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Abstract

We discuss the spin structure of quarks in hadrons, in particular the transverse spin polarization or
transversity. The most direct way to probe transversity appears to be via azimuthal spin asymmetries.
This brings in the role of intrinsic transverse momenta of quarks in hadrons and the study ofT -odd
phenomena, which are connected to single spin asymmetries.
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1. Introduction

The topic of this lecture is the spin structure of hadrons and the way it is probed in
high-energy scattering processes. We specifically study electroweak scattering processes.
One specific process, namely lepton–hadron scattering will be dealt with in detail. A signal
for an electroweak process is the presence of leptons which do not feel strong interactions.
They allow a separation of the scattering amplitude for the process into a leptonic part
and a hadronic part, where the leptonic part, involving elementary particles is known. The
structure of the hadronic part is constrained by its (Lorentz) structure and fundamental
symmetries and can be parametrized in terms of a number of structure functions. The
emerging expression for the scattering amplitude can be used to calculate the cross sections
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in terms of these structure functions. In turn one can make a theoretical study of the
structure functions. Part of this can be done rigorously with as only input (assumption if one
wants) the known interactions of the hadronic constituents, quarks and gluons, within the
standard model. For this both the electroweak couplings of the quarks needed to describe
the interactions with the leptonic part via the exchange of photon,Z0 or W± bosons as
well as the strong interactions of the quarks among themselves via the exchange of gluons
described in the QCD part of the standard model are important. For a general reference we
refer to the book of Roberts [1].

2. Leptoproduction

In this section we discuss the basic kinematics of particular hard electroweak processes,
namely the scattering of a high-energy lepton, e.g. an electron, muon or neutrino from a
hadronic target,�(k)H (P) → �′(k ′)X . In this process at least one hadron is involved.
If one does not care about the final state, counting every event irrespective of what is
happening in the scattering process, one talks about an inclusive measurement. If one
detects specific hadrons in coincidence with the scattered lepton one talks about semi-
inclusive measurements or more specifically 1-particle inclusive, 2-particle inclusive,
depending on the number of particles that are detected.

q2 = (k − k ′)2 ≡ −Q2 ≤ 0

2P · q ≡ 2M ν ≡ Q2

xB
2Ph · q ≡ −zh Q2

P · k = P · q
y
= Q2

2xB y

The variablexB is the Bjorken scaling variable, by the kinematics constrained to
0 ≤ xB ≤ 1, andxB = 1 corresponding to elastic scattering. In this scattering process
a hadron is probed with a spacelike (virtual) photon, for which one could consider a
frame in which the momentum only has a spatial component. This shows that the spatial
resolving power of the probing photon is of the orderλ ≈ 1/Q. Roughly speaking one
probes a nucleus (1–10 fm) withQ ≈ 10–100 MeV, baryon or meson structure (with
sizes in the order of 1 fm) withQ ≈ 0.1–1 GeV and one probes deep into the nucleon
(<0.1 fm)with Q > 2 GeV. Leptoproduction is characteristic for a large number of other
processes involving particles (leptons) for which the interactions are fully known together
with hadrons. The electroweak interactions with the constituents of the hadrons (quarks),
however, are also known. This opens the way to study how quarks are embedded in the
hadrons (e.g. in leptoproduction or in the Drell–Yan process,A(PA)B(PB)→ �(k)�̄(k ′)X)
or to study how quarks fragment into hadrons (in leptoproduction ande+e− annihilation
into hadrons).

For inclusive unpolarized electron scattering the cross section, assuming one-photon
exchange, is given by

E ′ dσ

d3k ′
= 1

s − M2

α2

Q4
L(S)µν 2MWµν, (1)
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Fig. 1. The physical region in deep inelastic scattering.

whereL(S)µν is the symmetric lepton tensor,

L(S)µν (k, k ′) = Tr
[
γµ( � k ′ + m)γν( � k + m)

] = 2kµk ′ν + 2kνk
′
µ − Q2gµν (2)

andWµν is the hadron tensor, which contains the information on the hadronic part of the
scatteringprocess,

2M Wµν(P, q) = 1

2π

∑
n

∫
d3Pn

(2π)3 2En

×〈P|J †
µ(0)|Pn〉〈Pn |Jν(0)|P〉(2π)4δ4(P + q − Pn), (3)

where|P〉 represents a target with momentumP. For inclusive scattering the tensor can be
rewritten to

2M Wµν = 1

2π

∫
d4x ei q·x 〈P|[J †

µ(x), Jν(0)]|P〉. (4)

Including polarization this expression remains valid if summation and averaging over spins
is understood.

