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ABSTRACT 

Transverse Momentum Distribution and beyond: setting up the nucleon tomography 
 
Piet Mulders (Nikhef Theory Group/VU University Amsterdam) 
 
In these lecture notes I describe a diagrammatic approach in high energy scattering processeses. Using in 
particular production processes initiated by a lepton-hadron or a hadron-hadron intitial state we identify the 
correlators that describe the {\em partons in the hadrons}. In this way one can generalize more rigorous 
approaches such as the operator product expansion techniques. Generalizations include the treatment of 
transverse momenta of partons. The latter allows a general treatment that includes all possible correlations 
between momenta and spins of partons and parent hadrons both in polarized and unpolarized cases. The 
effects of transverse momenta show up as azimuthal asymmetries in the inclusive production of jets or specific 
hadrons. Although correlators describe in general squared amplitudes, links can be made to amplitudes in 
other processes. Examples are form factors and generalized parton distributions. One can also look at 
extensions to multi-parton scattering phenomena. The parametrization in terms of universal functions, such as 
distribution and fragmentation functions are useful to optimally profit from the kinematic and spin-related 
degrees of freedom in high-energy processes but the correlators actually also encode interesting hadronic 
structure that can be studied in lattice approaches or specific models for hadron structure.  
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4 3 colors 

Valence structure of hadrons: global properties 

d u u 

proton 

§  mass 
§  charge 
§  spin 
§  magnetic moment 
§  isospin, strangeness 
§  baryon number 

n  Mp ≈ Mn ≈ 940 MeV  
n  Qp = 1, Qn = 0 
n  s = ½  
n  gp ≈ 5.59, gn ≈ -3.83 
n  I = ½: (p,n)    S = 0 
n  B = 1 

Quarks as 
constituents 
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A real look at the proton 

γ + N à …. 

Nucleon excitation spectrum 
E ~ 1/R ~ 200 MeV 
R ~ 1 fm 
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A (weak) look at the nucleon  

n à p + e- + ν

τ  = 900 s 
à Axial charge  
    GA(0) = 1.26 
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A virtual look at the proton 

γ* à N N γ* + N à N 
_ 
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Local – forward and off-forward m.e. 

1
.

2( ) (' | ) | )( i x GP O tP e t Gx i µ
µ

Δ ⎡ ⎤< > = − Δ⎣ ⎦

2t = Δ

1(0) | ( ) |G P O x P= < >

2 (0) | ( ) |G P x O x Pµ µ= < >

Local operators (coordinate space densities): 

P P’ 

Δ

Static properties: 

Form factors 

Examples: 
(axial) charge 
mass 
spin 
magnetic moment 
angular momentum 
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Nucleon densities from virtual look 

proton 
neutron 

•  charge density ≠ 0 
•  u more central than d? 
•  role of antiquarks? 
•  n = n0 + pπ-  + … ? 

( ) ( )i iG t xρ→
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Quark and gluon operators 

Given the QCD framework, the operators are known quarkic or 
gluonic currents such as 

probed in specific combinations 
by photons, Z- or W-bosons 
( ) 2 1 1

3 3 3 ...u d sJ V V Vγ
µ µ µ µ= − − +

( )( ) 21 4
2 3 sin ...Z u u u

WJ V A Vµ µ µ µθ= − − +

( ) ' ' ...W ud udJ V Aµ µ µ= − +

'
5( ) ( ) '( )q qA x q x q xµ µγ γ=

( ) ( ) ( )qV x q x q xµ µγ=

(axial) vector currents 

{ }( ) ~ ( ) ( )qT x q x D q xµν µ νγ

( ) ~ ( ) ( )GT x G x G xα
µν µα ν

energy-momentum currents 

probed by gravitons 
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Towards the quarks themselves 

§  The current provides the densities but 
only in specific combinations, e.g. quarks 
minus antiquarks and only flavor 
weighted 

§  No information about their correlations,  
(effectively) pions, or … 

§  Can we go beyond these global 
observables (which correspond to local 
operators)? 

§  Yes, in high energy (semi-)inclusive 
measurements we will have access to 
non-local operators! 

§  LQCD (quarks, gluons) known! 



Non-local probing 
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O x − y
2 , x +

y
2( ) =Ψ† x − y

2( )...Ψ x + y
2( )

( ) ( )2 2 2 2| , | | , |y y y yx xP O P P O P− + − +< > =< >
Nonlocal forward operators (correlators): 

Specifically useful: ‘squares’ 

Momentum space densities of Ψ-ons: 

Selectivity 
at high 
energies: 
q = p 

dy∫ eip. y < P |Ψ† − y
2( )Ψ + y

2( ) | P > =

                     = < PX |Ψ 0( ) | P >
2

X
∑ δ(PX − P + p) = f ( p)
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A hard look at the proton 

n  Hard virtual momenta (± q2 = Q2 ~ many GeV2) can couple to 
(two) soft momenta 

γ* + N à jet γ* à jet + jet 
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Experiments! 
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QCD & Standard Model 

§  QCD framework (including electroweak theory) provides the machinery 
to calculate cross sections, e.g. γ*q → q, qq → γ*, γ* → qq, qq → qq, 
qg → qg, etc. 

§  E.g.  
 qg → qg 

 
 
 

§  Calculations work for plane waves 

_ _ 

) .( ( )0 , ( , )s ip
i ip s u p s e ξψ ξ −=
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Soft part: hadronic matrix elements 

§  For hard scattering process involving electrons 
and photons the link to external particles is, 
indeed, the ‘one-particle wave function’ 

§  Confinement, however, implies hadrons as 
‘sources’ for quarks  

§  … and also as ‘source’ for quarks + gluons 

§  … and also …. 

.( )0 , ( , ) ip
ii p s u p s e ξψ ξ −=

.( ) i
i

pX P e ξψ ξ +

1 1( ). .( ) ( ) i p
i

p ipAX P e ξµ ηψ ξ η + − +

PARTON CORRELATORS 
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PDFs and PFFs 

 Basic idea of PDFs and PFFs (also for TMDs) is to obtain a full factorized 
description of high energy scattering processes 


σ =|H ( p1, p2 ,...) |

2

σ (P1,P2 ,...) = ...dp1∫∫∫ ...Φa ( p1,P1;µ)⊗Φb( p2 ,P2;µ)

⊗

σ ab,c... ( p1, p2 ,...;µ)⊗Δc (k1,K1;µ)....

calculable 

defined (!) 
    & 
portable 

Give a meaning to 
integration variables! 



Hadron correlators 

  At high energies no interference and squared amplitudes can be rewritten as 
correlators of forward matrix elements of parton fields 

  Math: 

  Picture: 
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ui ( p,s)u j ( p,s) ⇒ P ψ j (0) | X >< X |ψi (0) P
X
∑ δ( p− P + PX )

=
dξ
2π∫ P ψ j (0) | X >< X |ψi (0) P

X
∑ ei ( p−P+PX ).ξ

=
dξ
2π∫ P ψ j (0) | X >< X |ψi (ξ ) P

X
∑ ei p.ξ

=
dξ
2π∫ ei p.ξ P ψ j (0)ψi (ξ ) P

ψi (ξ ) ψ j (0)
Use symmetries (P, T) and 
hermicity to parametrize 
these objects! 



Hadron correlators 

  At high energies no interference and squared amplitudes can be rewritten as 
correlators of matrix elements of parton fields 

  Math: 

  Picture: 
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ui (k,s)u j (k,s) ⇒ 0ψi (0) | KhX >< KhX |ψ j (0) 0
X
∑ δ(k − Kh − KX )

=
dξ
2π∫ 0ψi (0) | KhX >< KhX |ψ j (0) 0

X
∑ ei (k−Kh−KX ).ξ

=
dξ
2π∫ 0 ψi (ξ ) | KhX >< KhX |ψ j (0) 0

X
∑ eik .ξ

=
dξ
2π∫ eik .ξ 0 ψi (ξ )ah

+ahψ j (0) 0

ψ j (0) ψi (ξ )

Collins & Soper, NP B 194 (1982) 445 

no T-constraint 
T|Kh,X>out = |Kh,X>in 



Role of the hard scale 

  In high-energy processes hard momenta are available, such that P.P’ ~ s with a 
hard scale s >> M2 

  Employ light-like vectors P and n, such that P.n = 1 (e.g. n = P’/P.P’) to make a 
Sudakov expansion of parton momentum (write s = Q2)  

 

  Enables expansion in inverse hard scale (twist analysis) for integrated 
correlators,  

20 

Tx pp P nµµ µσ= + +

σ = p− = p.P − xM 2 ~ O(M 2 )

x = p+ = p.n (0 ≤ x ≤1)

~ Q ~ M  ~ M2/Q 

Φ( p) =Φ(x, pT , p.P) ⇒ Φ(x, pT ) ⇒ Φ(x) ⇒ Φ



(Un)integrated correlators 

 

  σ = p- integration makes time-ordering automatic. 
The soft part is simply sliced at the light-front  

 
  Is already equivalent to a point-like interaction 

  Local operators with calculable anomalous dimension  

unintegrated 
 
  TMD (light-front) 

  collinear (light-cone) 

  local 

21 

Φ(x, pT ;n) =
d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)ψ(ξ ) P

ξ .n=ξ+=0

Φ = P ψ(0)ψ(ξ ) P
ξ=0

Φ(x) = d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)ψ(ξ ) P

ξ .n=ξT =0 or ξ 2=0

Φ(x, pT , p.P) =
d 4ξ
(2π )4∫ ei p.ξ P ψ(0)ψ(ξ ) P



Example using correlators (DIS) 
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§  Instead of partons use correlators 
 

 

Principle for DIS 

q 

P 

u( p,s) u ( p,s)
s∑  ⇒ Φ( p,P)

p 

Δ(k) = /k +m
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§  Instead of partons use correlators 

§  Expand parton momenta (using P as light-like plus vector) 

 

Principle for DIS 

q 

P 

2 2P M=

u( p,s) u ( p,s)
s∑  ⇒ Φ( p,P)

Tx pp P nµµ µσ= + +

2 2. ~p P xM Mσ = −

. ~ 1x p p n+= =

~ Q ~ M  ~ M2/Q 

p 

Δ(k) = /k +m



(calculation of) cross section in DIS 
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Full calculation 

+ … 

+ + 

+ LEADING (in 1/Q) 
 
x = xB = -q2/P.q 

Φ(x)
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Result for DIS 

q 

P 

21
2

1
2

2 ( , ) . [ ( , ) ] ( )

[ ( ) ]
T T B

T B

MW P q g dxdp P d p Tr p P x x

g Tr x

µν µν

µν

γ δ

γ

+

+

= − Φ −

= − Φ

∫

p 



Twist analysis (1) 

  Dimensional analysis to determine importance in 
an expansion in inverse hard scale 

  Maximize contractions with n 

  … or maximize # of P’s in parametrization of Φ

  Note that these are densities!  

