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Abstract

We disaiss the spin structure of quarks in hadrons, in particular the transverse spin polarization or
transversity. The most dict way to probe transversity appears to be via azimuthal spin asymmetries.
This brings in the role fointrinsic transverse momenta of quarks in hadrons and the stutiyoofd
phenomena, which are connected to single spin asymmetries.
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1. Introduction

The topic of this lecture is the spin structure of hadrons and the way it is probed in
high-energy scattering processes. We speadifi study electroweak scattering processes.
One specific proas, namely lemin—hadron scattering will be dealt with in detail. A signal
for an electroweak process is the presence of leptons which do not feel strong interactions.
They allow a separation of the scattering amplitude for the process into a leptonic part
and a hadronic part, where the leptonic part, involving elementary particles is known. The
structure of the hadronic part is constrained by its (Lorentz) structure and fundamental
symmetries and can be parametrized in ®mwh a number of structure functions. The
emerging expression for the scattering amplitude can be used to calculate the cross sections
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in terms of these structureuffictions. In turn one can make a theoretical study of the
structure functions. Part of this can be done rigorously with as only input (assumption if one
wants) the known interactions of the hadrowbnstituents, quarks and gluons, within the
standard model. For this both the electroweak couplings of the quarks needed to describe
the interactions with the leptonic part via the exchange of phofdhor W* bosons as

well as the strong interactions of the quarks among themselves via the exchange of gluons
described in the QCD part of the standard ni@de important. For a general reference we
refer to the book of Robert4].

2. Leptoproduction

In this section we discuss the basic kinematitganticular hard electroweak processes,
namely the scattering of a high-energy lepton, e.g. an electron, muon or neutrino from a
hadronic target{(k)H (P) — ¢ (k') X. In this praess at least one hadron is involved.

If one does not care about the final state, counting every event irrespective of what is
happening in the scattering process, one talks about an inclusive measurement. If one
detects specific hadrons in coincidence with the scattered lepton one talks about semi-
inclusive measurements or more specificallyditicle inclusive, 2-particle inclusive,
depending on the number of particles that are detected.

0’ = (k-K)*=-Q*<0
e 7 QZ
> . 2P-g=2Mv= =
. XB
. 2Pn-q = —2zn Q? ,
H _>x p.k:u:Q_
y 2xgy

The variablexg is the Bjorken scaling variable, by the kinematics constrained to
0 < xg < 1, andxg = 1 corresponding to elastic scattering. In this scattering process
a hadron is probed with a spacelike (virtual) photon, for which one could consider a
frame in which the momentum only has a spatial component. This shows that the spatial
resolving power of the probing photon is of the order 1/Q. Roughly speaking one
probes a nucleus (1-10 fm) wit ~ 10-100 MeV, baryon or meson structure (with
sizes in the order of 1 fm) witlQ ~ 0.1-1 GeV and one probes deep into the nucleon
(<0.1 fm)with Q > 2 GeV. Leptoproduction is characteristic for a large number of other
processes involving particles (leptons) for which the interactions are fully known together
with hadrons. The electroweak interactions with the constituents of the hadrons (quarks),
however, are also known. This opens the way to study how quarks are embedded in the
hadrons (e.g. in leptoproduction or in the Drell-Yan proc&s®s)B(Pg) — £(k)£(K')X)
or to study how quarks fragment into hadrons (in leptoproductionedred annihilation
into hadrons).

For inclusive unpolarized electron scattering the cross section, assuming one-photon
exchange, is given by

, do 1

2
_ *
F ~ s_ Mz gf buv ZMW (1)




P.J. Mulders / Progressin Particle and Nuclear Physics 55 (2005) 243-269 245

Qz W2s M2
fixed X< 1
Xp=1
physical
region

\Y

Fig. 1. The physical region in deep inelastic scattering.

whereL,(f];) is the symmetric lepton tensor,

LK) =Tr [yu(K +myy,(K+m)] = 2k,K), + 2k k!, — Q®gpy )

andW,,, is the hadron tensor, which containg timformation on the hadronic part of the
scatteringprocess,

P,
M Wi (P. @) = Z/ (27)32Ey

x (P131(0)[P)(Pn]3,(0)|P)(2m)*8*(P + q — Py). (3)

where| P) represents a target with momentiimFor inclusive scattering the tensor can be
rewritten to

2M W, = %/d“x eI (PI[INx), J,(0]P). (4)

Including polarization this expression remains valid if summation and averaging over spins
is understood.

What is one actually probing in leptoproduction? In the leptoproduaiehl — € + X
the (unobserved) final stat&X can be the target (elastic scattering) or an excitation
thereof. In a plot of the tevindependent variablesand Q? (seeFig. 1) elagic scattering
corresponds to a line given by= Q2/2M, whereM is the mass of the target. As we have
seen the behavior of the cross section along this line, where thexgatio 1, is (kesides
the 1/Q* of the Mott cross section) proportional to a form factor squared, measuring the
expectation value of the electromagnetic curr@iy J* (x)| P). Exciting the nucleon gives
rise toinelastic contributions in the cross sectionvat Q2?/2M, stating at the threshold
W = M + M. Note hat as a function okg any resonance contribution will move closer
to the elastic limit wherQ? increases. Whe®? and the energy transferare high enough
the cross section will reflect elastic scattering off the pointlike constituents of the nucleon
and the cross section will become equal to an incoherent sum of the electron—quark cross
section. This is known as the deep inelastattering region, in which one finds Bjorken
scaling. The cross staon, or more precisely the structifunctions, become functions of
one (kinenatic) variablexg, which isidentified with the momentum fraction of the struck
quark in the nucleon, enabling measurement of quark distributions. We will make this
explicit below. The picture will break down in the limiting cases, suckxgs— 1, where it
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becomes dual to the summation over resonancesg e 0, corresponding (for fixe®?)
to v — oo. In this regionone may employ Regge theory.

Itis also possible to consider in more dethi space—time correlations that are probed.
As already indicated, is space-like. But from the kinematics of deep inelastic scattering
one can see that the process probes thedagtd. Sitting in the nuctan rest-frame we note
thatbothq® = v andg® = /Q2 + v2 go toinfinity but working at finitexg one sees that
taking the sum and the difference only one of them goes to inflf@ioosingg along the
negativez-axis one hag~ = (v+|q|)/v/2 — oo andq™ = (v —q|)/+v/2 ~ —MnXs/~/2.

This corresponds in the hadronic tensor which involves a Fourier transform of the product
of currents tox™| ~ 1/~ — 0 and|x~| ~ 1/|q"| — 1/Mxg or |[X| ~ |t| &~ 1/MXg.

Thus, depending on the value ®§ the distances and times are not necessarily small,
but one hasx? = x*x~ —x2 ~ —x2 < 0, while on the other hand causality requires
thzat x2 > 0. Therefore, one sees that deep inelastic scattering probes the lightcone,
xc ~ 0.