What is one actually probing in leptoproduction? In the leptoproductione+H → e′+X
the (unobserved) final stateX can be the target (elastic scattering) or an excitation
thereof. In a plot of the two independent variablesν andQ2 (seeFig. 1) elastic scattering
corresponds to a line given byν = Q2/2M, whereM is the mass of the target. As we have
seen the behavior of the cross section along this line, where the ratioxB = 1, is (besides
the 1/Q4 of the Mott cross section) proportional to a form factor squared, measuring the
expectation value of the electromagnetic current〈P ′|Jµ(x)|P〉. Exciting the nucleon gives
rise toinelastic contributions in the cross section atν > Q2/2M, starting at the threshold
W = M + Mπ . Note that as a function ofxB any resonance contribution will move closer
to the elastic limit whenQ2 increases. WhenQ2 and the energy transferν are high enough
the cross section will reflect elastic scattering off the pointlike constituents of the nucleon
and the cross section will become equal to an incoherent sum of the electron–quark cross
section. This is known as the deep inelastic scattering region, in which one finds Bjorken
scaling. The cross section, or more precisely the structure functions, become functions of
one (kinematic) variablexB , which isidentified with the momentum fraction of the struck
quark in the nucleon, enabling measurement of quark distributions. We will make this
explicit below. The picture will break down in the limiting cases, such asxB → 1, where it



246 P.J. Mulders / Progress in Particle and Nuclear Physics 55 (2005) 243–269

becomes dual to the summation over resonances orxB → 0, corresponding (for fixedQ2)
to ν →∞. In this regionone may employ Regge theory.

It is also possible to consider in more detailthe space–time correlations that are probed.
As already indicatedq is space-like. But from the kinematics of deep inelastic scattering
one can see that the process probes the lightcone. Sitting in the nucleon rest-frame we note
thatbothq0 = ν andq3 =

√
Q2+ ν2 go toinfinity but working at finitexB one sees that

taking the sum and the difference only one of them goes to infinity.1 Choosingq along the
negativez-axis one hasq− = (ν+|q|)/√2→∞ andq+ = (ν−|q|)/√2≈ −MN xB/

√
2.

This corresponds in the hadronic tensor which involves a Fourier transform of the product
of currents to|x+| ≈ 1/q− → 0 and|x−| ≈ 1/|q+| → 1/MxB or |x| ≈ |t| ≈ 1/MxB .
Thus, depending on the value ofxB the distances and times are not necessarily small,
but one hasx2 = x+x− − x2⊥ ≈ −x2⊥ ≤ 0, while on the other hand causality requires
that x2 ≥ 0. Therefore, one sees that deep inelastic scattering probes the lightcone,
x2 ≈ 0.

3. Structure functions and cross section

The simplest thing one can do with the hadron tensor is to express it in standard tensors
and functions depending on the invariants, thestructure functions. Instead of the traditional
choice using tensors,gµν , PµPν andεµνρσ qρPσ multiplying structure functionsW1, W2
andW3 depending onν andQ2, we immediately go to a dimensionless representation. First
we define a Cartesian basis of vectors [2], starting with the natural space-like momentum
(defined byq). Using the target hadron momentumPµ one can construct an orthogonal
four vectorP̃µ = Pµ − (P · q/q2) qµ, which istimelike with lengthP̃2 = κ P · q with

κ = 1+ M2 Q2

(P · q)2 = 1+ 4 M2x2
B

Q2
. (5)

The quantityκ takes into account mass corrections∝ M2/Q2 which will vanish for large
Q2 (κ → 1). Thus we define

Zµ ≡ −qµ and Tµ ≡ − q2

P · q P̃µ = qµ + 2xB Pµ. (6)

For thesevectors we haveZ2 = −Q2 andT 2 = κ Q2 and we will often use the normalized
vectorsẑµ = −q̂µ = Zµ/Q and t̂µ = Tµ/Q