28 

dim[ψ(0) /nψ(ξ )]= 2
dim[ (0) ( )] 2n nF Fα β ξ =

dim[ψ(0) /n AT
α (η)ψ(ξ )]= 3

Φq (x) = f1
q (x) P

2
⇔ f1

q (x) = dλ
(2π )∫ ei xλ P ψ(0) /nψ(λn) P

ψ(0) /nψ(λn) =ψ+
+(0)ψ

+
(λn)



Parametrization of TMDs 
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Ingredients in parametrization 

  Building blocks: momenta and spins 
  Handling of spin in distributions (spin of hadrons can be tuned) 
  Handling of spin in fragmentations (spin of produced hadrons cannot be 

tuned!) 
Color summation in distribution functions 
Color averaging in fragmentation functions 
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Symmetry constraints 

Hermiticity 

  Parity 

  Time reversal 

  Charge conjugation 
(giving antiquark corr) 

31 

ΦT*( p;P,S) = γ0Φ( p;P,S)γ0
Φ( p;P,S) = γ0Φ( p;P,−S )γ0

Φ[U ]( p;P,S) = (−iγ5C)Φ
[−U ]( p;P,S )(−iγ5C)

Φc ( p;P,S) =CΦT (−p;P,S)C

2 2
1

]
1

[ ( ,( , ) ( , ))
2

q q Tq
T T T

p Px p i
M

f x p h x p⊥± ⎛ ⎞
Φ = ±⎜ ⎟

⎝ ⎠

Parametrization of TMD correlator for unpolarized hadron: 

(unpolarized and transversely polarized quarks) 
T-even T-odd 

Mulders, Tangerman, Boer; Bacchetta, Diehl, Goeke, Metz, M, Schlegel, JHEP02 (2007) 093 



New information in TMD’s: f(x,pT) or D(1/z,kT)  

  Quarks in polarized nucleon: 

 
 

 
 
  … but also 
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Φq ( p;P,S) ∝ xf1
q (x, pT

2 ) /P  + SLxg1L
q (x, pT

2 ) /Pγ5

                        +xh1T
q (x, pT

2 ) /ST /Pγ5    +   ...

compare 
unpolarized 
quarks T-polarized quarks 

in T-polarized N 

S = SL
P
M

+Mn
!

"
#

$

%
&+ ST SL

2 + ST
2 = −1

chiral quarks in 
L-polarized N 

Φq ( p;P,S) ∝ ... + 
( pT ⋅ ST )
M

xg1T
q (x, pT

2 ) /Pγ5    +   ...

chiral quarks   
in T-polarized N 

spin ßà spin 

u( p,s)u ( p,s) = 1
2 ( /p+m)(1+γ5/s)



  … and T-odd functions 
 
 

  Yes, definitely there is new information and even very interesting spin-orbit 
correlations (single spin!). These are T-odd and because of T-conservation 
show up in T-odd observables, such as single spin asymmetries, e.g. left-right 
asymmetry in  

 
 

New information in TMD’s: f(x,pT) or D(1/z,kT)  

33 

u( p,s)u ( p,s) = 1
2 ( /p+m)(1+γ5/s)

Φq ( p;P,S) ∝ ... + ih1
⊥q (x, pT

2 ) /
pT
M

/P + i
( pT × ST )
M

xf1T
⊥q (x, pT

2 ) /P  + ...

compare 

unpolarized quarks in 
T-polarized N (Sivers) 

T-polarized quarks 
in unpolarized N 
(Boer-Mulders) 

spin ßà orbit 

1 2( ) ( ) ( )p P p P K Xπ
↑

→



Φg  µν ( p)

New information in gluon TMD’s: f(x,pT) or D(1/z,kT)  

  Also for gluons there are new features in TMD’s 
 

 
 

34 

εµ ( p,λ)εν∗( p,λ)  = −gT
µν + ...

Φg  µν ( p;P,S) ∝− gT
µν xf1

g (x, pT
2 )  + iSLεT

µν xg1L
g (x, pT

2 )

                                    + 
pT
µ pT

ν

M 2
− gT

µν pT
µ

2M 2

!

"
##

$

%
&&xh1

⊥g (x, pT
2 )   +   ...

compare 

unpolarized gluons 
in unpol. N quarks 

linearly polarized  
gluons in unpol. N 
(Gluon Boer-Mulders) 

circularly polarized 
gluons in L-pol. N 

spin ßà orbit 

spin ßà spin 
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Basis of 
partons 

§  ‘Good part’ of Dirac  
   space is 2-dimensional 
 
§  Interpretation of DF’s 

unpolarized quark 
distribution 

helicity or chirality 
distribution 

transverse spin distr. 
or transversity 
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§  Off-diagonal elements (RL or LR) are chiral-odd functions 
§  Chiral-odd soft parts must appear with partner in e.g. SIDIS, DY 

Matrix representation 
for M = [Φ(x)γ+]T 

Quark production 
matrix, directly 
related to the 
helicity formalism 

Anselmino et al. 

Bacchetta, Boglione, Henneman & Mulders 
PRL 85 (2000) 712  



unpolarized quark 
distribution 

helicity or chirality 
distribution 

transverse spin distr. 
or transversity 

with pT 

with pT 

with pT 

with pT 

with pT 

T-odd 

Fermionic structure of TMDs 

f1q(x) = q(x) 

g1
q(x) = Δq(x)  

h1
q(x) = δq(x)  
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§  pT-dependent 
   functions 

T-odd: g1T à g1T – i f1T
⊥ and h1L

⊥ à h1L
⊥ + i h1

⊥    (imaginary parts) 

Matrix representation 
for M = [Φ[±](x,pT)γ+]T 

Bacchetta, Boglione, Henneman & Mulders 
PRL 85 (2000) 712  



Example using TMDs (SIDIS) 

39 
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(calculation of) cross section in SIDIS 

Full calculation 

+ 

+ … 

+ 

+ 
LEADING 
(in 1/Q) 



Lightfront dominance in SIDIS 

 

Three external momenta 
P   Ph   q 

transverse directions relevant 
qT = q + xB P – Ph/zh  

or 
qT = -Ph⊥/zh 

 41 
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Result for SIDIS 

2 2

2

2 21
2

2

2 ( , , )

[ ( , ) ( , ) ] ( )

[ ( , ) ] [ ( , ) ] ( )

h T T

B T h T T T T

T T T

B T h T T T T

MW P P q d p d k

Tr x p z k p q k

g d p d k

Tr x p Tr z k p q k

µν

µ µ

µν

γ γ δ

γ γ δ+ −

=

× Φ Δ + −

=−

× Φ Δ + −

∫ ∫

∫ ∫

q 

P 

Ph 

p 
k 

h
T B

h

Pq q x P
z

= + −



relevance and measurability of TMDs 
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Transverse momentum dependence 

  Mismatch of hadronic and partonic momenta 

 
  Momentum fractions are linked to scaling variables, e.g. SIDIS         

(up to 1/Q2 corrections): 

  Transverse momenta are convoluted into a measurable off-collinearity,  

  … or non-alignment of jets in hadron + hadron à jet + jet. 

44 

p− xP = pT + ...= −xP⊥ + ...
k − 1

z Kh = kT + ...= − 1
z Kh⊥ + ...

2. / . / 2 . Bx p n P n Q P q x= = =

z = K.n / k.n = P.K / P.q = zh

qT = q+ xBP − zh
−1K = kT − pT



Access to transverse momenta 

  Also in more complex situations like hadron-hadron collisions 

45 

1 11 1Tp Px p≈ +

2 22 2Tp Px p≈ +

qT = k jet ,1 + k jet ,2 − x1P1 − x2P2
= p1T + p2T

x1 = p1.n =
p1.P2
P1.P2

=
(k1 + k2 ).P2
P1.P2

Boer & Vogelsang 



Large pT 
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Large pT 

pT-dependence of TMDs 

 

 
     

 

  Consistent matching to collinear situation: CSS formalism 
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Φ(x,pT) 

d 2 pT
µ

∫ Φ(x, pT ) = Φ(x;µ
2 )

Fictitious 
measurement 

Large m2 
dependence 
governed by 
anomalous dim 
(i.e. splitting 
functions) 

Φ(x, pT ) →
1

π pT
2

αs ( pT
2 )

2π
dy
y
P x
y

#

$
%

&

'
(

x

1

∫ Φ(y; pT
2 )

pT
2 > µ2 

JC Collins, DE Soper and GF Sterman, NP B 250 (1985) 199 



Large values of momenta 

  Calculable! 
2 2

2 0
1
T p

p

p x M
p

x
−

≈ <
−

l

2 2( )
. 0

2 (1 )
p T

p

x p M
p P

x x
−

≈ <
−

l

2 2
2 ( ) (1 )

0
(1 )

p T p
R

p

x x p x x M
M

x x
− + −

≈ >
−

l

0 0 ( 1)T p
p

xp P p x x
x

≈ + ≤ ≤

T Tp≈ −l 2( , ) ...s

T

p P
p
α

Φ → etc. 

