DIS 2015 XXIII International Workshop on Deep-Inelastic Scattering and Related Subjects

> Dallas, Texas April 27 – May 1, 2015

Spin Physics and Transverse Structure

Piet Mulders

mulders@few.vu.nl

ABSTRACT

Spin Physics and Transverse Structure

Piet Mulders (Nikhef Theory Group/VU University Amsterdam)

Spin is a welcome complication in the study of partonic structure that has led to new insights, even if experimentally not all dust has settled, in particular on quark flavor dependence and gluon spin. At the same time it opened new questions on angular momentum and effects of transverse structure, in particular the role of the transverse momenta of partons. This provides again many theoretical and experimental challenges and hurdles. But it may also provide new tools in high-energy scattering experiments linking polarization and final state angular dependence.

Parton distribution (PDF) and fragmentation (PFF) functions

- Parton densities (PDFs) and decay functions (PFFs) are natural way of dealing with quarks/gluons in high energy processes (several PDF databases)
- PDFs can be embedded in a field theoretical framework via Operator Product Expansion (OPE), connecting Mellin moments of PDFs with particular QCD matrix elements of operators (spin and twist expansion)
- Hard process introduces necessary directionality with light-like directions, $P - M^2 n$ and n = P'/P.P' (satisfying P.n = 1)
- The lightcone momentum fraction x of the parton momentum p = x P is linked to $x_B = Q^2/2P.q$ (DIS) or $x_1 = q.P_2/P_1.P_2$ and $x_2 = q.P_1/P_1.P_2$ (DY)
- Polarization, $MS = S_L P + MS_T M^2 S_L n$ (longitudinal or transverse) is a welcome complication, experimentally challenging but new insights emerged
- Consideration of partonic transverse momenta, $p = x P + p_T + (p^2 p_T^2) n$ opens new avenues to Transverse Momentum Dependent (TMD) PDFs, in short TMDs with experimental and theoretical challenges
- The measurement is mostly not for free, but requires dedicated final states (jets/flavor), polarized targets or polarimetry e.g. through decay orientation of final states (ρ or Λ)

Link to matrix elements \rightarrow hadron correlators

Structure of PDFs and PFFs as correlators built from nonlocal field configurations, extending on OPE and useful for interpretation, positivity bounds, modelling, ...

$$u_{i}(p,s)\overline{u}_{j}(p,s) \Rightarrow \Phi_{ij}(p|p) \sim \sum_{X} \langle P | \overline{\psi}_{j}(0) | X \rangle \langle X | \psi_{i}(0) | P \rangle \delta(p-P+P_{X})$$

$$p \uparrow \psi_{i}(\xi) \qquad \overline{\psi}_{j}(0) \qquad \downarrow p \qquad = \int \frac{d\xi}{2\pi} e^{ip.\xi} \langle P | \overline{\psi}_{j}(0) \psi_{i}(\xi) | P \rangle$$

$$parametrized using symmetries (C, P, T)$$

$$|X \rangle \langle X| \text{ gateway to models: e.g. diquarks}$$

$$WG6/12 \text{ Mao, Lu, Ma}$$

$$AUT \text{ predictions (diquark model)}$$

$$u_{i}(k,s)\overline{u}_{j}(k,s) \Rightarrow \Delta_{ij}(p \mid p) \sim \sum_{X} \langle 0 | \psi_{i}(0) \mid K_{h}X \rangle \langle K_{h}X \mid \overline{\psi}_{j}(0) \mid 0 \rangle \delta(k - K_{h} - K_{X})$$

$$= \int \frac{d\xi}{2\pi} e^{ik.\xi} \langle 0 | \psi_{i}(\xi) a_{h}^{+}a_{h} \overline{\psi}_{j}(0) \mid 0 \rangle$$

$$= \int \frac{d\xi}{2\pi} e^{ik.\xi} \langle 0 | \psi_{i}(\xi) a_{h}^{+}a_{h} \overline{\psi}_{j}(0) \mid 0 \rangle$$

$$= \int \frac{d\xi}{2\pi} e^{ik.\xi} \langle 0 | \psi_{i}(\xi) a_{h}^{+}a_{h} \overline{\psi}_{j}(0) \mid 0 \rangle$$

$$= \int \frac{d\xi}{2\pi} e^{ik.\xi} \langle 0 | \psi_{i}(\xi) a_{h}^{+}a_{h} \overline{\psi}_{j}(0) \mid 0 \rangle$$

$$= \int \frac{d\xi}{2\pi} e^{ik.\xi} \langle 0 | \psi_{i}(\xi) a_{h}^{+}a_{h} \overline{\psi}_{j}(0) \mid 0 \rangle$$

$$= \int \frac{d\xi}{2\pi} e^{ik.\xi} \langle 0 | \psi_{i}(\xi) a_{h}^{+}a_{h} \overline{\psi}_{j}(0) \mid 0 \rangle$$

$$= \int \frac{d\xi}{2\pi} e^{ik.\xi} \langle 0 | \psi_{i}(\xi) a_{h}^{+}a_{h} \overline{\psi}_{j}(0) \mid 0 \rangle$$

$$= \int \frac{d\xi}{2\pi} e^{ik.\xi} \langle 0 | \psi_{i}(\xi) a_{h}^{+}a_{h} \overline{\psi}_{j}(0) \mid 0 \rangle$$