√
κ . With respect to these vectors one can

also define transverse tensors,

gµν⊥ ≡ gµν + q̂µq̂ν − t̂µ t̂ν and ε
µν
⊥ ≡ εµνρσ t̂ρ q̂σ . (7)

To get the parametrization of hadronic tensors, such as the one in Eq. (4), including for gen-
erality also an (axial) spin vectorS (seeSection 4), we use the general symmetry property,

Wµν(q, P, S) = Wνµ(−q, P, S) (8)

1 Lightcone coordinates are defineda± = (a0 ± a3)/
√

2. The scalar product of two vectors is given by
a · b = a+b− + a−b+ − a1b1 − a2b2.
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as well as properties following from hermiticity, parity and time-reversal invariance,

W∗µν(q, P, S) = Wνµ(q, P, S), (9)

Wµν(q, P, S) = W νµ(q̄, P̄,−S̄) [Parity] , (10)

W∗µν(q, P, S) = Wµν(q̄, P̄, S̄) [Time reversal], (11)

wherep̄ = (p0,−p). Finally we use current conservation implyingqµWµν = Wµνqν = 0.
Note that depending on the situation not all constraints can be applied. For inclusive unpo-
larized leptoproduction one obtains as the most general form for the symmetric tensor,

M Wµν (S)(P, q) =
(

qµqν

q2
− gµν

)
F1(xB, Q2)+ P̃µ P̃ν

P · q F2(xB, Q2)

= −gµν⊥ F1(xB, Q2)︸ ︷︷ ︸
FT

+ t̂µ t̂ν
(
−F1+ κ

2xB
F2

)
︸ ︷︷ ︸

FL

, (12)

where the structure functionsF1, F2 or the transverse and longitudinal structure functions,
FT = F1 and FL , depend only on the hadron part relevant invariantsQ2 andxB . This is
the structure for the electromagnic (photon exchange) part of the electroweak interaction.
For theweak (W - or Z -exchange) part both vector and axial vector currents with different
parity behavior come in. In that case also thefollowing antisymmetric tensor is allowed,

M Wµν (A)(q, P) = iεµνρσ Pρqσ
(P · q) F3(xB, Q2) = i κ εµν⊥ F3(xB, Q2). (13)

It appears in the part of the tensor in which one of the currents in the product is a vector
current and the other an axial vector current.

The cross section is obtained from the contraction of lepton and hadron tensors. It is
convenient to expand also the lepton momentak andk ′ = k− q in t̂ , ẑ and a perpendicular
component using the scaling variabley = P · q/P · k (in the target restframe reducing to
y = ν/E). The result (including target mass corrections) is

kµ = 2− y

y

1

κ
Tµ − 1

2
Zµ + kµ⊥

= Q

2
q̂µ + (2− y)

2y

Q√
κ

t̂µ +
√

1− y + 1
4(1− κ) y2

y

Q√
κ
�̂µ

Q2→∞−→ Q

2
q̂µ + (2− y) Q

2y
t̂µ + Q

√
1− y

y
�̂µ, (14)

where�̂µ = kµ⊥/|k⊥|, is a spacelike unit-vector in the perpendicular direction lying in the
(lepton) scattering plane. The kinematics in the frame where virtual photon and target are
collinear (including target rest frame) is illustrated inFig. 2. With the definition of�̂, we
obtain neglecting mass corrections(κ = 1) for unpolarized leptons the symmetric leptonic
tensor

Lµν (S) = Q2

y2

[
−2

(
1− y + 1

2
y2
)

gµν⊥ + 4(1− y)t̂µ t̂ν
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Fig. 2. Kinematics for lepton–hadron scattering. Transverse directions indicated with a⊥ index are orthogonal to
P andq, e.g. the orthogonal component of the momentum of a produced hadron has been indicated as example.
Similarly one can consider the orthogonal component of the spin vector of the target.