3. Structurefunctions and cross section

The simplest thing one can do with the hadron tensor is to express it in standard tensors
and functions depending on the invariants,dinacture functions. Instead of the traditional
choice using tensorsg,,,, P, P, ande,, - 0” P multiplying structure functiondVy, W-
andWs depending om andQ?, we immediately go to a dimensionless representation. First
we define a Cartesian basis of vect®} ptarting with the natwal space-like momentum
(defined byq). Using the target hadron momentuP# one can construct an orthogonal
four vectorP* = P* — (P - q/9?) g#, which istimelike with lengthP2 = « P - q with

M2Q? N 4M?x3
(P-q)? Q?
The quantityc takes into account mass correctiossM2/Q? which will vanish for large
Q? (k — 1). Thus we define

k=14 . (5)

2
Zh=—q* and TH= —Pq—q Pt = g + 2xg P*. (6)

For theserectors we hav@?2 = — Q2 andT?2 = « Q2 and we will often use the normalized
vectorsz = —G* = Z*/Q andf* = T#/Q./k. With respect to these vectors one can
also define transverse tensors,

¢ =g + 644" — 0 and € = Mg, )

To get he parametrization of hadronic tensors, such as the one idEmd¢luding for gen-
erality also an (axial) spin vect®& (seeSection 4, we use the general symmetry property,

W,uv (qv P: S) = Wvu(_Qa Pv S) (8)

1Lightcone coordinates are defined = (a° + a3)/+/2. The scalar product of two vectors is given by
a-b=atb~ +a bt —albl — a2n2.
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as well as properties following from hermiticity, parity and time-reversal invariance,

W:Zy (qs Pv S) = WU,(L(qv P, S)v (9)
Wi (9. P. S =W,,(q.P. -5  [Paity]. (10)
W20, P.S) =W, (4. P.S)  [Time rewrsall (12)

wherep = (p°, —p). Findly we use current conservation implyioggW,,, = W,,q" = 0.

Note that depending on the situation not all constraints can be applied. For inclusive unpo-

larized leptoproduction one obtains as the most general form for the symmetric tensor,
a“q"

S0 B

pip
MWL O (P, q) = < - g’“) Fi(xs, Q) + P g Fa(xs, Q)
= —g" Fi(xs, Q%) + " <— Fit o F2> ; (12)
[ —— 2XB
Fr
FL

where the stroture functiond=1, F> or the transverse and longitudinal structure functions,
Fr = F1 andF_, depend only on the hadron part relevant invaria@& andxg. This is

the dructure for the electromagnic (photon exchange) part of the electroweak interaction.
For theweak (V- or Z-exchange) part both vector and axial vector currents with different
parity behavior come in. In that case also tbkowing antisymmetric tensor is allowed,

i€"YP9 P, Qg

(P-a
It appears in the part of the tensor in which one of the currents in the product is a vector
current and the other an axial vector current.

The cross section is obtained from the contraction of lepton and hadron tensors. It is
convenient to expand also the lepton moménaadk’ = k — g in , Zand a perpendicular
component using the scaling varialjle= P - q/P - k (in the target restframe reducing to
y = v/E). The result (including target mass corrections) is

_2-yl1 1

MwH P (q, P) = Fa(xg, Q%) = ik €| Fa(xa, Q). (13)

== = TH - S Zh k]
1
L Qu, 29 Q. YITYFid-0Y g
S 2 2y Vi« y Vi
2,00 — —V A
P Qe C=YQp  QVI-y 4 (14)
2y y

wheref* = k'l /Ik 1|, is a sgcelike unit-vector in the perpendicular direction lying in the
(lepton) scattering plane. The kinematics in the frame where virtual photon and target are
collinear (including target rest frame) is illustratedriy. 2 With the definition of?, we

obtain neglecting mass correctiofas= 1) for unpolarized leptons the symmetric leptonic
tensor

2 1 ) e
L (S = % [—2 <1 —y+3 y2> g7’ +41 - ytHt”
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lepton scattering plane

Fig. 2. Kinematics for lepton—laaon scattering. Transverse directions indicated withindex are orthogonal to
P andq, eg. the orthogonal component of the momentum of adpiced hadron has been indicated as example.
Similarly one can consider the orthogonahtponent of the spin vector of the target.

+4(1-y) <2“12” + % gi”) +22-y)y1- yf{“f”}} : (15)

The explicit contraction of lepton and hadron tensors gives for electromagnetic
scatteringonly symmetric tensor) the result

do ®P 47 o?xg's
dxgdy ~  Q*
27 a®s
= ot
We have now used the known photon coupling to the lepton and parametrized our ignorance
for what happened with the hadron in a hadronic tensor. The fact that we know how the
photon interacts with the (quark) constituentstef hadrons will be used later to relate the
structure finctions to quark properties. In the same way one also knows for the weak
interaction processes leading to an antisymmetric part contaifinigp the tensor for
unpolarized hadrons, how tH&? andW couple to quarks. To describe weak interactions
also the antisymmetric part of the lepton tensor is needed, which we will also encounter
when we discuspolarization.

1
[(1 —V+3 y2> Fr(xg, Q%) + (1 — y)FL (g, QZ)}

(- V)F2(x6, Q%) + xa ¥ Fa(xa, Q). (16)

4. Polarized leptoproduction

For spin-polarized leptons in the initial state we have

, 1+
LS =Tr |:VM(K + M)y, (K+m) Ty‘”ﬂ
= 2k,.K}, + 2K/ Ky — Q2 Gy & 2i Mepu1p00°S° . (17)

Note that for light particles or particles at high energies helicity stdfes= k)
become chirality eigenstates. Fbr,, the equivalence is easily seen becausesfor=
(Ik]/m, ER/m) (s> = —1 ands- p = 0) one obtains in the limiE ~ [k| the result
ms* =~ k*. Then he leptonic tensor for helicity statése = +) becomes

LUs=41/2 x LRL (9 4 5, LA, (18)
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where the antisymmetric lepton tensor is given by
LAk, K) = Tr [yuys Kyv K] 2i€40p0 07K (19)

Expanding in the Cartesian setz and the vectof in the same way as for the symmetric
part, we have for the antisymmetric part of the leptonic tehtw result

2
LA = %[—i yR—y el —2iy/T—yfre ). (20)

One can use polarized leptons in deep inelatie> X to probe the antisymmetric tensor
for unpolarized hadrons, containing tke structure €éinction. This contribution comes in
via the interference between theand Z interference term.