Link to matrix elements \rightarrow hadron correlators

Gluonic matrix elements

$$\varepsilon^{\mu}(p,\lambda)\varepsilon^{\nu*}(p,\lambda) \Rightarrow \Phi^{g\,\alpha\beta}(p\,|\,p) \sim \sum_{\chi} \langle P | A^{\alpha}(0) | X > \langle X | A^{\beta}(\xi) | P \rangle \delta(p-P+P_{\chi})$$

$$= \int \frac{d\xi}{2\pi} e^{ip.\xi} \langle P | F^{n\alpha}(0)F^{n\beta}(\xi) | P \rangle$$

$$= \int \frac{d\xi}{2\pi} e^{ip.\xi} \langle P | F^{n\alpha}(0)F^{n\beta}(\xi) | P \rangle$$

$$\Phi^{a}_{A,ij}(p-p_{1},p_{1}\,|\,p) = \int \frac{d^{4}\xi d^{4}\eta}{(2\pi)^{8}} e^{i(p-p_{1}).\xi+ip_{1}.\eta} \langle P | \overline{\psi}_{j}(0)A^{\alpha}(\eta)\psi_{i}(\xi) | P \rangle$$

$$\Phi^{a}_{F,ij}(p-p_{1},p_{1}\,|\,p) = \int \frac{d^{4}\xi d^{4}\eta}{(2\pi)^{8}} e^{i(p-p_{1}).\xi+ip_{1}.\eta} \langle P | \overline{\psi}_{j}(0)D^{\alpha}(\eta)\psi_{i}(\xi) | P \rangle$$

$$\Phi^{a}_{F,ij}(p-p_{1},p_{1}\,|\,p) = \int \frac{d^{4}\xi d^{4}\eta}{(2\pi)^{8}} e^{i(p-p_{1}).\xi+ip_{1}.\eta} \langle P | \overline{\psi}_{j}(0)D^{\alpha}(\eta)\psi_{i}(\xi) | P \rangle$$

(color gauge invariance)

(Un)integrated correlators

$$\Phi(x, p_T, p.P) = \int \frac{d^4 \xi}{(2\pi)^4} e^{i p.\xi} \left\langle P \left| \overline{\psi}(0) \, \psi(\xi) \right| P \right\rangle \quad \text{m unintegrated}$$

$$\Phi(x, p_T; n) = \int \frac{d(\xi.P)d^2\xi_T}{(2\pi)^3} e^{ip.\xi} \langle P | \overline{\psi}(0) \psi(\xi) | P \rangle$$

$$= \text{TMD (light-front)}$$

 $p^{-} = p.P$ integration makes time-ordering automatic. The soft part is simply sliced at a light-front instance

$$\Phi(x) = \int \frac{d(\xi.P)}{(2\pi)} e^{ip.\xi} \left\langle P \left| \overline{\psi}(0) \psi(\xi) \right| P \right\rangle_{\xi.n=\xi_T=0} \text{ or } \xi^2=0$$

$$\blacksquare \text{ collinear (light-cone)}$$

Is already equivalent to a point-like interaction

$$\Phi = \left\langle P \left| \overline{\psi}(0) \psi(\xi) \right| P \right\rangle_{\xi=0}$$

local

Local operators with calculable anomalous dimension

TMDs and color gauge invariance

Gauge invariance in a non-local situation requires a gauge link $U(0,\xi)$

$$\overline{\psi}(0)\psi(\xi) = \sum_{n} \frac{1}{n!} \xi^{\mu_{1}} \dots \xi^{\mu_{N}} \overline{\psi}(0) \partial_{\mu_{1}} \dots \partial_{\mu_{N}} \psi(0)$$
$$U(0,\xi) = \mathcal{P} \exp\left(-ig \int_{0}^{\xi} ds^{\mu} A_{\mu}\right)$$
$$\overline{\psi}(0)U(0,\xi)\psi(\xi) = \sum_{n} \frac{1}{n!} \xi^{\mu_{1}} \dots \xi^{\mu_{N}} \overline{\psi}(0) D_{\mu_{1}} \dots D_{\mu_{N}} \psi(0)$$