Bacchetta, Boer, Diehl, M  
JHEP 0808:023, 2008 (arXiv:0803.0227) 

p0T ~ M 

M << pT < Q 

hard 



Complications for TMDs 
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Hadron correlators 

Hadronic correlators establish the 
diagrammatic link between hadrons 
and partonic hard scattering 
amplitude 

  Quark, quark + gluon, gluon, … 
 

  Disentangling a hard process into  
collinear parts involving hadrons, 
hard scattering amplitude and soft 
factors is non-trivial 
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122 5 Libby-Sterman analysis and power-counting

A

H
S

B
PB

PA

t

z

(a) (b)

Fig. 5.17. (a) An important reduced graph for the amplitude for the Drell-Yan
process. (b) Space-time diagram for collinear subgraphs.

In light-front coordinates, we write the momenta as

PA =
(

P+
A , m2

A/2P+
A , 0T

)

, (5.15a)

PB =
(

m2
B/2P−

B , P−
B , 0T

)

, (5.15b)

q =

(

xAP+
A

√

1 + q2
T/Q2, xBP−

B

√

1 + q2
T/Q2, qT

)

. (5.15c)

Here the scaling variables are defined by

xA = Qey/
√

s, xB = Qe−y/
√

s, (5.16)

where y = 1
2 ln q

+
P

−
B

q
−

P
+
A

is the center-of-mass rapidity of the lepton pair, and

Q =
√

q2 is its invariant mass. In the center-of-mass, the large components

of the hadron momenta are P+
A and P−

B , both equal to
√

s/2 up to power-
suppressed corrections. Frequently, the cross section is integrated over qT,
and is presented as d2σ/(dQ2 dy).

We first discuss the DY amplitude. Its reduced graphs are constructed
by an elementary generalization of the construction for DIS. We now have
two collinear subgraphs, A and B, associated with each incoming particle.
As in DIS, we classify the reduced graphs by the number of outgoing
directions of lines from the hard scattering H. Now H has incoming lines
from each of the A and B subgraphs, and has the virtual photon taking
out momentum. This allows the minimal situation, illustrated in Fig. 5.17,
with no extra collinear groups at all going out from H. The soft subgraph
can create particles in the final state that fill in the rapidity gap between
the beam remnants.

This is illustrated by the microscopic view of a collision shown in Fig.
5.18 (which corresponds to Fig. 2.2 for DIS). Here we have shown the

11 February 2011

J.C. Collins, Foundations of Perturbative 
QCD, Cambridge Univ. Press 2011 

0 ψi (ξ ) p,s = ui ( p,s) e
−ip.ξ

X ψi (ξ ) P e+ip.ξ

X ψi (ξ )A
µ (η) P e+i ( p−p1).ξ+ip1.η



Soft part: hadron correlators 

  Forward matrix elements of parton fields describe distribution 
(and fragmentation) parts 

  Also needed are multi-parton correlators   
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Φij ( p;P) =Φij ( p | p) =
d 4ξ
(2π )4∫ ei p.ξ P ψ j (0)ψi (ξ ) P

ΦA;ij
α ( p− p1, p1 | p) =

d 4ξ d 4η
(2π )8∫ ei ( p−p1).ξ+ip1.η P ψ j (0)A

α (η)ψi (ξ ) P

  Φ(p)    

ΦA(p-p1,p) 



Color gauge invariance 

  Gauge invariance in a non-local situation requires a gauge link U(0,ξ) 

  Introduces path dependence for Φ(x,pT) 

52 

0

(0, ) exp ig ds AU
ξ

µ
µξ −

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫P

ψ(0)ψ(ξ ) = 1
n!
ξ µ1 ...

n
∑ ξ µNψ(0)∂µ1 ...∂µNψ(0)

ψ(0)U (0,ξ )ψ(ξ ) = 1
n!
ξ µ1 ...

n
∑ ξ µNψ(0)Dµ1

...DµN
ψ(0)

0
ξ.P 

ξΤ

ξ
Φ[U ](x, pT ) ⇒ Φ(x)



Twist analysis (2) 

  Dimensional analysis to determine importance in 
an expansion in inverse hard scale 

  Maximize contractions with n 

  … or maximize # of P’s in parametrization of Φ 

  In addition any number of collinear n.A(ξ) = An(x) 
fields (dimension zero!), but of course in color 
gauge invariant combinations  

53 

dim[ψ(0) /nψ(ξ )]= 2
dim[ (0) ( )] 2n nF Fα β ξ =

dim[ψ(0) /n AT
α (η)ψ(ξ )]= 3

Φq (x) = f1
q (x) P

2
⇔ f1

q (x) = dλ
(2π )∫ ei xλ P ψ(0) /nψ(λn) P

n n n ni iD i gA∂ → = ∂ +

T T T Ti iD i gAα α α α∂ → = ∂ +

dim 0: 

dim 1: 
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u  Gauge links come from dimension zero (not suppressed!) collinear A.n gluons, 
but leads for TMD correlators to process-dependence: 

Which gauge links? 

2
[ ] . [ ]

[0, ]3 . 0

( . )( , (0) ( ); )
(2 ) j

q C i p CT
ij T i n

d P dx p n e P U Pξ
ξ ξ

ψ ψ ξ
ξ ξ
π =

Φ = ∫
. [ ]

[0, ] . 0

( . )( ; )
(2 )

(0) ( )ij
T

q i p n
nj i

d Px n e P U Pξ
ξ ξ ξ

ψ ψ ξ
ξ
π = =

Φ = ∫

Φ[-] Φ[+] 

Time reversal 

TMD 

collinear 

… An … 
… An … 

AV Belitsky, X Ji and F Yuan, NP B 656 (2003) 165 
D Boer, PJM and F Pijlman, NP B 667 (2003) 201 

   SIDIS  DY 



Some details on the gauge links (1) 

  Proper gluon fields (F rather than A, Wilson lines and boundary terms) 

Resummation of soft n.A gluons (coupling to outgoing color-line) for one 
correlator produces a gauge-line (along n) 

  Boundary terms give transverse pieces 

 

1 1 1 1 1 1
1

1( ) . ( ) ( ) ... . ( ) ( ) ...
. .

n
T T

PA p n A p iA p n A p p iG p
n P p n

µ
µ µ µ µ⎡ ⎤= + + = + +⎣ ⎦
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Which gauge links? 

Φg
αβ[C ,C '] (x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P U[ξ ,0]

[C ] Fnα (0)U[0,ξ ]
[C '] Fnβ (ξ ) P

ξ .n=0

u  The TMD gluon correlators contain two links, which can have different paths. 
Note that standard field displacement involves C = C’  

u  Basic (simplest) gauge links for gluon TMD correlators: 

[ ] [ ]
[ , ] [ , ]( ) ( )C CF U F Uαβ αβ
η ξ ξ ηξ ξ→

Φg
[+,+] Φg

[-,-] 

Φg
[+,-] Φg

[-,+] 

C Bomhof, PJM, F Pijlman; EPJ C 47 (2006) 147 
F Dominguez, B-W Xiao, F Yuan, PRL 106 (2011) 022301  

   gg è H 

 in gg  è QQ  



Summarizing: color gauge invariant correlators 

  So it looks that at best we have well-defined matrix elements for TMDs but 
including multiple possiblities for gauge links and each process or even each 
diagram its own gauge link (depending on flow of color) 

  Leading quark TMDs 
 
 

 

  Leading gluon TMDs: 
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momentum qT of the produced lepton pair,

σ(x1, x2, qT ) =

∫
d2p1T d2p2T δ2(p1T + p2T − qT )

× Φ[−]
1 (x1, p1T )Φ

[−†]
2 (x2, p2T )σ̂(x1, x2, Q), (10)

which involves a convolution of TMDs. What is more important, it is the color flow
in the process, in this case neutralized in initial state, that determines the path in
the gauge link in the TMDs, in this case past-pointing ones. In contrast in semi-
inclusive deep inelastic scattering one finds that the relevant TMD is Φ[+] with a
future-pointing gauge link. In a general process one can find more complex gauge
links including besides Wilson line elements also Wilson loops. In particular when
the transverse momentum of more than one hadron is involved, such as e.g. in the
DY case above, it may be impossible to have just a single TMD for a given hadron
because color gets entangled 5,6.

The correlators including a gauge link can be parametrized in terms of TMD
PDFs 7,8 depending on x and p2

T
,

Φ[U ](x, pT ;n) =

{
f [U ]
1 (x, p2

T
)− f⊥[U ]

1T (x, p2
T
)
ϵpTST

T

M
+ g[U ]

1s (x, pT )γ5

+ h[U ]
1T (x, p2

T
) γ5 /ST

+ h⊥[U ]
1s (x, pT )

γ5 /p
T

M
+ ih⊥[U ]

1 (x, p2
T
)
/p

T

M

}
/P

2
, (11)

with the spin vector parametrized as Sµ = SLPµ + Sµ
T +M2 SLnµ and shorthand

notations for g[U ]
1s and h⊥[U ]

1s ,

g[U ]
1s (x, pT ) = SLg

[U ]
1L (x, p2

T
)−

pT · ST

M
g[U ]
1T (x, p2

T
). (12)

For quarks, these include not only the functions that survive upon pT -integration,
f q
1 (x) = q(x), gq1(x) = ∆q(x) and hq

1(x) = δq(x), which are the well-known collinear
spin-spin densities (involving quark and nucleon spin) but also momentum-spin den-
sities such as the Sivers function f⊥q

1T (x, p2
T
) (unpolarized quarks in a transversely

polarized nucleon) and spin-spin-momentum densities such as g1T (x, p2T ) (longitu-
dinally polarized quarks in a transversely polarized nucleon).