+ 4(1− y)

(
�̂µ�̂ν + 1

2
gµν⊥

)
+ 2(2− y)

√
1− y t̂{µ�̂ν}

]
. (15)

The explicit contraction of lepton and hadron tensors gives for electromagnetic
scattering(only symmetric tensor) the result

dσ ep

dxBdy
= 4π α2 xB s

Q4

[(
1− y + 1

2
y2
)

FT (xB, Q2)+ (1− y)FL(xB, Q2)

]

= 2π α2 s

Q4

[
(1− y)F2(xB, Q2)+ xB y2 F1(xB, Q2)

]
. (16)

Wehave now used the known photon coupling to the lepton and parametrized our ignorance
for what happened with the hadron in a hadronic tensor. The fact that we know how the
photon interacts with the (quark) constituents ofthe hadrons will be used later to relate the
structure functions to quark properties. In the same way one also knows for the weak
interaction processes leading to an antisymmetric part containingF3 in the tensor for
unpolarized hadrons, how theZ0 andW couple to quarks. To describe weak interactions
also the antisymmetric part of the lepton tensor is needed, which we will also encounter
when we discusspolarization.

4. Polarized leptoproduction

For spin-polarized leptons in the initial state we have

L(s)µν = Tr

[
γµ( � k ′ + m)γν( � k + m)

(1± γ5 � s)
2

]
= 2kµk ′ν + 2k ′µkν − Q2 gµν ± 2i m εµνρσqρsσ . (17)

Note that for light particles or particles at high energies helicity states(ŝ = k̂)
become chirality eigenstates. ForLµν the equivalence is easily seen because forsµ =
(|k|/m, E k̂/m) (s2 = −1 ands · p = 0) one obtains in the limitE ≈ |k| the result
m sµ ≈ kµ. Then the leptonic tensor for helicity states(λe = ±) becomes

L(λe=±1/2)
µν ≈ L(R/L)

µν = L(S)µν + λe L(A)µν . (18)
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where the antisymmetric lepton tensor is given by

L(A)µν (k, k ′) = Tr
[
γµγ5 � k ′γν � k

]
2i εµνρσqρkσ . (19)

Expanding in the Cartesian sett̂ , ẑ and the vector̂� in the same way as for the symmetric
part, we have for the antisymmetric part of the leptonic tensor2 the result

Lµν (A) = Q2

y2 [−i y(2− y) εµν⊥ − 2i y
√

1− y t̂ [µεν]ρ⊥ �̂ρ]. (20)

One can use polarized leptons in deep inelastic�e p→ X to probe the antisymmetric tensor
for unpolarized hadrons, containing theF3 structure function. This contribution comes in
via the interference between theγ andZ interference term.

In the situation where the target is polarized, one has several more structure functions
as compared to the case of an unpolarized target. For a spin 1/2 particle the initial state
is described by a 2-dimensional spin density matrixρ = ∑

α |α〉pα〈α| describing the
probabilities pα for a variety of spin possibilities. This density matrix is hermitean with
Tr ρ = 1. It can in the target rest frame be expanded in terms of the unit matrix and the
Pauli matrices,

ρss ′ = 1

2
(1+ S · σ ss ′) , (21)

whereS is the spin vector. When|S| = 1 one has a pure state (only one state|α〉 and
ρ2 = ρ), when |S| ≤ 1 one has an ensemble of states. For the case|S| = 0 one has
simply an averaging over spins, corresponding to an unpolarized ensemble. To include
spin one could generalize the hadrontensor to a matrix in spin space,̃Wµν

s ′s (q, P) ∝
〈P, s′|Jµ|X〉〈X |J ν |P, s〉 depending only on the momenta or one can look at the tensor∑
α pαW̃µν

αα (q, P). The latter is given by

Wµν(q, P, S) = Tr (ρ(P, S)W̃µν (q, P)), (22)

with the spacelike spin vectorS appearinglinearly and in an arbitrary frame satisfying
P · S = 0. It has invariant length−1≤ S2 ≤ 0. It is convenient to write

Sµ = SL

M

(
Pµ − M2

P · q qµ
)
+ Sµ⊥, (23)

with

SL ≡ M (S · q)
(P · q) . (24)

2 A useful relation is

εµνρσ gαβ = εανρσ gµβ + εµαρσ gνβ + εµνασ gρβ + εµνρα gσβ

or for a vectora⊥ orthogonal tôt andq̂,

εµνρσ ẑρa⊥σ = t̂[µεν]ρ⊥ a⊥ρ,

εµνρσ t̂ρa⊥σ = −ẑ[µεν]ρ⊥ a⊥ρ.
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Fig. 3. The handbag diagram for inclusive deepinelastic scattering off a hadronic target.