Introduces path dependence for $\Phi(x,p_T)$

Parametrization of $\Phi(x) \rightarrow$ collinear PDFs

Parametrization of $\Phi(x) \rightarrow$ collinear PDFs

$$x^{N-1}\Phi(x) = \int \frac{d(\xi,P)}{(2\pi)} e^{ip.\xi} \left\langle P \Big| \overline{\psi}(0) (\partial_{\xi}^{n})^{N-1} U_{[0,\xi]}^{[n]} \psi(\xi) \Big| P \right\rangle_{\xi.n=\xi_{T}=0}$$

$$x = p^{+} = p.n \qquad = \int \frac{d(\xi,P)}{(2\pi)} e^{ip.\xi} \left\langle P \Big| \overline{\psi}(0) U_{[0,\xi]}^{[n]} (D_{\xi}^{n})^{N-1} \psi(\xi) \Big| P \right\rangle_{\xi.n=\xi_{T}=0}$$

$$\Phi^{(N)} = \int dx \, x^{N-1} \Phi(x) = \left\langle P \left| \overline{\psi}(0) (D^n)^{N-1} \, \psi(0) \right| P \right\rangle$$

Anomalous dimensions can be Mellin transformed into the splitting functions that govern the QCD evolution.

Collinear PDFs without polarization

Collinear PDFs with polarization

Quarks in polarized nucleon:
$$S = S_L \left(\frac{P}{M} + Mn\right) + S_T$$
 $0 \le S_L^2 - S_T^2 \le 1$

$$\Phi^{q}(x) \propto x f_{1}^{q}(x) \mathbb{P} + S_{L} x g_{1}^{q}(x) \mathbb{P} \gamma_{5} + x h_{1}^{q}(x) S_{T} \mathbb{P} \gamma_{5} + \dots$$

$$T-polarized quarks$$
in T-polarized Quarks
in T-polarized N
$$compare$$

$$u(p,s)\overline{u}(p,s) = \frac{1}{2}(\mathbb{P} + m)(1 + \gamma_{5} s)$$

- DIS/SIDIS programme to obtain
 - Flavor PDFs: $q(x) = f_1^{q}(x)$
 - Polarized PDFs: $\Delta q(x) = g_{1\perp}^{q}(x)$ $\delta q(x) = h_{1\perp}^{q}(x)$

WG6/70 JAM global QCD analysis

WG6/142 Drachenberg (STAR) Transversity in polarized pp

WG6/150 Gunarathne (STAR) Longitudinal spin asymm. in W prod.

11

TMDs with polarization

Quarks in polarized nucleon:
$$S = S_L \left(\frac{P}{M} + Mn\right) + S_T$$
 $0 \le S_L^2 - S_T^2 \le 1$

$$\Phi^{q}(x, p_{T}) \propto x f_{1}^{q}(x, p_{T}^{2}) \mathbb{P} + S_{L} x g_{1L}^{q}(x, p_{T}^{2}) \mathbb{P} \gamma_{5} + x h_{1T}^{q}(x, p_{T}^{2}) \mathbb{S}_{T} \mathbb{P} \gamma_{5} + \dots$$

T-polarized quarks in T-polarized N

L-polarized N

$$u(p,s)\overline{u}(p,s) = \frac{1}{2}(p+m)(1+\gamma_5 s)$$

... but also

TMDs with polarization

Quarks in polarized nucleon:
$$S = S_L \left(\frac{P}{M} + Mn\right) + S_T$$
 $0 \le S_L^2 - S_T^2 \le 1$

$$\Phi^{q}(x, p_{T}) \propto x f_{1}^{q}(x, p_{T}^{2}) \mathbb{P} + S_{L} x g_{1L}^{q}(x, p_{T}^{2}) \mathbb{P} \gamma_{5} + x h_{1T}^{q}(x, p_{T}^{2}) \mathbb{S}_{T} \mathbb{P} \gamma_{5} + \dots$$

unpolarized quarks chiral quarks in L-polarized N compare $u(p,s)\overline{u}(p,s) = \frac{1}{2}(p+m)(1+\gamma_5 s)$

... but also

$$\Phi^{q}(x, p_{T}) \propto \dots + \frac{(p_{T} \cdot S_{T})}{M} x h_{1T}^{\perp q}(x, p_{T}^{2}) \frac{\not{p}_{T}}{M} \not{P} \gamma_{5} + \dots$$
spin $\leftarrow \rightarrow$ spin
T-polarized quarks
in T-polarized N
(pretzelocity)
WG6/103 Prokudin, Lefky
Extraction pretzelosity distribution

TMDs with polarization

spin-orbit correlations are T-odd correlations. Because of T-conservation they show up in T-odd observables, such as single spin asymmetries, e.g. left-right asymmetry in $p p_{\uparrow} \rightarrow \pi X$