The parametrization for gluons, following the naming convention in Ref. 9, is
given by

2xΓµν[U ](x,pT ) = −gµνT fg[U ]
1 (x,p2

T
) + gµνT

ϵpTST

T

M
f⊥g[U ]
1T (x,p2

T
)

+ iϵµνT gg[U ]
1s (x,pT ) +

(
pµT p

ν
T

M2
− gµνT

p2
T

2M2

)
h⊥g[U ]
1 (x,p2

T
)

−
ϵpT {µ
T pν}T
2M2

h⊥g[U ]
1s (x,pT )−

ϵpT {µ
T Sν}

T +ϵST {µ
T pν}T

4M
hg[U ]
1T (x,p2

T
). (13)
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[U ]
1L (x, p2

T
)−

pT · ST

M
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1T (x, p2

T
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For quarks, these include not only the functions that survive upon pT -integration,
f q
1 (x) = q(x), gq1(x) = ∆q(x) and hq

1(x) = δq(x), which are the well-known collinear
spin-spin densities (involving quark and nucleon spin) but also momentum-spin den-
sities such as the Sivers function f⊥q
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T
) (unpolarized quarks in a transversely

polarized nucleon) and spin-spin-momentum densities such as g1T (x, p2T ) (longitu-
dinally polarized quarks in a transversely polarized nucleon).

The parametrization for gluons, following the naming convention in Ref. 9, is
given by

2xΓµν[U ](x,pT ) = −gµνT fg[U ]
1 (x,p2

T
) + gµνT

ϵpTST

T

M
f⊥g[U ]
1T (x,p2

T
)

+ iϵµνT gg[U ]
1s (x,pT ) +

(
pµT p

ν
T

M2
− gµνT

p2
T

2M2

)
h⊥g[U ]
1 (x,p2

T
)

−
ϵpT {µ
T pν}T
2M2

h⊥g[U ]
1s (x,pT )−

ϵpT {µ
T Sν}

T +ϵST {µ
T pν}T

4M
hg[U ]
1T (x,p2

T
). (13)



  But wait: 
  f1 is T-even, f1T is T-odd, thus 

  Φ[+] + Φ[-] = f1 

  Φ[+] – Φ[-] = f1T 

  This implies 
  Φ[+] = f1 + f1T 

  Φ[-] = f1 – f1T 

  Example of gluonic pole factors +1 and -1 (to be derived more general). 
  These are coupled to processes, since SIDIS needed Φ[+] and DY 

needed Φ[-].   
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Opportunities to see color-induced phases in QCD 
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Figures by Kees Huyser 

ψ(ξ ) = P exp −ig dsµA
µ

0

ξ

∫
"

#
$

%

&
'ψ(0)

ψ(x)

!ψ ( !x )

ψ(x) P

!ψ ( !x ) P



Next step 
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Basic strategy: operator product expansion 

  Taylor expansion for functions around zero 

 
Mellin transform for functions on [-1,1] interval 

  functions in (transverse) plane 
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f (z) = f n

n!n
∑ zn f n = ∂

n f
∂zn z=0

f (x) = − 1
2πi

dn x−n
c−i∞

c+i∞

∫ Mn
Mn = dx xn−1

0

1

∫ f (x)

f ( pT ) = pT
α1 ...

α1...αn

∑
n
∑ pT

αn fα1...αn fα1...αn = ∂α1 ...∂αn f ( pT ) pT =0



Operator structure in collinear case (reminder) 

  Collinear functions and x-moments 

  Moments correspond to local matrix elements of operators that all have the 
same twist since dim(Dn) = 0 

  Moments are particularly useful because their anomalous dimensions can be 
rigorously calculated and these can be Mellin transformed into the splitting 
functions that govern the QCD evolution. 
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Φq (x) = d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)U[0,ξ ]

[n] ψ(ξ ) P
ξ .n=ξT =0

xN−1Φq (x) = d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)(∂ξ

n )N−1U[0,ξ ]
[n] ψ(ξ ) P

ξ .n=ξT =0

=
d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)U[0,ξ ]

[n] (Dξ
n )N−1ψ(ξ ) P

ξ .n=ξT =0

Φ(N ) = P ψ(0)(Dn )N−1ψ(0) P

x = p.n  



Operator structure in TMD case 

  For TMD functions one can consider transverse moments 

 

 

 
  Upon integration, these do involve collinear twist-3 multi-parton correlators 
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pT
αΦ[±](x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)U[0,±∞]DT

αU[±∞,ξ ]ψ(ξ ) P ξ .n=0

Φ(x, pT ;n) =
d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)U[0,ξ ]

[±] ψ(ξ ) P
ξ .n=0

pT
α1 pT

α2Φ[±](x, pT ;n) =
d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)U[0,±∞]DT

α1DT
α2U[±∞,ξ ]ψ(ξ ) P ξ .n=0

MGA Buffing, A Mukherjee, PJM, PRD 86 (2012) 074030 , Arxiv: 1207.3221 [hep-ph] 



Operator structure in TMD case 

  For first transverse moment one needs quark-gluon correlators 

 

 
  In principle multi-parton, but we need 
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ΦD
α (x − x1,x1 | x) =

dξ .Pdη.P
(2π )2∫ ei ( p−p1).ξ+ip1.η P ψ(0)DT

α (η)ψ(ξ ) P
ξ .n=ξT =0

ΦF(p-p1,p) 

T-even (gauge-invariant derivative)  

ΦD
α (x) = dx1∫ ΦD

α (x − x1,x1 | x)

T-odd (soft-gluon or gluonic pole)  

ΦF
α (x − x1,x1 | x) =

dξ .Pdη.P
(2π )2∫ ei ( p−p1).ξ+ip1.η P ψ(0)Fnα (η)ψ(ξ ) P

ξ .n=ξT =0

Φ
∂
α (x) = ΦD

α (x)−ΦA
α (x)

ΦA
α (x) = PV dx1∫ 1

x1
ΦF
nα (x − x1,x1 | x)

ΦG
α (x) = πΦF

nα (x,0 | x)

Efremov, Teryaev; Qiu, Sterman; Brodsky, Hwang, Schmidt; Boer, Teryaev, M; Bomhof, Pijlman, M 



 Trc(GG ψψ)  Trc(GG) Trc(ψψ) 
5

U U [±] U [+] U [!] 1
Nc

Trc(U
[!])U [+]

Φ[U ] Φ[±] Φ[+!] Φ[(!)+]

C
[U ]
G ±1 3 1

C
[U ]
GG,1 1 9 1

C
[U ]
GG,2 0 0 4

TABLE I: The values of the gluonic pole prefactors for some gauge links needed in the pT -weighted cases.
Note that the value of C[U ]

G is the same for single and double transverse weighting.

link. In fact there is a universal transverse moment relating all link dependent ones

f⊥(1)[U ]
1T (x) = C [U ]

G f⊥(1)
1T (x). (15)

Although the only difference for the single weighted case is just the numerical prefactor that for simple processes is just
+1 or −1, we will show in the next section that for the double weighted case the situation becomes more complicated
and one actually gains a lot by this different notation. But even for single weighting there is a clear advantage using
Eq. 15, because it states that there is a universal function with calculable process (link) dependent numbers rather
than an infinite number of somehow related functions. For some gauge links, these numbers are shown in Table I.
Here U [!] is the Wilson loop U [−]†U [+].

C. Double transverse weighting

In order to evaluate the double transverse weighting we need to consider matrix elements like

Φαβ
FF (x− x1 − x2, x1, x2|x) =

∫
d ξ·P

2π

d η·P

2π

d η′·P

2π
eix2(η

′·P ) eix1(η·P ) ei(x−x1−x2)(ξ·P )

×⟨P, S|ψ(0)U [n]
[0,η′]F

nα
T

(η′)U [n]
[η′,η]F

nβ
T

(η)U [n]
[η,ξ] ψ(ξ)|P, S⟩

∣∣∣∣∣
LC

, (16)

among others, where LC indicates that all transverse components and n-components of the coordinates are zero.
Besides this matrix element one needs ΦDF , ΦFD and ΦDD as well as bilocal matrix elements, obtained by direct
or principal value integrations over these matrix elements (as in the case of single transverse momentum weighting)
or gluonic pole matrix elements, where x1 or x2 or both are zero. Explicitly, the matrix elements are discussed in
Appendix A.
The actual weighting of the gauge link dependent TMD correlator Φ[U ](x, pT ) gives

Φ{αβ} [U ]
∂∂ (x) ≡

∫
d2pT p{αT pβ}

T Φ[U ](x, p2
T
)

= Φ̃{αβ}
∂∂ (x) + πC [U ]

G

(
Φ̃{αβ}

∂G (x) + Φ̃{αβ}
G∂ (x)

)
+
∑

c

π2C [U ]
GG,cΦ

{αβ}
GG,c(x)

= Φ̃{αβ}
∂∂ (x) + πC [U ]

G

(
Φ̃{αβ}

∂G (x) + Φ̃{αβ}
G∂ (x)

)
+ π2C [U ]

GG,1 Φ
{αβ}
GG,1(x) + π2C [U ]

GG,2 Φ
{αβ}
GG,2(x). (17)

For the correlators containing two (or more) gluon fields like the one in Eq. 16, one must distinguish the different
color structures for the correlator, hence a summation over the color structures c. For double weighting, there are in
the double gluonic pole part two possible color structures related to the appearance of the color traced Wilson loop
1
Nc

Trc(U [!]). The differences between the two different correlators Φ{αβ}
GG,c(x) are made explicit in Appendix A. Just

as for the single weighted case in Eq. 9, the structures Φ̃... with one or more partial derivatives denote differences

between correlators with a covariant derivative minus a correlator with a principal value integration, e.g. Φ̃{αβ}
∂G (x) =

Φ{αβ}
DG (x)−Φ{αβ}

AG (x). For completeness, they are given in Appendix A. Since the weighting is done with the symmetric
combination, we have symmetrized in the indices, which should not influence the result. We also omitted the Dirac
indices on the fields. The precise form of all correlators in terms of matrix elements can be found in Appendix A.