In the situation where the target is polarized, one has several more structure functions
as compared to the case of an unpolarized target. For a gpipatticle the initial state
is descrbed by a 2-dimensional spin density matpix= )", |&)p. («| describing the
probabilities p, for a variety of spin possibilities. This density matrix is hermitean with
Trp = 1. It can in the target rest frame be expanded in terms of the unit matrix and the
Pauli matices,

1
Pss = E (1+S-0s9), (21)

whereS is the spin ector. When|S| = 1 one has a pure state (only one sthtg and

p? = p), when|S| < 1 one has an ensemble of states. For the ¢Sise= 0 one has
simply an averaging over spins, corresponding to an unpolarized ensemble. To include
spn one could generalize the hadrtensor to a matrix in spin spackf\/éf;(q, P) «

(P, 8'|J#|X)(X|J"|P,s) depending only on the momenta or one can look at the tensor
>, P«Wio (g, P). The later is given by

WH(q, P, S) = Tr (p(P, W’ (g, P)), (22)

with the spacelike spin vectd® appearindinearly and in an arbitrary frame satisfying
P.S=0. It hasinvariant length-1 < % < 0. It is conveient to write

_i no_ M2 M
y_M<p P.qq>+8f, (23)
with
M (S-q)
= —— 2 24
S P 0 (24)

2 A useful rehtion is
€nvpo Yup = €avpo Qup + €naps Qg + €pvas 9pp + €pvpa Yo
or for a vectora,; orthogonal tdf andg,
ey = f“‘efpalp,

e"rofa) = 72[“eijpaip.
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Fig. 3. The handbag diagram for inclusive déeglastic scattering off a hadronic target.

For apure state one hfﬁ? + Si = 1. Parity requires that the polarized part of the tensor,
i.e. the part contaimig the spin vector, enters in an antisymmetric tensor of the form

ie"vPoq, Py oo
MW A, P, S =9 @ .Cg) 91+ 5 a i€""°0,S15 (01 + 92)
g MV i 2M o v
= —ig € 91—I6t €,'"Sip XB(01 + G2). (25)

It contains two structure functiongi(xg, Q%) and go(xg, Q?). One abo usesgr =
01 + g2. Theresulting cross section is

dAoL _ A 2
dxgdy Q2

(Note that in all of the above formulas mass corrections proportiord6Q? have been
neglected.)

2M
re [SL 2—-y)o1—ISLl CO%QE V1-yxs(@+ 92)} - (26)

5. The parton model

We will not follow the standard intuitive approach that folds the-quark cross section
with a quark monentum distribution, but use a diagrammatic approach. The parton model
is obtained by just considering the so-called quark handbag diagranfige® andits
antiquark equivalent. These diagrams turn out to be the leading ones out of a full set in
which the connection to hadrons is left as an unknown quar3.[The basic expression
corresponding to the handbag diagram restricting us to the quark part is

2M W (P, q) = Zeﬁ/dp* dp* d’p. Tr(@(p) v (p+ A+ m)y")
q

x §((p+a)? —m?)
~ Zeﬁ/dp*drﬁdzm Tr(é(p) v %y”) 5P +ah)
q

T 27)

p+:XB P+

v 1 _
~ g > fdp d?p, Tr(y™ &(p))
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where @(p) is the forward antiquark-tget scattering amplitude,

45 d P T .
L f d's € PE(P, ST QWi ©)IP. 9, (28)

diagrammatically represented by

P P

ij(p,P,S =

Comparing with the gesral form of the hadronic tensor, we read off (including now
also the antiquark part)

2F1(xg) = 2M Wi(xg, Q%) = ) € [a(xe) + G(xe)], (29)
q
with

1 N _

) = 4—/ds— &P (P, ST Oy )P, S , (30)
T gt=£,=0
1 e _

400 = - / e P E (P ST Oy )P, S (31)
4 £T=£,=0

The result is (as expected) a lightcone correlation function of quark fields. It is easy to
show that the antiquark sliributions are given by(x) = —q(—x). To do this gart with
the ‘proper’ definition of antiquark distributions,

/ d*s P4 (PSS Q)Y L) PS). (32)

1
¢ (p) =
with ¥ ¢(¢) = CET(s). Show hat one findsb(p) =_—C(q§°)TCT. One a0 needs to use
the anticommutation relations for fermions, to obtéif(p) = — &;j (— p), which leads to
the crossing relationf®r quark and antiquark distributiong(x) = —q(—x).

5.1. The operator in coordinate space

The parton result for the structure functions can also be derived by inserting free
currents in the hadronic tensor for the current commutator and using the expression for
the free field commutator. Using the anticommutation relations for free quark fields,
given by {(y(£), ¥ (0)} = 5= 78(£2) €(£°) one derives for they,, contribution in the
current—current commutator for quarks

[3.(€), B = [V E) v () 5 : ¥ 0y (0) ]
= D [3,8ED €60 T OV VO -TOYYE . (33)
An important feature, evident in the freeroent commutéor, is the lightcone dominance.
By sandwiching the commutator between physical states and taking the Fourier transform,

it is a straightforward calculation to obtaigan the hadron tensor and the same result as
in the dagrammatic approach above. Details can be foun&jin [
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5.2. Flavor dependence

The explicit flavor and spin dependence of the structure functions in electroweak
processes depend on the probe being, &° or W* boson. We are in the situation,
however, that we know the currents in terofsthe quark fields. Omitting the coupling
constant® or ./GF, the stadard model currents coupling to fermions are

IV =90 Qyu v () (34)
I =900 (15 — QSIN Ow) yuL ¥(X) 1 — : Y (X) Qi b yur Y (X) :

= Y00 (I — 2QSiP ow) v, () : — : OO Iy vuys v () -, (35)
IW =0 Iy yuL ¥ (%) 2, (36)

wherey,r/L = yu (1% y5).

Using the electromagnetic current, one obtains for the one-photon exchange
contribution toep scattering the followingxpression in terms of the distribution functions
for the quarks with various flavorsy(x), d(x), etc. and the corresponding antiquark
distributionsu(x), etc.,

Fy’ -
BX_, FP(x) = g (U(X) + (X)) + % (d(x) 4+ d(x))

1
+g (800 +300) + - (37)
By definition quark distributions in the proton are used as reference. For a neutron one has
using is@pin summetryip = dn, dp = Un, Sp = Sy and one has foen scattering
FS"(x) 1 _ 4 =
270 —2F(x) = 5 (U0 +T00) + 5 (d0) +d00)

1
+5 (SO0 +500) + . (38)

As the difference between qta and antiquarks contributes to the quantum numbers, it is
convenient to divide the quark distribution in a valence part and a sea part

ax) = (X)) +as(x)  with  qu(x) = qx) —qXx). (39)

The quark distributions are positive definite (see a®ertion §, leading to specific
inequalities. For instance the experimental observation E§51F§” tends towards M4

for x — 1 showsdominance ofu(x) overd(x) nearx — 1. Itis clear that in order to
determine the quark distributions, several processes are needed. For compilations we refer
to Ref. [6].