TMD structures for quark PDFs

QUARKS	Þ	<i>₽Υ</i> ₅	$\not\!$
U	f_1		h_1^\perp
L		$g_{_{1L}}$	$h_{_{1L}}^{\perp}$
Т	f_{1T}^{\perp}	$g_{_{1T}}$	$h_{_{1T}},h_{_{1T}}^{\perp}$

gluon TMD's without polarization

- Collinear situation: Unpolarized gluon PDFs: $g(x) = f_1^{g}(x)$ Polarized gluon PDF: $\Delta g(x) = g_1^{g}(x)$
 - Some of the TMDs also show up in resummation. An example are the linearly polarized gluons (Catani, Grazzini, 2011)

WG6/75 Li (STAR) Jet and di-jet in pol. pp

WG6/63 Guragain (PHENIX) A_{LL} results, impact on Δg

WG6/316 Pisano Linear polarization Higgs + jet prod

TMD structures for quark and gluon PDFs

QUARKS	Þ	₽ Υ ₅	$\not\!$
U	f_1		h_1^\perp
L		$g_{_{1L}}$	$h_{_{1L}}^{\perp}$
Т	f_{1T}^{\perp}	$g_{_{1T}}$	$h_{1T}^{\perp}, h_{1T}^{\perp}$

GLUONS	$-g_{T}^{lphaeta}$	$oldsymbol{arepsilon}_T^{lphaeta}$	$p_{\scriptscriptstyle T}^{lphaeta}$
U	f_1^g		$h_1^{\perp g}$
L		g^g_{1L}	$h_{_{1L}}^{\perp g}$
Т	$f_{1T}^{\perp g}$	g^g_{1T}	$h_{1T}^g, h_{1T}^{\perp g}$

TMD structures for quark and gluon PFFs

QUARKS	Þ	₽ Υ ₅	$\not\!$
U	D_1		H_1^\perp
L		$G_{_{1L}}$	$H_{_{1L}}^{\perp}$
Т	D_{1T}^{\perp}	$G_{_{1T}}$	$H_{_{1T}},H_{_{1T}}^{\perp}$

GLUONS	$-g_{T}^{lphaeta}$	$oldsymbol{arepsilon}_T^{lphaeta}$	$p_{\scriptscriptstyle T}^{lphaeta}$
U	D_1^g		$H_1^{\perp g}$
L		$G^g_{_{1L}}$	$H_{_{1L}}^{_{\perp g}}$
Т	$D_{_{1T}}^{\perp g}$	$G_{_{1T}}$	$H^g_{1T}, H^{\perp g}_{1T}$

Requirements and possibilities to measure $Q_{\mbox{\tiny T}}$

- Parton collinear momentum (lightcone fractions) $\leftarrow \rightarrow$ scaling variables
- Parton transverse momenta appear in noncollinear phenomena (azimuthal asymmetries)
 - Jet fragments: $k = K_h/z + k_T$ or $k_T = k K_h/z = k_{jet} K_h/z$
 - SIDIS: $q + p = k \text{ but } q + x P_H \neq K_h/z$
 - Hadrons: $p_1 + p_2 = k_1 + k_2$ but $x_1 P_1 + x_2 P_2 \neq k_1 + k_2$
- Two 'separated' hadrons involved in a hard interaction (with scale Q), e.g. SIDIS-like ($\gamma^*H \rightarrow h X \text{ or } \gamma^*H \rightarrow \text{ jet } X$), DY-like ($H_1H_2 \rightarrow \gamma^* X \text{ or } H_1H_2 \rightarrow \text{ dijet } X$ or $H_1H_2 \rightarrow \text{Higgs } X$), annihilation ($e^+e^- \rightarrow h_1h_2 X$ or $e^+e^- \rightarrow \text{ dijet } X$)
- Number of p_T 's in parametrization $\leftarrow \rightarrow$ rank of TMDs $\leftarrow \rightarrow$ azimuthal sine or cosine $m\phi$ asymmetry \rightarrow Need for dedicated facilities at low and high energies

Rich phenomenology

WG6/151 Seder (COMPASS)	WG6/75 Li (STAR)
Charged kaon multiplicities in SIDIS	Jet and di-jet in pol. pp
WG6/161 Vossen	WG6/136 Diefenthaler (SeaQuest)
FFs at Belle	Polarized DY measurements
WG6/135 Sbrizzai (COMPASS)	WG6/153 Barish (PHENIX)
Transverse spin asymmetries SIDIS	Transverse Single-spin asymm.
WG6/84 Anulli	WG6/139 Allada
Collins Asymmetry with BaBar	Recent SIDIS results at JLab
WG6/22 Lyu	WG6/318 Liyanage
Collins Asymmetry at BESIII	Recent polarized DIS results at JLab

TMDs and factorization

 Collinear PDFs involve operators of a given twist

x 'measurable'