Operator structure in TMD case 

  Transverse moments can be expressed in these particular collinear multi-parton 
twist-3 correlators (which are not suppressed!) 

  

  CG
[U] calculable  

     gluonic pole  
     factors 
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Φ
∂
α[U ](x) = d 2 pT∫ pT

αΦ[U ](x, pT ;n) = Φ∂
α (x)+CG

[U ]ΦG
α (x)

Φ
∂∂
αβ[U ](x) = Φ

∂∂
αβ (x)+CGG ,c

[U ] ΦGG ,c
αβ (x)+CG

[U ] Φ
∂G
αβ (x)+ ΦG∂

αβ (x)( )

T-even  T-even  T-odd  
T-even  T-odd  



Distribution versus fragmentation functions 

  Operators:   Operators: 
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Φ[U ]( p | p) ~ P |ψ(0)U[0,ξ ]ψ(ξ ) | P Δ(k | k)
~ 0 |ψ(ξ ) | KhX KhX |ψ(0) | 0

X
∑

ΔG
α (x) = πΔF

nα ( 1Z ,0 | 1Z ) = 0

Δ
∂
α[U ](x) = Δ

∂
α (x)

ΦG
α (x) = πΦF

nα (x,0 | x) ≠ 0

Φ
∂
α[U ](x) = Φ

∂
α (x)+CG

[U ]ΦG
α (x)

T-even T-odd (gluonic pole) 

T-even operator combination, 
but still T-odd functions! 

out state 

Collins, Metz; Meissner, Metz; Gamberg, M, Mukherjee, PR D 83 (2011) 071503 



  Collecting the right moments gives expansion into full TMD PDFs of definite rank  

 

  While for TMD PFFs 
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Φ[U ](x, pT )     =     Φ(x, pT
2 )+ pTi !Φ∂

i (x, pT
2 ) + pTij !Φ∂∂

ij (x, pT
2 ) + ...

  + CG ,c
[U ]                pTiΦG ,c

i (x, pT
2 ) + pTij !Φ{∂G},c

ij (x, pT
2 ) + ...#

$
%
&

c
∑

    + CGG ,c
[U ] pT

2ΦG.G ,c (x, pT
2 ) +   ...   + pTijΦGG ,c

ij (x, pT
2 ) + ...#

$
%
&

c
∑

Classifying Quark TMDs 

Δ[U ](z−1,kT ) = Δ(z−1,kT
2 )+ kTi !Δ∂

i (z−1,kT
2 )+ kTij !Δ∂∂

ij (z−1,kT
2 )+ ...



  

 

  Only a finite number needed: rank up to 2(Shadron+sparton) 
  Rank m shows up as cos(mφ) and sin(mφ) azimuthal asymmetries 
  No gluonic poles for PFFs  

 

 

 

Classifying Quark TMDs 

factor TMD PDF RANK 
0 1 2 3 

1 
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Φ
∂∂
(x, pT

2 )Φ
∂
(x, pT

2 )Φ(x, pT
2 ) Φ

∂∂∂
(x, pT

2 )
Φ{G∂},c (x, pT

2 )ΦG ,c (x, pT
2 ) Φ{G∂∂},c (x, pT

2 )
Φ{GG∂},c (x, pT

2 )ΦGG ,c (x, pT
2 )

ΦGGG ,c (x, pT
2 )

CG ,c
[U ]

CGG ,c
[U ]

CGGG ,c
[U ]

MGA Buffing, A Mukherjee, PJM, PRD2012 , Arxiv: 1207.3221 [hep-ph] 

factor TMD PFF RANK 
0 1 2 3 

1 Δ
∂∂
(z−1,kT

2 )Δ
∂
(z−1,kT

2 )Δ(z−1,kT
2 ) Δ

∂∂∂
(z−1,kT

2 )



  

 

  Example: quarks in an unpolarized target are described by just 2 TMD structures 

 

  Gauge link dependence: 

 

Explicit classification quark TMDs 
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factor QUARK TMD PDF RANK UNPOLARIZED HADRON 
0 1 2 3 

1 

h1
⊥

f1
CG
[U ]

CGG ,c
[U ]

!Φ(x, pT
2 ) = f1 (x, pT

2 )( ) P2 !ΦG
α (x, pT

2 ) = ih1
⊥(x, pT

2 )
γT
α

M

#

$
%%

&

'
((
P
2

T-odd T-even  [B-M function] 

h1
⊥[U ](x, pT

2 ) =CG
[u]h1

⊥(x, pT
2 )



Explicit classification quark TMDs 

factor QUARK TMD PDFs RANK SPIN ½ HADRON 
0 1 2 3 

1 
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h1T
⊥(A)

h1
⊥ , f1T

⊥

f1, g1, h1T g1T , h1L
⊥

h1T
⊥(B1) , h1T

⊥(B2)

CG
[U ]

CGG ,c
[U ]

A :  ψ∂∂ψ =Trc ∂∂ψψ"# $%

B1: Trc GGψψ"# $%

B2 : Trc GG"# $%Trc ψψ"# $%

δ f1, δg1, δh1T

trace terms 
Multiple color 
possibilities 



Explicit classification quark TMDs 

factor QUARK TMD PDFs RANK SPIN ½ HADRON 
0 1 2 3 

1 

71 

h1T
⊥(A)

h1
⊥ , f1T

⊥

f1, g1, h1T g1T , h1L
⊥

h1T
⊥(B1) , h1T

⊥(B2)

CG
[U ]

CGG ,c
[U ]

A :  ψ∂∂ψ =Trc ∂∂ψψ"# $%

B1: Trc GGψψ"# $%

B2 : Trc GG"# $%Trc ψψ"# $%

Three pretzelocities: 

Process dependence in  f1, g1and h1  
(U-dependent broadening made explicit)  

h1
[U ] = h1T + h1T

⊥(1)(A) +CGG ,c
[U ] δh1T

⊥(Bc) + h1T
⊥(1)(Bc)( )

δ f1, δg1, δh1T

f1
[U ] = f1 +CGG ,c

[U ] δ f1
(Bc)

B Boer, MGA Buffing, PJM, work in progress 



Explicit classification gluon TMDs 
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factor GLUON TMD PDF RANK UNPOLARIZED HADRON 
0 1 2 3 

1 f1

CGG ,c
[U ]

h1
⊥(A)

h1
⊥(Bc)

  Note process dependence of unpolarized gluon TMD: 
 

h1
g⊥[U ] = h1

⊥(A) +CGG ,c
[U ] h1

⊥(Bc)

δ f1
(Bc)

f1
g[U ] = f1

g +CGG ,c
[U ] δ f1

g (Bc)

D. Boer (talk spin 20014): B Boer, MGA Buffing, PJM, work in progress 
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Some details on the gauge links (2) 

Resummation of soft n.A gluons (coupling to outgoing color-line) for one 
correlator produces a gauge-line (along n) 

 

  The lowest order contributions for soft gluons from two different correlators 
coupling to outgoing color-line resums into gauge-knots:  shuffle product of all 
relevant gauge-lines from that (external initial/final state) line. 

 



Which gauge links? 

  With more (initial state) hadrons color gets entangled, e.g. in pp 

  Gauge knot U+[p1,p2,…] 

 
  Outgoing color contributes to a future pointing gauge link in Φ(p2) and future 

pointing part of a gauge loop in the gauge link for Φ(p1) 

  This causes trouble with factorization 

75 T.C. Rogers, PJM, PR D81 (2010) 094006 



Which gauge links? 

 

  Can be color-detangled if only pT of one correlator is relevant (using 
polarization, …) but must include Wilson loops in final U 
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ψ(ξ1)    ψ(01)

1[ ,0 ]−∞

2[ , ]ξ −∞ 2[ ,0 ]−∞

1[ , ]ξ −∞

1 2[ , ][ , ]ξ ξ+∞ +∞

ψ(ξ2 )    ψ(02 )

1 2[0 , ][0 , ]+∞ +∞

MGA Buffing, PJM, JHEP 07 (2011) 065 



  

 
 
  Complications if the transverse momentum of two 

initial state hadrons is involved, resulting for DY at 
measured QT in 

  Just as for twist-3 squared in collinear DY 
 

 

 Correlators in description of hard process (e.g. DY) 

77 

NIKHEF 2013-028

Color entanglement for azimuthal asymmetries in the Drell-Yan process
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In the resummation of collinear gluons emitted together with active partons from the hadrons
in the Drell-Yan process (DY) effects of color entanglement become important when the transverse
directions are taken into account. It is then no longer possible to write the cross section as the con-
volution of two soft correlators and a hard part. We show that the color entanglement introduces
additional color factors that must be taken into account in the extraction of transverse momen-
tum dependent parton distribution functions (TMD PDFs) from azimuthal asymmetries. Examples
where such effects matter are the extraction of the double Sivers and double Boer-Mulders asym-
metries. Furthermore, we will argue why this color entanglement is a basic ingredient already in the
tree-level description of azimuthal asymmetries.