6. Propertiesof quark distributions
6.1. Interpretation as densities

To convirce oneself that the above expressions dox) and g(x) actually can be
interpreted as quarknomentum density one needs to realize thiag)y ™y (0) =
«/Z/;I(S)I/MF(O) wherey+ = Py are projections obtained with projection operators
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ontogood quark statesq], P+ = 1yFy*. One thercan insert a complete set of states and
g9 2
obtain

&
400 = fh—fzépﬂp, Sl Oy @©IP. S

£t=£7=0
1
= P P)28(PF —(1—x)Ph), 40
ﬁ;u nl Y P2 (P — ( (40)
which represents the probability that a quark is annihilated fil®pgiving a statgn) with
Py = (1 — x)P™. SinceP;t > 0one sees that < 1. From the antiquark distribution

d(x) and its relation to-q(—x) one obtainx > —1, thus showing that the support of the
functionsis—1 < x < 1 [8,9].

6.2. Polarized parton densities

Analogously to the unpolarized structure functions one can obtain for the polarized
structue functions

201(xe) = ) _ € [Aq(xe) + AT(XB)] (41)

q
where

1 . _ _

S.AG(0 = 4 / de~ P7E (P, ST (0)y sy (§)[P. S) L @)
T £T=£,=0
1 o ptg— —

SLAG(X) = 4—/ds‘e"x'° (P, Y0y Tysy(6)|P, S>‘ : (43)
T E+=£,=0

a mrrelation existing in a hadron with the lightcone component of the spin v&ctet 0.

This represents the difference of chiral even and odd quarks (in infinite momentum
frame quarks parallel or antiparallel to proton spin). The corresponding quark fields are
projected out byPr/. = (1 % y5)/2, which commte with the projectors.. In this

way one obtains distributiongr(x) and q.(x) for which q(x) = gr(X) + qL(x) and
AQ(X) = gr(Xx) — qL(X).

6.3. Sumrules

As probability distributions the quark distribution functions satisfy a number of obvious
sum rulessuch as

1 1 1
/ dx u,(X) =ny =2, / dxd,(X) =ng =1, f dx s,(X) = ns =0, (44)
0 0 0

corresponding to the (net) number of each a&dh quark species in the proton. This also
leads to sum rules for éhstru¢urefunctions.
Weighing the digribution functions withx, onecan determine the quantity

1 1
/ dx X X (x) E/ dx X[u(x) + T(x) + d(x) + d(x)
0 0
+8(X) +5(X) + - - -] = €q. (45)
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It represents the total momentum fraction of the proton carried by quarks. It must obviously
be smaller than one.

For thepolarized structure functions one can obtain similar estimates using the naive
flavor-spin structurefahe proton based oSU (6) symmetry,

1
= —— (2ususd; —uguydy —ujusrdy + [d at places 1 and]2. 46
p 1) JE( tupd), —upuydy —uyupdy + [d atp 12 (46)

From this wavetinction one finds in terms of a normalized one-quark distribuiion the
‘naive’ results

5 1 1 2
uT(X)=§q(X), U¢(X)=§q(X), dT(X)zéq(X), d¢(X)=§q(X), (47)

or
4 1
ux) =2q(x), AuXx) = §q(X), dx) = q(x), Ad(x) = ~3 qx), (48)

and all other distributions (strange quarks or antiquarks) are zero. In this case one obtains
naive sum rule results for the polarized distributions,

1 _ 4

/ dx [Au(X) + ATUX)] = Au = 3

0
1 _ 1
0
Note that the sum\Y' = Au + Ad + As+ --- represents (as probability distributions)
the totalnumber of quarks parallel to the proton spin. If the proton spin comes from the
quark spirs, as is the case for the abo8d (6) wave fundion multiplying a spherically
symmetric spatial wave function, oeepects this to be one. It leads to

1 174 1 1 5
I'P= [ dxgPxx)==|=Au+=Ad+ = As|=—~028 50
1 /0 X8 () 2[9 utgrdts S} 18 : (°0)
1 174 1 1
= Nx)==|=A ZA ZAs| = 1
i /(; dx g7 (x) > [9 d+ 9 u+ 9 s} 0, (51)

which is in disagreement with the experimental resuf][ Flp ~ 0.15 and the result
I'T ~ —0.04, obtained from the deuteron sum ruTE = (Flp + 17 (1+ %wp) with

wp ~ 0.05 being theD-wave probability in the deuteron.

The importance of these sum rules becomes clearer when one starts with the expressions
for the distribution functions in terms of matrix elements of bilocal operator combinations.
One has

1 1 Py (0)y 1 (0)|P
/1dxq(x>=/0 dx [q00 — GO0 = L )zypj/’( L (52)

whereng is the coefficient in the expectation valte| v (X)y “ ¢ (0)|P) = 2ng P*. The
coefficientng is precisely the quark number because ¥hctor currents are used to obtain
the quantum numbers for flavor (upness, dowssistrangeness, etc.). In general one
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obtains

1 1
/ X q00 = fo dx X" [q(x) + ()" G(X)]

igt

. 9 n—-1
(P[F(0) y* ('—) VO)|P). (53)

= op+t p+

The moments of the structure functions are related to expectation values of particular quark
operators. In a fie theory these matrix elementepend on a renormalization scalé and

thus a similar renormalization scale dependemeist be preent for he structure functions.

In some cases such as the rule in Exf) the resulis scale hdependent. This is true if the
operator combination corresponds to a conserveckat. The situation is different for the
second moment that appears in the momentum sumrule irdBy. (

1 1
/ dx x q(x, In MZ) = / dx x[q(x, In uz) +q(x,In MZ)]
-1 0

_ (Pl (Qiy*a*y(0)IP)(,2)

where ¢q is defined in(P|E(0)iy,La,,w(0)|P) = 2¢qP,P, 4+ --- and is the relative
contribution of quarks to the energy momentum tensor of the proton (the dots indicate
trace termsx M?g,,). Only the first moment of the sum including quaakd gluon
distributions in the proton is scale independent as the local operator turns out to be the
energy momentum stress tensor of QCD.

