)

where

φ̃(k) =

∫

d3r
√
ρ exp(−ik · r)φ(r) (184)

The quantity φ̃(k) is the Fourier transform of φ(r).
Common choices for the normalization of plane waves are ρ = 1 or ρ = (2π)−3 (non-relativistic) and

ρ = E/M or ρ = 2E (relativistic).

7.2 Flux associated with plane waves

The flux is obtained from the wave function via the expression for the current,

j(r, t) =
~

2im
(φ∗ ∇φ− (∇φ)∗φ) = ρ

p

m
= ρv. (185)

The flux corresponding to a plane wave thus is along p and its magnitude is ρ v (Exercise 2.3).

4Periodic boundary conditions must be imposed to avoid getting an overcomplete set of states. For instance, hermiticity
of the momentum operator requires that φ∗φ|L

0
= 0
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7.3 Appendix: Dirac delta function

The Dirac delta-function is in fact a distribution (mapping functions into numbers), defined via

∫

dx f(x) δ(x) = f(0), (186)

or
∫
dx f(x) δ(x − a) = f(a). It can be considered as the limit of a peaked function, e.g.

δ(x) = lim
ǫ→0

φǫ(x), (187)

where φǫ(x) = 0 if |x| > ǫ/2 and φǫ(x) = ǫ if |x| ≤ ǫ/2. Other examples are

δ(x) = lim
Λ→∞

Λ√
π
e−Λ2 x2

, (188)

δ(x) = lim
Λ→∞

sin Λx

π x
= lim

Λ→∞

∫ Λ

−Λ

dk

2π
ei kx (189)

Some properties are

δ(−x) = δ(x),

δ(ax) =
1

|a| δ(x),

x δ(x) = 0,
∫

dx f(x) δ(x − a) = f(a),

d

dx
θ(x) = δ(x),

where θ(x) is the Heaviside function, θ(x) = 0 for x < 0 and θ(x) = 1 for x ≥ 0. Note that Mathematica
can work with this function, e.g. to define a square well potential with depth −V0 using the expression
V (x) = −V0 θ(

1
2a+ x) θ(1

2a− x).

7.4 Wave packets

Suppose that we want to know what happens with a system that has a particular wave function ψ(r, 0) =
φ(r) at time zero, at which all interactions are switched off. The solutions of the hamiltonian in case of
absence of any interaction (V = 0), are the plane waves (momentum eigenstates). Thus what one has to
do is determine the amplitudes of the plane waves, which means calculating φ̃(k) and then one simply
multiply them by the time-dependent plane wave solutions. So given the above boundary condition one
has after switching off interactions

ψ(r, t) =

∫
d3k

(2π)3
φ̃(k) exp(ik · r − i ωkt) (190)

with ωk = ~k2/2m (We take ρ = 1). The absolute value squared |φ̃(k)|2/(2π~)3 is the probability of the
outcome of a momentum measurement with outcome p = ~k.

Next, we give some examples of calculations of the Fourier transform. Starting with a one-dimensional
example, the harmonic oscillator one has (we take ρ = 1)

φ(x) =

(
α2

π

)1/4

exp

(

−1

2
α2x2

)

⇐⇒ φ̃(k) =

(
1

πα2

)1/4

exp

(

−1

2

k2

α2

)

, (191)
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with α =
√

mω/~. The calculation (omitting first the normalization) proceeds via

φ̃(k) ∝
∫

dx e−i kx exp

(

−1

2
α2x2

)

∝
∫

dx exp

(

−1

2
α2

(

x+ 2i
k

α2

)2

− 1

2

k2

α2

)

∝ exp

(

−1

2

k2

α2

)

,

As a three-dimensional example we have

φ(r) =

√
µ

2π

e−µr

r
⇐⇒ φ̃(k) =

√
8π µ

k2 + µ2
=

√
8π

µ3

1

(1 + k2/µ2)
. (192)

Omitting the normalization factor the Fourier transform is found as follows

φ̃(k) ∝
∫

d3r exp(−ik · r)
e−µr

r
= 2π

∫ ∞

0

r2 dr

∫ 1

−1

dX ei kr X
e−µr

r

=
2π

i k

∫ ∞

0

dr
(

e(i k−µ)r − e(−i k−µ)r
)

=
2π

i k

(
1

i k − µ −
1

−i k − µ

)

=
4π

k2 + µ2
. (193)

The result for the normalized wave function in k-space is found after multiplying with the normalization
factor.

Exercises

Exercise 7.1

(a) Show that the operator px = −i~ d/dx is hermitean, i.e.

∫ ∞

−∞
dx φ∗(x)

(

−i~ d

dx
φ

)

=

∫ ∞

−∞
dx

(

i~
d

dx
φ∗
)

φ(x).

(b) Show that for wave functions in a box (0 ≤ x ≤ L) one must impose boundary conditions on the
wave functions to assure that px is hermitean. Show that φ(0) = ±φ(L) are sufficient conditions.

Exercise 7.2

Use the result of section 7.4,

φ(r) =
e−µr

r
⇒ φ̃(k) =

4π

k2 + µ2
.

to find the Fourier transform φ̃(k) for the Hydrogen ground state wave function,

φ(r) =

(
1

π a3
0

)1/2

e−r/a0 .

[Hint: Use that e−µr = − d
dµ (e−µr/r).]
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8 Dirac notation

8.1 Space of states = ket-space (Hilbert space)

• Quantum mechanical states are denoted |u〉 and form a linear vector space over the complex numbers
(C), the Hilbert space H = {|u〉},

|u1〉 ∈H

|u2〉 ∈H

c1, c2 ∈ C






−→ c1|u1〉+ c2|u2〉 ∈H (194)

• Given a basis {|u1〉, . . . , |u1〉} for an N -dimensional Hilbert-space (N can be infinite!) consisting of
a collection linearly independent kets, we can express every ket in this basis (completeness),

|u〉 ∈H −→ |u〉 =
N∑

n=1

cn|un〉. (195)

8.2 Scalar product and the (dual) bra-space

For elements |u〉, |v〉 ∈H we can construct the complex number 〈u|v〉 ∈ C, for which

• 〈u|v〉∗ = 〈v|u〉,
• If |u〉 = c1|u1〉+ c2|u2〉 then 〈v|u〉 = c1〈v|u1〉+ c2〈v|u2〉.

Note that this implies

〈u|v〉 = 〈v|u〉∗ = c∗1〈v|u1〉∗ + c∗2〈v|u2〉∗

= c∗1〈u1|v〉+ c∗2〈u2|v〉.

• 〈u|u〉 ≥ 0.

Beside the ket-space we can also introduce the dual bra-space, H
∗ = {〈u|}, which is anti-linear meaning

that
|u〉 = c1|u1〉+ c2|u2〉 ←→ 〈u| = c∗1〈u1|+ c∗2〈u2|. (196)

The scalar product is constructed from a bra-vector and a ket-vector (”bra(c)ket”).

8.3 Orthonormal basis

A state |u〉 is normalized when 〈u|u〉 = 1. Two states |u〉 and |v〉 are orthogonal when 〈u|v〉 = 0. In a
linear vector space an orthonormal basis can be constructed, in which every state can be expanded,

• Basis {|u1〉, |u2〉, . . .} with 〈um|un〉 = δmn.

• If |u〉 =∑n cn|un〉, then cn = 〈un|u〉 (proof) and we can write

|u〉 =
∑

n

|un〉 〈un|u〉
︸ ︷︷ ︸

cn

=






c1
c2
...




 . (197)

• Note that
〈u|u〉 = 1 ←→

∑

n

|cn|2 = 1, (198)

hence the name probability amplitude for cn.

• The collection {〈u1|, 〈u2|, . . .} forms an orthonormal basis for the bra-space.
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8.4 Operators

• An operator A acts in the Hilbert-space H , i.e. |v〉 = A|u〉 = |Au〉 ∈H .

• If |u〉 = c1|u1〉+ c2|u2〉 then A|u〉 = c1A|u1〉+ c2A|u2〉 (A is linear).

• The matrix element of A in states |u〉 and |v〉 is given by 〈u|A|v〉. If |u〉 = |v〉 we call this expectation
value of A, if |u〉 6= |v〉 we call this transition matrix element.

• The unit operator acts as I|u〉 = |u〉 and can with the help of a complete orthornormal basis {|un〉}
be written as

I =
∑

n

|un〉〈un|, (199)

directly following from Eq. 197 and known as completeness relation.

• If |u〉 =
∑

n cn|un〉 =
∑

n |un〉〈un|u〉 then we can write for A|u〉

A|u〉 =
∑

n

A|un〉〈un|u〉

=
∑

m,n

|um〉 〈um|A|un〉
︸ ︷︷ ︸

Amn

〈un|u〉
︸ ︷︷ ︸

cn

=
∑

m

|um〉
(
∑

n

Amncn

)

=






A11 A12 . . .
A21 A22 . . .
...

...











c1
c2
...




 (200)

and the matrix element of A is given by

〈u|A|u〉 =
∑

m,n

〈u|um〉
︸ ︷︷ ︸

c∗m

〈um|A|un〉
︸ ︷︷ ︸

Amn

〈un|u〉
︸ ︷︷ ︸

cn

= (c∗1 c
∗
2 . . .)






A11 A12 . . .
A21 A22 . . .
...

...











c1
c2
...




 (201)

8.5 Adjoint operator

The adjoint operator A† is defined by giving its matrix elements in terms of those of the operator A,

〈u|A†|v〉 ≡ 〈v|A|u〉∗. (202)

We note that de bra-state 〈Au| = 〈u|A†. This is proven in the following way: for every |v〉 is 〈Au|v〉 =
〈v|Au〉∗ = 〈v|A|u〉∗ = 〈u|A†|v〉. In matrix language one this has that A† = AT∗.

8.6 Hermitean operators

• Definition: An operator A is hermitean when 〈u|Au〉 = 〈Au|u〉. By applying this to a state c1|u〉+
c2|v〉 with arbitrary coefficients one sees that this is equivalent with

〈u|Av〉 = 〈Au|v〉 ⇔ 〈u|A|v〉 = 〈u|A†|v〉 ⇔ A = A†,

i.e. A is self-adjoint.
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• The consequences of A = A† for transition matrix elements and expectation values are

〈u|A|v〉 = 〈u|A†|v〉 = 〈v|A|u〉∗ (203)

〈u|A|u〉 = 〈u|A|u〉∗ → real expectation values (204)

• For the eigenvalues (an) and eigenstates (|n〉), of a hermitean operator, A|n〉 = an|n〉 we have

– 〈n|A|n〉 = an are the (real) eigenvalues.

– Eigenstates corresponding with nondegenerate eigenvalues are orthogonal,

A|n〉 = an|n〉
A|m〉 = am|m〉
am 6= an






−→ 〈m|n〉 = 0.

If eigenvalues are degenerate, we can construct orthogonal eigenstates (possibly by using other,
commuting, operators). Eigenstates can be normalized, 〈n|n〉 = 1.

– Thus, eigenstates form an orthonormal basis, 〈m|n〉 = δmn. Using this basis A is diagonal,

A =
∑

n

|n〉an〈n| =






a1 0 . . .
0 a2 . . .
...

...
. . .




 (205)

• The expectation value of a hermitean operator can be written as

〈u|A|u〉 =
∑

n

〈u|n〉
︸ ︷︷ ︸

c∗n

an 〈n|u〉
︸ ︷︷ ︸

cn

=
∑

n

an |cn|2. (206)

This coincides with the interpretation of |cn|2 as the probability to find the state |n〉 and obtain
the result an in a measurement.

8.7 Unitary operators

• Definition: An operator U is unitary when U−1 = U †, or UU † = U †U = I.

• It is easy to prove that a unitary operator conserves scalar products,

〈Uv|Uw〉 = 〈v|w〉 (207)

With a unitary matrix we can transform an orthonormal basis {|un〉} in another such basis {U |un〉}.

Exercises

Exercise 8.1

In many applications we will encounter the Pauli matrices being (hermitean) operators in the 2-dimensional
space of complex spinors,

σx =

(
0 1
1 0

)

; σy =

(
0 −i
i 0

)

; σz =

(
1 0
0 −1

)

.

Find the eigenvalues and eigenvectors of these operators.

Exercise 8.2

Using the definition of adjoint operator, show that a unitary operator conserves scalar products (Eq. 207)
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9 Representations of states

9.1 Coordinate-representation

With the Dirac notation at hand, we can formalize some issues on wave mechanics. We have used |ψ〉
and ψ(r) more or less interchangeable. To formalize we simply write down the eigenvalue equation for
the hermitean operator operator r̂, denoting the eigenstates as |r〉 and the eigenvalues as r. Thus

r̂|r〉 = r|r〉, (208)

We have the following properties:

(i) Orthogonality: 〈r|r′〉 = δ3(r − r′) (See section 7.3 for the definition)

(ii) The value ψ(r) ∈ C is simply the coefficient in the expansion |ψ〉 =
∫

d 3r |r〉 〈r|ψ〉
︸ ︷︷ ︸

ψ(r)

.

(iii) The identity: I =

∫

d 3r |r〉〈r|

(iv) The operator expansion: r̂ =

∫

d 3r |r〉r〈r|

We of course should check that the above is consistent and agrees with the wave formulation of quantum
mechanics. The most important check is to calculate the behavior of the function r̂ψ. Using property
(ii) and the definition 208 in the form 〈r|r̂ = r〈r| (hermiticity) we get

r̂ψ(r) = 〈r|r̂|ψ〉 = r 〈r|ψ〉 = rψ(r),

so indeed the operator does what we already saw before. We can check other consistency requirements,

• Normalization of ψ(r): 〈ψ|ψ〉 =
∫
d 3r 〈ψ|r〉

︸ ︷︷ ︸

ψ∗(r)

〈r|ψ〉
︸ ︷︷ ︸

ψ(r)

=
∫
d 3r |ψ(r)|2 = 1

• Scalar product of two states: 〈ψ|φ〉 =
∫
d 3r 〈ψ|r〉

︸ ︷︷ ︸

ψ∗(r)

〈r|φ〉
︸ ︷︷ ︸

φ(r)

=
∫
d 3r ψ∗(r)φ(r)

• Expectation value: 〈ψ|r̂|ψ〉 =
∫
d 3r 〈ψ|r〉r〈r|ψ〉 =

∫
d 3r r |ψ(r)|2

Knowing that V (r̂)ψ(r) = V (r)ψ(r) and p̂ψ(r) = −i~∇ψ(r) we have among others

V (r̂) =

∫

d 3r |r〉V (r)〈r|, (209)

p̂ =

∫

d 3r |r〉 (−i~∇) 〈r|. (210)

9.2 Momentum-representation

Consider the hermitean operator p̂ and denote the eigenstates as |p〉 and the eigenvalues as p. Thus

p̂|p〉 = p|p〉. (211)

We already have seen that in the coordinate representation for |p〉:

p̂φp(r) = pφp(r) −→ φp(r)
︸ ︷︷ ︸

〈r|p〉

=
√
ρ exp

(
i

~
p · r

)

(212)
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(This defines ρ). We then have the following properties:

(i) Orthogonality: 〈p|p′〉 = ρ (2π~)3 δ3(p− p′)

(ii) Expansion of state: |ψ〉 =
∫

d 3p

(2π~)3 ρ
|p〉 〈p|ψ〉
︸ ︷︷ ︸

ψ̃(p)

(iii) Identity: I =

∫
d 3p

(2π~)3 ρ
|p〉〈p|

(iv) Operator expansion: p̂ =

∫
d 3p

(2π~)3 ρ
|p〉p〈p|

Switching of representation is achieved via,

ψ(r) = 〈r|ψ〉 =

∫
d 3p

(2π~)3 ρ
〈r|p〉〈p|ψ〉 =

∫
d 3p

(2π~)3 ρ

√
ρ exp

(
i

~
p · r

)

ψ̃(p), (213)

ψ̃(p) = 〈p|ψ〉 =

∫

d 3r 〈p|r〉〈r|ψ〉 =
∫

d 3r
√
ρ exp

(

− i
~

p · r
)

ψ(r), (214)

as we have seen before being Fourier transforming. Choices for the normalization of plane waves are
ρ = 1 or ρ = (2π~)−3 (non-relativistic) or ρ = 2E (relativistic).

For instance consistency of Eq. 212 and (iv) can be checked,

〈r|p̂|ψ〉 =

∫
d 3p

(2π~)3 ρ
〈r|p〉p〈p|ψ〉 =

∫
d 3p

(2π~)3 ρ
p
√
ρ exp

(
i

~
p · r

)

ψ̃(p)

= −i~∇

∫
d 3p

(2π~)3 ρ

√
ρ exp

(
i

~
p · r

)

ψ̃(p) = −i~∇ψ(r) (215)

and finally we note that the expectation value of the momentum squared can be calculated from ψ(r) or
from ψ̃(k),

〈p2〉 =
∫

d3r ψ∗(r)
(
−~

2
∇

2
)
ψ(r) =

∫
d3k

(2π)3 ρ
~

2k2 |ψ̃(k)|2. (216)

Exercises

Exercise 9.1

Use the momentum wave function of the Hydrogen atom (outcome of Exercise 7.2),

φ̃(k) = 8 π1/2 a
3/2
0

1

(1 + k2 a2
0)

2
.

to find 〈p2〉 for the Hydrogen ground state.
Useful definite integrals are

∫ ∞

0

x2 dx

(1 + x2)4
=

∫ ∞

0

x4 dx

(1 + x2)4
=

π

32

Exercise 9.2

Show that 〈p|r̂ψ〉 = i~∇pψ̃(p), which implies that in momentum representation

r̂ =

∫
d3p

(2π~)3
|p〉(i~∇p)〈p|.
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10 Several observables and commutation relations

10.1 Compatibility of observables

Consider well-known observables like r, p or ℓ = r × p. Classically these are (possibly time-dependent)
properties of a system. Quantummechanically they are operators that constitute ”abstract” measuring
devices, with a spectrum of possible outcomes as we have seen in the Stern-Gerlach experiment.

We will now consider what happens when several measurements are performed, one after the other.
We denote this as

state→ measurement → eigenvalue→ state.

As an example take a particle with ℓz = ~ described by a wave function of the form ∼ (x+ i y) f(r)/
√

2.
We have schematically after measurements of ℓz followed by a measurement of ℓx:

x+ i y√
2
→ ℓ̂z →







ℓz = 1 100% → x+i y√
2
→ ℓ̂x →







ℓx = 1 25% → (y + i z)/
√

2
ℓx = 0 50% → x

ℓx = −1 25% → (y − i z)/
√

2
ℓz = 0 0%

ℓz = −1 0%

while in the other order one gets

x+ i y√
2
→ ℓ̂x →







ℓx = 1 25% → y+i z√
2
→ ℓ̂z →







ℓz = 1 25% → (x+ i y)/
√

2
ℓz = 0 50% → z

ℓz = −1 25% → (x− i y)/
√

2

ℓx = 0 50% → x → ℓ̂z →







ℓz = 1 50% → (x+ i y)/
√

2
ℓz = 0 0% → z

ℓz = −1 50% → (x− i y)/
√

2

ℓx = −1 25% → y−i z√
2
→ ℓ̂z →







ℓz = 1 25% → (x+ i y)/
√

2
ℓz = 0 50% → z

ℓz = −1 25% → (x− i y)/
√

2

The resulting distributions after the measurements thus are:

measurements probabilities measurements probabilities
ℓz ℓx quantum classical ℓx ℓz quantum classical
1 1 1/4 0 1 1 1/16 0
1 0 1/2 1 0 1 1/4 1
1 -1 1/4 0 -1 1 1/16 0
0 1 0 0 1 0 1/8 0
0 0 0 0 0 0 0 0
0 -1 0 0 -1 0 1/8 0
-1 1 0 0 1 -1 1/16 0
-1 0 0 0 0 -1 1/4 0
-1 -1 0 0 -1 -1 1/16 0

The conclusion is that the order of measuremements matters for ℓx and ℓz. Such measurements are called
noncompatible. If one does the same with measurements of momentum one finds that the order doesn’t
matter:

exp(ip · r/~)→ p̂x → px → exp(ip · r/~)→ p̂y → py → exp(ip · r/~)

exp(ip · r/~)→ p̂y → py → exp(ip · r/~)→ p̂x → px → exp(ip · r/~)
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The measurements are compatible.

10.2 Compatibility of operators and commutators

Definition: Two operators A and B are compatible if they have a common (complete)
orthonormal set of eigenfunctions.

For compatible operators we know after a measurement of A followed by a measurement of B both
eigenvalues and we can confirm this by performing again a measurement of A. Suppose we have a complete
common set ψabk, labeled by the eigenvalues of A, B and possibly an index k in case of degeneracy. Thus
Aψabk = aψabk and B ψabk = b ψabk. Suppose we have an arbitrary state ψ =

∑

abk cabk ψabk, then we
see that measurements of A and B or those in reverse order yield similar results,

ψ → A → a→
∑

b,k

cabk ψabk → B → b→
∑

k

cabk ψabk,

ψ → B → b→
∑

a,k

cabk ψabk → A → a→
∑

k

cabk ψabk.

Next consider the property of commutativity.

Definition: The commutator of two operators is defined as [A,B] = AB −BA.
Properties: [A,B] = −[B,A]

[A,B + C] = [A,B] + [A,C] (linear),
[A,BC] = [A,B]C +B[A,C],
[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (Jacobi identity),
[f(A), A] = 0.

These properties are simple to prove, e.g. [A,BC] ≡ ABC − BCA = ABC − BAC + BAC − BCA =
[A,B]C − B[A,C]. The last property follows because a function of operators is defined via a Taylor
expansion in terms of powers ofA, f(A) = c0 1+c1A+c2A

2+. . . and the fact that [An, A] = AnA−AAn =
0.

The most important nonvanishing commutator is the one between position and momentum,

[ri, rj ] = 0, (217)

[pi, pj] = 0, (218)

[ri, pj ] = i~ δij. (219)

Let us proof the important relation Eq. 219. We have

x̂ p̂x ψ(x) = x̂

(

−i~ ∂

∂x
ψ

)

= −i~x ∂

∂x
ψ

p̂x x̂ ψ(x) = −i~ ∂

∂x
(xψ) = −i~x ∂

∂x
ψ − i~ψ

Thus the difference is
[x̂, p̂x]ψ(x) = (x̂ p̂x − p̂x x̂)ψ(x) = i~ψ(x).
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This is valid for any function ψ, thus [x̂, p̂x] = 1. Other examples of commutators5 are

[ℓi, ℓj ] = i~ ǫijk ℓk, (220)

[ℓ2, ℓi] = 0, (221)

[ℓi, rj ] = i~ ǫijk rk, (222)

[ℓi, pj ] = i~ ǫijk pk, (223)

[ℓi, r
2] = 0, (224)

[ℓi,p
2] = 0, (225)

[ℓi,p · r] = 0, (226)

[pi, r
2] = −2 i~ ri, (227)

[ri,p
2] = 2 i~ pi, (228)

[pi, V (r)] = −i~∇iV. (229)

Above we have given a proof using the explicit definitions of the operators. One can also use the properties,
e.g. to proof Eq. 226. One has [ℓz, xpx] = [ℓz, x]px+x[ℓz, px] = i~(ypx+xpy), [ℓz, ypy] = i~(−xpx− ypy),
and [ℓz, zpz] = 0 using the third of the properties given above. The linearity then gives the result.
The following theorem connects commutativity and compatibility:

Theorem: A and B are compatible ⇐⇒ [A,B] = 0

Proof (⇒): There exists a complete common set ψn of eigenfunctions for which one thus has
[A,B]ψn = (AB −BA)ψn = (anbn − bnan)ψn = 0.
Proof (⇐): Suppose ψa eigenfunction of A. Then A(Bψa) = ABψa = BAψa = B aψa =
aBψa. Thus Bψa is also an eigenfunction of A. Then one can distinguish
(i) If a is nondegenerate, then Bψa ∝ ψa, say Bψa = bψa which implies that ψa is also an
eigenfunction of B.
(ii) If a is degenerate (degeneracy s), consider that part of the Hilbert space that is spanned
by the functions ψar (r = 1, . . . , s). For a given ψap (eigenfunction of A) Bψap also can be
written in terms of the ψar. Thus we have an hermitean operator B in the subspace of the
functions ψar. In this subspace B can be diagonalized, and we can use the eigenvalues b1, . . . bs
as second label, which leads to a common set of eigenfunctions.

We have seen the case of degeneracy for the spherical harmonics. The operators ℓ2 and ℓz commute and
the Y ℓm are the common set of eigenfunctions.