PACS numbers: 12.38.-t; 13.85.Ni; 13.85.Qk

INTRODUCTION

In Ref. [1] it was shown that the inclusion of contribu-
tions of collinear gluons in high-energy hadroproduction
processes leads to the entanglement of color, complicat-
ing factorization of the cross sections into a hard part and
soft correlators. Collinear gluons refer to gluons emitted
from each of the target hadrons, described by parton dis-
tribution functions, with polarization along the hadron
momentum. In Ref. [2] it was argued that this com-
plication of factorization is even important at tree-level,
where gauge links lead to color entanglement in the pro-
cess, making it impossible to write a process with two
initial state hadrons as the product of two correlators.
These complications do not imply that observables can
no longer be calculated, merely that results are different
from the naive picture and have a richer phenomenol-
ogy. In this paper, we will focus on the Drell-Yan pro-
cess only [3] and show in more detail what is different and
how this affects measurements of asymmetries. In this,
we will go beyond the double weighted case in Ref. [2]
and use the results of Ref. [4] to discuss in general all
asymmetries accessible through Drell-Yan involving un-
polarized or polarized TMD PDFs at leading order in an
expansion in 1/Q, often sloppily referred to as ‘at leading
twist’. We will also show why this effect of color entan-
glement is an essential ingredient, already at tree-level.

WILSON LINES AT TREE-LEVEL

The leading order Drell-Yan cross section before taking
into account gauge links, which are also leading order
contributions, is illustrated in Fig. 1 and given by

dσDY ∼ Trc
[
Φ(x1, p1T )Γ

∗Φ(x2, p2T )Γ
]

=
1

Nc
Φ(x1, p1T )Γ

∗Φ(x2, p2T )Γ, (1)

where Φ and Φ are the quark and antiquark correla-
tors respectively, Fourier transforms of forward matrix
elements of quark fields, and where Γ and Γ∗ repre-
sent the hard scattering interaction in which a virtual
photon or weak vector boson with momentum q is pro-
duced. The standard color factor emerges because the
color trace is usually included in the definition of the
correlator Φ, i.e. Trc[1]/(Trc[1] Trc[1]) = 1/Nc. This is
also the basic expression of the TMD factorized parton
model description after expanding into TMD PDFs. The
result involves soft parts integrated over parton virtual-
ities and is actually a convolution over the parton mo-
menta pi = xi P + piT . High-energy kinematics links the
momentum fractions (or p+ components) to scaling vari-
ables x1 = P2·q/P1·P2 and x2 = P1·q/P1·P2 and the sum
of transverse momenta to the observable transverse mo-
mentum p1T + p2T = qT ≡ q − x1 P1 − x2 P2, which is
the transverse momentum of the virtual photon or the
lepton pair with respect to the momenta P1 and P2, see
Ref. [5].

In the qT -integrated situation, collinear gluons are sim-
ply absorbed in the correlators Φ as color gauge links.

FIG. 1: The DY process in the diagrammatic represen-
tation, where the yellow blobs are described by the TMD
PDFs. The Γ and Γ∗ represent the hard scattering, pro-
ducing a virtual photon.

2

FIG. 2: The gauge connections contributing for Drell-
Yan, indicated by gray blobs at the location in the diagram
where they appear after resummation, the coordinates in
brackets labelling the endpoints of the Wilson lines in co-
ordinate space. The separations ξi are conjugate to par-
ton momenta pi involving light-cone ξ− and ξT directions.
The U− gauge connections run to light-cone ξ− = −∞.

The correlators only depend on momentum fractions that
are conjugate to light-like nonlocalities in the expressions
in terms of partonic fields. Gauge links are just sim-
ple straight Wilson lines. At measured qT , determining
the cross section for Drell-Yan includes gauge links with
transverse separations involving collinear and transverse
gluons. In the process the color remains entangled as il-
lustrated in Fig. 2. Bypassing the details of getting gauge
links in the first place, we note that at measured qT the
ingredients that contribute to the gauge links appear in
different parts of the diagram and cannot be trivially ab-
sorbed in the definition of the TMD correlators, nor can
they be incorporated by a simple redefinition of the corre-
lator. Therefore, the name gauge connection rather than
gauge link is used at this point. The result is

dσDY = Trc
[
U †
−[p2]Φ(x1, p1T )U−[p2]Γ

∗

×U †
−[p1]Φ(x2, p2T )U−[p1]Γ

]
(2)

̸=
1

Nc
Φ[−](x1, p1T )Γ

∗Φ
[−†]

(x2, p2T )Γ,

suppressing all parts of the (partial) cross section that are
not of direct importance for our purpose, e.g. the phase
space factors. As arguments of the Wilson lines we have
used a notation with the momenta p1 and p2 in square
brackets, merely to indicate from which correlator the
gauge connections receive contributions in the form of
gluon emissions. Also, in Eq. 2 the dagger indicates the
direction of the gauge connection in coordinate space, as
is explained in e.g. Ref. [2]. In the ‘attempt’ in the second
expression Φ[−](x1, p1T ) = Trc

[
Φ(x1, p1T )U

†
−[p1]U−[p1]

]

is a color gauge-invariant TMD with a nontrivial (staple
like) link running via light-cone minus infinity.
In the above, both the TMD distribution functions Φ

and the Drell-Yan cross section can be expanded in trans-

verse moments, yielding

Φ(x, pT ) =
∑

m

Φ(m)(x, p2
T
) pm

T
(ϕ), (3)

dσDY(x1, x2, qT ) =
∑

m

dσ(m)
DY (x1, x2, q

2
T
) qm

T
(ϕ),(4)

where the angle ϕ represents the angular dependence of
the transverse vectors pT or qT , respectively and pm

T
(ϕ) is

the symmetric traceless rank m tensor constructed from
the transverse momenta, i.e.

pα1...αm

T
= pα1

T
. . . pαm

T
−traces ⇐⇒

|pT |m

2m−1
e±imϕ. (5)

AZIMUTHAL EXPANSION OF THE PARTON

CORRELATORS

By inverting these expressions, one can relate the def-
inite rank TMDs Φ(m)(x, p2

T
) to the azimuthally inte-

grated full TMD PDFs Φ(x, pT ) weighted with pm
T
(ϕ),

as explained in detail in Refs. [2, 4]. The definite rank
functions appearing in the expansion for Φ are actually
quark or gluon correlators with in the matrix elements
additional derivatives or gluonic fields, depending on the
inserted operator being iDα

T
or Aα

T
denoted as Φα

D, Φα
A,

Φαβ
DD, etc. In the treatment of TMD PDFs one needs ac-

tually only particular combinations of these correlators.
Performing the transverse momentum weightings is sen-
sitive to the nonlocality of the operators, in particular
also the gauge links and their path. For example, for a
TMD correlator with a gauge link U one finds

Φα [U ]
∂ (x) =

∫
d2pT pα

T
Φ[U ](x, pT )

= Φ̃α
∂ (x) + C [U ]

G Φα
G(x), (6)

where Φ̃α
∂ (x) = Φα

D(x)−Φα
A(x) is the difference between a

quark correlator including a covariant derivative and the
quark-gluon-quark correlator, while Φα

G(x) is a gluonic
pole matrix element, corresponding to the emission of a
collinear gluon of zero momentum [6]. These functions
are collinear and independent of the gauge link. That

dependence is only in the gluonic pole coefficient C [U ]
G ,

see Ref. [7]. For the simple staple gauge links U± the

gluonic pole coefficients are C [±]
G = ±1. Similarly, we

have higher moments,

Φαβ [U ]
∂∂ (x) = Φ̃αβ

∂∂ (x) + C [U ]
G Φ̃αβ

{∂G}(x)

+ C [U ]
GG,cΦ

αβ
GG,c(x), (7)

etc. An extra index c is needed if there are multiple
possibilities to construct a color singlet as is the case for
a field combination ψGGψ, namely Trc[GGψψ] (c = 1)
and Trc[GG] Trc[ψψ]/Nc (c = 2). For the staple like links

only one configuration is relevant, having C [±]
GG,1 = 1 and



Classifying Quark TMDs 

factor TMD RANK 
0 1 2 3 

1 
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Φ
∂∂
(x, pT

2 )Φ
∂
(x, pT

2 )Φ(x, pT
2 ) Φ

∂∂∂
(x, pT

2 )
Φ{G∂},c (x, pT

2 )ΦG ,c (x, pT
2 ) Φ{G∂∂},c (x, pT

2 )
Φ{GG∂},c (x, pT

2 )ΦGG ,c (x, pT
2 )

ΦGGG ,c (x, pT
2 )

CG ,c
[U ]

CGG ,c
[U ]

CGGG ,c
[U ]

MGA Buffing, PJM, PRL (2014), Arxiv: 1309.4681 [hep-ph] 

4

RG for Φ[−]

RG for Φ
[−†] 0 1 2

0 1 1 1

1 1 −
1

N2
c
−1

N2
c+2

(N2
c−2)(N2

c −1)

2 1 N2
c+2

(N2
c−2)(N2

c−1)

3N4
c −8N2

c−4

(N2
c−2)2(N2

c−1)

TABLE I: The factor f [−,−†]
RG1RG2

as a function of the gluonic
pole ranks of both the quark and antiquark correlator in
the Drell-Yan process.

where the correlators are expanded as in Eq. 8, including
the gluonic pole factors. The process dependent factors

f [U1,U2]
RG1RG2

depend on the gluonic pole ranks RG1 and RG2

of the contributing terms in the hadronic correlators as
well as on the gauge link structures of both TMDs. For
Drell-Yan, all relevant factors for quark correlators have
been tabulated in Table I. For processes more compli-
cated than Drell-Yan a dependence on the color flow pos-
sibilities of both TMDs will appear, as mentioned before.
This will be clarified in a future paper. As explained in
Ref. [9], for gluons the expansion of the gauge link de-
pendent correlators goes up to rank 3.

DISCUSSION AND CONCLUSIONS

As discussed in Ref. [4], there are only two TMDs with
a gluonic pole rank 1 that contribute at leading order, the
Boer-Mulders function h⊥

1 and the Sivers function f⊥
1T .