For apure state one hasS2
L + S2⊥ = 1. Parity requires that the polarized part of the tensor,

i.e. the part containing the spin vector, enters in an antisymmetric tensor of the form

M Wµν (A)(q, P, S) = SL
iεµνρσqρPσ
(P · q) g1+ M

P · q iεµνρσqρS⊥σ (g1+ g2)

= −iSL ε
µν
⊥ g1− i

2M

Q
t̂ [µεν]ρ⊥ S⊥ρ xB(g1+ g2). (25)

It contains two structure functionsg1(xB, Q2) and g2(xB, Q2). One also usesgT ≡
g1+ g2. Theresulting cross section is

d
σL L

dxB dy
= 4π α2

Q2
λe

[
SL (2− y) g1− |S⊥| cosφ�S

2M

Q

√
1− y xB(g1+ g2)

]
. (26)

(Note that in all of the above formulas mass corrections proportional toM2/Q2 have been
neglected.)

5. The parton model

We will not follow the standard intuitive approach that folds theγ ∗-quark cross section
with a quark momentum distribution, but use a diagrammatic approach. The parton model
is obtained by just considering the so-called quark handbag diagram (seeFig. 3) andits
antiquark equivalent. These diagrams turn out to be the leading ones out of a full set in
which the connection to hadrons is left as an unknown quantity [3,4]. The basic expression
corresponding to the handbag diagram restricting us to the quark part is

2M Wµν(P, q) =
∑

q

e2
q

∫
dp− dp+ d2p⊥ Tr(Φ(p) γ µ( � p+ � q + m)γ ν)

× δ((p + q)2− m2)

≈
∑

q

e2
q

∫
dp− dp+ d2p⊥ Tr

(
Φ(p) γ µ

� q
2q−

γ ν
)
δ(p+ + q+)

≈ −gµν⊥
1

2

∫
dp− d2p⊥ Tr(γ+Φ(p))

∣∣∣∣
p+=xB P+

+ · · · , (27)
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whereΦ(p) is the forward antiquark-target scattering amplitude,

Φi j (p, P, S) = 1

(2π)4

∫
d4ξ ei p·ξ〈P, S|ψ j (0)ψi (ξ)|P, S〉, (28)

diagrammatically represented by

Comparing with the general form of the hadronic tensor, we read off (including now
also the antiquark part)

2 F1(xB) = 2M W1(xB, Q2) =
∑

q

e2
q [q(xB)+ q̄(xB)] , (29)

with

q(x) = 1

4π

∫
dξ− eix P+ξ−〈P, S|ψ(0)γ+ψ(ξ)|P, S〉

∣∣∣∣
ξ+=ξ⊥=0

, (30)

q(x) = 1

4π

∫
dξ−e−ix P+ξ−〈P, S|ψ(0)γ+ψ(ξ)|P, S〉

∣∣∣∣
ξ+=ξ⊥=0

. (31)

The result is (as expected) a lightcone correlation function of quark fields. It is easy to
show that the antiquark distributions are given bȳq(x) = −q(−x). To do this start with
the ‘proper’ definition of antiquark distributions,

Φc
i j (p) = 1

(2π)4

∫
d4ξ ei p·ξ 〈PS|ψ c

j (0)ψ
c
i (ξ)|PS〉, (32)

with ψc(ξ) = Cψ
T
(ξ). Show that one findsΦ(p) = −C(Φc)TC†. One also needs to use

the anticommutation relations for fermions, to obtainΦi j (p) = −Φi j (−p), which leads to
the crossing relationsfor quark and antiquark distributions,q(x) = −q(−x).