10.3 Constants of motion

Definition: A hermitean operator A is a constant of motion if
(i) A is compatible with the Hamiltonian, i.e. [A,H ] = 0.
(ii) A does not have explicit time dependence, i.e. ∂A

∂t = 0, e.g. A = A(r,p, ℓ).

Examples of constants of motion, compatible with the hamiltonian and thus providing eigenvalues
that can be used to label eigenfunctions, are:

• The hamiltonian for a free particle:

H =
p2

2M
Compatible set: H,p

The plane waves uk(r) = exp(ik · r) form a common set of eigenfunctions.

5The Levi-Civita tensor ǫijk = 0 if any two indices are equal, while ǫijk = ±1 if ijk is an even/odd permutation of 123.



Several observables and commutation relations 54

• The hamiltonian with a central potential:

H =
p2

2M
+ V (|r|) Compatible set: H, ℓ2, ℓz

This allows writing the eigenfunctions of this hamiltonian as ψnℓm = (u(r)/r)Y ℓ
m(θ, ϕ).

• The hamiltonian with a potential depending only on z:

H =
p2

2M
+ V (z) Compatible set: H, ℓz or H, px, py

This shows that eigenfunctions can be written as φ(z) exp(i kxx+ i kyy) or as φ(r, θ) exp(imϕ).

Theorem: A is a constant of motion ⇒ d
dt 〈A〉 = 0.

Proof:

d

dt
〈A〉 =

d

dt

∫

d3r ψ∗(r, t)Aψ(r, t) =

∫

d3r

[
∂ψ∗

∂t
Aψ + ψ∗A

∂ψ

∂t
+ ψ∗ ∂A

∂t
ψ

]

=

∫

d3r

[(
1

i~
Hψ

)∗
Aψ + ψ∗A

1

i~
Hψ

]

=
1

i~

∫

d3r [−ψ∗HAψ + ψ∗AH ψ] = 0

Note that the general relation that is actual written down in this proof is

i~
d

dt
〈A〉 = i~ 〈 ∂

∂t
A〉+ 〈[A,H ]〉. (230)

Examples of this relation are the Ehrenfest relations

d

dt
〈p〉 = 1

i~
〈[p, H ]〉 = 1

i~
〈[p, V (r)]〉 = 〈−∇V (r)〉, (231)

d

dt
〈r〉 = 1

i~
〈[r, H ]〉 = 1

i~

1

2m
〈[r,p2]〉 = 〈p〉

m
. (232)

Exercises

Exercise 10.1

(a) Calculate for the position and momentum operators, x, y and py = −i~ ∂
∂y the commutators

[y, py] en [x, py].

(b) Determine from the known commutation relations for [ri, pj ] (i and j are components of r and p)
the commutation relations for the angular momentum operators ℓ = r × p,

[ℓz, x], [ℓy, pz], [ℓy, ℓz].

Exercise 10.2

In this exercise we use

〈ψ |A|ψ〉 =
∫

d3r ψ∗(r, t)Aψ(r, t) .

Given the hamiltonian

H =
p 2

2m
+ V (r) .
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(a) Show that for an eigenstate ψn(r, t) of H ,

d

dt
〈ψn |r · p |ψn〉 = 0.

(b) Derive from the commutation relations and with the help of the answer in (a) the virial theorem

〈ψn |T |ψn〉 =
1

2
〈ψn |r · (∇V (r))|ψn〉

in which T is the operator for the kinetic energy part.

(c) Consider a 3-dimensional harmonic oscillator. Show that if the system is in an eigenstate of H that
de expectation value of the kinetic energy equals the expectation value of the potential energy.
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11 The uncertainty principle

11.1 The uncertainty relation for noncompatible observables

For measurements of observables A and B (operators) we have

[A,B] = 0 ⇒ A and B have common set of eigenstates.
For these common eigenstates one has ∆A = ∆B = 0 and hence ∆A∆B = 0.

[A,B] 6= 0 ⇒ A and B are not simultaneously measurable.
One has ∆A∆B ≥ 1

2 |〈 [A,B] 〉|, known as the uncertainty relation.

The proof of the uncertainty relation is in essence a triangle relation for inner products.
Define for two hermitean operators A and B, the (also hermitean) operators α = A − 〈A〉
and β = B − 〈B〉. We have [α, β] = [A,B]. Using positivity for any state, in particular
|(α+ iλ β)ψ〉 with λ arbitrary, one has

0 ≤ 〈(α + iλ β)ψ|(α + iλ β)ψ〉 = 〈ψ|(α − iλ β)(α+ iλ β)|ψ〉 = 〈α2〉+ λ2 〈β2〉+ λ 〈 i[α, β] 〉
︸ ︷︷ ︸

〈γ〉

.

Since i [α, β] is a hermitean operator (Exercise 3.4, Mandl), 〈γ〉 is real. Positivity of the
quadratic equation 〈α2〉 + λ2 〈β2〉 + λ 〈γ〉 ≥ 0 for all λ gives 4 〈α2〉 〈β2〉 ≥ 〈γ〉2. Taking the
square root then gives the desired result.

The most well-known example of the uncertainty relation is the one originating from the noncompatibility
of positionn and momentum operator, specifically from [x, px] = i~ one gets

∆x∆px ≥
1

2
~. (233)

An example is the Gaussian wave packet that we saw before,

ψ(x) = N exp

(

−1

2
α2x2

)

with N =

(
α2

π

)1/4

.

To calculate ∆x we need

〈x〉 =

∫ ∞

−∞
dx ψ∗(x)xψ(x) = 0

〈x2〉 =

∫ ∞

−∞
dx ψ∗(x)x2 ψ(x) = N2

∫ ∞

−∞
dx x2 exp

(
−α2x2

)

= −N
2

2α2

∫ ∞

−∞
dx x d

(
exp

(
−α2x2

))
=
N2

2α2

∫ ∞

−∞
dx d

(
exp

(
−α2x2

))
=

1

2α2
.

Thus ∆x =
√

〈(x − 〈x〉)2〉 = 1/α
√

2. The uncertainty ∆px is found using the momentum operator
−i~ d/dx or using the momentum space wave function,

ψ̃(p) = Ñ exp

(

−1

2

p2

α2~2

)

with Ñ =

(
1

πα2~2

)1/4

,

yielding

〈px〉 = 0,

〈p2
x〉 =

α2
~

2

2
,



The uncertainty principle 57

leading to ∆px = α~/
√

2. Thus for the harmonic oscillator one finds ∆x∆px = ~/2, which is in agreement
with the uncertainty relation. Actually a Gaussian wave function is the only one that reaches the equal
sign in this uncertainty relation.

The uncertainty of two noncompatible observables of course could still be zero if the expectation value
of the commutator vanishes. An example is ∆ℓx ∆ℓy for an ℓ = 0 state (s-wave).

11.2 The Heisenberg energy-time uncertainty relation

In quantum mechanics one also often refers to the energy-time uncertainty. This, however, is funda-
mentally different from the uncertainty relations discussed above, since time in quantum mechanics has
nothing to do with an operator. We have seen, however, that in cases where the energy of a system is not
fixed or known, the expectation value of operators oscillates. If two energies E1 and E2 are involved (one
could say that there is an energy uncertainty δE ∼ E1 − E2), the oscillations involve sine’s or cosines
with argument (E1 −E2)t/~. This implies that after a time δt ∼ (E1 −E2)/~ (one may argue about the
precise proportionality being 1 or π/2) the system changes its state. Thus

δE δt ≥ ~. (234)

This relation thus relates the energy dispersion to the lifetime. It will come back in many applications,
e.g. in the emission of photons in case of transitions of electrons between different levels in hydrogen. If
the lifetime of the electron in a particular state is τ , the measured energies of the photon show a shape
that has a typical energy width Γ ∼ ~/τ .

11.3 Creation and annihilation operators

The harmonic oscillator can be solved in a representation independent way. Starting with the hamiltonian

H =
p2

2m
+

1

2
mω2 x2, (235)

with as starting point the noncommuting operators

[x, p] = i~, (236)

one introduces

a = x

√
mω

2 ~
+ i p

√

1

2mω ~
(237)

a† = x

√
mω

2 ~
− i p

√

1

2mω ~
(238)

satisfying
[a, a†] = 1. (239)

The hamiltonian can be expressed in the number operator N = a†a,

H = ~ω

{(

x

√
mω

2 ~
− i p

√

1

2mω ~

)(

x

√
mω

2 ~
+ i p

√

1

2mω ~

)

− i

2

[x, p]

~

}

= ~ω

{

a†a+
1

2

}

= ~ω

{

N +
1

2

}

. (240)

It is straightforward to find the commutation relations between N and a and a†,

[N, a†] = a†, and [N, a] = −a. (241)
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Defining states |n〉 as eigenstates of N with eigenvalue n, N |n〉 = n|n〉 one finds

N a†|n〉 = (n+ 1) a†|n〉,
N a|n〉 = (n− 1) a|n〉

i.e. a† and a act as raising and lowering operators. From the normalizations one obtains a†|n〉 =√
n+ 1 |n+1〉 and a|n〉 = √n |n−1〉, and we see that a state |0〉 must exist for which N |0〉 = a|0〉 = 0. In

this way one has found for the harmonic oscillator the spectrum of eigenstates |n〉 (with n a non-negative
integer) with En = (n+ 1/2)~ω.

Exercises

Exercise 11.1

Check the uncertainty relation for the groundstate wave function of Hydrogen. The necessary expectation
values have been calculated in previous exercises.

Exercise 11.2

Compare the results of the measurements of ℓx and ℓy for a system described by a wave function with
angular dependence of the form

ψ ∝ x+ i y√
2

.

(a) What is the average outcome of the measurements and what are the standard deviations for the
measurements.

(b) What does the uncertainty relation tell us about the product of these standard deviations.

(c) Show that the standard deviations found in (a) are consistent with the uncertainty relation in (b).

Exercise 11.3

The creation (a†) and annihilation (a) operators for a one-dimensional harmonic oscillator are defined by

a =
1√

2~mω
(mωx+ ip), a† =

1√
2~mω

(mωx− ip). .

The eigenstates |n〉 of H are assumed to be normalised.

(a) Show that a†|n〉 = cn|n+ 1〉 and calculate cn.

(b) Show that a|n〉 = dn|n− 1〉 and calculate dn.

Assume that the operatorB(a, a†) contains a product of creation and annihilation operators, e.g. B(a, a†) =
aaa†aa† . . . aa†.

(c) Explain that 〈n|B(a, a†)|n〉 >= 0 unless B(a, a†) contains as many creation as annihilation opera-
tors.

(d) How many creation and annihilation must B have to find a nonzero result for 〈m|B(a, a†)|n〉.

(e) Calculate the following matrix elements

〈n|x|m〉 , 〈n|x2|m〉 , 〈n|p|m〉 en 〈n|p2|m〉.

(f) Calculate ∆x and ∆p for an eigenstate |n〉 of H and check the uncertainty relation.
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12 Inversion symmetry

12.1 The space inversion operation

For coordinates, inversion means:

r −→ −r and t −→ t, (242)

implying for instance that classically for p = mṙ and ℓ = r × p one has

p −→ −p and ℓ −→ ℓ. (243)

The same is true for the quantummechanical operators, e.g. p = −i~ ∇.
We study the properties of a system under inversion, specifically in the situation that inversion leaves

the system invariant. In quantum mechanics the latter is the case when the hamiltonian is invariant,
which means

H(r,p, . . .) = H(−r,−p, . . .). (244)

Since the kinetic part of the hamiltonian usually is quadratic in the momentum, that part is invariant,
thus one can look at the potential. Examples of invariant hamiltonians are the case of one particle
in a central potential V (|r|), or the situation of one electron in a diatomic molecule with a potential
V (r) = V1(|r + a|) + V2(|r − a|). The latter potential is invariant under inversion only for the case that
V1 = V2.

Consider now an eigenstate of an invariant hamiltonian,

H(r,p)φ(r) = Eφ(r) (245)

This is an expression valid for all r, thus also

H(−r,−p)φ(−r) = Eφ(−r) (246)

(note p = −i~∇). Invariance of the hamiltonian implies

H(r,p)φ(−r) = Eφ(−r). (247)

This means that for an inversion-invariant hamiltonian one has two solutions φ1(r) = φ(r) and φ2(r) =
φ(−r) with the same energy.
(i) If E is non-degenerate one has φ1(r) = c φ2(r), i.e. φ(r) = c φ(−r). This again is valid for all r and
thus φ(−r) = c φ(r) giving c2 = 1 and c = 1 or c = −1. Thus φ is even or φ is odd.
(ii) If E is degenerate, φ1(r) = φ(r) and φ2 = φ(−r) need not be dependent, but in that case any linear
combination a φ1 + b φ2 has also energy E, in particular

φ±(r) = φ(r)± φ(−r) (248)

are even and odd eigenfunctions, respectively.
Conclusion: If the hamiltonian H is invariant under inversion, its eigenfuncties are even or odd.

12.2 Inversion and the Parity operator

In quantum mechanics the states |ψ〉 are characterized by functions ψ(r, t). In the configuration space
we know the result of inversion, r → −r and t→ t, in the case of more particles generalized to ri → −ri
and t → t. What is happening in the Hilbert space of wave functions. We can just define the action on
functions, ψ → ψ′ ≡ Pψ in such a way that ψ′(r′) = ψ(r). This means for inversion

Pφ(−r) ≡ φ(r) =⇒ Pφ(r) = φ(−r). (249)

The function Pφ is the new wave function obtained by the action of the parity operator P . It is a
hermitian operator.
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P is hermitean since
∫
d3r φ∗(r)Pφ(r) =

∫
d3r φ∗(r)φ(−r) which is equal to

∫
d3r (Pφ)∗(r)φ(r)

=
∫
d3r φ∗(−r)φ(r).

The eigenvalues and eigenfunctions of the parity operator,

Pφπ(r) = π φπ(r) (250)

are π = ±1, both eigenvalues infinitely degenerate. The eigenfunctions corresponding to π = +1 are the
even functions, those corresponding to π = −1 are the odd functions.

The proof of this proceeds as follows. On the one hand one has

P 2φπ(r) = π Pφπ(r) = π2 φπ(r),

while on the other hand
P 2φπ(r) = Pφπ(−r) = φπ(r),

leading to π2 = 1 and π = ±1. Moreover for π = ±1 one has

φ±(−r) = ±φ±(r).

Next one would like to see what the action is of parity on the operators. Any state φ in the Hilbert space
is changed into φ′ = Pφ, in particular

Aφ −→ PAφ = PAP−1
︸ ︷︷ ︸

A′

Pφ
︸︷︷︸

φ′

,

thus
A −→ PAP−1. (251)

(Note that for the parity operator actually P−1 = P = P †). Examples are

r̂ −→ P r̂P−1 = −r̂, (252)

p̂ −→ P p̂P−1 = −p̂, (253)

ℓ̂ −→ P ℓ̂P−1 = +ℓ̂, (254)

Ĥ(r̂, p̂) −→ PĤ(r̂, p̂)P−1 = Ĥ(−r̂,−p̂). (255)

To proof this, e.g. the first relation, one uses that (r̂φ)(r) = rφ(r) and thus

P r̂φ(r) = P (r̂φ)(r) = Prφ(r) = r Pφ(r) = r φ(−r) = −r̂φ(−r),

but also
P r̂φ(r) = P r̂P−1Pφ(r) = P r̂P−1φ(−r).

If H is invariant under inversion, one has

PHP−1 = H ⇐⇒ [P,H ] = 0. (256)

This implies that eigenfunctions of H are also eigenfunctions of P , i.e. they are even or odd.
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12.3 Applications

Bound states in one dimension

For the one-dimensional hamiltonian

H = − ~2

2m

d

dx2
+ V (x), (257)

with a symmetric potential V (x) = V (−x), one finds by doing the explicit calculation that the solutions
separate into two classes, even and odd. This is a consequence of inversion symmetry, in one dimension
only implying x −→ −x. One has correspondingly the definition of parity operator, Pφ(x) = φ(−x) with
even and odd eigenfunctions. Since a one-dimensional problem has no degeneracy, one always has for a
given energy either an even or an odd solutions.

Particle in a central potential

The hamiltonian for a particle in a central potential is given by

H = − ~2

2m
∇

2 + V (r). (258)

One has the following:

• H is invariant under inversion, r −→ −r.

• The eigenfunctions thus have parity π = + or π = −.

• We have already seen what the solutions are for a central potential,

φ(r) =
unℓ(r)

r
Y mℓ (θ, ϕ). (259)

and the energy Enℓ, independent of the quantum number m. The only part that changes under
parity is the angular dependent part,

Y mℓ (θ, ϕ) −→ Y mℓ (π − θ, ϕ+ π) = (−)ℓ Y mℓ (θ, ϕ). (260)

We see that the parity is already determined by the angular momentum eigenvalue, i.e. π = (−)ℓ.
Thus, although the parity operator can be included in the commuting set of operators for this
problem, {H, ℓ2, ℓz, P} (P commutes with all operators in this set), it need not be added explicitly.
Note that this certainly is not generally true for the parity operator.

Electrons in atoms

The hamiltonian for Z electrons in atoms is given by

H = − ~2

2m

Z∑

i=1

∇
2
i +

Z∑

i=1

−Ze2
4πǫ0 ri

+

Z∑

i>j

e2

4πǫ0 |ri − rj |
. (261)

• Again H is invariant under inversion, ri −→ −ri and the eigenfunctions thus have parity π = + or
π = −.
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• Without the e-e interaction term the hamiltonian is an example of a separable hamiltonian, the
sum of single-electron hydrogen-like hamiltonians, and the eigenfunction in that case is the product
of the single-electron wave functions (as in Eq. 259),

φ(r1, . . . , rZ) =

Z∏

i=1

φniℓimi
(ri), (262)

E =

Z∑

i=1

Eniℓi , (263)

• The parity of this eigenfunctions is

π =

Z∏

i=1

πi =

Z∏

i=1

(−)ℓi = (−)
P

i ℓi . (264)

Be aware of the fact that even though we will later combine the individual angular momenta of the
electrons to a total angular momentum L, it still are the individual ℓi that determine the parity of
an atomic state.

The electric dipole moment operator and selection rules

An operator that is often encountered in connection with light emission or absorption is the electric dipole
moment operator,

D = −
∑

i

ei ri. (265)

Its behavior under parity is
D −→ PDP−1 = −D. (266)

For parity eigenstates one has vanishing expectation values, 〈D〉 = 0.

The proof is explicitly given in Mandl without using the parity operator. With the parity
operator and the above behavior for D it is even simpler

〈D〉 = 〈φ|D|φ〉 = 〈φ|P−1

︸ ︷︷ ︸

π〈φ|

PDP−1
︸ ︷︷ ︸

−D

P |φ〉
︸︷︷︸

π|φ〉

= −π2 〈φ|D|φ〉 = −〈D〉

The electric dipole moment happens to be the (dominant) operator for a photon interacting with the
electrons in an atom. Both the absorption of a photon and the emission of a photon amounts to acting
with the dipole operator on a given initial state |ni, ℓi,mi〉 (or shorthand |i〉, where the index i stands for
initial). The resulting state D|i〉 is the new state, which can be expanded in all states available for an
electon in the atom. As we have seen before, the probability to find a specific final state |f〉 = |nf , ℓf ,mf〉
is given by |〈f |D|i〉|2 It is straightforward to derive that

〈f |D|i〉 = 〈f |P−1

︸ ︷︷ ︸

πf 〈f |

PD P−1
︸ ︷︷ ︸

−D

P |i〉
︸︷︷︸

πi|i〉

= −πiπf 〈f |D|i〉, (267)

thus 〈f |D|i〉 = 0 unless πf = −πi. Electric dipole transitions are forbidden between states with the same
parity. Since parity is determined by the angular momentum of an electron orbit, one sees that it requires
|∆ℓ| = |ℓi − ℓf | to be odd. We will see this refined to |∆ℓ| = 1 through rotational symmetry. The above
is an example of a selection rule and the use of symmetry principles to derive them.
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A diatomic molecule

The hamiltonian for electrons in a diatomic molecule is given by

H = − ~2

2m

∑

i

∇
2
i +

∑

i

−Z1e
2

4πǫ0 |ri + a| +
∑

i

−Z2e
2

4πǫ0 |ri − a| +
∑

i>j

e2

4πǫ0 |ri − rj |
. (268)

• For Z1 = Z2 (homonuclear molecules, e.g. N2 and O2) inversion is a symmetry, thus the electronic
states are parity eigenstates and 〈D〉 = 0.

• For Z1 6= Z2 (heteronuclear molecules, e.g. NO) inversion is not a symmetry for the electrons, thus
the electronic states are in general not parity eigenstates, allowing the molecule to have a electric
dipole moment, 〈D〉 6= 0.

• Actually for electromagnetic forces inversion symmetry, also referred to as parity invariance is
fundamental. One might then wonder why the existence of electric dipole moments of molecules
are allowed. The answer is simple. At the fundamental level parity invariance tells us that the
parity inverted world also exists, but this is only achieved by also inverting the positions of the
atomic nuclei.

Questions

1. Show that invariance of angular momentum ℓ under inversion implies that angular momentum and
parity are compatible. This implies that angular momentum eigenstates have definite parity.

2. Show that for quadrupole transitions, proceeding via quadrupole operators of the form Qkl = e rkrl
(indices k and l indicate the components) one must have πi = πf .
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13 Translation symmetry

13.1 The generating operators for translations

Let us start with translation symmetry for one dimension,

x −→ x′ = x+ a. (269)

Clearly this is a different kind of symmetry than inversion. There are many more possibilities, in fact
infinitely many determined by the continuous parameter a. Translations are an example of continuous
transformations, while inversion is an example of a discrete transformation.

Again we investigate what happens with a wave function. For continuous transformations, it turns
out to be extremely useful to study first the infinitesimal problem (in general true for so-called Lie
transformations). We then get for small a

φ(x+ a) = φ(x) + a
dφ

dx
+ . . . =

(

1 +
i

~
a px + . . .

)

︸ ︷︷ ︸

U(a)

φ(x) (270)

which defines the shift operator U(a) of which the momentum operator px = −i~ d
dx is the generator.

One can extend the above to higher orders,

φ(x + a) = φ(x) + a
d

dx
φ+

1

2!
a2 d

dx2
φ+ . . . ,

and using the (for operators) definition

eA ≡ 1 +A+
1

2!
A2 + . . . ,

one finds

U(a) = exp

(

+
i

~
a px

)

.

In general, if A is a hermitean operator (A† = A), then eiA is a unitary operator (U−1 = U †).
Thus the shift operator produces new wavefunctions, preserving orthonormality.

Next, we turn to the operators, e.g. the Hamiltonian H . Invariance under translations implies e.g. that
H(x) = H(x+ a). What does this imply? Just expand infinitesimally,

H(x+ a) = H(x) + a
dH

dx
+ . . . = H(x) +

i

~
a [px, H ] + . . . . (271)

To see why for operators the commutator appears one should realize that to derive equalities for operators
one has to prove that their action on a wave function is the same. A simple check learns that

[px, H ]φ(x) = px(Hφ)(x) −H(pxφ)(x)

= −i~
{
d

dx
(H(x)φ(x)) −H(x)

dφ

dx

}

= −i~
(
dH

dx

)

φ(x). (272)

The important conclusion is that translation invariance implies

H(x+ a) = H(x) ⇐⇒ [px, H ] = 0. (273)
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The behavior of the operator under translations can also be obtained in another way. When we use that

H(x+ a)φ(x + a) = U(a)H(x)φ(x) = U(a)H(x)U−1(a)U(a)φ(x)
︸ ︷︷ ︸

φ(x+a)

,

we find that
H(x+ a) = U(a)H(x)U−1(a), (274)

which (indeed) gives with the infinitesimal form for U(a)

H(x+ a) =

(

1 +
i

~
a px + . . .

)

H(x)

(

1− i

~
a px + . . .

)

= H(x) +
i

~
a [px, H ] + . . . .

A useful (general) relation for operators is the following. Consider operators A, B and O. If
O is given by

O(c) = ecAB e−cA,

where c is a parameter, then
dO

dc
= ecA [A,B] e−cA.

Translation invariance can easily be generalized to three coordinates of one particle and to more particles
by considering

ri −→ r′
i = ri + a. (275)

The shift operator is

U(a) = exp

(

+a ·
∑

i

∇i

)

= exp

(

+
i

~
a ·
∑

i

pi

)

= exp

(

− i
~

a ·P
)

= 1 + a ·
∑

i

∇i + . . . = 1 +
i

~
a ·
∑

i

pi + . . . = 1 +
i

~
a ·P + . . . , (276)

where pi = −i~∇i are the one-particle momentum operators and P =
∑

i pi is the total momentum
operator.