Forpolarized structure functions the lowest moment is given by

1 1
/ dx Aq(x, Inu?) = / dx [AQ(X, Inu?) + AT(X, In 1?)]
1 0

(PIY @y ysy (0)IP)2)
2P+ N

= Aq(u?). (55)

The quantityAq appears in(P|y (0)yTysy (0)|P) = 2M Aq S*, the marix element

of the axial current, wher&"* is the spin vector fothe nucleon. Also thids in general

not independent of the renormalization scale. In particular the flavor singlet axial current
is not conserved (because of the Adler—Bama-Jackiw-anomaly). It implies, however,

a breaking independent of the flavor of the quarks. For the non-singlet axial currents
that are important in the flavor-changimgeak decays of baryons, e.g. for the neutron

o 14 y*ys, the current is conserved and the corresponding matrix elements are scale
independent. Fromhe neutron decay one deduces tbeale independent) flavor non-
singlet combinations

AQ® = Au(u?) — Ad(u?) = Ga = 1.259, (56)
while from hyperon decays one finds (usild (3) synmetry),

AQ® = Au(u?) + Ad(u?) — 2 As(u?) ~ 0.6, (57)
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in terms of these combinations and grale-dependent singlet combination,
AZ(?) = Au(u?) + Ad(u?) + As(i?), (58)

one has

1 1
rPhx) = AZ(M)i—Aqu AQ. (59)

36
A sum rule involving only flavor non-singlet combinations is for example pibkarized
Bjorken sumrule[11],

L 1 G
/0 dx [97°(x) — 6" (0] = ZAQ® = < ~ 0.21, (60)

in reasonable agreemenitkvexperimet. Note that this result is a factor 0.75 smaller than
the naive expectation for whidBa = Ag® = 5/3 inskead ofGa ~ 1.26. A long-known
explanation for this reduction is the relativistic nature of quarks in hadrons implying a
sizable p-wave contribution in the lower components of the quark spinor that reduces the
spinor densitie§ ysy3y = ¥ oy,

Using the result forFlp or I'!" as the third input one can solve farX, leading to
AJX ~ 0.2, very small compared to the naive expectatians being of the order of 0.75
(taking the same reduction factor for relativistic quarks as¥@j. This wasknown as the
‘proton spin puzzle'. At present we know that the scale dependence is important and that
the deep inelastic sasurements impl (20 Ge\?) ~ 0.2.

7. QCD correctionsto structurefunctionsand quark distributions

There are two sorts of corrections that appear when higher orders in the strong coupling
are included. The first concerns the relation of structure functions and quark distributions.
The structure functions or sum rules consteddrom them get parts that are proportional
to as. For instance, the longitudinal structure function no longer remains zero, violating
the Callan—Gross relation at ordey. Another example is the spin sum rule, which gets a
correction(1 — as/m), or explicitly (including also the next orderl]),

1

/ dx [gf(x, Q?) — gf(x, QZ)] C'g* (1 _ % + % ( 45833+ f/3)) . (61)
0

where f is the number of (active) flavors. This gives an excellent explanation of the

experimental resuIFp ~ 0.19 being somewhat smaller th&n /6 = 0.21.

The second type of correctlons give the scale dependence of the quark and gluon matrix
elements appearing in the moments of structure functionsA1gQ?), or they can be
obtained immediately for the fuk-dependent quark distributions, known as evolution
equations,

) ’| 2 2 1d
P - [ S

(62)
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Fig. 4. Ladder diagrams used to find the evolution equations.
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Fig. 5. The simplest (parton-level) diagrams for sémeiusive scattering, of which we consider one-particle
inclusive leptoproduction. Note that also thagtam with opposite fermion flow has to be added.

where

Paq(®) = g%um_g) (63)
with

foae = e )

while this splitting function describes how QCD corrections arising fgpr qG splitting
are incorporated into the parton distributiorisg( 4a)), one needs in addition other
splitting functions such aBye describing how quark and gluon distribution functions mix
(Fig. 4(b)). Since gluons are flavor-blind, non-singlet and valence distribution functions are
not affected by such corrections.

The splitting function for the polarized distribution functions is given by

4 1+¢2

S 4281 8). 65
3o, T 1-8 (65)
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8. Quark correlation functionsin 1PI leptoproduction

We now mnsider the case in which one parti¢dedetected in coincidence with the
scatterd lepton, one-particle inclusive or 1PI leptoproduction. The kinematics of this
process is already in the picture given befdreg(2). With a target hadron (momentum
P) and a étected hadroh in the final state (momentu,) one has a situten in which
two hadrons are involved and the operator product expansion cannot be used. Within the
framework of QCD and knowing that the photon #? current couples to the quarks, it
is possible to write down a diagrammatic expansion for leptoproduction, within the deep
inelastic limit(Q? — oo) as relevant diagrams only the ones givefFig. 5for 1-particle
inclusive scattering.

In analogy with the case of inddive scattering, we also in 1-particle inclusive scattering
paametrize the momenta with the help of two lightlike vectors, which are chosen now
along the hadron momenta,

2 2 2
9°=-Q z, Q My
=—n_+ n
P2 = M2 Y N W 2
P2 = M? Q Q
=—n_ — —n; +
Q? <49 NG ﬁ+ ar
2P-q=—_— xgM?2
® o, =22 n 4+ —_n,
2Ph-q=-zQ QVv?2 Xgv/2

An additional invariantz, comes in. Note that the expansion is appropriate for the so-called
current fragmentation, in which case the produced hadrbarswith respect to the target
momentum, i.eP - P, ~ Q2. The minus componerp™ is irrelevant in the lower soft
part, while the plus componeht is irrelevant in the upper soft part. Note that after the
choice of P and P, one can no longer omit a transverse component in the other vector, in
the consideration above put in the momentum trangf@ne es that one has (up to mass
effects) the relation

P/ A
q.’F:q“—FXBP“—iE—QTh“. (66)

This relation allows the experimental determination of the ‘transverse momentum’ effect
from the external vectorg, P and P, which are in general not collinear. The vector
defines the orientation of the hadronic plané&ig. 2

An important consequence in the theoretical approagb.(5) is that one can no longer
simply integrate over the transverse components of the quark momenta.

8.1. Structure functions and cross sections

For an unpolarized (or spin 0) hadron in the final state the symmetric part of the tensor
is given by

MWs" (@, P. P) = —g" Hr + 16" HL
+ WAV H T 4+ AR + ¢ YT (67)
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Noteworthy is that also an antisymmetric term in the tensor is allowed,
MWA(q, P, Pn) = —if“A" H| 1. (68)

Clearly the lepta tensor in Eq.15) or (19) is ale to distinguish all the structures in the
semi-inclusivehadron tensor.
The symmetric part gives the cross section for unpolarized leptons,

dUOO . 47 (XZS
dxgdydznd?qr ~  Q*

— (2—-y)y1—y cospf Hit + (1 —y) cos 2y, HTT} (69)

1
XBZh{(l_Y+§y2>HT+(1_y)HL

while the antisymmetric part gives the croggson for a polarized lepton (note the target
is not polarized!)

2

doLo 4 o )
— = Ae———2Zh/1 -y sing, H| . 70
dXde thdZQT e Q2 h y ¢h LT ( )
Of course many more steture functions appear for polarized targets or if one considers
polarimetry in the final state. In this case the (theoretically) most convenient way to
describe the spin vector of the target is via an expansion of the form

MXB
-+S ———=n;y + St 71
Qx/i MXB\/— h (r1)
One has up t@(1/Q?) correctionsS. ~ M (S-q)/(P - q) andSr ~ S,, where the
subscript L still refers to perpendicular tgp andP. For apure state one hfﬁ% + S% =1,
in general this quantity being less or equal than one.