 $d\sigma \sim F(x_1;\mu)F(x_2;\mu)H(Q,\mu)$

J.C. Collins, Foundations of Perturbative QCD, Cambridge Univ. Press 2011

- TMDs involve operators of all twist
- p_T in a convolution (scale and rapidity cutoffs)

$$d\sigma \sim \int dp_{1T} dp_{2T} \delta(p_{1T} + p_{2T} - q_T) \dots$$
$$\dots F(x_1, p_{1T}; \varsigma_1, \mu) F(x_2, p_{2T}; \varsigma_2, \mu)$$

 Impact parameter representation including also large b_T

 $d\sigma \sim \int db_T \exp(iq_T b_T)....$

+

 $\dots F(x_1, b_T; \varsigma_1, \mu) F(x_2, b_T; \varsigma_2, \mu)$

 At small b_T, large k_T collinear physics (Collins-Soper-Sterman)

WG6/33 Collins TMD factorization and evolution

WG6/312 Kang TMD evolution and global analysis

Non-universality because of process dependent gauge links

$$\Phi_{ij}^{q[C]}(x, p_T; n) = \int \frac{d(\xi \cdot P) d^2 \xi_T}{(2\pi)^3} e^{i p \cdot \xi} \langle P | \bar{\psi}_j(0) U_{[0,\xi]}^{[C]} \psi_i(\xi) | P \rangle_{\xi.n=0}$$
 TMD

path dependent gauge link

Gauge links associated with dimension zero (not suppressed!) collinear Aⁿ = A⁺ gluons, leading for TMD correlators to process-dependence:

Belitsky, Ji, Yuan, 2003; Boer, M, Pijlman, 2003

Non-universality because of process dependent gauge links

$$\Phi_{g}^{\alpha\beta[C,C']}(x,p_{T};n) = \int \frac{d(\xi,P)d^{2}\xi_{T}}{(2\pi)^{3}} e^{ip.\xi} \left\langle P \left| U_{[\xi,0]}^{[C]} F^{n\alpha}(0) U_{[0,\xi]}^{[C']} F^{n\beta}(\xi) \right| P \right\rangle_{\xi,n=0}$$

The TMD gluon correlators contain two links, which can have different paths. Note that standard field displacement involves C = C'

$$F^{\alpha\beta}(\xi) \to U^{[C]}_{[\eta,\xi]} F^{\alpha\beta}(\xi) U^{[C]}_{[\xi,\eta]}$$

Consequences for parametrizations of TMDs

- Gauge link dependence
 - Leading quark TMDs

Leading gluon TMDs

$$2x \Gamma^{\mu\nu[U]}(x,p_T) = -g_T^{\mu\nu} f_1^{g[U]}(x,p_T^2) + g_T^{\mu\nu} \frac{\epsilon_T^{p_T S_T}}{M} f_{1T}^{\perp g[U]}(x,p_T^2) + i\epsilon_T^{\mu\nu} g_{1s}^{g[U]}(x,p_T) + \left(\frac{p_T^{\mu} p_T^{\nu}}{M^2} - g_T^{\mu\nu} \frac{p_T^2}{2M^2}\right) h_1^{\perp g[U]}(x,p_T^2) - \frac{\epsilon_T^{p_T \{\mu} p_T^{\nu\}}}{2M^2} h_{1s}^{\perp g[U]}(x,p_T) - \frac{\epsilon_T^{p_T \{\mu} S_T^{\nu\}} + \epsilon_T^{S_T \{\mu} p_T^{\nu\}}}{4M} h_{1T}^{g[U]}(x,p_T^2).$$

Transverse moments \rightarrow operator structure of TMD PDFs

Operator analysis for TMD functions: in analogy to Mellin moments consider transverse moments involving gluonic operators

$$p_{T}^{\alpha}\Phi^{[\pm]}(x,p_{T};n) = \int \frac{d(\xi,P)d^{2}\xi_{T}}{(2\pi)^{3}} e^{ip.\xi} \langle P | \overline{\psi}(0)U_{[0,\pm\infty]}iD_{T}^{\alpha}U_{[\pm\infty,\xi]}\psi(\xi) | P \rangle_{\xi,n=0}$$
calculable
$$p-p_{1} | \widehat{\Phi}_{\partial}^{\dagger}(x) = p_{T}^{\alpha}\Phi^{[U]}(x,p_{T};n) = \widehat{\Phi}_{\partial}^{\alpha}(x) + C_{G}^{[U]}\Phi_{G}^{\alpha}(x)$$
T-even
T-odd
$$\widehat{\Phi}_{\partial}^{\alpha}(x) = \Phi_{D}^{\alpha}(x) - \Phi_{A}^{\alpha}(x)$$
T-even (gauge-invariant derivative)
$$\Phi_{A}^{\alpha}(x) = PV \int \frac{dx_{1}}{x_{1}} \Phi_{F}^{n\alpha}(x-x_{1},x_{1} | x)$$

$$\Phi_{D}^{\alpha}(x) = \int dx_{1} \Phi_{D}^{\alpha}(x-x_{1},x_{1} | x)$$
T-odd (soft-gluon or gluonic pole, ETQS m.e.)