Translation invariance of the whole world implies that

U(a)H U−1(a) = H ⇐⇒ [P , H ] = 0. (277)

Thus a translation-invariant Hamiltonian usually does not commute with the momenta of individual par-
ticles or with relative momenta, but only with the total momentum operator (center of mass momentum),
of which the expectation value thus is conserved.

13.2 Applications

Free particle

The single-particle hamiltonian

H = − ~2

2m
∇

2 + V (r)

is in general not invariant under translations. The first term is invariant, but the second only if V (r) =
constant. Shifting the zeropoint of the energy one has H = −~2

∇
2/2m, i.e. a free particle. Indeed one

then has
[p, H ] = 0,
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and the eigenstates of the momentum operator

φp(r) =
√
ρ exp (ip · r/~) ,

indeed coincide with eigenstates of the hamiltonian, with E = p2/2m.

Two-particle system

The two-particle system with the hamiltonian

H =
p2

1

2m1
+

p2
2

2m2
+ V (r1 − r2) (278)

is invariant under translations. This means that [P , H ] = 0, where P = p1+p2. For this hamiltonian, we
indeed have seen that introducing center of mass and relative coordinates a separation of the hamiltonian
is obtained,

H =
P 2

2M
+

p2

2µ
+ V (r) (279)

with P = p1 +p2. The commutation relation implies common eigenfunctions of the hamiltonian and the
total momentum operator. Since P = −i~ ∇R, these are the functions

ΦP (R) ∝ exp

(
i

~
P ·R

)

.

Thus for the hamiltonian we deduce from tranlation invariance that the wave function must be of the
form

Φ(R, r) = exp

(
i

~
P ·R

)

φrel(r).

Bloch theorem

Consider a periodic potential (in one dimension), V (x+d) = V (x). One has a periodic Hamiltonian that
commutes with the (unitary) shift operator U(d) = exp(+i d px/~),

[H,U(d)] = 0 (280)

These thus have a common set of eigenstates φnk, satisfying H φn k(x) = En φn k(x) and U(d)φn k(x) =
ei kd φn k(x) in which kd runs (for instance) between −π ≤ kd ≤ π. Using that U(d) is the translation
operator, one finds that

φn k(x+ d) = ei kd φn k(x) (281)

Equivalently by writing φ as the Bloch wave

φnk(x) ≡ eikx unk(x) (282)

one finds that unk(x) is periodic, satisfying unk(x+ d) = unk(x).

13.3 Time evolution

In the same way as for translations one sees that

|ψ(t)〉 =

(

1 + t
d

dt
+ ...

)

|ψ(0)〉 = exp

(

− i
~
tH

)

|ψ(0)〉, (283)



Translation symmetry 67

which is nothing else as the time-dependent Schrödinger equation stated in Eq. 23. Thus in the same
way as the momentum is the generator of space translations, the Hamiltonian is the generator of time
translations. If we know this generator in terms of other quantities (operators in quantum mechanics)
one has the starting point of any theory. In classical mechanics you may have seen how to obtain the
Hamiltonian (momentum) from the Lagrangian as a conserved quantity related to time (space) translation
invariance.

Questions and exercises

Exercise 13.1

Prove Eq. 280 for a periodic potential.

Exercise 13.2

We consider the periodic version of the delta function potential in Exercise 3.5, i.e. V (x + n d) = V (x)
for integer n (d can be considered as the lattice spacing starting with

V (x) = − ~2

ma
δ(x)

near zero [See section 7.3 for the properties of the delta-function]. One has the condition

lim
x↓0

φ′(x)− lim
x↑0

φ′(x) = −2φ(0)

a
,

and the same condition around any point n d (n ∈ Z). We have found in this section that the solutions
satisfy φn k(x+ d) = ei kd φn k(x) (Bloch condition).

(a) Without loss of generality we can choose φ..k(0) = 1 and φ..k(d) = ei kd. Determine the most general
solution in 0 ≤ x ≤ d writing

φE,k(x) = Aei qx +B e−i qx with E =
~2 q2

2m

or

φE,k(x) = Aeκx +B e−κx with E = −~2 κ2

2m

(note: κ = i q).

(b) Calculate the derivatives φ′(ǫ) and φ′(−ǫ (note the domain for which the expressions in (a) can be
used!) and take the limit ǫ→ 0.

(c) Use this to derive the condition on q (or κ) and k,

qa =
sin(qd)

cos(qd)− cos(kd)
or κa =

sinh(κd)

cosh(κd)− cos(kd)
.
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(d) Shown at the right is the dispersion E(k) found under (c) or
actually q2d2 plotted as function of kd for the case a = d. The
model is suitable to study the band structure in solids (Do you
understand why?). Study the band structure for some other
values of a (look at a < d and a > d (What corresponds to
tight binding or weak binding?). What do you notice (look at
band gaps, compare with free dispersion relation and bound
state energy).

-3 -2 -1 1 2 3
k

10

20

30

40

50

q2

(e) Assume that the one-dimensional system would consist of a finite number (N) of potential dips,
e.g. a circular configuration. How many k-values are allowed in that case?
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14 Rotation symmetry

14.1 The generating operators for rotations

Rotations are characterized by a rotation axis and an angle,

r −→ R(n̂, α) r, (284)

e.g. for a rotation around the z-axis one has explicitly





x
y
z




−→





cosα − sinα 0
sinα cosα 0

0 0 1









x
y
z




. (285)

This also gives rise to transformations in the Hilbert space of wave functions. For a rotation around the
z-axis it is convenient to use polar coordinates. We then find

φ(r, θ, ϕ + α) = φ(r, θ, ϕ) + α
∂

∂ϕ
φ+ . . .

=

(

1 +
i

~
α

(

−i~ ∂

∂ϕ

)

+ . . .

)

φ

=

(

1 +
i

~
α ℓz + . . .

)

φ, (286)

from which one concludes that ℓz is the generator of rotations around the z-axis, and the rotation operator
in the Hilbert space is

U(ẑ, α) = exp

(

+
i

~
α ℓz

)

= 1 +
i

~
α ℓz + . . . . (287)

As for the translations, an operator behaves as

H(r, θ, ϕ+ α) = H(r, θ, ϕ) + α
∂H

∂ϕ
+ . . .

= H +
i

~
α [ℓz, H ] + . . .

= U(ẑ, α)H U−1(ẑ, α). (288)

Rotational invariance (around z-axis) implies that

U(ẑ, α)H U−1(ẑ, α) = H ⇐⇒ [ℓz, H ] = 0. (289)

Although the situation looks quite similar to the translations, there is an important difference. For two
consecutive rotations the order is important (rotations do not commute)

R(x̂, α)R(ŷ, β) 6= R(ŷ, β)R(x̂, α),

U(x̂, α)U(ŷ, β) 6= U(ŷ, β)U(x̂, α).

For the rotations in the Hilbert space, this is already evident from the infinitesimal rotations. The
generators do not commute,

[ℓx, ℓy] = i~ ℓz,

etc.
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A general relation for operators is

eA eB = eC with C = A+ B +
1

2
[A,B] +

1

12
[A, [A,B]] +

1

12
[B, [A,B]] + . . . .

(Baker-Campbell-Hausdorff relation)

For more particles, invariance under rotations of the world implies

H invariant⇐⇒ [L, H ] = 0, (290)

where L =
∑

i ℓi. This is a fundamental symmetry of nature for particles without spin!

14.2 Applications

One particle in a central potential

Already in chapter 2 of Mandl we have seen the treatment of a particle in a central potential,

H = − ~2

2m
∇

2 + V (r)

One has rotation invariance and thus [ℓ, H ] = 0 for all three generators of rotations. This provides us
with a number of candidates for the wanted set of commuting operators. Because the three angular
momentum operators do not commute among themselves, we have to make a choice. We already have
seen that in this case this leads for instance to the choice {H, ℓ2, ℓz}, on the basis of which one could
conclude that the eigenfunctions of the hamiltonian could be written as

φnℓm(r) =
unℓm(r)

r
Y mℓ (θ, ϕ).

That the index m is irrelevant for the above hamiltonian can not be deduced from symmetry considera-
tions.

Two-particle system

For the two-particle hamiltonian of Eq. 278 one can in the case that V (r1 − r2) = V (|r1 − r2|), add
invariance under rotations in the relative coordinate to deduce without doing any explicit calculations
that the solution must be of the form

Φ(R, r) = exp

(
i

~
P ·R

)
unℓm(r)

r
Y mℓ (θ, ϕ).

The diatomic molecule

We return to the case of the diatomic molecule.

• The diatomic molecule is only invariant under rotations around the z-axis, i.e. [H, ℓz] = 0, but
[H, ℓ2] 6= 0. Solutions thus can be labeled as φm ∝ eimϕ. It is easy to see by rewriting the gradient
in cilinder coordinates that the solutions with opposite m-values are degenerate (only ℓ2z appears
in the hamiltonian) since

−~
2
∇

2 = −~
2 ∂

2

∂z2
− ~

2 1

ρ

∂

∂ρ

(

ρ
∂

∂ρ

)

+
ℓ2z
ρ2
,

where ρ2 = x2 + y2.
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• The diatomic (heteronuclear) molecule is not invariant under parity. But an interesting operator is

Pxzφ(x, y, z) = φ(x,−y, z) (291)

(mirror symmetry in the xz-plane). This is a symmetry of the hamiltonian and thus [Pxz , H ] = 0.

• We note that ℓz does not commute with Pxz, but knowing that ℓz = xpy−ypx we have Pxz ℓz P
−1
xz =

−ℓz. Note that [ℓ2z, Pxz ] = 0.

• This implies that there are two possibilities

Pxzφm = ±φ−m.

This is easily proven by using ℓz Pxzφm = −Pxz ℓz P−1
xz Pxzφm = −Pxz ℓz φm = −m~Pxzφm and

P 2
xz = 1.

• Thus for m = 0 one has either φ0+ or φ0−, while for m 6= 0 one has two solutions φ|m|± ∝
(φm ± φ−m), solutions referred to as gerade (+) or ungerade (-).

Exercises

Exercise 14.1

Given the (three dimensional) Hamiltonian

H =
p2

2m
+

1

2
mω2(x2 + y2).

(a) Determine from the symmetries of this Hamiltonian as many compatible operators as possible and
give mutually compatible sets of operators.

(b) Indicate the expected spatial behavior of the wave function. Do this by using different possibilities
for the choice of coordinates (Cartesian, cylindric, polar, . . . coordinates) and using the results of
(a).

(c) Discuss the discrete states in the spectrum of this Hamiltonian including the degeneracy of the
lowest few states.
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15 Identical particles

15.1 Permutation symmetry

The hamiltonian for Z electrons in an atom,

H(r1, . . . , rZ ; p1, . . . ,pZ) =
Z∑

i=1

(

− ~2

2m
∇

2
i −

Ze2

4πǫ0 ri

)

+
Z∑

i>j

e2

4πǫ0 |ri − rj |
(292)

is invariant under permutations of the particle labels, i↔ j, written symbolically as

H(1 . . . i . . . j . . . Z) = H(1 . . . j . . . i . . . Z). (293)

Consider first two identical particles and assume an eigenstate φ(12),

H(12)φ(12) = Eφ(12),

Because H(12) = H(21) one has also

H(21)φ(12) = Eφ(12).

Since the labeling is arbitrary one can rewrite the latter to

H(12)φ(21) = Eφ(21).

Thus there are two degenerate solutions φ(1, 2) and φ(2, 1). In particular we can choose symmetric and
antisymmetric combinations

φS/A = φ(12)± φ(21), (294)

which are also eigenstates with the same energy. These are eigenfunctions of the permutation operator
Pij , which interchanges two labels, i.e. Pijφ(1 . . . i . . . j . . .) = φ(1 . . . j . . . i . . .) with eigenvalues + and -
respectively. This operator commutes with H and the symmetry is not changed in time.

For three particles one has six degenerate solutions, φ(123), φ(213), φ(231), φ(321), φ(312) and φ(132).
There is one totally symmetric combination,

φS = φ(123) + φ(213) + φ(231) + φ(321) + φ(312) + φ(132), (295)

(any permutation operator gives back the wave function), one totally antisymmetric combination

φS = φ(123)− φ(213) + φ(231)− φ(321) + φ(312)− φ(132), (296)

(any permutation operator gives back minus the wave function) and there are four combinations with
mixed symmetry. Nature is kind and only allows the symmetric or antisymmetric function according to
the socalled

spin-statistics theorem: for a system of identical particles one has either symmetric wave functions
(Bose-Einstein statistics) or antisymmetric wave function (Fermi-Dirac statistics). For identical par-
ticles obeying Bose-Einstein statistics the wave function does not change under interchange of any
two particles. Such particles are called bosons. For particles obeying Fermi-Dirac statistics the wave
function changes sign under a permutation of any two particles. Such particles are called fermions. In
the next section we will discuss spin. Particles with integer spin are bosons, particles with half-integer
spin are fermions.
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For instance electrons which have spin 1/2 (two possible spin states) are fermions. The total wave
function must be antisymmetric. This has profound consequences. It underlies the periodic table of
elements. Consider again for simplicity a two-particle system which neglecting mutual interactions has a
separable hamiltonian of the form

H = H0(1) +H0(2).

Suppose the solutions of the single-particle hamiltonian are known,

H0(1)φa(1) = Eaφa(1), H0(1)φb(1) = Ebφb(1),

etc. Considering the lowest two single-particle states available, there are three symmetric states and one
anti-symmetric state,

symmetric:







φa(1)φa(2)
φa(1)φb(2) + φb(1)φa(2)
φb(1)φb(2)

antisymmetric: φa(1)φb(2)− φb(1)φa(2)

In particular bosons can reside in the same state, while any two fermions cannot be in the same state,
known as the Pauli exclusion principle.

A way to obtain the completely antisymmetric wave function is by constructing the antisym-
metric wave function as a Slater determinant, for instance for three particles the antisymmet-
ric wave function constructed from three available states φa, φb and φc is

φA(123) =
1√
3!

∣
∣
∣
∣
∣
∣

φa(1) φa(2) φa(3)
φb(1) φb(2) φb(3)
φc(1) φc(2) φc(3)

∣
∣
∣
∣
∣
∣

.

15.2 Applications

Bose-Einstein condensates

Bosons can reside in the same state. For instance by cooling down a gas of bosons they can all have
momentum p = 0. The wave function in momentum space would be a delta function, δ(p), leading to
a single multi-boson system with macroscopic extension (in theory infinite for a true delta-function) in
which all particles have lost their identity.

Atomic structure

The most well-known application of Fermi-Dirac statistics is the consecutive filling of atomic levels giving
the periodic table of elements. For many-electron atoms a good starting point is trying to approximate
the average effect of the electron-electron repulsion term in Eq. 292 into an effective central potential.
The effective charge felt by an electron is expected to behave like

r

1

Z eff

Z

Zeff







r→∞−→ 1

r→0−→ Z
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The behavior of Zeff(r) can e.g. be obtained from the electron densities in a self-consistent matter. Thus,
one can approximate the many-electron hamiltonian by

H(r1, . . . , rZ ; p1, . . . ,pZ) ≈
Z∑

i=1

(

− ~2

2m
∇

2
i −

Zeff(r) e2

4πǫ0 ri

)

+ . . . (297)

The advantage of this procedure is that part of the repulsion is taken into account retaining a central
interaction and a separable hamiltonian. This will modify the spectrum, lifting the degeneracy between
different ℓ-values for given n. In general the higher ℓ values will because of the angular momentum
contribution ~2 ℓ(ℓ+1)/2mr2 in the effective radial potential will feel a smaller charge and hence become
less bound.

l = 0

3d

1s

l = 1 l = 2

(2x)

(10x)(6x)

(6x)
(2x)

(2x)

2s

3s

2p

3p

E
The (schematic) spectrum for many-electron
atoms. A possible parametrization of the levels
taking into account the screening effect is

Enℓ = − R∞
(n− δℓ)2

,

where δℓ is referred to as quantum defect, and
one expects δℓ → 0 for large ℓ-values. This will
work particularly well for atoms with one electron
outside a closed shell.

In the central field approximation, the hamiltonian is separable for the different electrons and the solution
is an antisymmetrized product of single electron states (Slater determinant), where one needs to keep
in mind the spin degeneracy (2 for each level). Operators compatible with the hamiltonian are ℓi (and
similarly spin operators), just as is the parity operator. Hence one has many good quantum numbers. At
this level of approximation one can label the states by giving the various (nℓ) levels and their multiplicities,
e.g. for the ground state of helium (1s)2, for Carbon (1s)2(2s)2(2p)2, etc. Combining the angular momenta
and spins into specific multiplets will be discussed as an application of spin but is not yet relevant, since
all states are at this stage degenerate. This remains true if one refines the picture by using an effective
central charge Zeff(r). The only effect of the latter is the splitting of different ℓ-values corresponding to
the same principal quantum number n.

The structure of the periodic table is summarized in the table given below with the levels given in
order of increasing energy. In this table the noble gases correspond to situations in which there are large
energy gaps between the filled shell and the next available one. Characteristics of these noble gases are
a high ionization energy and a small affinity to other elements, e.g. Eionization = 24.6 eV (He), 21.6 eV
(Ne) and 15.8 eV (Ar). The level scheme in the table can also be used to establish the excited states.
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n summed #
1 2 3 4 5 6 7 of levels remarks

(1s)2 2 (He)

(2s)2 4
(2p)6 10 (Ne)

(3s)2 12
(3p)6 18 (Ar)

(4s)2 20
(3d)10 30 Fe-group

(4p)2 36 (Kr)

(5s)2 38
(4d)10 48 Pd-group

(5p)6 54 (Xe)

(6s)2 56
(4f)14 70 Lanthanides

(5d)10 80 Pt-group
(6p)6 86 (Rn)

(7s)2 88
(5f)14 102 Actinides

(6d)10 112 Pt-group
(7p)6 118 (?)

Exercises

Exercise 15.1

Given the infinite square well potential (one dimension)

V (x) =

{
∞ |x| > a
0 |x| ≤ a .

(a) Calculate the energy of the ground state for N non-selfinteracting bosons.

(b) Calculate the energy of the groundstate for N non-selfinteracting fermions.

Exercise 15.2

Two (one-dimensional) particles can be in orthonormal states a or b with wave functions φa and φb.

(a) Determine the two-body wave function φ(x1, x2) if (i) the particles are distinguishable and particle
1 is in state a, while particle 2 is in state b; (ii) the particles are indistinguishable bosons; (iii) the
particles are indistinguishable fermions.

(b) Express, for all three cases under (a) the expectation value 〈φ|(x1 − x2)
2|φ〉 in matrix elements for

the states φa and φb. Work out the problem, so you can compare the three cases.

(c) Explain from the answer in (b) that identical bosons tend to attract each other, while identical
fermions tend to repel each other.
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16 Spin

16.1 Definition

In quantum mechanics spin is introduced as an observable defined via the vector operator s. These
(three) hermitean operators satisfy commutation relations

[si, sj ] = i~ǫijk sk, (298)

similar to the commutation relations for the angular momentum operator ℓ = r× p. The spin operators
s commute with the operators r and p and thus also with ℓ. That’s it. All the rest follows from these
commutation relations.

16.2 Rotation invariance

Earlier we have seen that, without spin, rotation invariance required specific commutation relations with
ℓ. In fact scalar quantities S and vectors V under rotations behaved like

[ℓi, S] = 0
[ℓi, Vj ] = i~ ǫijk Vk

}

for a single particle without spin, (299)

e.g. scalars S = r2, p2, r · p or ℓ2 and vectors V = r, p or ℓ.
Including spin vectors s, the notion of behavior under rotations has to be altered, e.g. [ℓi, sj] = 0

and [ℓi, ℓ · s] = −i~ (ℓ× s)i. It is easy to see that the operator

j ≡ ℓ + s, (300)

satisfies
[ji, S] = 0
[ji, Vj ] = i~ ǫijk Vk,

}

for a single particle (301)

not only for the above examples, but now also for the vectors s and j and including scalars like s2 and
ℓ · s.

For a system of many particles the operators r, p and s for different particles commute. It is easy to
see that the operators

L =

N∑

n=1

ℓn, S =

N∑

n=1

sn, J =

N∑

n=1

jn = L + S, (302)

satisfy commutation relations [Li, Lj] = i~ ǫijk Lk, [Si, Sj ] = i~ ǫijk Sk, and [Ji, Jj ] = i~ ǫijk Jk, while
only the operator J satisfies

[Ji, S] = 0
[Ji, Vj ] = i~ ǫijk Vk

}

for an isolated system (303)

for any scalar S or vector V .

It is easy to show that the inner product a·b of two vectors satisfying the commutation relation
in Eq. 303 indeed is a scalar quantity, satifying the required scalar commutation relation.

An important property is that rotational invariance is one of the basic symmetries of our world.

Rotation invariance of a system of particles requires

[J , H ] = 0. (304)
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Besides the behavior under rotations, also the behavior under parity is considered to classify
quantities. Vectors behave as P V P−1 = −V , axial vectors as P AP−1 = +A, a scalar S
behave as P S P−1 = +S, and a pseudoscalar S′ behaves as P S′ P−1 = −S′. Examples of
specific quantities are

vector axial vector scalar pseudoscalar
r ℓ r2 s · r
p s p2 s · p

j ℓ2

ℓ · s

The hamiltonian is a scalar quantity. Therefore, if we have parity invariance, combinations as
s ·r cannot appear but a tensor operator of the form (s1 ·r)(s2 ·r) is allowed. Note, however,
that such an operator does not commute with ℓ (see Mandl Exc. 5.8).

16.3 Spin states

As mentioned above, the commutation relations are all that defines spin. As an operator that commutes
with all three spin operators (a socalled Casimir operator) we have s2 = s2x + s2y + s2z,

[si, sj ] = i~ ǫijk sk, (305)

[s2, si] = 0. (306)

Only one of the three spin operators can be used to label states, for which we without loss of generality

can take sz. In addition we can use s2, which commutes with sz. We write states χ
(s)
m = |s,m〉 satisfying

s2|s,m〉 = ~
2 s(s+ 1)|s,m〉, (307)

sz|s,m〉 = m~ |s,m〉. (308)

It is of course a bit premature to take ~2 s(s + 1) as eigenvalue. We need to prove that the eigenvalue
of s2 is positive, but this is straightforward as it is the sum of three squared operators. Since the spin
operators are hermitean each term is not just a square but also the product of the operator and its
hermitean conjugate. In the next step, we recombine the operators sx and sy into

s± ≡ sx ± i sy. (309)

The commutation relations for these operators are,

[s2, s±] = 0, (310)

[sz , s±] = ±~ s±, (311)

[s+, s−] = 2~ sz, (312)

The first two can be used to show that

s2 s±|s,m〉 = s±s2|s,m〉 = ~
2 s(s+ 1) s±|s,m〉,

sz s±|s,m〉 = (s±sz ± ~ s±) |s,m〉 = (m± 1)~ s±|s,m〉,

hence the name step-operators (raising and lowering operator) which achieve

s±|s,m〉 = c±|s,m± 1〉.
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Furthermore we have s†± = s∓ and s2 = s2z + (s+s− + s−s+)/2, from which one finds that

|c±|2 = 〈s,m|s†±s±|s,m〉 = 〈s,m|s2 − s2z − [s±, s∓]/2|s,m〉
= 〈s,m|s2 − s2z ∓ ~ sz|s,m〉 = s(s+ 1)−m(m± 1).

It is convention to define

s+|s,m〉 = ~
√

s(s+ 1)−m(m+ 1) |s,m+ 1〉
= = ~

√

(s−m)(s+m+ 1) |s,m+ 1〉 (313)

s−|s,m〉 = ~
√

s(s+ 1)−m(m− 1) |s,m− 1〉
= ~

√

(s+m)(s−m+ 1) |s,m− 1〉. (314)

This shows that given a state |s,m〉, we have a whole series of states

. . . |s,m− 1〉, |s,m〉, |s,m+ 1〉, . . .

But, we can also easily see that since s2 − s2z = s2x + s2y must be an operator with positive definite

eigenstates that s(s + 1) − m2 ≥ 0, i.e. |m| ≤
√

s(s+ 1) or strictly |m| < s + 1. From the second
expressions in Eqs 313 and 314 one sees that this inequality requires mmax = s as one necessary state
to achieve a cutoff of the series of states on the upper side, while mmin = −s is required as a necessary
state to achieve a cutoff of the series of states on the lower side. Moreover to have both cutoffs the step
operators require that the difference mmax−mmin = 2 s must be an integer, i.e. the only allowed values
of spin quantum numbers are

s = 0, 1/2, 1, 3/2, . . . ,

m = s, s− 1, . . . ,−s.