S =-5

8.2. The parton model approach

The expression forV,, can be rewritten as a nonlocal product of currents and it is a
straghtforward exercise to show by inserting the currgik) = : ¥ (X)y,. ¥ (X) : that
for 1-particle inclusive scattering one obtains in tree approximation

ZMWuv(q; PSa PhS1) =

o f d'x €1 (PS] 1 T} 00 () jk¥k(X) -
X Y 1X; P (O6; PhShl s 11O i (0) < [PS)
X

1 ‘ B
= 20’ f d*x €% (PSP 00¥1 (0)IPS) (1)

X <0I1ﬁk(X)ZIX; Pn$h)(X; PhSl¥(0)0) (y)ii

T 20t / d*x X (PSIYx (¥ (OIPS) (i
X (01100 D 1X; PhS) (X; P&l (010} () k.
X
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= fd“pd“ka“(p+ q—Kk) Tr(2(py.AK W)

+ {q < _q} , (72)
n < v
where
i (P) = G2 /d“s ePE (PS[Y (O (§)IPS),
1 : _
A (k) = (27'[)4/d4$ X5 (01Yn(§) D 1X: PaSh)(X: Ph&[¥1(0)]0).
X

Note that in¢ (quark production) a summation over colors is assumed, white (quark
decay) an averaging over colors is assumed. The quantitiaad A correspond to the
blobs inFig. 5and parametrize the soft physics, leafto the definitions of distribution
and fragmentation function48,14]. Soft refers to all invariants of momenta being small
as compared to the hard scale, i.e. dgip) one hasp? ~ p- P ~ P2 = M2 « Q2.
In general many more diagrams have to be considered in evaluating the hadron tensors,
but in thedeep inelastic limit they can be neglectedonsidered as corrections to the soft
blobs. We return to this later.

9. Collinear parton distributions

The form of @ is constrained by hermiticity, parity and time-reversal invariance. The
guantity depends besides the quark momentpion the target momenturd and the spin
vectorS and one must have

[Hermiticity] = &T(p, P, S) = y0 &(p, P, S yo, (73)
[Paity] = &(p,P,S) =y &(p, P. -9 o, (74)
[Timerewrsal] = &*(p, P, S = (—iysC) #(p, P, S) (—iysC), (75)

whereC = iy?yp, —iysC = iyly3andp = (p°, —p).

To obtain the leading contribution in inclusideep inelastic scattering one can integrate
over the componenp™ and the transverse momenta (see discussion in the section where
the parton model has been derived). Thiggration restricts the nonlocality ia(p). The
relevant soft part then is a particular Dirac trace of the quantity

&ij (X) =/dp‘d2pT oij(p, P, 9

} (76)
§t=t71=0
depending on the lightcone fractian= p*/P*. Whenone wants to calculate the leading
order in 1/ Q for a hard process, one looks for leading part®ipP* becauseP™ o Q.
The leading contributionl[5] turns out to be proportional tV/ P*)0,

vs[ B, Ayl
=

d - . J—
_ /zie'P'f(P, SV O (9P, S)
JT

1
P(x) = > { f1(X) Ay + SLg1(X) y5 Ay 4+ ha(X) (77)
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The precise expression of the functiohgx), etc. as integrals @r the amplitudes can be
easily written down after tracing with the appropriate Dirac matrix,

dge— - _
F00 = / o &PE P ST O Y EIP.S) , (78)
i §+=gr=0
de— . _
S g0 = / &P (P ST O sy @)1, 9 , (79)
7 £+=¢r=0
. ds— —
S hy(x) = / &P (P ST 0 15y @I, 9 , (80)
T g+=£7=0

including flavor indices, the functiontciq(x) =q(x) andgi‘(x) = Aq(x) are precisely the
functions that we encountered before.

The third function in the above parametrization is knowrrassversity or transverse
spindistribution [16]. Including flavor indices one also denotElGSX) = §q(X). Inthe same
way as we hag £en for f1(x) andgi(x), the functionh; can be interpreted as a density,
but oneneeds instead of the projectors on quark chirality stefgg, = %(1 + ys5), those

on quark transvese spin state®;,;, = 3(1 £ y'y5). Onehas

f1(x) = fir(X) + f1L(X) = f14(X) + f1 (%), (81)
g1(x) = fir(X) — f1L(X), (82)
hi(x) = f13(x) — f1,(x). (83)

This results in some trivial bounds such &gx) > 0 and|gi1(x)| < fi(X). We aleady
did discuss the support and charge conjugation propertids(a@f. The armlysis for all
these functions shows that the support is in all casés< x < 1, while the charge
conjugation properties of the functions aféx) = — f (—x) (C-even) forf; andh; and
f(x) = +f(—x) (C-odd) forg;.

The Dirac structure foh; in terms of chirality states is/ gy and ¥ ¥r. Such
functions are calledhiral-odd. Since the QCD-interactions preserve chirality, this function
cannot be measured in inclusive deep inelastic scattering.

While the evolution equations fog(x) and Aq(x) require quark—quark and
quak—gluon splitting functions, the evolution fég(x) does notinvolve rxing with gluon
distributions because difie chiral-odd nature dig(x). Thesplitting function is given by

42
3(1-8)4

5qu($)= +286(1—¢). (84)

10. Boundson thedistribution functions

The trivial bounds on the distribution functiong{(x)| < f1(x) and|gi(x)| < f1(x))
can be sharpened. For instance one can look explicitly at the structure in Dirac space of the
correlation functiord;j . Actudly, we will look at the correlation function&? yo)ij , which

involve at leading order matrix eIemem@{j (0)y4i (§). Onehas in Weyl representation
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(YO =pl, ¥y = —ip2e!, y5 = iyQyly2y3 = p3) the marices
100 1000 00O
P, — 0000’ Py ys 000 O ’ Pyl — 0000.
0000 000 O 0000
000 000-1 1000

The good projector only leaves two (independent) Dirac spinors, one righthéRylexhe
lefthanded(L). On this basis of gooR and L spinors the for hard scattering processes
relevantmatix (¢ pi_) is given by

fi+S o (5%—i3%)h1)' (85)

(St+is$Hhy H-S @

One can also turn th&dependent correlation functioé into a matrix n the nucleon
spin space via the standard spifRdengty matrix p(P, S). The reldion is &(x; P, S) =
Tr [@(X; P) p(P, S)]. Writing

(@ p)ij(x) = (

(x; P,S) = do + S P + St #1 + S $2, (86)

one has on the basis of spifi2target tates withS = +1 andS = —1 resgectively

(87)

Do+ O P —i P2
sy (X) = ( .