Efremov, Teryaev; Qiu, Sterman; Brodsky, Hwang, Schmidt; Boer, Teryaev; Bomhof, Pijlman, M

TMD and collinear twist 3

There are many more links between TMD factorized results, pQCD resummation results and collinear twist 3 results:

WG6/57 Pitonyak et al. Transverse SSA in pp $\rightarrow \pi/\gamma X$

WG6/120 Koike Collinear twist 3 for spin asymm.

WG6/309 Metz Twist-3 spin observables

WG6/108 Dai Lingyun Sivers asymmetry in SIDIS

WG6/104 Granados Left-right asymm. in chiral dynamics

WG6/315 Burkardt Transverse Force on Quarks in DIS

Operator classification of TMDs according to rank

factor	TMD PDF RANK					
	0	1	2	3		
1	$\Phi(x, p_T^2)$	$ ilde{\Phi}_{\partial}(x,p_T^2)$	$ ilde{\Phi}_{\partial\partial}(x,p_T^2)$	$ ilde{\Phi}_{_{\partial\partial\partial}}(x,p_{_{T}}^{2})$		
$C^{[U]}_{G,c}$		$\Phi_{G,c}(x,p_T^2)$	$\tilde{\Phi}_{_{\{G\partial\},c}}(x,p_T^2)$	$ ilde{\Phi}_{_{\{G\partial\partial\},c}}(x,p_T^2)$		
$C^{[U]}_{GG,c}$			$\Phi_{GG,c}(x,p_T^2)$	$ ilde{\Phi}_{_{\{GG\partial\},c}}(x,p_T^2)$		
$C^{[U]}_{GGG,c}$				$\Phi_{GGG,c}(x,p_T^2)$		

Distribution versus fragmentation functions

Operators:

$$\Phi^{[U]}(p \mid p) \sim \left\langle P \mid \overline{\psi}(0) U_{[0,\xi]} \psi(\xi) \mid P \right\rangle$$

$$\int d^2 p_T p_T^{\alpha} \Phi^{[U]}(x, p_T) = \tilde{\Phi}_{\partial}^{\alpha}(x) + C_G^{[U]} \Phi_G^{\alpha}(x)$$
T-even T-odd (gluonic pole
$$\Phi_G^{\alpha}(x) = \pi \Phi_F^{n\alpha}(x, 0 \mid x) \neq 0$$

Collins, Metz; Meissner, Metz; Gamberg, Mukherjee, M

Operator classification of TMDs

factor	TMD PDF RANK					
	0	1	2	3		
1	$\Phi(x, p_T^2)$	$\tilde{\Phi}_{\partial}(x,p_T^2)$	$ ilde{\Phi}_{\partial\partial}(x,p_T^2)$	$ ilde{\Phi}_{_{\partial\partial\partial}}(x,p_T^2)$		
$C^{[U]}_{G,c}$		$\Phi_{G,c}(x,p_T^2)$	$\tilde{\Phi}_{_{\{G\partial\},c}}(x,p_T^2)$	$ ilde{\Phi}_{_{\{G\partial\partial\},c}}(x,p_T^2)$		
$C^{[U]}_{_{GG,c}}$			$\Phi_{GG,c}(x,p_T^2)$	$ ilde{\Phi}_{_{\{GG\partial\},c}}(x,p_T^2)$		
$C^{[U]}_{GGG,c}$				$\Phi_{GGG,c}(x,p_T^2)$		

factor	TMD PFF RANK					
	0	1	2	3		
1	$\Delta(z^{-1},k_T^2)$	$ ilde{\Delta}_{_{\partial}}(z^{-1},k_{_T}^2)$	$ ilde{\Delta}_{_{\partial\partial}}(z^{^{-1}},k_{_T}^2)$	$ ilde{\Delta}_{_{\partial \partial \partial}}(z^{-1},k_{_{T}}^{2})$		

Operator classification of quark TMDs (unpolarized nucleon)

factor	QUARK TMD PDF RANK UNPOLARIZED HADRON				
	0	1	2	3	
1	f_1				
$C_G^{[U]}$		h_1^\perp			
$C^{[U]}_{GG,c}$					

Example: quarks in an unpolarized target are described by just 2 TMD structures; in general rank is limited to to 2(S_{hadron}+s_{parton})

$$\tilde{\Phi}(x, p_T^2) = \left(f_1(x, p_T^2)\right) \frac{\not P}{2} \qquad \tilde{\Phi}_G^{\alpha}(x, p_T^2) = \left(ih_1^{\perp}(x, p_T^2)\frac{\gamma_T^{\alpha}}{M}\right) \frac{\not P}{2}$$
T-even
$$T\text{-odd} \qquad [B-M \text{ function}]$$

Gauge link dependence: $h_1^{\perp [U]}(x, p_T^2) = C_G^{[u]} h_1^{\perp}(x, p_T^2)$ (coupled to process!)