Thus for spin states with a given quantum number s, there exist 2s+ 1 states.

16.4 Why is ℓ integer

Purely on the basis of the commutation relations, the allowed values for the quantum numbers s and m
have been derived. Since the angular momentum operators ℓ = r×p satisfy the same commutation rela-
tions, one has the same restrictions on ℓ and mℓ, the eigenvalues connected with ℓ2 and ℓz. However, we
have only found integer values for the quantum numbers in our earlier treatment. This is the consequence
of restrictions imposed because for ℓ we know more than just the commutation relations. The operators
have been introduced explicitly working in the space of functions, depending on the angles in R3. One
way of seeing where the constraint is coming from is realizing that we want uni-valued functions. The
eigenfunctions of ℓz = −i~ d/dφ, were found to be

Y mℓ (θ, φ) ∝ eimφ.

In order to have the same value for φ and φ+2π we need exp(2π im) = 1, hence m (and thus also ℓ) can
only be integer.

For spin, there are only the commutation relations, thus the spin quantum numbers s can also take
half-integer values. Particles with integer spin values are called bosons (e.g. pions, photons), particles
with half-integer spin values are called fermions (e.g. electrons, protons, neutrinos, quarks). For the
angular momenta which are obtained as the sum of other operators, e.g. j = ℓ+s, etc. one can easily see
what is allowed. Because the z-components are additive, one sees that for any orbital angular momentum
the quantum numbers are integer, while for spin and total angular momentum integer and half-integer
are possible.
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16.5 Matrix representations of spin operators

In the space of spin states with a given quantum number s, we can write the spin operators as (2s+ 1)×
(2s+ 1) matrices. Let us illustrate this first for spin s = 1/2. Define the states

|1/2,+1/2〉 or χ
(1/2)
+1/2 ≡ χ+ ≡




1
0



 ,

|1/2,−1/2〉 or χ
(1/2)
−1/2 ≡ χ− ≡




0
1



 .

Using the definition of the quantum numbers in Eq. 308 one finds that

sz = ~




1/2 0
0 −1/2



 , s+ = ~




0 0
1 0



 , s− = ~




0 1
0 0



 ,

For spin 1/2 we then find the familiar spin matrices, s = ~σ/2,

σx =




0 1
1 0



 , σy =




0 −i
i 0



 , σz =




1 0
0 −1



 .

For spin 1 we define the basis states |1,+1〉, |1, 0〉 and |1,−1〉 or

χ
(1)
+1 ≡





1
0
0




, χ

(1)
0 =≡





0
1
0




, χ

(1)
−1 ≡





0
0
1




.

The spin matrices are then easily found,

sz = ~





1 0 0
0 0 0
0 0 −1




, s+ = ~





0
√

2 0

0 0
√

2
0 0 0




, s− = ~





0 0 0√
2 0 0

0
√

2 0




,

from which also sx and sy can be constructed.

16.6 Rotated spin states

Instead of the spin states defined as eigenstates of sz, one might be interested in eigenstates of s · n̂, e.g.
because one wants to measure it with a Stern-Gerlach apparatus with an inhomogeneous B-field in the

n̂ direction. We choose an appropriate notation like |n̂,±〉 or two component spinors χ
(s)
ms(n̂), shorthand

χ
(1/2)
+1/2(n̂) = χ+(n̂) and χ

(1/2)
−1/2(n̂) = χ−(n̂)

Suppose that we want to write them down in terms of the eigenstates of sz, given above, χ+/−(ẑ) =
χ↑/↓. To do this we work in the matrix representation discussed in the previous section. Taking n̂ =
(sin θ, 0, cos θ), we can easily write down

s · n̂ =
1

2
~ σ · n̂ =

~

2




cos θ sin θ
sin θ − cos θ



 . (315)

We find the following two eigenstates and eigenvalues

χ+(n̂) =




cos(θ/2)
sin(θ/2)



 with eigenvalue + ~/2,

χ−(n̂) =




− sin(θ/2)
cos(θ/2)



 with eigenvalue − ~/2.
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The probability that given a state χ+ with spin along the z-direction, a measurement of the spin along
the +n̂-direction yields the value +~/2 is thus given by

∣
∣
∣
∣
χ†

+(n̂)χ↑

∣
∣
∣
∣

2

= cos2(θ/2).

Exercises

Exercise 16.1

(a) Show that from the commutation relations for the orbital angular momentum operators ℓ and the
with these operators compatible spin operators s (thus [ℓi, sj ] = 0) the commutation relations of
the total angular momentum operators j = ℓ + s can be obtained.

(b) Show that from [Ji, Aj ] = i~ ǫijk Ak and [Ji, Bj ] = i~ ǫijk Bk one finds

[Ji,A ·B] = 0.

(You can consider to do this only for Jx).

(c) Calculate
[J2, Ai].

(You can also consider doing this only for one component, e.g. Az)

Exercise 16.2

With the choice of basis states |s,ms〉,

|1, 1〉 =





1
0
0



 , |1, 0〉 =





0
1
0



 , |1,−1〉 =





0
0
1



 ,

the matrix representations of the spin operators S for a particle with spin 1 become

Sx =
~√
2





0 1 0
1 0 1
0 1 0



 ; Sy = ~√
2





0 −i 0
i 0 −i
0 i 0



 ; Sz = ~





1 0 0
0 0 0
0 0 −1





(a) Show this for Sx and Sz using the known results for the various spin operators working on |s,ms〉
states.

(b) Use the commutator [Sz, Sx] to find Sy.

(c) A measurement of Sx gives +~. Give the state vector for the particle immediately after the mea-
surement.
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17 Combination of angular momenta

Pre-knowledge

If one works with the direct product of two (or more spaces) one has states | 〉a and | 〉b for spaces
a and b, which could be the spins of two particles, but also the coordinate space and the spin space
of one particle, etc. It could be infinite or finite dimensional spaces. The direct product space is the
space built from states denoted (interchangeable)

|xy〉ab = |x〉a ⊗ |y〉b = |x〉a|y〉b,

If one has a basis |1〉a, |2〉a, . . . of space a and a basis |1〉b, |2〉b, . . . of space b, it is customary to order
the basis in the direct product space as |11〉ab, |12〉ab, . . . , |21〉ab |22〉ab, . . . , . . . . From the operators
in space a and those in space b, one can construct operators (denoted interchangeable as Âa ⊗ B̂b or
Âa B̂b) in the direct product space,

(Âa ⊗ B̂b)|xy〉ab ≡ Âa|x〉a ⊗ B̂b|y〉.

The labels a and b are mostly omitted. If one has matrices

Â =






A11 A12 . . .
A21 A22 . . .
...

...
. . .




 B̂ =






B11 B12 . . .
B21 B22 . . .
...

...
. . .






one gets in terms of the ordered basis (given above)

Â⊗ B̂ =
















A11B11 A11B12 . . . A12B11 A12B12 . . . . . .
A11B21 A11B22 . . . A12B21 A12B22 . . . . . .

...
...

. . .
...

...
. . . . . .

A21B11 A21B12 . . . A22B11 A22B12 . . . . . .
A21B21 A21B22 . . . A22B21 A22B22 . . . . . .

...
...

. . .
...

...
. . . . . .

...
...

...
...

...
...

. . .
















.

It is easy to see that one can work with the operators in direct spaces independently, e.g. (Â⊗ B̂)(Ĉ⊗
D̂) = ÂĈ ⊗ B̂D̂. Operators Â ⊗ Î and Î ⊗ B̂ are commonly denoted just by Â and B̂, because it is
usually clear from the context in which space they work.

17.1 Quantum number analysis

We consider situations in which two sets of angular momentum operators play a role, e.g.

• An electron with spin in an atomic (nℓ)-orbit (spin s and orbital angular momentum ℓ combined
into a total angular momentum j = ℓ + s). Here one combines the R

3 and the spin-space.

• Two electrons with spin (spin operators s1 and s2, combined into S = s1 + s2). Here we have the
product of spin-space for particle 1 and particle 2.

• Two electrons in atomic orbits (orbital angular momenta ℓ1 and ℓ2 combined into total orbital
angular momentum L = ℓ1 + ℓ2). Here we have the direct product spaces R3 ⊗ R3 for particles 1
and 2.
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• Combining the total orbital angular momentum of electrons in an atom (L) and the total spin (S)
into the total angular momentum J = L + S.

Let us discuss as the generic example
J = j1 + j2. (316)

We have states characterized by the direct product of two states,

|j1,m1〉 ⊗ |j2,m2〉, (317)

which we can write down since not only [j2
1, j1z] = [j2

2, j2z] = 0, but also [j1m, j2n] = 0. The sum-
operator J obviously is not independent, but since the J-operators again satisfy the well-known angular
momentum commutation relations we can look for states characterized by the commuting operators J2

and Jz, | . . . ; J,M〉. It is easy to verify that of the four operators characterizing the states in Eq. 317,
[J2, j1z ] 6= 0 and [J2, j2z] 6= 0 (Note that J2 contains the operator combination 2j1 · j2, which contains
operators like j1x, which do not commute with j1z). It is easy to verify that one does have

[J2, j2
1] = [J2, j2

2] = 0,

[Jz , j
2
1] = [Jz, j

2
2] = 0,

and thus we can relabel the (2j1 +1)(2j2+1) states in Eq. 317 into states characterized with the quantum
numbers

|j1, j2; J,M〉. (318)

The basic observation in the relabeling is that Jz = j1z + j2z and hence M = m1 +m2. This leads to the
following scheme, in which in the left part the possible m1 and m2-values are given and the upper right
part the possible sum-values for M including their degeneracy.

j2

j1j1

j2

j1 j2

j1 j2+=

+

+

x
m

M

m1

2

-

-

-

1. Since |m1| ≤ j1 and |m2| ≤ j2, the maximum value for M is j1 + j2. This state is unique.

2. Since J+ = j1+ + j2+ acting on this state is zero, it corresponds to a state with J = j1 + j2. Then,
there must exist other states (in total 2J + 1), which can be constructed via J− = j1− + j2− (in
the scheme indicated as the first set of states in the right part below the equal sign).

3. In general the state with M = j1 + j2−1 is twofold degenerate. One combination must be the state
obtained with J− from the state with M = j1 + j2, the other must be orthogonal to this state and
again represents a ’maximum M ’-value corresponding to J = j1 + j2 − 1.

4. This procedure goes on till we have reached M = |j1 − j2|, after which the degeneracy is equal to
the min{2j1 + 1, 2j2 + 1}, and stays constant till the M -value reaches the corresponding negative
value.

Thus
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Combining two angular momenta j1 and j2 we find resulting angular momenta J with values

J = j1 + j2, j1 + j2 − 1, . . . , |j1 − j2|, (319)

going down in steps of one.

Note that the total number of states is (as expected)

j1+j2∑

J=|j1−j2|
(2J + 1) = (2j1 + 1)(2j2 + 1). (320)

Furthermore we have in combining angular momenta:

half-integer with half-integer −→ integer
integer with half-integer −→ half-integer
integer with integer −→ integer

17.2 Clebsch-Gordon coefficients

The actual construction of states just follows the steps outlined above. Let us illustrate it for the case of
combining two spin 1/2 states. We have four states according to labeling in Eq. 317,

|s1,m1〉 ⊗ |s2,m2〉 : |1/2,+1/2〉 ⊗ |1/2,+1/2〉 ≡ | ↑↑〉,
|1/2,+1/2〉 ⊗ |1/2,−1/2〉 ≡ | ↑↓〉,
|1/2,−1/2〉 ⊗ |1/2,+1/2〉 ≡ | ↓↑〉,
|1/2,−1/2〉 ⊗ |1/2,−1/2〉 ≡ | ↓↓〉.

1. The highest state has M = 1 and must be the first of the four states above. Thus for the labeling
|s1, s2;S,M〉

|1/2, 1/2; 1,+1〉= | ↑↑〉. (321)

2. Using S− = s1− + s2− we can construct the other S + 1 states.

S−|1/2, 1/2; 1,+1〉= ~
√

2 |1/2, 1/2; 1, 0〉,
(s1− + s2−)| ↑↑〉 = ~(| ↑↓〉+ | ↓↑〉),

and thus

|1/2, 1/2; 1, 0〉= 1√
2

(

| ↑↓〉+ | ↓↑〉
)

. (322)

Continuing with S− (or in this case using the fact that we have the lowest nondegenerate M -state)
we find

|1/2, 1/2; 1,−1〉= | ↓↓〉. (323)

3. The state with M = 0 is twofold degenerate. One combination is already found in the above
procedure. The other is made up of the same two states appearing on the right hand side in
Eq. 322. Up to a phase, it is found by requiring it to be orthogonal to the state |1/2, 1/2; 1, 0〉 or
by requiring that S+ = s1+ + s2+ gives zero. The result is

|1/2, 1/2; 0, 0〉= 1√
2

(

| ↑↓〉 − | ↓↑〉
)

. (324)

The convention for the phase is that the higher m1-value appears with a positive sign.
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It is easy to summarize the results in a table, where one puts the states |j1,m1〉 ⊗ |j2,m2〉 in the
different rows and the states |j1, j2; J,M〉 in the different columns, i.e.

j1 × j2
... J

...
... M

...
. . . . . .
m1 m2

. . . . . .

For the above case we have

1/2 × 1/2 1 1 0 1
1 0 0 -1

+1/2 +1/2 1

+1/2 −1/2
√

1
2

√
1
2

−1/2 +1/2
√

1
2 −

√
1
2

−1/2 −1/2 1

Note that the recoupling matrix is block-diagonal because of the constraintM = m1+m2. The coefficients
appearing in the matrix are the socalled Clebsch-Gordan coefficients. We thus have

|j1, j2; J,M〉 =
∑

m1,m2

C(j1,m1, j2,m2; J,M) |j1,m1〉 ⊗ |j2,m2〉. (325)

Represented as a matrix as done above, it is unitary (because both sets of states are normed). Since the
Clebsch-Gordan coefficients are choosen real, the inverse is just the transposed matrix, or

|j1,m2〉 ⊗ |j2,m2〉 =
∑

J,M

C(j1,m1, j2,m2; J,M) |j1, j2; J,M〉. (326)

In some cases (like combining two spin 1/2 states) one can make use of symmetry arguments. If a
particular state has a well-defined symmetry under permutation of states 1 and 2, then all M -states
belonging to a particular J-value have the same symmetry (because j1±+j2± does not alter the symmetry.
This could have been used for the 1/2× 1/2 case, as the highest total M is symmetric, all S = 1 states
are symmetric. This is in this case sufficient to get the state in Eq. 322.

We will give two other examples. The first is

1× 1/2 3/2 3/2 1/2 3/2 1/2 3/2
+3/2 +1/2 +1/2 −1/2 −1/2 −3/2

+1 +1/2 1

+1 −1/2
√

1
3

√
2
3

0 +1/2
√

2
3 −

√
1
3

0 −1/2
√

2
3

√
1
3

−1 +1/2
√

1
3 −

√
2
3

−1 −1/2 1

for instance needed to obtain the explicit states for an electron with spin in an (2p)-orbit
coupled to a total angular momentum j = 3/2 (indicated as 2p3/2) with m = 1/2 is

φ(r, t) =
u2p(r)

r

(√

1

3
Y 1

1 (θ, φ)χ↓ +

√

2

3
Y 0

1 (θ, φ)χ↑

)

.
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The second is

1× 1 2 2 1 2 1 0 2 1 2
+2 +1 +1 0 0 0 −1 −1 −2

+1 +1 1

+1 0
√

1
2

√
1
2

0 +1
√

1
2 −

√
1
2

+1 −1
√

1
6

√
1
2

√
1
3

0 0
√

2
3 0 −

√
1
3

+1 −1
√

1
6 −

√
1
2

√
1
3

0 −1
√

1
2

√
1
2

−1 0
√

1
2 −

√
1
2

−1 −1 1

This example, useful in the combination of two spin 1 particles or two electrons in p-waves,
illustrates the symmetry of the resulting wave functions.

17.3 Applications

The Helium atom

As a first-order description of the helium atom, one can consider the independent-electron approxima-
tion, starting with a hamiltonian in which the electron-electron interaction is neglected, as well as any
interactions involving the spin of the electrons. In that case one has a separable hamiltonian and for
each of the electrons the solutions are given by hydrogen-like states (Z = 2), characterized by (nℓ). Let
us investigate the possible ground-state configurations, (1s)2 and the first excited levels (1s)(2p) and
(1s)(2s).

• The ground state configurations (1s)2.
Knowing the two angular momenta involved is sufficient to know the parity of these states, Π =
(−)ℓ1(−)ℓ2 = +. The angular momentum recoupling works in the following way.

– Combining ℓ1 = 0 and ℓ2 = 0, the only possibility is L = 0. The orbital wave function then is
symmetric under the interchange of the two electrons 1 and 2.

– Combining the spins s1 = 1/2 and s2 = 1/2 gives two possibilities, S = 0 or S = 1. The first
possibility is antisymmetric under the interchange of the electrons, the second is symmetric.

– The total wave function (product of orbital and spin parts) must be antisymmetric for fermions
according to the Pauli principle, hence L = 0 can only be combined with S = 0. This leaves
only one possibility for the total angular momentum, J = 0. The notation for the only allowed
ground state configuration is

(n1 ℓ1)(n2 ℓ2)
2S+1LJΠ = (1s)2 1S0+ .

• The configurations (1s)(2p) with parity Π = −.

– We have L = 1, but appearing twice. We can construct the symmetric and antisymmetric
combinations,

φ
s/a
LML

=
1√
2

[
u1s(r1)

r1
Y 0

0 (Ω1)
u2p(r2)

r2
YML

1 (Ω2)±
u2p(r1)

r1
YML

1 (Ω1)
u1s(r2)

r2
Y 0

0 (Ω2)

]
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for the spatial part.

– The combination of the spins gives again an antisymmetric S = 0 and a symmetric S = 1
wave function.

– The allowed configurations are thus obtained by the appropriate antisymmetric combinations
of orbital and spin parts,

(1s)(2p) 1P1− and (1s)(2p) 3P0−,1−,2− .

• The configurations (1s)(2s) with parity Π = +.

– We have L = 0, but now also appearing twice in a symmetric and antisymmetric combination.

– As above, antisymmetric S = 0 and symmetric S = 1.

– This gives the allowed configurations

(1s)(2s) 1S0+ and (1s)(2s) 3S1+ .

Summarizing in tabular form
Configurations in Helium

configuration E(0)/R∞ L S Parity Symmetry J-configurations # states
(1s)2 −8 0 0 + A 1S0+ 1

1 + S not allowed 3
(1s)(2p) & (2p)(1s) −5 1 0 − S/A 1P1− 3

1 − S/A 3P0−,1−,2− 9
(1s)(2s) & (2s)(1s) −5 0 0 + S/A 1S0+ 1

1 + S/A 3S1+ 3

Important to note is that although additional terms may be present in the full hamiltonian, the solutions
found in this way do form a complete set of states for the atom. Other interaction terms give rise to
shifts in the zeroth order energies and they may mix the states. To calculate such shifts we need to use
perturbation theory.

Atomic multiplets

In a more realistic atom the ee-interaction term (or what remains after taken into account an effective
charge) must also be considered. It breaks rotational invariance in the hamiltonian for the electron
coordinate ri, thus ℓi is no longer compatible with the hamiltonian. We note that L is still compatible
with the hamiltonian. Since there is no spin-dependence, spin operators si and also S are compatible
with the hamiltonian and corresponding quantum numbers still can be used.

To illustrate how one easily finds the allowed L and S values given an electron configuration, we
consider the ground state configuration of Carbon, (1s)2(2s)2(2p)2. The allowed states in a shell can be
represented as a number of boxes, e.g. an s-shell as two boxes, a p-shell as six boxes,

ms ↓ mℓ 0

+1/2
−1/2

ms ↓ mℓ −1 0 +1

+1/2
−1/2

etc. Putting N electrons in these boxes with at most one electron per box (Pauli principle) one has
6!/N !(6 − N)! possibilities, e.g. for a filled only one possibility. Obviously then all magnetic quantum
numbers combine to zero, ML = MS = 0 and one also has for the total L and S quantum numbers
L = S = 0. Hence filled shells can be disregarded for finding total (L, S) values.
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As a consequence the specta of atoms with one electron outside a closed shell (Li, Na, K, Rb, Cs,
Fr) resemble the spectrum of hydrogen, e.g. the configurations for sodium (Na) are (nℓ) with n ≥ 3.
The groundstate for Na is (3s)2S1/2, the first excited states are the (3p)2P1/2 and (3p)2P3/2 levels. The
electric dipole transition 2P →2 S is the well-known yellow Na-line in the visible spectrum, which by
the fine-structure (see below) is split into two lines corresponding to the transitions 2P3/2 →2 S1/2 and
2P1/2 →2 S1/2. For atoms with two electrons outside a closed shell (Be, Mg, Ca, Sr, Ba, Ra) the multiplet
structure resembles that of helium.

For a particular number of electrons it is easy to look at the number of possibilities to construct
particular ML and MS values. This is denoted in a Slater diagram

MS ↓ ML −2 −1 0 +1 +2

+1 0 1 1 1 0
0 1 2 3 2 1
−1 0 1 1 1 0

It is easy to disentangle this into

0 0 0 0 0
1 1 1 1 1
0 0 0 0 0

(L, S) = (2, 0)

+

0 1 1 1 0
0 1 1 1 0
0 1 1 1 0

(L, S) = (1, 1)

+

0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

(L, S) = (0, 0)

Thus for the Carbon one finds in the groundstate configurations the multiplets

1D 3P 1S

Also for configurations involving more shells that are not completely filled, it is straightforward to find
the states in an MS −ML diagram. At this point we have completed the quantum number analysis of
the spectrum. In order to find the energies one needs to use perturbation theory as well as variational
methods to be discussed next. The results of these methods have shown that for the ordering in the
spectrum a number of phenomenological rules can be formulated, the Hund rules. In particular for the
groundstate configuration one has that the terms with highest S-values (highest multiplicity) and then
highest L-values have the lowest energy, i.e. in the example for Carbon

E(3P ) < E(1D) < E(1S).

Selection rules

For emission and absorption of light (photons) the relevant operator is the electric dipole operator, which
in essence is the position operator. The calculation of transition probabilities are given by the matrix
elements between the appropriate states. Since the dipole operator does not involve spin operators, the
spin wave function doesn’t change in a dipole transition, giving rise to a spin selection rule: ms 1 = ms 2,
i.e.

∆s = ∆ms = 0. (327)

In fact the photon polarization determines which of the components of the position operator is the
relevant operator. Using instead of the Cartesian components, the (spherical) representation of the
position vector in terms of the three spherical harmonics with ℓ = 1, the Y

mγ

1 , one needs (considering
one specific electron) the integral

〈1|r · ǫ|2〉 =
√

4π

3

∫

d3r ψ∗
n1ℓ1m1

(r) r Y
mγ

1 (θ, ϕ)ψn2ℓ2m2(r),
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which factorizes into

〈1|r · ǫ|2〉 =
√

4π

3

∫

dr r un1ℓ1(r)un2ℓ2(r)

∫

dΩ Y m1 ∗
ℓ1

(θ, ϕ)Y
mγ

1 (θ, ϕ)Y m2

ℓ2
(θ, ϕ).

From the ϕ-dependence of the spherical harmonics one sees that the matrix element is proportional to

∫

dϕ e−im1ϕ eimγϕ eim2ϕ = 2π δ(m2 +mγ −m1),

giving rise to the selection rule
∆mℓ = 0, ±1, (328)

each of these corresponding to a specific photon polarization. The integral for the ϕ-dependent part is
simple, but more general one can use the properties of the Y mℓ -functions to see what happens with the
full angular integration. One only gets a nonzero result if the addition of angular momenta |ℓ2,m2〉 and
|1,mγ〉 can yield the final state |ℓ1,m1〉 via the well-known angular momentum addition rules. The result
is simply proportional to the Clebsch-Gordan coefficient in this recoupling,

〈1|r · ǫ|2〉 =
√

4π

3

∫

dr r un1ℓ1(r)un2ℓ2(r)C(1,mγ , ℓ2,m2; ℓ1,m1).

which is known as the Wigner-Eckart theorem. This leads besides the m-selection rule to |∆ℓ| ≤ 1
Knowing the parity of the spherical harmonics one immediately gets a parity selection rule, namely
Π1Π2 = −1 or with Π = (−)ℓ, one is left with

∆ℓ = ±1. (329)

Rotational invariance further requires that the sum of the total angular momentum in initial and final
state is conserved. This becomes relevant if the orbital angular momentum and spin of electrons and/or
atomic nuclei are coupled to a specific total angular momentum. In many cases the orbital angular
momentum then is no longer a good quantum number. Still, even when ℓ and s are coupled to j, or for
many particles L and S are coupled to J , the transition operator involves a simple Y

mγ

1 , implying

∆J = 0, ±1 (330)

(with J = 0 → J = 0 forbidden!).
The interactions (absorption or emission) of photons in atoms can also proceed via different operators.