L 4+id2 do— P
Generalizing®(p) to matrix elements between state, s| and |P, ') one has for the
matix M = (&yi_)T (transposed in Dirac spacefMv > 0 for any drection v in

Dirac space. On the basisR, — R, +L and—L the matrk in quark® nucleon spin-space
becomes

fi+g1 0O 0 2hy ®
fi—g1 0 0 ®
d(x)p)t =
W 0 0 fi-g 0 |® (88)
2h 0 0 fi+g) =@

® ® © ©

Of this matrix any diagonal matrix element must always be positive, hence the eigenvalues
must be positive, which gives a bound on the distribution functions stronger than the trivial
bounds, namely

1
lhi(x)| < E(fl(x) + 01(x)) (89)

known as the Soffer boundT].
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11. Transverse momentum dependent correlation functions
Without integration ovepr, the softpart is

£-d% T

()3 ePE (PSP O E)IP. S

P(X,pr) = (90)

§+=0

For the kading order results one can write down parametrizations which for the parts
involving unpolarized target$O), longitudinally polarized targetél) and transversely
polarized targetsT) up to parts proportional tM /P take the form 18,19

1 i 9
Po(X,pT) = 3 { fa(x, pr) fix +hy(x, pr) %} (91)
DL(X, pT) = —{SL 1L (X, pT) ¥5 Aty + S hij (X, DT)%} (92)

€uvpa YN - St
Liltd +pT$+pTM 1T (X, PT) ¥5 Nt

1
Irx pr) =5 { f5 (X, pr) Y
+hit (X, p1) M
DT Sr

=g i pr )M}. (93)

2M

All functions appearing here have a natural interpretation as densities. This is seen as
discussed before for ther-integrated functions. Now it includes densities such as the
density of longitudinally polarized quarks in a transversely polarized nuc(lggﬂ and

the density of transversely polarized gksin a longitudinally polarized nuclec{h L)

Upon integration overpt not all functions survive. We are then left Wltflgl(X)
obtained after integration afi; (X, pr) andhi(x) with contributions fromhit (X, pt)
andhs (X, pr).

Evolution is directly related to the asymptotic behavior of the functions. The assumption
that the functions vanish sufficiently fast as a function of the invaripnf and p?, which
at constank implies a sufficiently fast vanishing as a functior‘;ﬁf, simply twrns out not
to be true. Assming that the result fop% > 12 is given by he diagram shown ifig. 4
onefinds that the extra distribution written in termsjgf becomes

2> 2 1 2 1d X
f1(x, p2) =5 “S(“ ) / & qq< ) f1(y: 1), (94)

T

which givesfi(x; u?) = fé‘ dp% f1(x, p%) a logarithmic scale dependence.
Actually we find that different functins survive when one integrates opgrweighting
with pf, e.g.

700 = [ Pr - 0. Pr) = { 95700 SF fivs — SLh Y (0

[y, nylys o iy, fel
X 7; - fllT(l) €pyN S‘F—hf(l) T i } (95)
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involving transverse moments defined asg\> (x) = [ d®pr (p%/2M?) git (X, pr), and
similarly for the otheffunctions. The functionbf and flLT areT-odd. As we will explain

in the section on color gauge invariance theyndbvanish because time reversal invariance
cannot be used for the transverse moments. Also for fragmentation functions they will not
vanish The T-odd functions correspond to unpolarized quarks in a transversely polarized
nucleon( fllT) or transversely polarized quarks in an unpolarized had1|§|)1. Theeasiest

way to interpret the functions is by considering their place in the quark production matrix
(D(x, pr) f-)T, whichbecomesZ0]

® ® © ®
fHi+giL Iﬁ/I—TI~°«i¢g1T %e_i‘f’hﬁ 2hy
%e_i‘p gir fi—giL %e_m hiz ol oio hiy
Pl gy, Pl enty  giogn ety
2h —%ewhh —TM—T|€4¢81T fi+giL
InLthis repIesentatioﬁ—odd functions appear as imaginary parf§LT = Imgr and
h;y =Imhy; .

12. Fragmentation functions

Just as for the distributio functions one can perform an analysis of the soft part
describing the quark fragmentatioh4]. One needs

detd% | _
Az kr) = Z/ & _FET ke Tr(01ys &) [Ph. X) (P, XIT;O)10)] . (96)
X (2m) e —o
For the production of unpolarized (or spin 0) hadrdng hard processes one needs to
leading order in 1Q the(Mh/Ph_)0 part of the correlation function,

i[Kr, A-]

Ao(z, k) = zD1(z, Ky) - +zHi(z k) 2N

(97)
The arguments of the fragmentation functiddg and Hf arez = B, /k™ andk} =
—2zkT. The first isthe (lightcone) momentum fracticof theproduced hadron, the second
is the transverse momemtuof the produced hadron with respect to the quark. The
fragmenation functionD; is the equivalent of the distribution functiofy. It can be
interpreted as a quark decay function, giving the probability of finding a hadriona
quak. Thequantity nn = [ dz D1(2) is the nunber of hadrons. The normalization of the

fragmentation functions is given By, [ dz z D;‘_’h(z) =1.

The functionHll, interpretable as the difference between the numbers of unpolarized
hadrons produced from a transversely polarized quark depending on the hadron’s



P.J. Mulders / Progressin Particle and Nuclear Physics 55 (2005) 243-269 265

transverse momentum, is allowed becaudethe non-applicability of time reversal
invariance R1]. This is natural for the fragmentation function823] because of the
appearance of out-stat¢B,, X) in the definition of A, in contrast tothe plane wave
staks appearing ip. The function Hll is of interest because it thiral-odd. This means
that it can be used to pbe the chiral-odd quark distribution functitm, which can be
achieved e.g. by measuring a particulamaaihal asymmetry of produced pions in the
current fragmentation region.

The spin structure of fragmentation functions is also conveniently summarized by
explicitly giving it on a R and L chiral quark basis, for which we find for decay into
spinzero hadrons,

Jkrle™ )\ ®

D T
(A(z, kp) )T = lkp | e+id h 98
71LH[L D ( )
M,ﬁ '\[_/'

12.1. Examplesof azimuthal asymmetries

Transerse momentum dependence shows upéattimuthal dependence in the SIDIS
cross section (vidh or transverse spin vemts), in most cases requiring polarization
of beam and/or target or requiring polarimet®425]. Examples of leading azimuthal
asymmetries, appearing for polarized leptoproduction are

2
<$ singf —¢é)> = T ) (1— y+%y2)
(6]

M T Q4
x Zeg xg f5 D% (xg) D2 (zn). (99)
a,a
. 4ra®s
<SA—1 sin(@, +¢§)> = % ISTIA—y) Y exahixe)Hy V@), (100)
oT a,a

The notation(W) is the gr-integrated crossection with weightw. The factor Qt is
included, because it totfeer with the directiorh combines togr, alowing a defolding

of the crosssection in distribution and fragmentation parts (one of them weighted with
transverse momentum). Note thadth of these asymmetries involMe-odd functions,

which can only appear in single spin asymmetries. The latter can easily be checked from
the conditons on the hadronic tensor, which are the same as those i®E(LY). They
require an odd number of spin vectors entering in the symmetric part and an even number
of spins entering inhte atisymmetric part of the hadron tensor. An extended review of
transverse momentum dependent functions and transversity can be found ibaRef. [
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Fig. 6. Examples of gluonic diagrams that must beudeld at subleading order in lepton hadron inclusive
scattering (left) and the soft part entering this process (right).