5.1. The operator in coordinate space

The parton result for the structure functions can also be derived by inserting free
currents in the hadronic tensor for the current commutator and using the expression for
the free field commutator. Using the anticommutation relations for free quark fields,
given by {ψ(ξ), ψ(0)} = 1

2π � ∂ δ(ξ2) ε(ξ0) one derives for thegµν contribution in the
current–current commutator for quarks

[Jµ(ξ), Jν (0)] = [: ψ(ξ)γµψ(ξ) :, : ψ(0)γνψ(0) :]
= −gµν

2π

[
∂ρ δ(ξ

2) ε(ξ0)
]
: ψ(ξ)γ ρψ(0)− ψ(0)γ ρψ(ξ) :. (33)

An important feature, evident in the free-current commutator, is the lightcone dominance.
By sandwiching the commutator between physical states and taking the Fourier transform,
it is a straightforward calculation to obtain again the hadron tensor and the same result as
in the diagrammatic approach above. Details can be found in [5].
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5.2. Flavor dependence

The explicit flavor and spin dependence of the structure functions in electroweak
processes depend on the probe being aγ , Z0 or W± boson. We are in the situation,
however, that we know the currents in termsof the quark fields. Omitting the coupling
constantse or

√
GF , the standard model currents coupling to fermions are

J (γ )µ = : ψ(x) Q γµ ψ(x) :, (34)

J (Z)µ = : ψ(x) (I 3
W − Q sin2 θW ) γµL ψ(x) : − : ψ(x) Q sin2 θW γµR ψ(x) :

= : ψ(x) (I 3
W − 2 Q sin2 θW ) γµ ψ(x) : − : ψ(x) I 3

W γµγ5ψ(x) :, (35)

J (W )
µ = : ψ(x) I±W γµL ψ(x) :, (36)

whereγµR/L = γµ(1± γ5).
Using the electromagnetic current, one obtains for the one-photon exchange

contribution toep scattering the followingexpression in terms of the distribution functions
for the quarks with various flavors,u(x), d(x), etc. and the corresponding antiquark
distributions,u(x), etc.,

Fep
2 (x)

x
= 2 Fep

1 (x) = 4

9
(u(x)+ u(x))+ 1

9
(d(x)+ d(x))

+ 1

9
(s(x)+ s(x))+ · · · . (37)

By definition quark distributions in the proton are used as reference. For a neutron one has
using isospin summetry,u p = dn, dp = un, sp = sn and one has foren scattering

Fen
2 (x)

x
= 2 Fen

1 (x) = 1

9
(u(x)+ u(x))+ 4

9
(d(x)+ d(x))

+ 1

9
(s(x)+ s(x))+ · · · . (38)

As the difference between quarks and antiquarks contributes to the quantum numbers, it is
convenient to divide the quark distribution in a valence part and a sea part

q(x) = qv(x)+ qs(x) with qv(x) ≡ q(x)− q(x). (39)

The quark distributions are positive definite (see alsoSection 6), leading to specific
inequalities. For instance the experimental observation thatFep

2 /Fen
2 tends towards 1/4

for x → 1 showsdominance ofu(x) over d(x) nearx → 1. It is clear that in order to
determine the quark distributions, several processes are needed. For compilations we refer
to Ref. [6].

6. Properties of quark distributions

6.1. Interpretation as densities

To convince oneself that the above expressions forq(x) and q(x) actually can be
interpreted as quarkmomentum density one needs to realize thatψ(ξ)γ+ψ(0) =√

2ψ†
+(ξ)ψ+(0) whereψ± = P± ψ are projections obtained with projection operators
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ontogood quark states [7], P± = 1
2γ
∓γ±. One thencan insert a complete set of states and

obtain

q(x) =
∫

dξ−

2π
√

2
ei p·ξ 〈P, S|ψ†

+(0)ψ+(ξ)|P, S〉
∣∣∣∣
ξ+=ξT=0

= 1√
2

∑
n

|〈Pn |ψ+|P〉|2 δ(P+n − (1− x)P+), (40)

which represents the probability that a quark is annihilated from|P〉 giving a state|n〉 with
P+n = (1− x)P+. SinceP+n ≥ 0 one sees thatx ≤ 1. From the antiquark distribution
q̄(x) and its relation to−q(−x) one obtainsx ≥ −1, thus showing that the support of the
functions is−1≤ x ≤ 1 [8,9].