The one treated here is known as electric dipole radiation (E1). In order of strength one has also the
magnetic dipole radiation (M1), electric quadrupole radiation (E2), etc. For instance electric quadrupole
radiation is governed by operators of the type xi xj , i.e. in a spherical representation the ℓ = 2 spherical
harmonics. This leads to transition selection rules in which parity is not changed and since the operators
are proportional to r2 Y

mγ

2 one has ∆ℓ = 2.

Exercises

Exercise 17.1

Quarks are particles with spin 1/2. Baryons, such as the proton and neutron, are built from three quarks.
Mesons, like the pions and kaons, are built from a quark and an antiquark (antiquarks also have spin
1/2). Assume the quarks are in the ground state.

(a) What is the orbital angular momentum of the ground state.
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(b) What spin can baryons have?

(c) What spin can mesons have?

(d) What will be the results of (b) and (c) for the total angular momentum of baryons and mesons
when we also allow for orbital angular momentum.

(e) What can you tell about the symmetry under the exchange of particles for the wave function of a
system composed of baryons (for example an atomic nucleus built from protons and neutrons).

Exercise 17.2

Consider two states with j1 = 1 and j2 = 3/2. The angular momenta of these states can be com-
bined into the total angular momentum J , where for the operators J = j1 + j2. Determine using
ClebschGordan[{j1,m1},{j2,m2},{J,M}] in Mathematica the wavefunction for the state J = 3/2,M =
1/2 in terms of the eigenstates of j21 , j1z , j

2
2 en j2z .

Exercise 17.3

(a) Determine the multiplets, their spectroscopic terms and their energy ordering for all (np)x config-
urations.

(b) Similar for (np)(n′p) with n 6= n′. Compare the levels with those for Carbon.

Exercise 17.4

Construct the possible spectroscopic terms of a Barium atom in a (6p)(5d) state. Give the degeneracy of
each of the terms and heck that there are (as expected) 60 states. Use the Hund rules to order the states.

Exercise 17.5

We look at two spin 1/2 particles for which the spin operators can be described using the Pauli matrices.
For the two-particle states we consider the (direct) product basis | ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉.

(a) Construct explicitly the (4× 4) matrices S1 = S1 ⊗ Î2 and S2 = Î1 ⊗S2 in the two-particle space.

(b) Construct the matrices S = S1 + S2.

(c) Construct the matrix S2.

(d) Show that Sz and S2 commute.

(e) Determine the eigenvalues of Sz and S2 and the (common) set of eigenstates.

(f) Check that the result agrees with the table of Clebsch-Gordan coefficients for 1/2 ⊗ 1/2 = 0 ⊕ 1.
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18 The EPR experiment

18.1 The ’experiment’

One of the best ways to illustrate the ’absurdness’ of quantum mechanics when one tries to understand
it with classical means is the EPR experiment, proposed by Einstein, Podolsky and Rosen (1935) to
show that quantum mechanics should be wrong. A simplified version of the experiment is the decay of
a spin 0 system into two spin 1/2 particles with opposite spin. The spin is measured along a direction
perpendicular to the motion of the two particles, which are moving apart at (say) half of the speed of
light. The angles θA and θB, along which the spin is measured can be varied, but the actual decision
which angles are measured is only taken (at random) when the particles are halfway6.
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The results of the measurements (which in recent years have actually been performed with a variety of
particles over macroscopic distances) are as follows:

• Considering only the measurement at A, the probability to measure a spin along n̂A is P (θA,+) =
1/2 and the probability to measure a spin opposite to this is P (θA,−) = 1/2. Similarly at B.

• Given a ’+’-measurement at A at a given angle θA, the following results are found:

|θA − θB| = 0◦ 60◦ 120◦ 180◦

P (θA,+; θB,+) 0 1/4 3/4 1

P (θA,+; θB,−) 1 3/4 1/4 0

6In this way information on the setting of B cannot reach A at the time of measurement
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18.2 A classical explanation?

In any ’realistic’ theory the information on the potential measurements for particle A should be a property
of particle A and hence stored in the particle. Thus to simplify things, only concentrate on three angles
(0◦, 60◦ and 120◦). Any event has particles A and B flying apart with known prescriptions for what to
do if they encounter a Stern-Gerlach apparatus under a given angle θA. E.g.

Event 1: memory A = (+−+) memory B = (−+−)

Event 2: memory A = (+ +−) memory B = (−−+)

etc. For instance in the first example the prescription tells A that if θA = 0◦, then a spin measurement
yields +~/2, if θA = 60◦, then a spin measurement yields −~/2, while if θA = 120◦, then a spin measure-
ment yields +~/2. In each of the events the common origin of A and B is reflected in the complementary
prescriptions. This is the only way the first and last colums of the ’experiment’ can be explained. Let’s
now concentrate on the correlations and write some explicit probabilities P (θA,+; θB,+) in terms of the
fractions of events with particular memories. We have e.g.

P (θA = 0◦,+; θB = 120◦,+) =
∑

σ=−τ
f(+σ−;−τ+)

= f(+ +−;−−+) + f(+−−;−+ +) (331)

P (θA = 60◦,+; θB = 120◦,+) = f(+ +−;−−+) + f(−+−; +−+)
︸ ︷︷ ︸

≥0

(332)

P (θA = 0◦,+; θB = 60◦,+) = f(+−+;−+−)
︸ ︷︷ ︸

≥0

+ f(+−−;−+ +), (333)

and hence we must have in a realistic theory

P (θA = 60◦,+; θB = 120◦,+) + P (θA = 0◦,+; θB = 60◦,+) ≥ P (θA = 0◦,+; θB = 120◦,+), (334)

which is an explicit example of a Bell inequality. But clearly our ’experiment’ above violates this inequal-
ity! Thus a realistic theory cannot explain the results in the EPR experiment.

18.3 The quantum-mechanical explanation!

Quantum mechanics can explain the results. Using e.g. the spin states defined with respect to the θ = 0
direction, we know that the AB system is in an antisymmetric (spin zero) state,

|AB〉 =
1√
2

(|A ↑〉 ⊗ |B ↓〉 − |A ↓〉 ⊗ |B ↑〉) (335)

Using the rotated spin states along an arbitrary direction n̂, it is straightforward to check the results of
the EPR experiment. Given a ’+’-measurement at A, the wave function becomes

|A ↑〉 ⊗ |B ↓〉

and the probability

P (θA = 0◦,+; θB,+) =

∣
∣
∣
∣
〈A ↑ |A ↑〉 〈θB,+|B ↓〉

∣
∣
∣
∣

2

= sin2(θB/2). (336)

For any other angle for θA, simply choose this as the quantization axis, to see that the result only depends
on θA − θB.
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18.4 Quantum computing: Qubits and juggling with them

While a classical computer uses bits (with two possible values, 0 and 1) to represent numbers, a quantum
computer would employ two quantum states, |0〉 or |1〉 to store information. These are called Qubits.
These could be the two spin states of a spin 1/2 particle, but (more practical) could be two states for a
trapped ion, e.g. in combining the spin of an electron (S = 1/2) with the spin of the atomic nucleus (I)
one gets two states with a combined spin F = I±1/2. These states have slightly different energy because
of the hyperfine interaction (see next section) and could represent our two possible states |0〉 and |1〉. In
general a quantum state can be in a superposition of these two states, which omitting an overall phase
can be written explicitly or as a 2-dimensional state vector,

|qubit〉 = cos
(
θ
2

)
|0〉+ eiφ sin

(
θ
2

)
|1〉 =





cos
(
θ
2

)

eiφ sin
(
θ
2

)



 . (337)

It is parametrized with angles (θ, φ), which run over the socalled Bloch sphere. The information content,
however, is the same as a classical bit. A measurement (of say the energy) yields one or the other
state. Nevertheless, in quantum computing one often juggles with linear combination of bits and then
the representation as an arrow pointing from the center to the surface of the Bloch sphere is convenient.
For instance |0〉 and |1〉 represents arrows pointing to the North and South pole of the Bloch sphere.
Flipping the states is known as the NOT (also called FLIP or SWAP) operation X,

X|0〉 = |1〉, X|1〉 = |0〉,

(the name NOT should be obvious), which is represented as a (unitary) matrix in our 2-dimensional
space,

X =

(
0 1
1 0

)

, (338)

represented by a 180 degree rotation around the x (or y)-axis for the vector on the Bloch sphere.
One of the most important operations on a single qubit is the Hadamard operation,

H ==
1√
2

(
1 1
1 −1

)

, (339)

which produces from the single qubits state a linear combination of the two states, corresponding to a
90 degree rotation on the Bloch sphere. It is relatively easy to realize such an operation. For instance
prepare a spin 1/2 particle with spin in the x-direction when the basic qubits correspond to the spin
states along the z-direction. Note that applying the Hadamard twice gives a switch, H2 = X. One also
writes H =

√
X.

There are a some other useful operators at this one-qubit level, such as the zero and unit operators,

O =

(
0 0
0 0

)

and I =

(
1 0
0 1

)

,

and the projection operators (satisfying P 2 = P ),

N =

(
0 0
0 1

)

and N =

(
1 0
0 0

)

,

which satisfy

N 2 = N , N
2

= N , NN = NN = O, N + N = I.
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An interesting operator is

Z = N −N =

(
1 0
0 −1

)

,

which leaves |0〉 unmodified and switches the sign of |1〉. We note that the operators N , N and Z cannot
be physical operators in our quantum computer because they multiply a physical state with the number
zero or the number -1. They turn out to be useful, however, in manipulations in qubit-space, representing
the effect on one qubit that is a consequence of a physical manipulations on two or three qubits. On the
Bloch sphere Z corresponds to a rotation over π around the z-axis. Adding also the combined NOT and
Z operator, we have

Y = ZX = −XZ =

(
0 1
−1 0

)

.

The operators X, Y and Z are up to a factor for Y just the familiar Pauli matrices, X ↔ σx, Y ↔ iσy
and Z ↔ σz . We also have X2 = −Y 2 = Z2 = I. In quantum computation one works with specific
physical actions, such as transitions between the levels of the trapped ions, that act as quantum logic
gates (unitary transformations) on one or on a subset of the qubits.

18.5 Entanglement

Considering a sequence of trapped ions one can have (multi-particle) states |000〉, |010〉, etc. There
are four two-particle states, |00〉, |01〉, |10〉 and |11〉, for which we use (interchangeable) notations like
|00〉 = |0〉|0〉 = |0〉 ⊗ |0〉, etc. (see the pre-knowledge discussion in section 17). Having more qubits, one
often operates on one or two of the qubits out of a larger multi-qubit configuration. Then it is useful to
specify e.g. |x〉3 or |xy〉12 as subsets of a larger chain.

Having more qubits, it is now possible to have two-particle states of the type

|ψ〉 ∝ |01〉 − |10〉, (340)

(in complete analogy with the spin 0 state
(
| ↑↓〉 − | ↓↑〉

)
/
√

2). Although the basis multi-particle states
are (direct) products, the state in Eq. 340 has the property that it cannot be written as a simple product
of single-particle states,

|ψ〉 6= |ψ1〉|ψ2〉, (341)

even if one allows

|ψ1〉|ψ2〉 =
(
a|0〉1 + b|1〉1

)(
c|0〉2 + d|1〉2

)
= ac|00〉+ ad|01〉+ bc|10〉+ bd|11〉. (342)

Such states are called entangled. In the previous chapter we have seen that entangled states have different
correlations built in as compared to uncorrelated (direct) product states (which could just be classical
objects). This is directly connected to the measuring process in quantum mechanics, which projects onto
specific eigenstates of the analyzer.

For two-qubit states, the operators can in general be written as a superposition of direct products
of single-particle operators, denoted (interchangeable) as A12 = A1 ⊗A2 = A1A2 = A2A1, operating
according to the direct product prescription A12|xy〉 = A1|x〉 ⊗ A2|y〉. In the two-qubit space such
operators can be written as 4× 4 matrices with as standard choice for the basis |00〉, |01〉, |10〉, |11〉.

Note that a Hadamard operation on one qubit produces at the two-qubit level an entangled state,
H1|00〉 ∝ |01〉+ |11〉. (Note that H1 is actually shorthand for H1 ⊗ I2). The operation brings the two-
qubit system in an entangled state, in which the information is no longer encoded in individual registers
as for a classical computer.
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The SWAP operation at the two-qubit level leaves |00〉 and |11〉 the same and interchanges |01〉 and
|10〉. It can be written as a 4 × 4 matrix, but it can also be expressed in a combination of single-qubit
operators,

S12 =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1







= N 1N2 + N1N2+
(
X1X2

)(
N1N 2 + N 1N2

)
. (343)

One of the most important operations for two qubits is the Controlled-NOT or CNOT operation, which
changes the second qubit (target-qubit), depending on the state of the first qubit (control-qubit). Thus

C12 =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







= N 1 + X2N1. (344)

A CNOT operation can be achieved by a relatively straightforward physical operation that employs small
energy shifts of the trapped atoms because of their interactions with the surrounding atoms.

The essence of quantum computing is the enhancement of entanglement. By storing the information
at a given time in an entangled state over 10 registers enables in essence calculation on 210 states at the
same time. Of course, in spite of all information stored in the system one can only do one read-out, which
in the case of entanglement for a given register, moreover, may yield |0〉 or |1〉 with certain probabilities.
This puts high demands on the algorithms, which should make sure that finally the wanted information
is again available in (more or less) de-entangled registers.
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19 Bound state perturbation theory

19.1 Basic treatment

Perturbation theory is used to obtain in a systematic way a solution for a hamiltonian H = H0 + λV
in the form of an expansion in the (small) parameter λ, assuming the solutions of H0 are known, (H0 −
E

(0)
n ) |φn〉 = 0. One inserts expansions for the energy and the solution of the form

En = E(0)
n + λE(1)

n + λ2 E(2)
n + . . . , (345)

|ψn〉 = |φn〉+ λ |ψ(1)
n 〉, (346)

into the Schrödinger equation (H − En)|ψn〉 = 0,
(
H0 + λV

)(
|φn〉+ λ |ψ(1)

n 〉+ . . .
)

=
(
E(0)
n + λE(1)

n + . . .
)(
|φn〉+ λ |ψ(1)

n 〉+ . . .
)
. (347)

After ordering the terms according to the power of λ, one finds at zeroth order the unperturbed Schrödinger
equation for |φn〉 and at first order

λV |φn〉+ λH0|ψ(1)
n 〉 = λE(1)

n |φn〉+ λE(0)
n |ψ(1)

n 〉. (348)

Realizing that the unperturbed solutions form a complete set we take the scalar product with 〈φn| and
with 〈φm| for m 6= n, yielding

λE(1)
n = 〈φn|λV |φn〉, (349)

λ
(
E(0)
n − E(0)

m

)
〈φm|ψ(1)

n 〉 = 〈φm|λV |φn〉 (for m 6= n). (350)

To obtain the first equation we have assumed that ψ
(1)
n 〉 can be choosen orthogonal to |φn〉 (thus

〈φn|〉ψ(1)
n 〉 = 0). This can be done without loss of generality. It may be necessary to renormalize

the final result, because we have more or less arbitrary set the coefficient of |φn〉 equalt to one. The first

equation gives the first order shift in the energy ∆E = E − En = λE
(1)
n , the second gives the correction

in the wave function. Summarizing,

E(1)
n = 〈φn|V |φn = Vnn, (351)

|ψ(1)
n 〉 =

∑

m 6=n
|φm〉

〈φm|V |φn〉
E

(0)
n − E(0)

m

=
∑

m 6=n
|φm〉

Vmn

E
(0)
n − E(0)

m

. (352)

The latter result can be written down only for the case that the unperturbed state |φn〉 is nondegenerate.
The second order results involve the λ2 terms of Eq. 347, giving

H0|ψ(2)
n 〉+ V |ψ(1)

n 〉 = E(0)
n |ψ(2)

n 〉+ E(1)
n |ψ(1)

n 〉+ E(2)
n |φn〉. (353)

Taking the scalar product with 〈φn| gives the result

E(2)
n = 〈φn|V |ψ(1)

n 〉 =
∑

m 6=n

Vnm Vmn

E
(0)
n − E(0)

m

. (354)

Perturbation theory is very useful if the first-order shift in the energies is small, to be more precise if

|〈φm|λV |φn〉| ≪ |E(0)
n − E(0)

m | for all m 6= n. In principle the expressions have been written down for
discrete spectra, but for bound states we can generalize

∑

m 6=n
⇒
∑

m 6=n
+

∫ ∞

0

dE ρ(E), (355)

where the integral covers the continuum spectrum in which ρ(E) dE is the number of states in an energy
interval dE around E.
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19.2 Perturbation theory for degenerate states

In many applications we will encounter the situation that the energy levels in the unperturbed hamiltonian
will be degenrate, in which case the step from Eq. 350 to 352 cannot be made. Eq. 350, however, also
tells us how to proceed. Make sure that the states |φn1〉, . . . , |φns〉 which are degenerate with respect to
H0 are choosen to be eigenstates of the perturbation λV . In that case we can choose the wave function
corrections orthogonal to all |φnr〉 and we have 〈φni|λV |φnj〉 = 0. The result is that we get instead of
Eq. 352 the result

|ψ(1)
n 〉 =

∑

E
(0)
m 6=E(0)

n

|φm〉
〈φm|V |φn〉
E

(0)
n − E(0)

m

. (356)

In practice we often look for a suitable set of states for which both the unperturbed hamiltonian and the
perturbation potential are diagonal by looking for a relevant set of compatible operators. In worst case
one can ressort to a brute force diagonalisation of the perturbation potential.

19.3 Applications

Fine structure in hydrogen: the mass correction

In the hydrogen atom there are a number of additional terms in the hamiltonian that can be attributed
to relativistic corrections,

H = H0 +Hmass +HFoldy +Hso (357)

The first term is a correction coming from the difference of the relativistic and nonrelativistic kinetic
energies,

Hmass =
√

p2c2 +m2c4 −mc2 − p2

2m
≈ − p4

8m3c2
. (358)

Including this correction, the operators ℓ2 and ℓz still remain compatible with the hamiltonian, but
the radial dependence now will be modified. However in first order perturbation theory one obtains an
accurate estimate of the energy shifts by calculating the expectation value of the correction. We here
just state the result (treated in many quantum mechanics books),

∆Emass(nℓ) = 〈nℓm . . . | − p4

8m3c2
|nℓm . . .〉 = −α2 R∞

n3

(
1

ℓ+ 1
2

− 3

4n

)

. (359)

Fine structure in hydrogen: the spin-orbit interaction

Another interaction term arises because of the interaction of the spin with the induced magnetic field by
the orbital motion. It can be up to a factor 2 be derived with classical arguments, but a proper derivation
requires the use of the relativistic Dirac equation for the electron. The result for a particle in a central
potential is

Hso =
1

2m2c2
1

r

dVc
dr

ℓ · s. (360)

When applying perturbation theory for this term one must be careful. One cannot simply calculate the
expectation value between hydrogen states |nℓsmℓms〉. Since the level is 2(2ℓ + 1)-fold degenerate the
perturbation mixes these degenerate states. Application of perturbation theory requires a reordering of
these states, such that they are compatible with the perturbation. Instead of the brute force way of
diagonalizing the matrix 〈nℓsm′

ℓm
′
s|Hso|nℓsmℓms〉, there is a smarter way. By rewriting

ℓ · s =
1

2

[
j2 − ℓ2 − s2

]
,
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one sees that the operators ℓ2, s2, j2 and jz (which from the theory of addition of angular momenta
are known to be compatible with each other) are also compatible with the hamiltonian. This is not true
for the set ℓ2, s2, ℓz and sz. Hence if we use states |nℓsjm〉, the correction term has no off-diagonal
elements, hence does (for given ℓ and s not mix the unperturbed degenerate states and the splitting for
the correct combinations of states is directly found as

∆Eso(nℓsjm) =
1

2m2c2
〈nℓsjm|1

r

dVc
dr

ℓ · s|nℓsjm〉

=
e2 ~2

32πǫ0m2c2
〈nℓ| 1

r3
|nℓ〉 [j(j + 1)− ℓ(ℓ+ 1)− s(s+ 1)]

=
e2 ~2

32πǫ0m2c2
j(j + 1)− ℓ(ℓ+ 1)− s(s+ 1)

a3
0 n

3 ℓ(ℓ+ 1)(ℓ+ 1
2 )

(361)

We thus must couple ℓ and s to j-eigenstates. For one electron with a given ℓ 6= 0 there are two possibilities
for j, namely j = ℓ± 1

2 giving for ℓ 6= 0

∆Eso(nℓj) = α2 R∞
n3

(
1

ℓ+ 1
2

− 1

j + 1
2

)

(362)

and for the combined result

∆Emass + so = −α2 R∞
n3

(
1

j + 1
2

− 3

4n

)

(363)

In the Hydrogen atom one also has the Foldy term, which is a relativistic correction proportional to
δ3(r) and thus only affects s-waves. It makes the above equation valid also for s-waves. Schematically
(not on scale) one has the following fine structure in the hydrogen spectrum

2S1/2

2S1/2

2P3/2

2P3/2

2P1/2

2S1/2

2S1/2

2P1/25.7 x 10−5 eV

   4 x 10 eV−6

E   = − 3.4 eV

E   = −13.6 eV

2

1 1s

2s
2p

H0 spin−orbit
spin−orbit
mass
Foldy

F = 1

F = 0

Lamb−shift

hyperfine structure

 5.9 x 10 eV−6

The various terms cause shifts in the order of 10−4 eV, giving within a orbit characterized by the principal
quantum number n states with well-defined j-values. We denote such a level with a term symbol, for
hydrogen

(nℓ) (2S+1)LJ

where (nℓ) indicates the spatial part of the electron wave function, 2S+1 is the total spin multiplicity and
L is the total orbital angular momentum of the electrons (using notation S, P,D, . . . for L = 0, 1, 2, . . .).
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In this specific case of hydrogen with just one electron S = 1/2 and the multiplicity is always 2 while
L = ℓ. The splitting of the 2S1/2 and 2P1/2 is about 4 × 10−6 eV produces a splitting of the Lyman α
line. Also transitions between both levels are possible via an E1 transition with frequency of about 1
GHz.

Fine structure in hydrogen: the hyperfine splitting

The hyperfine structure in hydrogen is due to the interaction of the magnetic moments of electron and
nucleus. Also the proton has a magnetic moment, which induces a magnetic dipole field felt by the
electron and vice versa. It produces an interaction term, which for s-waves is of the form

Vss =
1

6πǫ0 c2
µe · µp∇

2 1

r
. (364)

We know that µe = ge (e/me)S and µp = gp (e/Mp) I (where we use the in atomic physics conventional
notation I for the nuclear spin). The splitting thus is proportional to

∆Ess ∝ ge gp 〈|S · I|〉 =
1

2
ge gp ~

2 [F (+F1)− S(S + 1)− I(I + 1)] . (365)

The proper eigenstates are labeled by eigenstates for the angular momentum operators F 2 and Fz, where
F = S + I. For normal hydrogen in the ground state (I = 1/2), it produces two states with F = 0
(para-) and F = 1 (ortho-hydrogen). The splitting is much smaller than the fine structure. For the
(1s) 2S1/2 level in hydrogen the splitting is 5.9× 10−6 eV (see figure in previous section), corresponding
to a transition frequency νhf = 1.42 GHz or a wavelength of 21 cm. Although the radiative transition
is heavily suppressed (it is certainly not an electric dipole transition!) it plays a very important role in
radio astronomy. It traces the abundant occurence of hydrogen in the universe not in the least since the
21 cm wavelength is not strongly attenuated by interstellar dust.