13. Inclusion of subleading contributions

If one proceeds up to order/® one also needs terms in the parametrization of the
sdft part proportional toM /P ™. Limiting ourselves to the@r-integrated correlations one
needs 15

1 9
P(X) = > { fi(x) Ay + S 01(X) y5 Ay + ha(x) w}

M
+— {e(X)+gT(X)y5 Br+ S hL(x) (101)

Y5 [yi-i-’ ﬂ_]
2P+ 2 '

The functiongr, for instarte, shows up in inclusive scattering off a transversely polarized
nucleon(|S;| = 1). Oneneeds to include subleadin@/Q) in the handbag diagram,

as well as gluonic diagrams as shownHig. 6. For these on diagrams one needs
bilocal matrix elements containing’ @; one only needs the matrix element of the bilocal
combinationsy (0) gA% (&) ¥ (€) and v (0) gA%(0) ¥ (£). The sum 6the oontributions
produces matrix element$ (x) involving matrix elements of bilocal combinations
E(O)iD$ ¥ (&) for which one can use the QCD equations of motion to relate them to
the functons appearing i,

500 =2 {—(ng—gm) St s

[y®, P+lys } '

> (102)

- S.(XhL—g%)

The distribution functiongr e.g. shows up in the corresponding structure function of
polarized inclusive deep inelastic scattering

. 2MXg .
2MW," (@, P. Sr) =i TB fleels, , gr (xe). (103)
leading for the structure functiogr (xg, Q?) defined in Eq.25) to the result

1 _
or(re. Q) = 3 )% (oFxe) + gl (xe) ) (104)
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In the process of integratindpé correlation functions ovep~, pr and finally overp™,
consecutively restraining the nonlocality to liffoint-separated field§ightcone-separated
fields and local fields, interesting relations can be derived. For instance, the correlators
[ dx &lr"rsl(x) must yieldga Sy (for any w), which means that the functions in the
nonlocal correlatorsdl” “7s!(x) and ¢*7s!(x) (« transverse) yield the same result
after integration ovex, [dxgi(x) = [dxgr(x) or [dxgz(x) = 0, known as the
Burkhardt—Cottingham sumrul@7]. For quark—quark correlats, sinilar considerations
yield relations between the subleading functions and the transverse momentum dependent
leading funtions, referred to alsorentz invariancerelations, such as2824]
d

or = 0+ o 57 (105)
An interesting result is obtained by combining this relation with an often used
approximation, in which the teracton-dependent pay is set to zero. In that case the
differencedy — ¢4 vanishes. Wing Egs. 95) and (L02) this gives

_ m
X9T=X9T—g§$—mh1=0- (106)

One then can eliminatg(llT) and obtain a relation betweegy, g1 and §r (assuming

sufficient neat behavior of the functions). Fpr= gt — gi this relation takes the form

1 1
_ au(y) m | hi(x) hi(y)
o0 -~[owa- ["or 52 | [ 0] o

the Wandzura—Wilczek approximatio®d for gp, which in particular when one neglects
the quark mass term provides a simple and often used estimatge. flithas kecome the
standard with which experimentalists compare the resultgifor

14. Color gaugeinvariance

We have so far diegarded two issues. The first issue is that the correlation funétion
discussed in previous sections involves wumrk fields at different space—time points and
hence is not color gauge invariant. The second issue is the gluonic diagrams similar to the
ones we have discussed in the previous sectionRgee), among whit also careldion
functions appear involving matrix elements with longitudioat) gluon fields,

¥ (0) gA* () ¥i (§).

These do not lead to any suppression. The reason is that because-dfithex in the gluon
field the matrix element is proportional tB*, p™ or M S* rather than the proportionality
to M S7 or p§ that one gets for a gluonic matrix element with transverse gluons.
A straightforward calculation, however, shows that the gluonic diagrams with one or
more longitudinal gluons involve matrix elements (soft parts) of operatgrsyr At 1,
¥ AT At v, etc. thatcan be resummed into a correlation function

de— _
&ij (X) = /ie'p's(P, Sy (0 U0, &) ¥i(5)IP, S , (108)
2r E+=67=0
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Fig. 7. The gauge link structuie the quark—quark correlatap in SIDIS (a) and DY (b) respectively

wherel/ is a gauge link operator

-
U, &) =Pexp (—i / d¢~ A+(§)> (109)
0

(path-ordered exponential with path aloredirection). Et voila, the unsuppressed gluonic
diagrams combine into a color gge invariant carelation function [30]. We note that at
the level ofoperators, one expands

_ ;;:l/-l . ;;:l/-n _

VO E) = Z el A LR A (VX (110)
in a ®t of local operators, but only the expansion of the nonlocal combination with a gauge
link
%‘Ml . ;;:l/-n

n!

VOUOEYE =) Y(0)Dyy ... Dy, ¥ (0), (111)

n
is an expansion in terms of local gauge invariant operators.
For the pr-dependent functions, one finds that inclusiorAdf gluonic diagrams leads
to a mlor gauge invariant matrix element with links running ¥fa = +oo [31,32). For
instance in legin—hadron scattering one finds

-2
P(x, pr) = / %épf (P, Sy U, y®IP, S| , (112
£+=0

where the linki/*! is shown in Fig. 7(@). We note that the gauge link involves
transverse gluons3p34], showing that in processes involving more hadrons the effects

of transverse gluons are not necessarily suppressed, as has also been shown in explicit
model calculations3s).

Moreover, depending on the process the gauge link can also run via minus infinity,
involving the link inFig. 7(b). This is for instance the case in Drell-Yan processes. The
transverse momentum dependent distribution functions also are no longer constrained by
time-reversal, as the time resatoperation interchanges the 1 andU [~ links, leading
to the appearance df-odd functions in Eq.95), such as the Sivers functioq(%) [36].

The process dependence of the gauge link, however, points to particular sign changes
when single spin azimuthal asymmetries in semi-inclusive leptoproduction are compared to
those in for instance Drell-Yan scattering. For such effects the measurement of transverse
momentum dependence is a must, since the specific link stru@drdges not matter in
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pr-integrated functions, in which both links Kig. 7reduce to the same straight-line link
connecting 0 and.
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