Operator classification of quark TMDs (polarized nucleon)

factor	QUARK TMD PDFs RANK SPIN 1/2 HADRON					
	0	1	2	3		
1	f_{1}, g_{1L}, h_{1T}	$g_{_{1T}},h_{_{1L}}^{\scriptscriptstyle \perp}$	$h_{1T}^{\perp(A)}$			
$C_G^{[U]}$		h_1^\perp,f_{1T}^\perp				
$C^{[U]}_{GG,c}$			$h_{1T}^{\perp(B1)}, h_{1T}^{\perp(B2)}$			

Three pretzelocities:

Process dependence also for (T-even) pretzelocity,

$$h_{1T}^{\perp[U]} = h_{1T}^{\perp(1)(A)} + C_{GG,1}^{[U]} h_{1T}^{\perp(B1)} + C_{GG,2}^{[U]} h_{1T}^{\perp(1)(B2)}$$

$$A: \ \overline{\psi} \partial \partial \psi = Tr_c \Big[\partial \partial \psi \overline{\psi} \Big]$$
$$B1: \ Tr_c \Big[GG\psi \overline{\psi} \Big]$$
$$B2: \ Tr_c \Big[GG \Big] Tr_c \Big[\psi \overline{\psi} \Big]$$

factor	GLUON TMD PDF RANK UNPOLARIZED HADRON				
	0	1	2	3	
1	f_1^g		$h_1^{g\perp(A)}$		
$C^{[U]}_{GG,c}$			$h_1^{g\perp(Bc)}$		

Note also process dependence of (T-even) linearly polarized gluons

$$h_1^{g \perp [U]} = h_1^{\perp (A)} + \sum_c C_{GG,c}^{[U]} h_1^{\perp (Bc)}$$

factor	TMD PDF RANK				
	0	1	2	3	
1	$\Phi(x,p_T^2)$	$ ilde{\Phi}_{\partial}(x,p_T^2)$	$ ilde{\Phi}_{\partial\partial}(x,p_T^2)$	$ ilde{\Phi}_{_{\partial\partial\partial}}(x,p_{_{T}}^{2})$	
$C^{[U]}_{G,c}$		$\Phi_{G,c}(x,p_T^2)$	$\tilde{\Phi}_{_{\{G\partial\},c}}(x,p_T^2)$	$ ilde{\Phi}_{_{\{G\partial\partial\},c}}(x,p_T^2)$	
$C^{[U]}_{GG,c}$	$\Phi_{_{G.G,c}}(x,p_T^2)$		$\Phi_{GG,c}(x,p_T^2)$	$ ilde{\Phi}_{_{\{GG\partial\},c}}(x,p_T^2)$	
$C^{[U]}_{GGG,c}$				$\Phi_{GGG,c}(x,p_T^2)$	

Trace terms affect p_T width (note $\Phi_{G,G}(x) = 0$)

Boer, Buffing, M, arXiv:1503.03760

factor	GLUON TMD PDF RANK UNPOLARIZED HADRON				
	0	1	2	3	
1	f_1^g		$h_1^{g\perp(A)}$		
$C^{[U]}_{GG,c}$	$\delta f_1^{g(Bc)}$		$h_1^{g\perp(Bc)}$		

Note process dependence, not only of linearly polarized gluons but also affecting the p_T width of unpolarized gluons

$$h_{1}^{g\perp[U]} = h_{1}^{\perp(A)} + C_{GG,c}^{[U]} h_{1}^{\perp(Bc)}$$

$$f_{1}^{g[U]} = f_{1}^{g} + C_{GG,c}^{[U]} \delta f_{1}^{g(Bc)} \text{ with } \delta f_{1}^{g(Bc)}(\mathbf{x}) = 0$$

Boer, Buffing, M, arXiv:1503.03760

factor	QUARK TMD PDFs RANK SPIN 1/2 HADRON				
	0	1	2	3	
1	f_{1}, g_{1L}, h_{1T}	$g_{_{1T}},h_{_{1L}}^{\scriptscriptstyle \perp}$	$h_{1T}^{\perp(A)}$		
$C_G^{[U]}$		h_1^\perp,f_{1T}^\perp			
$C^{[U]}_{GG,c}$	$\delta f_1, \delta g_1, \delta h_1$		$h_{1T}^{\perp(B1)}, h_{1T}^{\perp(B2)}$		

Process dependence in p_T width of TMDs is due to gluonic pole operator (e.g. Wilson loops)

$$f_1^{[U]} = f_1 + C_{GG,c}^{[U]} \delta f_1^{(Bc)}$$
 with $\delta f_1^{(Bc)}(\mathbf{x}) = 0$

Entanglement in processes with two initial state hadrons

Resummation of collinear gluons coupling onto external lines contribute to gauge links $Q_{a} \sqrt{P_{1}}$