Refinements for Helium

Including the ee-interaction the hamiltonian for 2 electrons in an atom is

H(r1, r2; p1,p2) =

(

− ~2

2m
∇

2
1 −

Ze2

4πǫ0 r1

)

︸ ︷︷ ︸

H1

+

(

− ~2

2m
∇

2
2 −

Ze2

4πǫ0 r2

)

︸ ︷︷ ︸

H2

+
e2

4πǫ0 |r1 − r2|
︸ ︷︷ ︸

H12

,

which does not factorize because of the electron-electron interaction term. A way to account for the
ee-interaction is by treating it as a perturbation on the result in the previous section. In perturbation
theory the shift of the lowest level in the zeroth order approximation for Helium, the (1s)2 1S0 multiplet,
is simply given by the evaluating the ee-interaction term between the unperturbed wave function, which
can straightforwardly be calculated

∆Egs =

∫

d3r1 d
3r2 |φ1s(r1)|2 |φ1s(r1)|2

e2

4πǫ0|r1 − r2|
=

5

4
Z R∞, (366)

giving as estimate for the binding of the 1S0 level E =
(
−2Z2 + 5

4 Z
)
R∞, which for Z = 2 gives

E ≈ −5.5R∞, considerably higher than the previous result E(0) = −8 eV and not bad as compared to
the experimental value Egs = −5.81R∞.

For the next multiplets one has a spatially symmetric or antisymmetric wave function of the form
ψ = ψ1 ± ψ2, the sign depending on the spin wave function and one obtains for the expectation value of



Bound state perturbation theory 99

the hamiltonian,

〈ψ|H |ψ〉
〈ψ|ψ〉 =

〈ψ1 ± ψ2|H1 +H2 +H12|ψ1 ± ψ2〉
〈ψ1 ± ψ2|ψ1 ± ψ2〉

= E1 + E2 +
C ±K
1± S , (367)

where

〈ψ1|ψ1〉 = 〈ψ2|ψ2〉 = 1 (assumed normalized),

〈ψ1|Hi|ψ1〉 = Ei (i = 1,2),

〈ψ1|ψ2〉 = 〈ψ2|ψ1〉 = S (overlap integral),

〈ψ1|Hi|ψ2〉 = 〈ψ2|Hi|ψ2〉 = Ei S (i = 1,2),

〈ψ1|H12|ψ1〉 = 〈ψ2|H12|ψ2〉 = C (Coulomb integral),

〈ψ1|H12|ψ2〉 = 〈ψ2|H12|ψ1〉 = K (exchange integral).

(1s)2

P1
P3

S1

S1

S3

=

(1s)(2s)

(1s)(2p)

0

24.6

eV
ionization energy

Looking at the (1s)(2p) and (1s)(2s) configura-
tions and the shifts in perturbation theory, the
exchange integral K turns out to be important
yielding the lowest energy for the antisymmetric
spatial wave function. These are combined with
S = 1. For the excited levels of Helium the S = 1
(ortho-Helium) multiplets have the lowest ener-
gies. The groundstate configuration of Helium
only has S = 0 (para-Helium). In the figure some
dipole transitions have been indicated.

The fine structure of atoms

When combining angular momenta, we discussed the multiplets forming the fine structure in atoms.
For not too heavy atoms, the energies for the multiplets turn out to be described well by a spin-orbit
interaction of the form

Hso = A(L, S)L · S, (368)

with a strenght A depending on the multiplet, coming among others from the radial dependence of
the basic interaction. The spin-orbit interaction splits states with different J-values, leading to 2S+1LJ
multiplets and a magnitude for the splitting being given by

∆E(LSJM) =
1

2
A~

2 [J(J + 1)− L(L+ 1)− S(S + 1)] . (369)

An example of the splitting of the three terms for an (np)2 configuration is given below.
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(np) 2 (np) 2

2S+1L J

0
1

2

2
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D

P
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1
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( j , j )J

(3/2,3/2)

(1/2,1/2)

0

2

2

1

0

(3/2,1/2)

Note that the average (beware of degeneracy) of a multiplet gives the energy of the multiplet without the
spin-orbit interaction. The pattern of levels can in principle be obtained from atomic spectra. The use of
magnetic fields is helpful to determine the degeneracy of the levels. But already the spin-orbit splittings
contains interesting patterns, such as

r =
E(2S+1LJ)− E(2S+1LJ−1)

E(2S+1LJ−1)− E(2S+1LJ−2)
=

J

J − 1
, (370)

e.g. for the ratio (E(3P2) − E(3P1))/(E(3P1) − E(3P0)) one expects r = 2 if LS-coupling describes the
fine structure. For Carbon the actual ratio is 1.65, for Silicium (Si) it is 1.89, but for a heavy atom as
lead (Pb) the result is just 0.36, indicating a different type of fine structure. A different scheme is the
jj-scheme in which first the orbital angular momenta and spins of the electrons are coupled, which in
turn are combined into J-values, illustrated in the figure for the (np)2 configuration. Note that coupling
two identical j-values of the electrons, one needs to account for the symmetry of the wave function. The
wave function for the maximal J = 2 j is symmetric, for the next lower J it is antisymmetric, then
again symmetric, etc. This explains the J-values in the jj-coupling scheme. In the final result the same
J-values must appear, but note that the actual wave functions are different.

Exercises

Exercise 19.1

(a) Include spin-orbit interactions to find the possible J-values in the (6p)(5d) configuration of a Barium
atom (see Exercise 17.3).

(b) Give the corresponding construction of allowed J-values in the jj-coupling scheme.

Exercise 19.2

Consider the hamiltonian H for the Hydrogen atom given by

H =
p2

2m
− e2

4πǫ0r
.

with eigenstates φnlm.
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a. What is the hamiltonian if the atom is in an external electric field with strength E = E ẑ ?

b. Explain that the first order correction in the field E does not affect the energy of the ground state
(n = 1).

c. Determine the first order correction for the energy of the n = 2 levels in the external electric field.
Give a level scheme in which you indicate the zeroth order results of the n = 2 levels and their
splitting. [Hint: 〈φ210|z|φ200〉 = −3 a0.]

Exercise 19.3

Prove the relation

r =
E(2S+1LJ)− E(2S+1LJ−1)

E(2S+1LJ−1)− E(2S+1LJ−2)
=

J

J − 1
.
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20 Magnetic effects in atoms and the electron spin

20.1 The Zeeman effect

Interaction of orbital angular momentum with magnetic field

In a magnetic field an additional interaction is added to the hamiltonian,

H = − ~2

2m
∇

2 − Ze2

4πǫ0 r
︸ ︷︷ ︸

H0

+Vmag, (371)

where Vmag = −µ ·B. Neglecting spin, the magnetic moment of a particle in orbit is given by

µℓ = −gℓ
e

2m
ℓ (372)

with gℓ = 1. What are the eigenfunctions and eigenvalues (energies) of this new hamiltonian. For this
it is useful to find as many as possible commuting operators. Commuting operators are H , ℓ2, ℓz (and,
although overcomplete, the parity operator). However, the term

Vmag =
e

2m
ℓ ·B,

implies that one only can have ℓz as an operator compatible with H if the z-axis is chosen along B, i.e.
B = B ẑ. In that case it is easy to convince oneself that the eigenfunctions are still the hydrogen wave
functions, while the energies are shifted over an amount

∆Enℓmℓ
= 〈nℓmℓ|

eB

2m
ℓz|nℓmℓ〉 = mℓ µBB, (373)

where

µB =
e~

2m
=

1

2
e c

~

mc
≈ 5.8× 10−5 eV/T (374)

is the Bohr magneton.

Interaction of electron spin with magnetic field

For a proper description of an electron, one needs to specify in addition to ψ(r, t) a spin wave function.
For electrons with spin 1/2 one can resort to a description with two-component wave functions, where the
spin operators are given by matrices, s = 1

2 ~ σ where σ are the three Pauli matrices. Just as the orbital
angular momentum, the spin gives in a magnetic field rise to an interaction term in the hamiltonian.

Vmag = −µs ·B, (375)

with

µs = −gs
e

2m
s = −gs

e~

m
σ. (376)

The g-factor for the spin of the electron is gs ≈ 2. Actually the deviation from 2 is due to subtle but
calculable effects in quantum electrodynamics, ge − 2 = α/π + . . . ≈ 0.00232. If the interaction of the
spin with the magnetic field is the only interaction (e.g. for s-waves), the result of the interaction term is
a simple shift in the energies for the states, that now include also spin quantum numbers.
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The Zeeman effect in many-electron atoms

In general a 2S+1L level in a magnetic field is split by an interaction term

Vmag = −µ ·B, (377)

where µ = −µB(gL L + gS S), resulting in a number of levels with the splitting given by

∆E(LSMLMS) = −µBB(ML + 2MS). (378)

In normal magnetic fields (say smaller or of the order of 1 T), the splittings are only fractions of an eV
and there are other effects causing different splitting patterns, such as the L · S spin-orbit interaction.
But for very large magnetic fields one does see the above normal Zeeman splitting pattern.

-+ -+

M
1
0

0

2M

0

0

1
1
1

1

-1

-1
-1

1

-1

L S

νσ
π

ν

P

S

2

2

Zeeman splitting of levels in a magnetic
field (no spin-orbit). Also indicated are
the transitions, separated into ∆ML =
0 (π-transitions) and ∆ML = ±1 (σ-
transitions).

Finally we note that the magnetic effects discussed here are those in an external magnetic field. This
defines a preferential direction in space and leads to dependence on eigenvalues of the (z-)component of
the angular momentum operators. This is also found back in the names magnetic quantum numbers for
mℓ, ms, etc.

20.2 Spin-orbit interaction and magnetic fields

Inclusion of the spin-orbit interaction is important to describe the fine structure of the multiplets in
atomic spectra. This fine structure in general turns out to be considerably larger than the magnetically
induced splittings. In that case one cannot simply use the results for the normal Zeeman effect when
spin plays a role. So consider the situation that one has an interaction term in the atom of the form

Hint = AL · S − µ ·B, (379)

with µ = µB(gLL + gSS)/~ = µB (L + 2 S)/~. We have already seen what happens in the situations
A = 0 and B = |B| = 0. One has

A = 0 : eigenstates |(. . .)LSMLMS〉,
∆E(LSMLMS) = µBB(ML + 2MS),

B = 0 : eigenstates |(. . .)LSJM〉,

∆E(LSJM) =
1

2
A~

2 [J(J + 1)− L(L+ 1)− S(S + 1)] .
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The splitting pattern for A = 0 has already been given, for B = 0 it splits the 2S+1L multiplet into the
different 2S+1LJ multiplets, for the 2P →2 S transition indicated as the first splitting in the figure below.

3/2
3/2
3/2
3/2

J

1/2
1/2

1/2
1/2

M
+3/2
+1/2
-1/2
+3/2
+1/2
-1/2

+1/2
-1/2

1/2

3/2

1/2

P2

S2

P2

P2

S2

The spin-orbit splitting lead-
ing to the 2S+1LJ multiplets
for the 2P and 2S levels and
the consecutive splitting in a
magnetic field for the case of
a small magnetic field.

When one switches on the magnetic field, one deals with an interaction term for which neither |LSMLMS〉,
nor |LSJM〉 are proper states (check compatibility of the relevant operators!). If the magnetic field is
small the states will be in first order given by |LSJM〉 and one can calculate the energy shift via

∆Emag = µBB 〈(. . .)LSJM |Lz + 2Sz|(. . .)LSJM〉 = µBB 〈(. . .)LSJM |Jz + Sz|(. . .)LSJM〉. (380)

The part with which we need to be careful is the expectation value of Sz, Evaluating it between states
with different M -values belonging to the same J gives zero, because if two M values involve the same
MS , the ML’s must be different (remember that in the coupling M = ML +MS). Thus we just need

〈LSJM |Sz|LSJM〉 = M
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(381)

which follows from a subtle relation involving S and J operators7, J2Sz +SzJ
2 = 2 Jz (J ·S) leading to

∆Emag =

[

1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)

]

︸ ︷︷ ︸

gJ

M µBB, (382)

where gJ is called the Landé factor. This splitting is also indicated in the figure. Note that the procedure
only works for small B-values. For large B-values (Paschen-Back limit) the assumption of states being
approximately given by |LSJM〉 is not valid and one gets the previously discussed normal Zeeman
splitting.

Exercises

Exercise 20.1

A particle is put in a magnetic field B with strength B0. The field is parallel to the z-axis. The
Hamiltonian is given by H = −γ S ·B. At time t = 0 the particle is in the spin state

χ(0) =
1√
2





1
0
1



 .

(a) Give the matrix representation of the Hamiltonian.

7From [Ji, Aj ] = i~ǫijkAk one obtains the relations [J2, Ai] = −i~ǫikl(JkAl + AlJk), which yields [J2, [J2, Ai]] =
2~2(J2Ai + AiJ

2) − 4~2(A · J)Ji.
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(b) Calculate the state vector of the particle at time t > 0.

(c) Give the time dependence of the expectation value of Sx.

Exercise 20.2

(a) Use for the 2P states the basis states |L, S;ML,MS〉 and write down the spin-orbit hamiltonian
Hso = AL · S as a matrix. Use for this the explicit expression

Hso =
A

2
(2LzSz + L+S− + L−S+) .

Determine the eigenvalues and eigenstates. The latter are of course precisely the |L, S; J,M〉 states.

(b) On the same basis, write down the hamiltonian in an external magnetic field, Hint = AL ·S−µ ·B,
using the explicit form

Hint =
A

2
(2LzSz + L+S− + L−S+)− µB B0 (Lz + 2Sz) .

Find all eigenvalues and check that they coincide with the approximations made for small and large
B-fields.
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21 Variational approach

21.1 Basic treatment

The variational method is used to obtain an estimate for the ground state energy and the ground state
wave function for a given hamiltonian. This is done by taking a trial wave function |ψ[α1,α2,...]〉 depending
on a number of parameters αi and calculating the expectation value for the (given) hamiltonian,

E[α1,α2,...] =
〈ψ[α1,α2,...]|H |ψ[α1,α2,...]〉
〈ψ[α1,α2,...]|ψ[α1,α2,...]〉

. (383)

It is a simple exercise to show that if the true solutions and energies of H are given by (H−En) |φn〉 = 0,
that

E[α1,α2,...] ≥ E0, (384)

with the equal sign being true if |ψ[α1,α2,...]〉 = φ0. By minimizing the expectation value of the hamiltonian
by varying the parameters,

∂E[α1,α2,...]

∂αi
= 0, (385)

one hopes to get close to the true ground state. The succes of the method not only depends on the
number of parameters used and the calculational power of computers, but also on smart choices for the
trial wave function such as choosing the correct symmetry, the correct number of nodes and the correct
asymptotic (large and small r) behavior of the wave function.

If one wants to apply variational methods to find other (higher-lying) states, one must ensure that the
trial function is chosen to be orthogonal to any lower state. This may be achieved by looking for states
with a particular symmetry, which of course (why?) only works if the Hamiltonian one is working with,
has this symmetry. In this way one can look for the lowest p-wave in radially symmetric Hamiltonian by
using an ansatz of the form ψ ∝ z f(r). One might also constrain oneself to wave functions which always
have a node, keeping in mind the node theorem for bound states.

21.2 Application: ground state of Helium atom

As a trial function for the He ground a good ansatz could be a simple product of wave functions,

ψT (r1, r2) =
α3

π a3
0

e−αr1/a0 e−αr2/a0 . (386)

By allowing the coefficient α in the exponent to vary, we try to incorporate the screening. We can use
the variational approach to see how well we can do. With the results from the sections on the hydrogen
atom and those of the previous section we find

〈ψT | −
~2

2m

(
∇

2
1 + ∇

2
2

)
|ψT 〉 =

~2

ma2
0

α2 = 2α2R∞, (387)

〈ψT |
−Ze2
4πǫ0

(
1

r1
+

1

r2

)

|ψT 〉 = −
2Ze2

4πǫ0 a0
α = −4ZαR∞, (388)

〈ψT |
e2

4πǫ0 r12
|ψT 〉 =

5

4
αR∞, (389)

and thus

E[α] = 2

[

α2 −
(

2Z − 5

8

)

α

]

R∞, (390)
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which is minimized for

α = Zeff = Z − 5

16
(391)

with

E[αmin] = −2

(

Z − 5

16

)2

R∞. (392)

For He this gives Egs = −5.7R∞, wich is within a few percent of the experimental value of −5.81R∞ =
79.0 eV and much better than the perturbative value discussed in section 19.3 (which of course is just
the result obtained for α = 2). As expected the value Zeff = 27/16 is less than 2.

21.3 Application: ionization energies and electron affinities

Some results that we have encountered in previous sections are

H+ + e− = H + 13.6 eV,

He++ + e− = He+ + 54.4 eV,

Adding another electron in the latter case yields

He+ + e− = He + 24.6 eV, (393)

showing that adding electrons one gains less energy if there are already other electrons. The energy one
gains in adding the last electron is the ionization energy. In many cases one can still add additional
electrons and gain some energy, which is called the electron affinity E.g. for Chlorine

Cl+ + e− = Cl + 13.0 eV,

Cl + e− = Cl− + 3.6 eV.

The binding energy of Chlorine is 13.0 eV, the electron affinity is 3.6 eV. Electron affinities play a role
in molecular binding.

An interesting example is actually the hydrogen atom, which also has a positive electron affinity,

H + e− = H− + 0.76 eV.

The H atom, however, also illustrates that adding a second electron completely changes the structure of
the wave functions. Adding one electron to H+ or He++ one has simple hydrogen-like wave functions.
But adding the second electron one has to account for the presence of the other electron as illustrated
for He using the variational approach. In that case a product wave function still worked fine. If one tries
for a second electron in H− such a product wave function one does not find a positive electron affinity.
In order to find a positive electron affinity for the H-atom (for which an equivalent statement is that the
H−-ion has a binding energy of 0.056R∞ = 0.76 eV) one can use e.g. a trial function of the form

ψT = C
[

e−(α1r1+α2r2)/a0 + e−(α1r2+α2r1)/a0

]

. (394)

The form is suggestive for two different orbits with fall-off parameters α1 and α2, but as electrons are
indistinguishable one must (anti)-symmetrize (depending on spin) the two terms. With a plus sign one
has wave functions without nodes giving the lowest energy.
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Questions and exercises

1. What does one know about the relation between the energy found in the variational approach and
the true ground state energy?

2. Same question for the wave function?

3. In looking for an approximation to the energy of the first excited state, the trial wave function must
be orthogonal to the wave function of the ground state. Is it sufficient to ensure that the trial wave
function is orthogonal to the ’best’ ground state wave function found in the variational approach?

4. Why will the choice with a plus sign in the ’two-orbit’ wave function in Eq. 394 give a lower energy
than the minus choice?

Exercise 21.1

(a) Estimate the ground state energy in a linear potential, V (r) = T0 r. Some useful integrals might be

∫ ∞

0

dr rα exp(−Ar) =
Γ(α+ 1)

Aα+1
,

∫ ∞

0

dr r
3
2α exp

(

−Ar3/2
)

=
2

3

Γ
(
α+ 2

3

)

Aα+ 2
3

,

∫ ∞

0

dr r2α exp
(
−Ar2

)
=

1

2

Γ
(
α+ 1

2

)

Aα+ 1
2

,

valid for α ≥ 0. Note that Γ(z + 1) = z!, satisfying Γ(z + 1) = zΓ(z). Some specific values are
Γ(1) = 0! = 1, Γ(1/2) =

√
π, and Γ(2/3) = 1.35412.

(b) To appreciate the accuracy of your result, note that the exact solution is an Airy function Ai(z),
solution of Ai′′(z)− z Ai(z) = 0. Argue that the function

u(r) ∼ Ai
(
r

r0
− ǫ
)

.

with r0 = (~2/2mT0)
1/3 is a solution of the three-dimensional linear potential if Ai(−ǫ) = 0. Show

that it represents a solution with boundary condition u(0) = 0 and energy E = −ǫ E0 where
E0 = (~2T 2

0 /2m)1/3. The first (negative) zero of the Airy function is at ǫ = 2.3381.

Exercise 21.2

Apply the variational principle to find a suitable wave function for H−. Try the product wave function in
Eq. 394 that has been used for He. What do you find for the electron affinity of H in that case. Then try
the two-orbit form proposed in this chapter and show that it at least leads to a positive electron affinity.
A useful integral is

∫

d3r1 d
3r2

e−2α1 r1−2α2 r2

|r1 − r2|
=

(
π

α3
1

)(
π

α3
2

)
α1α2

(
α2

1 + α2
2 + 3α1α2

)

(α1 + α2)
3

α1=α2=
5

8
α
( π

α3

)2

.
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22 Time-dependent perturbation theory

22.1 Explicit time-dependence

For a hamiltonian without explicit time-dependence, i.e. H = H(r,p, . . .) one has stationary state solu-
tions of the form |φn〉 e−iEnt/~, where |φn〉 are the time-independent solutions of the eigenvalue equation
H(r,p, . . .)|φn〉 = En|φn〉. This can be checked by inserting |ψn(t)〉 = cn(t)|φ〉 into the Schrödinger
equation,

i~
∂|ψ〉
∂t

= H |ψ(t)〉

leading to i~ d
dtcn(t) = En cn(t). As discussed earlier, there are two possibilities

1. One starts (e.g. after a measurement) with ψ(0) = |φi〉, where φi is one of the eigenstates of H with
eigenvalue/energy Ei. In that case |ψ(t)〉 = |φi〉 e−iEit/~ and all expectation values of operators
(that do not explicitly depend on time) are time-independent.

2. One starts in a mixed state, say |ψ(0)〉 = |φ1〉+ |φ2〉. In that case one has |ψ(t)〉 = |φ1〉 e−iE1t/~ +
|φ2〉 e−iE2t/~ or |ψ(t)〉 ∝ |φ1〉 + |φ2〉 e−i(E2−E1)t/~, which leads to oscillations in expectation values
with frequency ∼ (E2 − E1)/~.

In the situation that the hamiltonian of a system contains explicit time dependence, i.e. H = H(r,p, . . . , t)
one no longer has simple stationary state solutions of the form |φ〉 e−iEt/~.

We consider the case that the time-dependence is contained in a part of the Hamiltonian. Since we
will also treat this part in perturbation theory we multiply with a factor λ to keep track of orders,

H = H0 + λV (t). (395)

The part H0 does not have explicit t-dependence, while the second part has a (possible) time-dependence.

Assume the problem H0 to be known with eigenstates |φn〉 and eigen-energies E
(0)
n . When doing time-

independent perturbation theory (which is of course also possible when V is time-independent) one tries
to express the true eigenfunctions of H in the complete set φi. In the present treatment one makes the
observation that if the system at some time is in a state |φi〉, it will at a later time no longer be in this
state. The calculation of the rate of change is what is done in time-dependent perturbation theory. As
already mentioned this can be used for both time-independent and time-dependent perturbations.

As stated, we assume a known (time-independent) part H0, for which the eigenstates and eigen-

energies satisfy H0|φn〉 = E
(0)
n |φn〉. Using completeness of the states |φn〉 we know that it is always

possible to write

|ψ(t)〉 =
∑

n

cn(t) |φn〉 e−iE
(0)
n t/~. (396)

Note that one could have absorbed the exponential time-dependence in cn(t), but not doing so is more
appropriate in perturbation theory. In the choosen way of proceeding, the time-dependence of cn is solely
a consequence of λV .

By substituting the expression for |ψ(t)〉 in the Schrödinger equation,

i~
∂

∂t
|ψ(t)〉 = (H0 + λV (t)) |ψ(t)〉, (397)

one simply finds

i~ ċp(t) =
∑

n

λVpn(t) cn(t) e+i ωpnt, (398)
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where Vpn = 〈φp|V (t)|φn〉 is the expectation value of the potential V (t) between the (time-independent)

eigenstates of H0, and ωpn = (E
(0)
p − E(0)

n )/~. As promised if λV (t) = 0, the righthand-side is zero and
the coefficients are time-independent.

In the next section we solve the above equations for a simple two-state system. More often, however,
one will encounter a perturbative approach.

In the case of perturbation theory, we realize that in trying a solution of the form

cp(t) = c(0)p (t) + λ c(1)p (t) + . . . , (399)

the time-dependence of a specific order is determined by the next lower order,

i~ ċ(m+1)
p =

∑

n

Vpn(t) c(m)
n (t) e+i ωpnt. (400)

Starting with cp(0) = δpi one immediately sees that the first two orders are given by

c(0)p (τ) = δpi, (401)

c(1)p (τ) =
1

i~

∫ τ

0

dt Vpi(t) e
+i ωpit. (402)

This can straightforwardly been extended and leads to the socalled ‘time-ordered’ exponential, which we
will not discuss here.