At (total) rank 2, there are three universal Pretzelocity

functions, h⊥(A)
1T with gluonic pole rank 0 and h⊥(B1)

1T and

h⊥(B2)
1T with gluonic pole rank 2. All the other TMDs that

are relevant at leading order have a gluonic pole rank of
0. This implies that the first azimuthal asymmetries [10]
where addional color factors appear are the double Sivers
asymmetry, which requires polarized beams and the dou-
ble Boer-Mulders asymmetry, which is accessible using
unpolarized hadron beams only [5], such as at the LHC.
One might wonder why the gauge connections cannot

be disentangled as in the collinear case, since the color
charges are entangled in both cases. An attempt in this
direction was made in Ref. [11]. The difference between
the collinear and the TMD case, however, is that mul-
tiple directions are involved, a light-like direction n in
the Sudakov expansion of the momenta and transverse
directions. These transverse directions are different for
the gauge connections labeled with p1 and p2. For the
light-like direction n one can at leading order in principle
make one choice for the full process using the fact that
varying n is 1/Q suppressed. Having just one direction
in the gauge connections, it is straightforward to see that
the entanglement of gauge connections can be undone by
a gauge transformation, but complications arise if there

are multiple directions.
It should also be noted that the results in this paper do

not prove factorization. We have used the tree-level re-
sult for Drell-Yan and shown that the inclusion of gauge
links gives an additional color prefactor. Additional ef-
fects, like the inclusion of next-to-leading order contri-
butions or factorization breaking effects have not been
taken into account. For the latter, see e.g. Ref. [12] for
the case of hadroproduction in hadron-hadron scatter-
ing. Other relevant material on the inclusion of trans-
verse momentum for Drell-Yan can be found in Ref. [13],
while Ref. [14] contains a nice overview of issues in TMD
factorization.

Summarizing, for hadroproduction processes gauge
links lead to color entanglement, which is already the case
in the description of the Drell-Yan process at measured
qT . Factorized expressions can still be obtained, however,
but they deviate from the naive expectation. It turns
out that additional color factors have to be included in
the expressions for azimuthal asymmetries. Due to these
additional color factors, asymmetries are suppressed for
Drell-Yan and lead to additional sign changes.
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C [±]
GG,2 = 0, see Ref. [4]. The weighted results also allow

a unique parametrization of the gauge link dependent
TMD correlators in terms of a finite set of definite rank
TMDs depending on x and p2

T
, azimuthal tensors and

gluonic pole factors [4],

Φ[U ](x, pT ) =

Φ(x, p2
T
) +

pT i

M
Φ̃i

∂(x, p
2
T
) +

pT ij

M2
Φ̃ij

∂∂(x, p
2
T
)

+ C [U ]
G

⎧
⎩pTi

M
Φi

G(x, p
2
T
) +

pT ij

M2
Φ̃ ij

{∂G}(x, p
2
T
)
⎫
⎭

+
∑

c

C [U ]
GG,c

pTij

M2
Γij
GG,c(x, p

2
T
). (8)

Depending on partons (quarks or gluons) and target,
there is a maximum rank, which for quarks in a nucleon is
rank 2. For gluons in a nucleon one has to go up to rank
3. Actually for the highest rank, time-reversal symmetry
does not allow a time-reversal odd rank 2 correlator, i.e.
Φ̃{∂G} = 0. Note that since the tensors pijT on the rhs of
Eq. 8 are traceless and symmetric, the correlators they
multiply also must be made traceless in order to make
the identification of the correlators unique.

AZIMUTHAL EXPANSION FOR THE CROSS

SECTION

In this situation, the weighting has to be done with
the tensors qα1...αm

T
, which is in principle straightforward

as qT = p1T + p2T , and thus involves a sum over various
weightings. One gets at rank 2 among others contribu-
tions

⟨pα1T pβ1T σDY ⟩ =
1

Nc
Φ[−]αβ

∂∂ (x1)Γ
∗ Φ[−†](x2)Γ (9)

and similarly for ⟨pα2T pβ2T σDY ⟩, with Φ[−]αβ
∂∂ expanded

as in Eq. 7. For the mixed contribution an additional
complication arises because of the color entanglement of
Wilson lines. Starting with Eq. 2 one finds the expanded
expression

⟨pα1T pβ2TσDY ⟩ =
1

Nc
Φ̃α

∂ (x1) Γ
∗ Φ̃β

∂(x2) Γ

−
1

Nc
Φα

G(x1)Γ
∗ Φ̃β

∂(x2) Γ

−
1

Nc
Φ̃α

∂ (x1) Γ
∗ Φβ

G(x2)Γ

−
1

N2
c − 1

1

Nc
Φα

G(x1)Γ
∗ Φβ

G(x2)Γ. (10)

To understand the prefactors one has to realize that the
gluonic pole correlator Φα

G(x1) comes from a derivative
acting on the gauge connection U−[p1]. This leads to a
gluon field inserted in the correlator Φ(p1) and a color
charge T a at the position of the gauge connection in
Fig 2. For the second and third term this does not lead

to a different color factor as compared to the terms with-
out azimuthal dependence, one just has the 1/Nc of the
splitting of color traces as in Eq. 1, though a trace con-
taining color charges arising from the gauge connections
has to be included, giving

Trc[T aT a]

Trc[T aT a] Trc[1]
=

1

Nc
.

The minus signs in the second and third term in Eq. 10
come from the gluonic pole factor multiplying the ΦG

correlators. For the last term with two gluonic pole cor-
relators, the color factor is

Trc[T aT bT aT b]

Trc[T aT a] Trc[T bT b]
= −

1

N2
c − 1

1

Nc
.

This implies not only a suppression of the asymmetry,
but a sign change compared to naive parton calculations
as well. In general, for higher weightings, the color factor
is given by a ratio of symmetrized color charges,

Trc[T {a1...T an}T {b1...T bm}T {a1...T an}T {b1...T bm}]

Trc[T {a1...T an}T {a1...T an}] Trc[T {b1...T bm}T {b1...T bm}]
.

For instance, the result of a weighting with pα1

1T pα2

1T pβ2T
contains, among others, a term

− N2

c
+2

(N2
c
−2)(N2

c
−1)

1
Nc

Φα1α2

GG (x1)Γ
∗ Φβ

G(x2)Γ, (11)

where the minus sign originates from a gluonic pole co-
efficient and a weighting with pα1

1T pα2

1T pβ1

2T pβ2

2T contains

+ 3N4

c
−8N2

c
−4

(N2
c
−2)2(N2

c
−1)

1
Nc

Φα1α2

GG (x1)Γ
∗ Φβ1β2

GG (x2)Γ. (12)

These color factors [8] depend on the gluonic rank only
and are insensitive to the presence of partial derivative
terms. They in general imply a suppression of multiple
gluonic pole contributions in azimuthal asymmetries.
The resulting tree level cross section for the Drell-Yan

process at measured qT thus can be written as a sum
of various contributions, each having their characteris-
tic azimuthal dependence. There is color entanglement
for gluonic pole contributions, but it is still possible to
write a factorized expression for each term after inclusion
of the full gauge links (resummed to all orders). For a
given harmonic ϕ-dependence in qT , there will not only
be a split up in various terms depending on polarizations
of hadrons and partons, but there will also be a depen-
dence on the gluonic rank of the functions with process
dependent color factors. Formulated slightly more gen-
eral for hadron-hadron scattering, each contribution in
the squared amplitude is a convolution in transverse mo-
mentum (qT = p1T + p2T ), but is also assigned an addi-
tional color factor beyond the basic 1/Nc. Omitting the
Q-dependence, one finds

σ(x1, x2, qT ) ∼
1

Nc
f [U1,U2]
RG1RG2

Φ[U1](x1, p1T )

⊗ Φ
[U2]

(x2, p2T ) σ̂(x1, x2), (13)

3

C [±]
GG,2 = 0, see Ref. [4]. The weighted results also allow

a unique parametrization of the gauge link dependent
TMD correlators in terms of a finite set of definite rank
TMDs depending on x and p2

T
, azimuthal tensors and

gluonic pole factors [4],

Φ[U ](x, pT ) =

Φ(x, p2
T
) +

pT i

M
Φ̃i

∂(x, p
2
T
) +

pT ij

M2
Φ̃ij

∂∂(x, p
2
T
)

+ C [U ]
G

⎧
⎩pTi

M
Φi

G(x, p
2
T
) +

pT ij

M2
Φ̃ ij

{∂G}(x, p
2
T
)
⎫
⎭

+
∑

c

C [U ]
GG,c

pTij

M2
Γij
GG,c(x, p

2
T
). (8)

Depending on partons (quarks or gluons) and target,
there is a maximum rank, which for quarks in a nucleon is
rank 2. For gluons in a nucleon one has to go up to rank
3. Actually for the highest rank, time-reversal symmetry
does not allow a time-reversal odd rank 2 correlator, i.e.
Φ̃{∂G} = 0. Note that since the tensors pijT on the rhs of
Eq. 8 are traceless and symmetric, the correlators they
multiply also must be made traceless in order to make
the identification of the correlators unique.