.... leading to entangled situation (Rogers, M), breaking universality

Two initial state hadrons (e.g. DY)

 $\overline{\Phi}\left(p_{2}\right)$

 $\Phi(p_1)$

 $\psi\left(\xi_{1}\right)$

 $\psi\left(0_{2}
ight)$

 $[0_1, -\infty]$

 $-\infty,0_2$]

 $\psi\left(\xi_{2}
ight)$

 $[-\infty,\xi_1]$

 $[\xi_2, -\infty]$

Complications if the transverse momentum of two initial state hadrons is involved, resulting for DY at measured Q_T in

$$d\sigma_{\rm DY} = \operatorname{Tr}_{c} \left[U_{-}^{\dagger}[p_{2}] \Phi(x_{1}, p_{1T}) U_{-}[p_{2}] \Gamma^{*} \\ \times U_{-}^{\dagger}[p_{1}] \overline{\Phi}(x_{2}, p_{2T}) U_{-}[p_{1}] \Gamma \right] \\ \neq \frac{1}{N_{c}} \Phi^{[-]}(x_{1}, p_{1T}) \Gamma^{*} \overline{\Phi}^{[-^{\dagger}]}(x_{2}, p_{2T}) \Gamma,$$

This leads to color factors just as for twist-3 squared in collinear DY

$$\sigma_{DY}(x_1, x_2, q_T) = \frac{1}{N_c} f_1(x_1, p_{1T}) \otimes \overline{f}_1(x_2, p_{2T}) - \frac{1}{N_c} \frac{1}{N_c^2 - 1} h_1^{\perp}(x_1, p_{1T}) \otimes \overline{h}_1^{\perp}(x_2, p_{2T}) \cos(2\varphi)$$

Buffing, M, PRL 112 (2014), 092002

 $\overline{\psi}\left(0_{1}
ight)$

Attempts to provide a useful database have started

TMDlib project

http://tmdlib.hepforge.org

Home

- TMDplotter
- TMD-Project
- Source Code Download
- CCFM uPDF evolution code
- Tracker
- Wiki
- Contact

Main Page	Related Pages	Namespaces	Classes	Files		
TMDLIB manual						
TMDIIb and TMD Transverse Mome	plotter: library and p entum Dependent pa	lotting tools for arton distributions				Table of Contents
Authors F. Hautman Rutherford University of	n Appleton Laborator of Oxford, UK	y, Dept. of Theoretic	al Physics,			 ↓ Theoretical framework ↓ TMD factorization and evolution ↓ High-energy factorization and evolution
H. Jung DESY, Hamburg, FRG, University of Antwerp, Belgium			↓ TMDIIb documentation			
M. Kr"a me DESY, Han	r nburg, FRG					
P. J. Mulder Departmen	rs t of Physics and Ast	ronomy, VU Univers	ity Amsterdan	n, and Nikhe	f, the Netherlands	
E. R. Noce Universit`a	ra degli Studi di Milano	o and INFN Milano,	Italy			
T. C. Roger C.N. Yang I	s Institute for Theoreti	cal Physics, Stony E	Brook Universi	ty, Departme	ent of Physics, Sou	ithern Methodist University, Dallas, Texas, USA
A. Signori Departmen	t of Physics and Ast	ronomy VII Univers	ity Amsterdan	and Nikhe	f, the Netherlands	

Conclusions and outlook

- TMDs extend collinear PDFs (including polarization 3 for quarks and 2 for gluons) to novel TMD PDF and PFF functions
- Although operator structure includes ultimately the same operators as collinear approach, it is a physically relevant combination/ resummation of higher twist operators that governs transverse structure (definite rank linked to azimuthal structure)
- Knowledge of operators for transverse structure is important for interpretation, relations to twist 3 and lattice calculations.
- Transverse structure for PDFs (in contrast to PFFs) requires careful study of process dependence linked to color flow in hard process
- Like spin, the transverse structure does offer valuable tools, but you need to know how to use them!

Some other (related) contributions

WG6/21 Lowdon (ArXiv:1408.3233)	WG6/58 Courtoy, Bacchetta, Radici
Spin operator decompositions	Collinear Dihadron FFs
WG6/102 Prokudin et al.	WG2/87 Yuan
Tensor charge from Collins asymm.	TMDs at small x
WG6/304 Kasemets	WG6/315 Burkardt
Polarization in DPS	Transverse Force on Quarks in DIS
WG2/112 Tarasov	WG2/87 Yuan
Rapidity evolution of gluon TMD	TMDs at small-x
WG2/326 Stasto	WG4/88 Yuan
Matching collinear and small-x fact.	Soft gluon resumm for dijets
WG7/297 Zhihong	WG1/325 Kasemets
SoLID-SIDIS: future of T-spin, TMD	TMD (un)polarized gluons in H prod