The quantity |cp(τ)|2 is the probability to find the system in the state |φp〉, which means the probability

for a transition i→ p. The first order result is valid if |c(0)p (τ) + c
(1)
p (τ)|2 ≈ 1.

22.2 Application: magnetic resonance

Consider the following hamiltonian for a two-state system,

H = −µ ·B(t) = −γ s ·B(t), (403)

describing the interaction of a spinning particle (with magnetic moment µ proportional to its spin) in
a magnetic field. For instance for an elementary electron µ = −(e/m) s where s = (~/2)σ. For other
(composite particles) the factor may be different. However, for any spin 1/2 particle the spin operators
can be represented by the Pauli matrices.

Considering first the case of a constant magnetic field in (say) the z-direction, i.e. B0 = (0, 0, B0).
Using the matrix representation for a spin 1/2 particle one has

H0 = −γB0

2
~σz = −γB0

2
~




1 0
0 −1



 . (404)

The solutions are easily obtained,

|φ1〉 =



1
0



 with E
(0)
1 = −γB0

2
~, (405)

|φ2〉 =



0
1



 with E
(0)
2 =

γB0

2
~, (406)

If the system is in a spin-state along the z-direction, it will stay in this state. If it is in another direction,

it will start to oscillate with a frequency ω12 = (E
(0)
1 − E(0)

2 )/~ = −γ B0.
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Next consider the system in a circulating magnetic field in the x-y plane, superimposed on B0, B(t)
= B0 + B1(t), where B1(t) = (B1 cosωt,B1 sinωt, 0). In that case

H = −γB0

2
~σz −

γB1

2
~(σx cosωt+ σy sinωt)

= −γB0

2
~




1 0
0 −1



− γB1

2
~




0 e−iωt

e+iωt 0



 . (407)

As discussed in the previous section we can assume

|ψ(t)〉 = c1(t)




1
0



 e−iω12t/2 + c2(t)




0
1



 e+iω12t/2 =




c1(t) e

−iω12t/2

c2(t) e
+iω12t/2



 , (408)

for which insertion in the Schrödinger equation or using the theory in the previous section gives

i~




ċ1(t)
ċ2(t)



 = −γB1

2
~




0 e−i(ω−ω12)t

e+i(ω−ω12)t 0








c1(t)
c2(t)





= ~




0 v(t)

v∗(t) 0








c1(t)
c2(t)



 , (409)

with |v| = γB1/2. The coupled equations,

i ċ1(t) = v(t) c2(t), (410)

i ċ2(t) = v∗(t) c1(t), (411)

can be simply rewritten into a second order differential equation for c1,

c̈1 + i(ω − ω12) ċ1 + |v|2 c1 = 0. (412)

This equation has two independent solutions of the form ei pt with

p = −1

2
(ω − ω12)±

1

2
∆ (413)

with ∆ =
√

(ω − ω12)2 + 4|v|2. The general solution can then be written as

c1(t) = e−
1
2 i(ω−ω12)t

(

A sin
∆ t

2
+B cos

∆ t

2

)

,

c2(t) =
i

v(t)
ċ1(t). (414)

Starting off with c1(0) = 0 and |c2(0)| = 1, it is straightforward to check that

c1(t) = Ae
1
2 i (ω−ω12)t sin

∆ t

2
, (415)

|A|2 = 4
|v|2
∆2

=
γ2B2

1

(ω − ω12)2 + γ2B2
1

, (416)

|c1(t)|2 + |c2(t)|2 = 1. (417)

Thus, given an initial spin aligned parallel or antiparallel to the B0 field, the probability for transition to
the other spin state shows oscillations with a frequency ∆, while the magnitude depends on the frequency
of the rotating perpendicular B1 field, showing a resonance at ω = ω12. In that case the spin completely
flips from parallel to antiparallel and back with frequency ∆ (at resonance we have ∆ = γB1). For further
discussion and plots, see Mandl (section 9.2).
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22.3 Fermi’s golden rule

We now return to the perturbative treatment of time-dependence and note that also for a time-independent
interaction V , transitions occur, if the initial state is not an eigenstate of the full Hamiltonian, but only
of H0. If V is sufficiently weak, we find the result in first order perturbation theory,

c(1)p (τ) =
Vpi
i~

∫ τ

0

dt e+i ωpit = − Vpi
~ωpi

e+i ωpit

∣
∣
∣
∣

τ

0

=
Vpi
~ωpi

(
1− e+i ωpiτ

)
= −2Vpi

~ωpi
sin(ωpiτ/2) e+i ωpiτ/2, (418)

and thus for p 6= i,

P
(1)
i→p(τ) =

4 |Vpi|2
~2

sin2(ωpiτ/2)

ω2
pi

. (419)

The function

f(ωpi) =
sin2(ωpiτ/2)

ω2
pi

is for increasing times τ ever more strongly peaked around ωpi = 0. The value at zero is f(0) = τ2/4,
the first zeros are at |ωpi| = 2π/τ . Since

∫

dωpi
sin2(ωpiτ/2)

ω2
pi

=
π τ

2
, (420)

we approximate
sin2(ωpiτ/2)

ω2
pi

=
π τ

2
δ(ωpi). (421)

Then we find8

P
(1)
i→p(τ) = τ

2π

~
|Vpi|2 δ(Ep − Ei) (422)

or for the transition probability per unit time,

Ṗ
(1)
i→p =

2π

~
|Vpi|2 δ(Ep − Ei) Fermi’s Golden Rule. (423)

Although the allowed final state is selected via the energy delta function, it is often possible that the
system can go to many final states, because we are dealing with a continuum. In that case one needs the
density of states ρ(E), where ρ(E) dE is the number of states in an energy interval dE around E. The
transition probability per unit time is then given by

Ṗ
(1)
i→p =

∫

dEf ρ(Ef )
2π

~
|Vfi|2 δ(Ef − Ei) =

2π

~
|Vpi|2 ρ(Ep)

∣
∣
∣
∣
Ep=Ei

(424)

(Fermi’s Golden Rule No. 2).

8 δ(ax) = 1

|a|
δ(x)
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22.4 Application: emission and absorption of radiation by atoms

As an example of time-dependent perturbations, we discuss the absorption and emission of photons by
atoms. In the dipole approximation one finds as the dominant term in a partial wave expansion of the
radiation field corresponding to a photon field with polarization ǫ (fields derived from vector potential
A = ǫ (cE0/i ω) exp[i(k ·r−ωt)] using cE = −∂A/∂t) and B = ∇×A) the following (time-dependent)
interaction

V (t) = −D ·E(t) = −D · ǫE0 e
−i ωt, (425)

where

D =

∫

d3r r ρ(r) =⇒
∑

i

qi ri. (426)

The results after the arrow in the above equation indicate the results for a number of charges qi at
position ri, i.e. ρ(r) =

∑

i qi δ
3(r − ri). For a neutral system the first interaction term disappears and

the next important one is the interaction with the electric dipole moment (D).
Although we have a time-dependent interaction, we can proceed as in the derivation of Fermi’s golden

rule. We obtain now

c(1)p (τ) =
〈φp|D · ǫ|φi〉E0

i~

ei (ωpi−ω)τ − 1

i (ωpi − ω)
, (427)

which gives as before rise to a delta function δ(ω−ωpi). With ω being the positive photon frequency, this
can only describe absorption of a photon, ~ω = Ep − Ei > 0. For the real electromagnetic fields also the
complex conjugate solution must be considered, which gives the same result with ω → −ω. This gives
rise to a delta function δ(ω + ωpi) and describes the emission of a photon, ~ω = −~ωpi = Ei − Ep > 0.
The transition probability can be summarized by

P
(1)
i→p(τ) =

E2
0(ω)

~2
|〈φp|D · ǫ|φi〉|2

π τ

2
δ(ω − |ωpi|). (428)

If one is not working with monochromatic light one has an integral over different frequencies ω. In-
stead of the intensity of the field E0 = E0(ω) one can use the number of incident photons N(ω)
(number/(area×time)). This number is determined by equating the energy densities in a frequency
interval dω,

1

2
ǫ0E

2
0(ω) dω =

N(ω) ~ω

c
dω. (429)

Integrating over the photon frequencies, one sees that the atom absorps or emits photons of the right
frequency leading to a transition rate

Ṗ
(1)
i→p =

π

ǫ0 ~c
|ωpi|N(|ωpi|) |〈φp|D · ǫ|φi〉|2. (430)

For electrons D = −∑i e ri = −eR. For unpolarized light ǫ is arbitrary and averaging gives a factor
1/3. In terms of the fine structure constant α = e2/4π ǫ0 ~c the averaged transition rate is

Wi→p = Ṗ
(1)
i→p =

4

3
π2 α |ωpi|N(|ωpi|) |〈φp|R|φi〉|2. (431)

Note that by treating also the electromagnetic field quantummechanically one finds in addition to the
stimulated absorption or emission rate a spontaneous emission rate

W
spont.
i→p =

4

3
α
ω3
ip

c2
|〈φp|R|φi〉|2, (432)

governed by the same transition matrix element and thus obeying the same selection rules.
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22.5 Application: unstable states

In many circumstances one encounters unstable states, i.e. the probability P to find a system in a
particular state decreases in time,

P (t+ dt) = P (t) (1− γ dt) =⇒ dP

dt
= −γ P (t),

where γ is the decay rate or decay probability per unit time. The solution is

P (t) = P (0) e−γ t = P (0) e−t/T , (433)

with T = 1/γ ≡ ~/Γ the lifetime. The quantity Γ is referred to as the width of a state. For a decaying
state we thus write

|ψn(t)〉 ∝ e−iEnt/~−γnt/2. (434)

We can expand a decaying state in eigenmodes according to

e−i Ent/~−γnt/2 θ(t) =

∫ ∞

−∞

dω

2π
c(ω) e−i ωt, (435)

with

c(ω) =

∫ ∞

0

dt e+i (ω−ωn+iγn/2)t

=
−i

ω − ωn + iγn/2
e+i (ω−ωn+iγn/2)t

∣
∣
∣
∣

∞

0

=
i

ω − ωn + iγn/2
. (436)

For unstable states the transition amplitude for emission or absorption of a photon is then proportional
to

T (ω) =

∫
dω′

1

2π

dω′
2

2π
c∗2(ω

′
2) c1(ω

′
1) 2π δ(ω − ω′

1 + ω′
2)

=

∫
dω′

2π
c∗2(ω

′) c1(ω
′ + ω)

=

∫
dω′

2π

∫ ∞

0

dt1

∫ ∞

0

dt2 e
−i (ω′−ω2−iγ2/2)t2 e+i (ω

′+ω−ω1+iγ1/2)t1

=

∫ ∞

0

dt1

∫ ∞

0

dt2 e
+i (ω2+iγ2/2)t2 e+i (ω−ω1+iγ1/2)t1 δ(t1 − t2)

=

∫ ∞

0

dt e+i (ω−ω12+iγ12/2)t =
i

ω − ω12 + iγ12/2
, (437)

where ω12 = ω1 − ω2 and γ12 = γ1 + γ2. Thus the line-intensity becomes instead of a delta-function
δ(ω − |ωpi|) proportional to

I(ω) ∝ |T (ω)|2 ∝ 1

(ω − ω12)2 + γ2
12/4

,

or normalizing to the peak intensity

I(ω) = I0
Γ2

12/4

~2 (ω − ω12)2 + Γ2
12/4

, (438)

showing the reason for the name width. The quantity Γ12 is precisely the width of the peak at half-
maximum intensity, when plotting I as a function of the photon energy ~ω. The function is known as a
Lorentzian distribution or a Breit-Wigner distribution.
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Exercises

Exercise 22.1

In this exercise we consider the phenomenon of neutrino oscillations. In the decay of pions produced by
cosmic rays two types of neutrinos are produced. They are produced together with a muon or an electron
and correspondingly named muon-neutrino and electron-neutrino.

These types, however, appear to be different from ’free’ neutrinos. In order to explain some recent
experiments, one makes the assumption that a muon-neutrino produced in the atmosphere is a linear
superposition of the two mass eigenstates φ1 and φ2. Taking these as basisstates, we then have at time
t = 0,

ψ(0) = φνµ
≡



cos θ
sin θ



 .

(a) Denoting the energies of the free neutrino states with E1 = ~ω1 and E2 = ~ω2, give the probability
for finding a muon neutrino at time t.

(b) Approximate the energies for free neutrinos with momentum p with different masses in the limit
that the momentum p≫ m1c and p≫ m2c. Calculate the energy difference E1 − E2.

(c) Give the probability of finding muon neutrinos as a function of distance travelled (L), their energy
(E) and the mass difference (∆m2) and determine the oscillation wavelength.

(d) Given an oscillation wavelength of the order of 1000 km for neutrinos with an energy of 1 GeV =
109 eV (note that ~c = 0.2 × 10−6 GeVm), calculate the mass/energy difference ∆m2c4 between
the two neutrino mass eigenstates for that case.

Exercise 22.2

In a system described by a one-dimensional harmonic oscillator (mass m and oscillator parameter ω) we
apply a tiny squeezing force F = −mω2

1 x (with ω1 ≪ ω) acting for a time-interval τ . Assuming that the
system is in its groundstate at t = 0, in which state(s) will the system be found at time τ and what is
the probability. Does it matter how long we apply the squeezing force?
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23 Scattering theory

23.1 Differential cross sections

The quantummechanical treatment of a scattering problem is that of a particle (with massm and incoming
momentum p) scattering in a given potential V (r). We assume that the particle is scattered into a final
state with momentum p′. The latter is the result of a measurement with a detector with opening angle
dΩ, located under an angle (θ, φ) with respect to the incoming momentum.

dΩ

p

V(r)
p

The number of scattered particles per unit time per solid angle, n(θ, φ), is proportional to the incoming
flux jin, the number of particles per area per unit time,

n(θ, φ) dΩ = |jin| dσ(θ, φ). (439)

This is the definition of the differential cross section dσ, from which it should be immediately clear that
the unit of cross section indeed is that of an area.

Typically cross sections have something to do with the area of the target as seen by the in-
coming particle, e.g. for proton-proton scattering a characteristic cross section is 40 mb, where
1 barn = 1 b ≡ 10−28 m2. The number 40 mb, indeed, is roughly equal to the area of a proton
(with a radius of about 1 fm = 10−15 m). Besides the area of the target the cross sections
also depends on the strength of the interaction. For instance electromagnetic interactions are
typically a factor 100 or (100)2 smaller, e.g. σγp ≈ 100 µb and σep ≈ 1µb, corresponding to
the presence of the fine structure constant α or α2 respectively, where α = e2/4πǫ0~c = 1/137.
Weak interactions, e.g. neutrino-proton scattering, again have much smaller cross section in
the order of 10−2 pb, indicative for the weakness of the ”weak” interactions.

23.2 Cross section in Born approximation

We use the result of time-dependent perturbation theory to obtain an expression for the cross section,
namely the unperturbed situation is the free case, with as possible solutions, the incoming particle in a
plane wave, φi(r) =

√
ρ exp (ip · r/~), with energy E = p2/2m and the detected final state, φf (r) =√

ρ exp (ip′ · r/~), with energy E′ = p′2/2m. Note that we allow processes in which the energy of the
scattered particle changes. writing Q ≡ E′−E one has Q = 0 for an elastic scattering process, an energy
release, Q > 0, for an exothermic process and energy absorption, Q < 0, for an endothermic process.
The potential V is a perturbation that can cause transitions between these states. Using Fermi’s golden
rule, we have for the number of particles with momentum p′ (of which the direction with respect to p is
given by the angles θ, φ),

n(θ, φ) dΩ =
2π

~

[

|〈φf |V |φi〉|2 ρ(E′)
]

E′=E+Q
. (440)

In order to get dσ we need to get the flux I in the initial state and the density of states ρ(E′) in the
final state.
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• Initial state flux.
The initial state flux is obtained from the wave function in the initial state via the expression for
the current,

j(r, t) =
~

2im
(ψ∗

∇ψ − (∇ψ)∗ψ) = ρ
p

m
= ρv. (441)

The incoming flux is along p and, as expected, given by I = ρ v = ρ p/m (we use p = |p|).

• Final state density of states. The final states are plane waves and the density of plane waves is in
momentum space given by

ρ(p) d3p =
1

ρ

d3p

(2π~)3
. (442)

This can be seen by looking at the expansion of the unit operators in coordinate and momentum
space consistent with the choice of the normalization of the plane waves,

1 =

∫

d3r |r〉 〈r| = 1

ρ

∫
d3p

(2π~)3
|p〉 〈p|. (443)

Another way is to use box normalization, in which case one finds that for one particle in a box with
sides L, i.e. 0 ≤ x ≤ L, 0 ≤ y ≤ L and 0 ≤ z ≤ L (i.e. density ρ = 1/L3), the wave function is
found after imposing periodic boundary conditions,

φp(r) =
1

L3/2
exp(ip · r/~), (444)

with p = (2π~/L) (nx, ny, nz), showing a density of states in p-space given by (L/2π~)3. Rewriting
the final state density ρ(p′) in terms of E′ and Ω′ we find

ρ(p′)d3p′ =
1

ρ

p′2

(2π~)3
dp′ dΩ′ =

1

ρ

mp′

(2π~)3
dE′ dΩ′ = ρ(E′) dE′ dΩ′. (445)

With the flux and density of final states, we get immediately

dσ(θ, φ) = dΩ′
( m

2π~2

)2 p′

p

∣
∣
∣
∣

∫

d3r exp

(
i

~
(p− p′) · r

)

V (r)

∣
∣
∣
∣

2

E′=E+Q

, (446)

or introducing the Fourier transform

Ṽ (k) =

∫

d3r V (r) exp(ik · r), (447)

one obtains the following expression for the differential cross section in the socalled Born approximation,

dσ

dΩ′ =
( m

2π~2

)2 p′

p

∣
∣
∣Ṽ (q)

∣
∣
∣

2

, (448)

where q = (p − p′)/~ is the momentum transfer in the process. Often the differential cross section
is azimuthally symmetric and one uses dΩ = d cos θ dφ = 2π d cos θ to obtain dσ/dθ. Integrating the
differential cross section over all angles one obtains the total cross section,

σ(E) =

∫

dΩ
dσ

dΩ
(E,Ω). (449)
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Note that in the case of elastic scattering one has p′ = p in which case the momentum transfer squared
is given by

~
2q2 = |p− p′|2 = p2 + p′2 + 2 pp′ cos(θ)

= 2 p2(1 − cos θ) = 4 p2 sin2(θ/2). (450)

A dependence of the differential cross section (dσ/dΩ)(E, θ) on this combination is a test for the validity of
the Born approximation. This dependence is in particular applicable for central potentials, V (r) = V (r),
in which case the Fourier transform

Ṽ (q) =

∫

d3r V (r) exp(i q · r)

= 2π

∫ ∞

0

dr

∫ 1

−1

d cosα r2V (r) ei qr cosα

=
4π

q

∫ ∞

0

dr rV (r) sin(qr), (451)

only depends on q = |q|.

23.3 Applications to various potentials

The square well potential

As a first application consider the square well potential, V (r) = V0 for r ≤ a and zero elsewhere for
sufficiently weak potentials at low energies and small angles (qa ≪ 1). We will come back to the
applicability of the Born approximation in a later section. The Fourier transform is given by

Ṽ (q) =
4π V0

q

∫ a

0

dr r sin(qr)

=
4π V0

q3

∫ qa

0

dx x sin(x)

=
4π V0

q3
[sin qa− qa cos qa]

qa≪1−→ 4π V0

q3

[

qa− 1

3!
(qa)3 − qa+

1

2!
(qa)3 + . . .

]

=
4π

3
V0a

3, (452)

leading for E → 0 to

dσ

dΩ
≈ 1

9

(
2mV0 a

2

~2

)2

a2 (453)

The Coulomb potential

The integral

Ṽ (q) = − Ze
2

4πǫ0

4π

q

∫ ∞

0

dr sin(qr) (454)
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diverges and we need to consider for instance the screened Coulomb potential, multiplied with exp(−µr).
In that case one obtains

Ṽ (q) = − Ze
2

4πǫ0

4π

q

∫ ∞

0

dr sin(qr) e−µr

= − Ze
2

4πǫ0

4π

q

∫ ∞

0

dr
1

2i

(

ei(q+iµ)r − ei(q−iµ)r
)

= −Ze
2

ǫ0

1

q2 + µ2
, (455)

allowing even the limit µ→ 0 to be taken. Thus

dσ

dΩ
(E, θ) =

( m

2π ~2

)2
(
Ze2

ǫ0

)2
1

q4
=

(
Ze2

8π ǫ0 pv

)2
1

sin4(θ/2)
. (456)

This result is known as the Rutherford cross section.

Processes near threshold

If the volume integral over the potential exists, one knows that Ṽ (0) is finite and one sees that for small
values of the momentum transfer one can write

σ(E) ∝ p′

p
=

√

E′

E
. (457)

Thus for an endothermic process (energy absorption or Q < 0) one has a threshold value for the incoming
energy, Ethr = |Q| and one has for E ≈ Ethr

σ(E) ∝
√

E − Ethr. (458)

For an exothermic process (with energy release Q > 0) one can scatter for any (positive) energy E and
one has near E ≈ 0

σ(E) ∝ 1√
E
. (459)

Application to two-particle collisions

In most applications, the target is not an ”external” potential, but rather two particles that collide
(collider experiments) or one particle that is shot onto another one (fixed target experiments). This can
in general lead to several possibilities corresponding to several scattering channels,

a+ b −→ a+ b (elastic scattering)

−→ c1 + c2
−→ d1 + d2 + d3

}

(inelastic scattering) (460)

Nevertheless, one can deal with these processes, at least the two→ two ones, by considering the problem
in the center of mass (CM) system. Considering two particles with momenta p1 and p2 and masses
m1 and m2, for which the only translationally invariant interaction that is allowed must be of the form
V (r1 − r2) = V (r) with r = r1 − r2 the relative coordinate. Since the flux factor is just given by

I = ρ |v1 − v2| = ρ

∣
∣
∣
∣

p1

m1
− p2

m2

∣
∣
∣
∣
= ρ

∣
∣
∣
∣

p

µ

∣
∣
∣
∣
, (461)

where p is the relative momentum and µ the reduced mass one sees that the collision of two particles
indeed can be described by considering the scattering of one particle with reduced mass µ having the
relative momentum p, scattering of the potential V (r).
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p

p

1

2

2

1

p

p
p

V(r) p

Notes:

• Note that in the scattering of one particle in an ”external” potential, there is no translation in-
variance, hence no momentum conservation, while for two particles with a potential depending on
the relative coordinate there is translation invariance. The latter requires conservation of the total
momentum P = p1 + p2, but not of the relative momentum.

• In the limit that one of the masses becomes very large, the light particle’s momentum and mass,
indeed, coincide with relative momentum and reduced mass, so one finds (consistently) that the
heavy particle can be considered as scattering center.

Exercises

Exercise 23.1

Calculate the differential, dσ/dΩ(E, θ), and total cross section, σ(E) for E = ~2 k2/2m for a Yukawa
potential

V (r) = V0
e−µr

r
.

Exercise 23.2

(a) Derive for elastic scattering the relativistic expression for dσ/dΩ(E, θ). The differences with the
nonrelativistic case are the use of a relativistic density (ρ = E/mc2) and the use of the relativistic

expression for the energy (E =
√

m2c4 + p2c2) and the velocity (v = pc2/E) which will modify the
form of the density of states ρ(E).