AZIMUTHAL EXPANSION FOR THE CROSS

SECTION

In this situation, the weighting has to be done with
the tensors qα1...αm

T
, which is in principle straightforward

as qT = p1T + p2T , and thus involves a sum over various
weightings. One gets at rank 2 among others contribu-
tions

⟨pα1T pβ1T σDY ⟩ =
1

Nc
Φ[−]αβ

∂∂ (x1)Γ
∗ Φ[−†](x2)Γ (9)

and similarly for ⟨pα2T pβ2T σDY ⟩, with Φ[−]αβ
∂∂ expanded

as in Eq. 7. For the mixed contribution an additional
complication arises because of the color entanglement of
Wilson lines. Starting with Eq. 2 one finds the expanded
expression

⟨pα1T pβ2TσDY ⟩ =
1

Nc
Φ̃α

∂ (x1) Γ
∗ Φ̃β

∂(x2) Γ

−
1

Nc
Φα

G(x1)Γ
∗ Φ̃β

∂(x2) Γ

−
1

Nc
Φ̃α

∂ (x1) Γ
∗ Φβ

G(x2)Γ

−
1

N2
c − 1

1

Nc
Φα

G(x1)Γ
∗ Φβ

G(x2)Γ. (10)

To understand the prefactors one has to realize that the
gluonic pole correlator Φα

G(x1) comes from a derivative
acting on the gauge connection U−[p1]. This leads to a
gluon field inserted in the correlator Φ(p1) and a color
charge T a at the position of the gauge connection in
Fig 2. For the second and third term this does not lead

to a different color factor as compared to the terms with-
out azimuthal dependence, one just has the 1/Nc of the
splitting of color traces as in Eq. 1, though a trace con-
taining color charges arising from the gauge connections
has to be included, giving

Trc[T aT a]

Trc[T aT a] Trc[1]
=

1

Nc
.

The minus signs in the second and third term in Eq. 10
come from the gluonic pole factor multiplying the ΦG

correlators. For the last term with two gluonic pole cor-
relators, the color factor is

Trc[T aT bT aT b]

Trc[T aT a] Trc[T bT b]
= −

1

N2
c − 1

1

Nc
.

This implies not only a suppression of the asymmetry,
but a sign change compared to naive parton calculations
as well. In general, for higher weightings, the color factor
is given by a ratio of symmetrized color charges,

Trc[T {a1...T an}T {b1...T bm}T {a1...T an}T {b1...T bm}]

Trc[T {a1...T an}T {a1...T an}] Trc[T {b1...T bm}T {b1...T bm}]
.

For instance, the result of a weighting with pα1

1T pα2

1T pβ2T
contains, among others, a term

− N2

c
+2

(N2
c
−2)(N2

c
−1)

1
Nc

Φα1α2

GG (x1)Γ
∗ Φβ

G(x2)Γ, (11)

where the minus sign originates from a gluonic pole co-
efficient and a weighting with pα1

1T pα2

1T pβ1

2T pβ2

2T contains

+ 3N4

c
−8N2

c
−4

(N2
c
−2)2(N2

c
−1)

1
Nc

Φα1α2

GG (x1)Γ
∗ Φβ1β2

GG (x2)Γ. (12)

These color factors [8] depend on the gluonic rank only
and are insensitive to the presence of partial derivative
terms. They in general imply a suppression of multiple
gluonic pole contributions in azimuthal asymmetries.
The resulting tree level cross section for the Drell-Yan

process at measured qT thus can be written as a sum
of various contributions, each having their characteris-
tic azimuthal dependence. There is color entanglement
for gluonic pole contributions, but it is still possible to
write a factorized expression for each term after inclusion
of the full gauge links (resummed to all orders). For a
given harmonic ϕ-dependence in qT , there will not only
be a split up in various terms depending on polarizations
of hadrons and partons, but there will also be a depen-
dence on the gluonic rank of the functions with process
dependent color factors. Formulated slightly more gen-
eral for hadron-hadron scattering, each contribution in
the squared amplitude is a convolution in transverse mo-
mentum (qT = p1T + p2T ), but is also assigned an addi-
tional color factor beyond the basic 1/Nc. Omitting the
Q-dependence, one finds

σ(x1, x2, qT ) ∼
1

Nc
f [U1,U2]
RG1RG2

Φ[U1](x1, p1T )

⊗ Φ
[U2]

(x2, p2T ) σ̂(x1, x2), (13)



  

 

  Example: quarks in an unpolarized target needs only 2 functions 
  Resulting in cross section for unpolarized DY at measured QT   

 

 

Remember classification of Quark TMDs 
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factor QUARK TMD RANK UNPOLARIZED HADRON 
0 1 2 3 

1 

h1
⊥

f1
CG
[U ]

CGG ,c
[U ]

σ DY (x1,x2 ,qT )  = 1
Nc

Φ(x1, p1T )⊗Φ(x2 , p2T )

                          − 1
Nc

1
Nc

2 −1
qT
αβΦG

α (x1, p1T )⊗ΦG
β (x2 , p2T )

D. Boer, PRD 60 (1999) 014012; MGA Buffing, PRL (2014) PJM, Arxiv: 1309.4681 [hep-ph] 

contains f1 

contains h1
perp 



Definite rank functions and Bessel transforms 

  Terms in pT expansion of TMDs involve 

 
  Use azimuthal integration to get actual pT

2-dependent TMD PDFs 

 
  This is relevant for lattice calculations as well as experimental analysis 
  In general this produces (m/2) moments of the functions 
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10

PDFs FOR TENSOR POLARIZED SPIN 1 HADRONS

f1LL,✘✘✘❳
❳❳h1LT h⊥

1LL, g1LT , h1TT f
(Bc)
1TT h

⊥(Bc)
1TT

f1LT h⊥
1LT , g1TT

f
(A)
1TT h

⊥(A)
1TT

TABLE VII: The operator assignments of TMD PDFs for a tensor polarized spin 1 target require operator
structures up to rank 3. There are several different functions f1TT (x, p

2
T ) and h⊥

1TT (x, p
2
T ).

PFFs FOR TENSOR POLARIZED SPIN 1 HADRONS
D1LL, H1LT

D1LT , H
⊥
1LL, G1LT , H1TT

D1TT , H
⊥
1LT , G1TT

H⊥
1TT

TABLE VIII: The operator structure of TMD PFFs for a tensor polarized spin 1 target requires operator
structures up to rank 3.

parametrization of the higher rank correlators contain the T-even and T-odd TMD fragmentation functions. The
fragmentation functions describing fragmentation into a tensor polarized hadron are given in Table VIII.

C. Bessel weights

We note that the TMDs f (m)(x, p2
T
) of a given rank do not contain operators of definite twist. This is only

true for transverse moments f (m)
... (x) after pT -integration. The TMD correlators of definite rank appearing in the

parametrization in Eq. 22 only are integrated over azimuthal directions. The rank just refers to the azimuthal
dependence of the correlators in the full correlator Φ[U ](x, pT ).
Using that for a given rank m, there are two independent combinations pi1...im

T
∝ |pT |m exp(±imϕp), it is equivalent

to consider

pTi1...im

Mm
Φ̃i1...im

... (x, p2
T
) or Φ̃(m/2)

... (x, p2
T
) e±imϕp , (38)

where Φ̃(m/2)
... (x, p2

T
) = (−p2

T
/2M2)m/2 Φ̃...(x, p2T ) assures the appropriate small pT -behavior. A suitable normalization

of the correlator has to assure that Φ̃(m)
... (x, p2

T
) reproduces the collinear transverse moments upon integration,

Φ̃(m)
... (x) =

∫ ∞

0
2π|pT | d|pT | Φ̃

(m)
... (x, p2

T
). (39)

Knowing the correlators in Eq. 38 to be Fourier transforms of nonlocal matrix elements in transverse space, it is
natural to write the appropriately weighted TMD PDF in their parametrization as a Bessel transform,

f̃ (m/2)
... (x, |pT |) =

∫ ∞

0
db

√
|pT |b Jm(|pT |b) f

(m/2)
... (x, b), (40)

such that f (m/2)
... (x, b) exp(imϕb) is the (two-dimensional) Fourier transform of f̃ (m/2)

... (x, |pT |) exp(imϕp). Bessel
weightings are extensively studied in Ref. [27].
Bessel weighting may also offer a convenient way to incorporate the soft factor which usually is given in b-space [28].

This factor has been omitted from Eq. 19. Our decomposition in Eq. 22, however, can always be written down, but
the Φ...(x, p2T ) will be modified by the inclusion of the soft factor.

IV. CONCLUSIONS

In Eq. 22 we have presented a parametrization for TMD quark correlators that distinguishes different azimuthal
dependences by writing an expansion in terms of irreducible tensors in the transverse momentum multiplied with
correlators depending on x and p2

T
. These correlators contain tensors describing the polarization of the target and

Boer, Gamberg, Musch, Prokudin, JHEP 1110 (2011), 021;   Arxiv: 1107.5294 [hep-ph] 

Φ
∂
α (1) (x, pT

2 ) = dϕ
2π
pT
α (ϕ ) Φ[+](x, pT )+Φ

[−](x, pT )$
%

&
'∫

ΦG
α (1) (x, pT

2 ) = dϕ
2π
pT
α (ϕ ) Φ[+](x, pT )−Φ

[−](x, pT )$
%

&
'∫

Φ
∂
α (m/2) (x, pT

2 ) ≡
−pT

2

2M

!

"
##

$

%
&&

m/2

Φ
∂
α (x, pT

2 )



Conclusion with (potential) rewards 

  (Generalized) universality studied via operator product expansion, 
extending the well-known collinear distributions (including 
polarization 3 for quarks and 2 for gluons) to novel TMD PDF and 
PFF functions, ordered into functions of definite rank. 

  Knowledge of operator structure is important for lattice calculations. 
  The rank m is linked to specific cos(mφ) and sin(mφ) azimuthal 

asymmetries.  
  TMDs encode aspects of hadronic structure, e.g. spin-orbit 

correlations, such as T-odd transversely polarized quarks or T-even 
longitudinally polarized gluons in an unpolarized hadron, thus 
possible applications for precision probing at the LHC, but for sure 
at a polarized EIC. 

  The TMD PDFs appear in cross sections with specific calculable 
factors that deviate from (or extend on) the naïve parton 
universality for hadron-hadron scattering. 
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