(b) Derive the relativistic expression for the elastic Coulomb scattering cross section (note that Eq. 450
remains valid in the case of elastic scattering).
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24 Scattering off a composite system

24.1 Form factors

Consider the scattering of an electron off an extended object, e.g. an atomic nucleus consisting of Z
protons with charge +e each (and N neutral neutrons) or an atom with a nucleus with charge +Ze and
Z electrons with charge −e each. The hamiltonian is given by

H = Hsystem +He + V, (462)

where Hsystem is the hamiltonian for the nucleus or the atom, He is the free electron hamiltonian and V
describes the interaction between the scattering electron and the system. Let us start with the simplest
situation in which the system is described by a wave function Ψ(r′), remaining the same during the
collision. The wave functions of the scattering electron in initial and final states are as before plane
waves characterized by the momenta p = ~k and p′ = ~k′, respectively. The full initial state and final
state wave functions are then Ψi(r) = exp(ik ·r)Φ(r′) and Ψf(r) = exp(ik′ ·r)Φ(r′), respectively. The
Fourier transform of the potential needed in the cross section now becomes

V (q) =

∫

d3r

∫

d3r′ exp(−ik′ · r)Φ∗
B(r′)

−e2
4π ǫ0 |r − r′| ΦA(r′) exp(ik · r)

= − e2

4π ǫ0

∫

d3r exp(i q · r)

∫

d3r′
ρ(r′)

|r − r′| , (463)

which shows how the potential is modified by the fact that the system has a finite extension. To evaluate
this, we exchange the integrations and introduce r′′ = r − r′ as integration variable to obtain

V (q) = − e2

4π ǫ0

∫

d3r′ exp(i q · r′)

∫

d3r′′ exp(i q · r′′)
ρ(r′)

r′′

= − e2

4π ǫ0

4π

q2
F (q), (464)

where we have introduced the form factor

F (q) =

∫

d3r exp(i q · r) ρ(r) (465)

which is the Fourier transform of the density. The result for the cross section is

dσ

dΩ
=

(
me2

2π ǫ0 ~2 q2

)2
p′

p
|F (q)|2 . (466)

and shows the possibility to determine the charge distribution of the system.
In realistic cases the charge density often corresponds to a many-particle system, e.g. an atomic

nucleus. In that case one has a charge density for each of the Z positively charged protons, leading to

ρBA(r) =

Z∑

j=1

∫ Z∏

k=1

d3rk δ
3(r − rj)Φ∗

B(r1, . . . , rZ)ΦA(r1, . . . , rZ)

= Z

∫ Z∏

k=2

Φ∗
B(r, r2, . . . , rZ)ΦA(r, r2, . . . , rZ) = Z ρBA(r). (467)

The second line of this equation could be written down because the wave functions ΦA and ΦB are fully
antisymmetric under interchange of particles (Pauli principle). The quantity ρBA(r) is called the one-
nucleon (transition) density and its Fourier transform is the (transition) form factor FBA(q). The effect
in the cross section is a factor Z2 |FBA(q)|2.
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One can in turn also include the intrinsic density of the protons, which in the cross section will appear
as a multiplicative factor |Fp(q)|2, where Fp(q) is related to the charge distribution within the proton.
Then one should also include the charge densities of the neutrons.

In the case of scattering off an atom one obtains contributions from the atomic nucleus and the
electrons. These contributions are additive in the form factor, leading to a contribution in the cross
section of the form Z2|δab − Fba|2.

24.2 Examples of form factors

Form factors as encountered in the previous section are defined as the Fourier transform of a density,

F (q) =

∫

d3r exp(i q · r) ρ(r). (468)

As before in discussing the potential in momentum space, one has for a spherically symmetric density,

F (q) =
4π

q

∫

dr r ρ(r) sin(qr). (469)

For a spherical distributions it is trivial to find by expanding the exponential exp(i q · r) = 1 + i q · r -
1
2 (q · r)2 + . . ., that

F (q) = Q− 1

6
q2 〈r2〉+ . . . , (470)

where

Q =

∫

d3r ρ(r), (471)

〈r2〉 =
∫

d3r r2 ρ(r). (472)

This is the reason that the small-q behavior of a form factor can be used to determine the charge radius
of an atom or similarly of elementary particles, like pions or nucleons.

Some examples of form factors corresponding to specific densities are:

• A uniform density
ρ(r) = ρ0 for x ≤ R (473)

(and zero elsewhere). If ρ0 = 3/4π a3, i.e. the integrated density is one, the Fourier transform is
given in terms of the Bessel function j1,

F (q) =
3 j1(qR)

qR
, (474)

where

j1(x) =
sinx

x2
− cosx

x
. (475)

Note that
3 j1(x)

x
≈ 1− 1

10
x2 + . . . , (476)

and, indeed, the charge radius of a uniform distribution is 〈r2〉 = 3
5 R

2.
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• A (normalized) Yukawa distribution

ρ(r) =
µ2

4π

e−µr

r
, (477)

has as form factor

F (q) =
µ2

q2 + µ2
=

1

1 + q2/µ2
, (478)

which is called a monopole form factor. We have encountered this example already in a previous
section where we derived the momentum space screened Coulomb potential.

• The form factor of the exponential distribution

ρ(r) =
µ3

8π
e−µr, (479)

is simply found by differentiation of the Yukawa form factor with respect to µ,

e−µr = − d

dµ

(
e−µr

r

)

.

This gives

F (q) =
1

(1 + q2/µ2)
2 , (480)

which is called a dipole form factor.

• Finally a normalized Gaussian distribution

ρ(r) = ρ0 e
− 1

2 r
2/R2

(481)

has also a Gaussian form factor
F (q) = e−

1
2 q

2 R2

. (482)

Exercises

Exercise 24.1

Give the differential cross section for elastic scattering of an electron off a proton with charge distribution

ρ(r) =
e−r/R

8πR3
.

with R = 0.8× 10−15 m. Show that the typical value of q at which one notices the composite nature of
the proton, implies that the electrons should be ultra-relativistic (−λe = ~/mec ≈ 4× 10−13 m).
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25 Time-independent scattering solutions

25.1 The homogenous solutions

In this section we will attack the scattering of a potential in a different way, namely by solving the
Schrödinger equation. The time-independent Schrödinger equation can be rewritten as

(
∇

2 + k2
)
φ(r) =

2m

~2
V (r)φ(r), (483)

where E = ~2k2/2m. This is a linear equation of which the righthandside is referred to as source term.
There is a whole family of solutions of such an equation. Given a solution of the above inhomogeneous
equation, one can obtain all solutions by adding any of the possible solutions of the homogeneous equation,

(
∇

2 + k2
)
φhom(r) = 0. (484)

The solutions of the homogeneous equation are well-known, namely the plane waves,

φk(r) = exp(ik · r), (485)

characterized by a wave vector k.
Another systematic way of obtaining the solutions of the homogeneous equation is by considering the

radial Schrödinger equation, i.e. writing

φ(r) =
u(r)

r
Y mℓ (θ, φ), (486)

the radial wave function u(r) satisfies for the homogeneous equation

(
d2

dr2
+
ℓ(ℓ+ 1)

r2
+ k2

)

u(r) = 0. (487)

There are two type of solutions of this equation

• Regular solutions: spherical Bessel functions of the first kind: u(r) = kr jℓ(kr).
Properties:

j0(z) =
sin z

z
,

jℓ(z) = zℓ
(

−1

z

d

dz

)ℓ
sin z

z

z→0−→ zℓ,

z→∞−→ sin(z − ℓπ/2)

z
.

• Irregular solutions: spherical Bessel functions of the second kind: u(r) = kr nℓ(kr).
Properties:

n0(z) = −cos z

z
,

nℓ(z) = −zℓ
(

−1

z

d

dz

)ℓ
cos z

z

z→0−→ z−(ℓ+1),

z→∞−→ −cos(z − ℓπ/2)

z
.
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Equivalently one can use linear combinations, known as Hankel functions,

kr h
(1)
ℓ (kr) = kr (jℓ(kr) + i nℓ(kr))

z→∞−→ (−i)ℓ+1 ei kr ,

kr h
(2)
ℓ (kr) = kr (jℓ(kr) − i nℓ(kr)) z→∞−→ (i)ℓ+1 e−i kr.

A specific example of an expansion into these spherical solutions, is the expansion of the plane
wave,

exp(ik · r) = ei kz = ei kr cos θ =
∞∑

ℓ=0

(2ℓ+ 1) iℓ jℓ(kr)Pℓ(cos θ), (488)

where the Legendre polynomials Pℓ can be also expressed in Y 0
ℓ ,

Pℓ(cos θ) =

√

4π

2ℓ+ 1
Y 0
ℓ (θ).

25.2 Asymptotic behavior and relation to cross section

In order to construct solutions of the Schrödinger equation that describe a scattering process, one wants
the appropriate asymptotic behavior, which includes a plane wave part, describing the incoming part and
outgoing spherical waves, describing the scattering part, pictorially represented below

p

V(r)

We thus require the following asymptotic form,

φ(r)
r→∞−→ exp(ik · r) +

ei kr

r
f(k; θ, φ). (489)

We have seen in the previous chapter that for r →∞, this is a solution of the homogeneous equation.

It can also simply be checked that the above represents a solution if r → ∞, by inserting it
into the homogeneous equation. In order to select the leading part for large r one needs to use
that ∇f(k; θ, φ) ∝ 1/r and ∇

2f(k; θ, φ) ∝ 1/r2.

For the asymptotic solution the current corresponding to the first part is given by

jin =
~k

m
, (490)

while the second part up to O(1/r) corresponds with a radially outward directed flux of magnitude

jr = − i~

2m

[

φ∗
d

dr
φ−

(
d

dr
φ∗
)

φ

]

=
~k

m

|f(k; θ, φ)|2
r2

. (491)
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From it, one derives the cross section using that

|jin| dσ(θ, φ) = n(θ, φ) dΩ = jr r
2 dΩ, (492)

i.e.
dσ

dΩ
= |f(k; θ, φ)|2. (493)

The above considerations require a careful analysis of the forward direction (θ = 0), where also the
interference term becomes important. For an acceptable asymptotic scattering solution one must have
that

∫
dΩ jr|r=R = 0 for large R, i.e. that there is no loss of probability. This leads to the optical theorem

or Bohr-Peierls-Placzek relation,

Imfel(θ = 0) =
k

4π
σT , (494)

where σT is the total cross section and fel is the scattering amplitude for elastic scattering.

In order to derive this result, one can just consider the current corresponding to the full wave
function in Eq. 489. Keeping only the dominant contributions when r→∞, this is given by

jr =
~k

m

{

cos θ +
|f |2
r2

+ Re

[

(1 + cos θ)
eikr(1−cos θ)

r
f

]}

Integrating over the polar angle (writing cos θ ≡ X) gives for the interference term:

Re

∫ 1

−1

dX (1 +X)
ei kr(1−X)

r
f

= Re

∫ 1

−1

d
(

ei kr(1−X)
) (1 +X)f

−i kr2

= Re

(
2 f(k; θ = 0)

−i kr2
)

− 2Re

∫ 1

−1

dX
ei kr(1−X)

−i kr2
d

dX
[(1 +X)f ]

= −2 Imf(k; θ = 0)

kr2
+ O

(
1

r3

)

.

The interference term thus actually only contributes at forward angles if r → ∞. Neglecting
any contribution disappearing faster than 1/r2 the integral over the angles gives

∫

dΩ jr

∣
∣
∣
∣
r=R

=
1

R2

[∫

dΩ |f |2 − 4π

k
Imf(k; θ = 0)

]

,

yielding the optical theorem. In fact the result is only derived if the total cross section is given
by the integration over |f |2, but it should be clear that flux conservation needs only to hold
if we integrate over elastic and inelastic channels, while the interference only occurs for the
elastic channel. We will encounter the result again in the section on partial wave expansions.

25.3 The integral equation for the scattering amplitude

In order to solve the inhomogeneous equation with which we started, we solve the Green’s function
equation

(
∇

2 + k2
)
G(r, r′) = −δ3(r − r′). (495)
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With the help of the Green’s function an inhomogeneous solution for

(
∇

2 + k2
)
φ(r) = ρ(r),

can be written down, namely

φ(r) = φhom(r)−
∫

d3r′ G(r, r′) ρ(r′).

By choosing an ’appropriate’ Green’s function one can built in boundary conditions. Note that
the difference between any two Green’s function is a solution of the homogeneous equation.

It is possible to check that two particular Green’s functions in our case are

G(±)(r − r′) = −exp (±i k|r − r′|)
4π |r − r′| . (496)

Note that the difference between these two is a solution of the homogeneous equation. In particular
G(+) has the correct asymptotic behavior as discussed in the previous section. As an exact, but implicit,
solution valid for all r, we can write

φ(r) = exp(ik · r)− m

2π ~2

∫

d3r′
exp (+i k|r − r′|)

|r − r′| V (r′)φ(r′). (497)

This result is the desired integral representation of the inhomogenous Schrödinger equation, which has
the advantages that the boundary conditions for interpretation as a scattering solution have been built
in. It is therefore a good starting point for approximations

The result for f(k; θ, φ) is obtained by taking the limit for r →∞ in the integral equation, in particular

|r − r′| = r

√

1− 2
r · r′

r2
+
r′2

r2
≈ r

[

1− r · r′

r2
+ . . .

]

,

exp (+i k|r − r′|)
|r − r′| ≈ ei kr

r
exp

(
ik′ · r′)+ . . . ,

where k′ ≡ kr̂. This gives

φ(+)
sc (r)

r→∞−→ exp(ik · r)− ei kr

r

m

2π ~2

∫

d3r′ exp
(
−ik′ · r′) V (r′)φ(+)

sc (r′). (498)

and thus the exact expression is

f(k; θ, φ) = − m

2π ~2

∫

d3r′ exp
(
−ik′ · r′) V (r′)φ(+)

sc (r′). (499)

25.4 The Born approximation and beyond

The Born approximation is obtained by using perturbation methods, namely to approximate in the above
expression φ(r′) = exp (ik · r′), yielding the result

f(k; θ, φ) = − m

2π ~2

∫

d3r′ exp (i q · r′) V (r′), (500)

where q = k− k′. This gives for the cross section the same result as we found using Fermi’s golden rule.
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We can go beyond the first order result by introducing the scattering amplitude T . It is defined
by

V φ(+)
sc ≡ Tφ,

where φ
(+)
sc is the scattering solution and φ the incoming plane wave part of it. One then finds

that the integral equation, V φ
(+)
sc = V φ + V G̃ V φ

(+)
sc turns into Tφ = V φ + V G̃ Tφ, i.e. an

equation for T ,
T = V + V G̃ T, (501)

the socalled Lippmann-Schwinger equation. Here G̃ is the Green’s function with factor −2m/~2

absorbed, which is the inverse of E −H0. The exact expression for the scattering amplitude
f is thus given by

f(k; θ, φ) = − m

2π ~2
〈p′|T |p〉. (502)

The lowest order (Born approximation) result is the first term in the expansion obtained from
Eq. 501,

T = V + V G̃ V + V G̃ V G̃ V + . . . .

To judge the validity of the Born approximation one requires that the scattering term in the wave function
is small, i.e.

m

2π ~2

∣
∣
∣
∣

∫

d3r′
exp (i k|r − r′|)
|r − r′| V (r′)φ(+)

sc (r′)

∣
∣
∣
∣
≪ 1. (503)

The disturbance of the plane wave is near r ≈ 0, while for selfconsistency φ
(+)
sc (r) should be dominantly

plane wave, thus

∣
∣
∣
∣

∫

d3r′
exp (i kr′ + ik · r′)

r′
V (r′)

∣
∣
∣
∣
≪ 2π ~2

m
∣
∣
∣
∣
2π

∫ 1

−1

dX

∫

dr′ r′ ei kr
′(1+X) V (r′)

∣
∣
∣
∣
≪ 2π ~2

m
,

∣
∣
∣
∣

∫

dr′
(

e2i kr
′ − 1

)

V (r′)

∣
∣
∣
∣
≪ ~2k

m
= ~v.

We see two limits in which the Born approximation is applicable

• Weak potentials with a finite range.
Starting with the second of the above estimates, we see for a potential with average depth V0 and
range a one has after bringing the absolute value under the integral V0 a

2 ≪ ~2/m, i.e.

V0 ≪
~2

ma2
, (504)

a condition where an approximately equal sign usually is already ok.

• High energies (but nonrelativistic!).
In the last of the three expressions the exponential is fast-varying for high momenta k and can be
neglected, so V0 a≪ ~2 k/m, i.e.

ka≫ mV0 a
2

~2
or E ≫ mV 2

0 a
2

~2
. (505)
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25.5 Identical particles

We already discussed how to treat the scattering of two particles in the center of mass frame. In the case
that one has two identical particles the scattering in the following two situations both leads to the same
final state,

p

p

p

p

p

p
p

p

θθ

π−θ

1 2 2 1

Thus if ψ12 is the wave function in which particle 1 is coming from the left and is scattered over an angle
θ and ψ21 is the wave function in which particle 1 is coming from the right and is scattered over an angle
π − θ,

φ12(r) = ei kz + f(k; θ, φ)
ei kr

r
, (506)

φ21(r) = e−i kz + f(k;π − θ, φ+ π)
ei kr

r
, (507)

one has the same final state. One should use the appropriately symmetrized or antisymmetrized wave
functions, leading to (omitting φ-dependence)

n(θ, φ) dΩ =
~k

µ
|f(k; θ)± f(k;π − θ)|2 dΩ

In the cross section,

dσ

dΩ
= |f(k; θ)± f(k;π − θ)|2

= |f(k; θ)|2 + |f(k;π − θ)|2 ± 2 Re [f∗(k; θ) f(k;π − θ)] , (508)

the (third) interference term gives rise to oscillations. Note that in order to determine the total cross
section one has to integrate over the range 0 ≤ θ ≤ π/2 in order to avoid double counting. Note that the
cross sections at angles θ and π − θ are identical. For destructive interference (a minus sign) the cross
section is zero at θ = 90 degrees.

For example in the (hypothetical) scattering process of two pions the amplitudes interfere construc-
tively as pions are bosons (spin 0 particles) and the wave function must be symmetric. When scattering
two electrons (spin 1/2 particles) off each other the total wave function is antisymmetric, but the sym-
metry of the scattering solution depends on the spin state. In the spin 0 state (singlet) the spin wave
function is antisymmetric, while in the spin 1 state (triplet) the spin wave function is symmetric. Hence

dσs
dΩ

= |fs(θ) + fs(π − θ)|2, (509)

dσt
dΩ

= |ft(θ)− ft(π − θ)|2, (510)

If one scatters unpolarized electrons, the initial state has a probability 1/4 to be in the singlet state, 3/4
to be in the triplet state, thus for a spin-independent potential

dσ

dΩ
=

1

4

dσs
dΩ

+
3

4

dσt
dΩ

= |f(k; θ)|2 + |f(k;π − θ)|2 −Re [f(k; θ) f∗(k;π − θ)] . (511)
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Exercises

Exercise 25.1

In this exercise we look at the ingredients needed to find the Green function in Eq. 495.

(a) Show that

∇2

(
1

r

)

= 0 if r 6= 0 and

∫

d3r ∇2

(
1

r

)

= −4π,

which implies that

∇2

(
1

r

)

= −4π δ3(r).

(b) Argue that G(r, r′) in Eq. 495 only depends on r − r′, thus we have to solve

(
∇

2 + k2
)
G(r) = −δ3(r).

(c) Show that G(r) = e±ikr/4π r is a solution of the equation under (b).
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26 Partial wave expansion

26.1 Phase shifts

At low energies a particle scattering off a target with impact parameter b has an angular momentum
~
√

ℓ(ℓ+ 1) = p b,

b a
rangep

If the potential has a finite range a the angular momenta that are important correspond to b ≤ a. From
this we obtain ~ℓ ≤ pa = ~ka or ℓ ≤ ka. Therefore it is especially at low energies convenient to expand
into different partial waves, eigenstates of angular momentum, because the lower partial waves dominate.
Also for central potentials, which satisfy [L, V (r)] = 0, it is useful to expand in partial waves, since each
angular momentum state in that case is a proper scattering solution.

Starting off with the plane wave, we have

eikz =
∑

ℓ

(2ℓ+ 1) iℓ jℓ(kr)Pℓ(cos θ). (512)

The expansion only contains the φ-independent spherical harmonics, Y 0
ℓ (θ) =

√

(2ℓ+ 1)/4πPℓ(cos θ).
Assuming azimuthal symmetry the scattering amplitude only depends on θ and also can be expanded in
Legendre polynomials,

f(k; θ) =
∑

ℓ

(2ℓ+ 1) fℓ(k)Pℓ(cos θ). (513)

Thus one obtains

φsc(r)
r→∞−→

∑

ℓ

(2ℓ+ 1)Pℓ(cos θ) iℓ
[

jℓ(kr) + (−i)ℓ e
i kr

r
fℓ(k)

]

︸ ︷︷ ︸

φ
(ℓ)
sc (r)

. (514)

Rewriting the scattering wave in the following way,

φ(ℓ)
sc (r)

r→∞−→ sin(kr − ℓπ/2)

kr
+ (−i)ℓ e

i kr

r
fℓ(k)

=
1

2i k

[

−e
−i(kr−ℓπ/2)

r
+
ei(kr−ℓπ/2)

r
(1 + 2i kfℓ(k))

]

, (515)

Conservation of flux tells us that the incoming and outgoing fluxes should be equal in magnitude, i.e.

1 + 2i kfℓ(k) ≡ e2i δℓ(k), (516)

where δℓ(k) is called the phase shift. Going back and expressing fℓ(k) in the phase shift it is easy to see
that

fℓ(k) =
e2i δℓ(k) − 1

2i k
=
ei δℓ(k) sin δℓ(k)

k
, (517)

and

φ(ℓ)
sc (r)

r→∞−→ ei δℓ(k)
sin(kr − ℓπ/2 + δℓ(k))

kr
. (518)
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26.2 Cross sections and partial waves

At this point it is useful to slightly generalize the result of the previous section. If also inelastic scattering
is possible a particular ℓ-wave amplitude is parametrized

1 + 2i kfℓ(k) ≡ ηℓ e2i δℓ(k), (519)

where ηℓ is called the elasticity. One then has for the elastic cross section

dσel
dΩ

= |f(k; θ)|2 = 4π
∑

ℓ,ℓ′

√

(2ℓ+ 1)(2ℓ′ + 1) fℓ(k) fℓ′(k)Y
0∗
ℓ (θ)Y 0

ℓ′ (θ). (520)

Integrating over angles the orthonormality of the Y mℓ ’s can be used to get

σel =
4π

k2

∑

ℓ

(2ℓ+ 1) sin2 δℓ(k) (521)

Via the optical theorem, which relates the forward scattering amplitude to the total cross section one
finds

σT =
2π

k2

∑

ℓ

(2ℓ+ 1) (1− ηℓ cos 2δℓ), (522)

which indeed is identical for purely elastic scattering (ηℓ = 1). The difference is the inelastic cross section,

σinel =
π

k2

∑

ℓ

(2ℓ+ 1) (1− η2
ℓ ). (523)

26.3 Application: the phase shift from the potential

The easiest illustration of the calculation of the phase shift is the calculation for a square well, V (r) = V0

for r ≤ a and zero elsewhere. We immediately know that for r ≥ a the solution must be the asymptotic
solution. Inside the square well we use the radial Schrödinger equation to get the radial wave function
u(r). Thus for

φℓm(r) =
uℓ(r)

r
Y mℓ (θ, φ), (524)

we have [

− ~2

2m

d2

dr2
+
ℓ(ℓ+ 1)

r2
+ V (r)

]

uℓ(r) = E uℓ(r). (525)

Knowing that uℓ(0) = 0 we obtain for s-waves (ℓ = 0)

r ≤ a u(r) = A sinKr with K =

√

2m

~2
(E − V0),

r ≥ a u(r) = B sin(kr + δ0) with k =

√

2m

~2
E,

Matching the logarithmic derivative (du/dr)/u(r) at r = a gives

tan(ka+ δ0) =
k

K
tanKa (526)
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or

tan δ0(k) =
k
K tanKa− tanka

1 + k
K tanKa tan ka

(527)

ka≪1−→ ka
[
tanKa
Ka − 1

]

1 + (ka)2 tanKa
Ka

, (528)

Ka≪1−→ ka

[
tanKa

Ka
− 1

]

≈ K2 a3

3
k (529)

For low energies, where s-waves are the dominant contribution, the above result and its limits can be used
to understand many qualitative features in the cross section, e.g. the disappearance of the cross section
at specific energies, because of a zero in 1− tanKa/Ka (the Ramsauer-Townsend effect) or the behavior
of the cross section near threshold for weak potentials. The first two coefficients of the phase shift in an
expansion in the momentum,

δ0(k) = a0 k +
1

2
re k

2 + . . . , (530)

have specific names, namely scattering length and effective range, respectively.

Exercises

Exercise 26.1

Determine the s-wave phase shift for a hard core potential of the form V (r) =∞ for r ≤ b and V (r) = 0
else.

Exercise 26.2

(a) Determine the phase shift for a potential of the form

V (r) = 0 for r ≤ a,
= +V0 for a < r ≤ b,
= 0 for r > b.

(b) Write down and plot the s-wave contribution to the cross section for 4mV0 a
2 = 4π2

~
2 and b = 2 a.

Exercise 26.3

We now look at a potential of the form V (r) = V0 a δ(r − a), which represents a ’sharp’ wall at r = a.
Determine the s-wave phase shift for this potential.