6.2. Polarized parton densities

Analogously to the unpolarized structure functions one can obtain for the polarized
structure functions

2 g1(xB) =
∑

q

e2
q [
q(xB)+
q(xB)] (41)

where

SL
q(x) = 1

4π

∫
dξ− eix P+ξ−〈P, S|ψ(0)γ+γ5ψ(ξ)|P, S〉

∣∣∣∣
ξ+=ξ⊥=0

, (42)

SL
q(x) = 1

4π

∫
dξ−e−ix P+ξ−〈P, S|ψ(0)γ+γ5ψ(ξ)|P, S〉

∣∣∣∣
ξ+=ξ⊥=0

, (43)

a correlation existing in a hadron with the lightcone component of the spin vectorSL �= 0.
This represents the difference of chiral even and odd quarks (in infinite momentum
frame quarks parallel or antiparallel to proton spin). The corresponding quark fields are
projected out byPR/L = (1 ± γ5)/2, which commute with the projectorsP±. In this
way one obtains distributionsqR(x) and qL(x) for which q(x) = qR(x) + qL(x) and

q(x) = qR(x)− qL(x).

6.3. Sum rules

As probability distributions the quark distribution functions satisfy a number of obvious
sum rules, such as∫ 1

0
dx uv(x) = nu = 2,

∫ 1

0
dx dv(x) = nd = 1,

∫ 1

0
dx sv(x) = ns = 0, (44)

corresponding to the (net) number of each of these quark species in the proton. This also
leads to sum rules for the structurefunctions.

Weighing the distribution functions withx , onecan determine the quantity∫ 1

0
dx x Σ (x) ≡

∫ 1

0
dx x[u(x)+ u(x)+ d(x)+ d(x)

+ s(x)+ s(x)+ · · ·] = εq . (45)
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It represents the total momentum fraction of the proton carried by quarks. It must obviously
be smaller than one.

For thepolarized structure functions one can obtain similar estimates using the naive
flavor-spin structure of theproton based onSU(6) symmetry,

|p ↑〉 = 1√
18

(
2 u↑u↑d↓ − u↑u↓d↑ − u↓u↑d↑ + [d at places 1 and 2]) . (46)

From this wave function one finds in terms of a normalized one-quark distributionq(x) the
‘naive’ results

u↑(x) = 5

3
q(x), u↓(x) = 1

3
q(x), d↑(x) = 1

3
q(x), d↓(x) = 2

3
q(x), (47)

or

u(x) = 2q(x), 
u(x) = 4

3
q(x), d(x) = q(x), 
d(x) = −1

3
q(x), (48)

and all other distributions (strange quarks or antiquarks) are zero. In this case one obtains
naive sum rule results for the polarized distributions,∫ 1

0
dx [
u(x)+
u(x)] = 
u = 4

3
,∫ 1

0
dx [
d(x)+
d(x)] = 
d = −1

3
. (49)

Note that the sum
Σ = 
u + 
d + 
s + · · · represents (as probability distributions)
the totalnumber of quarks parallel to the proton spin. If the proton spin comes from the
quark spins, as is the case for the aboveSU(6) wave function multiplying a spherically
symmetric spatial wave function, oneexpects this to be one. It leads to

Γ p
1 =

∫ 1

0
dx g p

1 (x) =
1

2

[
4

9

u + 1

9

d + 1

9

s

]
= 5

18
≈ 0.28, (50)

Γ n
1 =

∫ 1

0
dx gn

1(x) =
1

2

[
4

9

d + 1

9

u + 1

9

s

]
= 0, (51)

which is in disagreement with the experimental result [10], Γ p
1 ≈ 0.15 and the result

Γ n
1 ≈ −0.04, obtained from the deuteron sum ruleΓ d

1 = (Γ p
1 + Γ n

1 )
(
1+ 3

2ωD

)
with

ωD ≈ 0.05 being theD-wave probability in the deuteron.
The importance of these sum rules becomes clearer when one starts with the expressions

for the distribution functions in terms of matrix elements of bilocal operator combinations.
One has∫ 1

−1
dx q(x) =

∫ 1

0
dx [q(x)− q(x)] = 〈P|ψ(0)γ

+ψ(0)|P〉
2P+

= nq , (52)

wherenq is the coefficient in the expectation value〈P|ψ(x)γ µψ(0)|P〉 = 2nq Pµ. The
coefficientnq is precisely the quark number because the vector currents are used to obtain
the quantum numbers for flavor (upness, downness, strangeness, etc.). In general one
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obtains∫ 1

−1
dx xn−1 q(x) =

∫ 1

0
dx xn−1 [q(x)+ (−)n q(x)]

= 1

2P+
〈P|ψ(0) γ+

(
i∂+

P+

)n−1

ψ(0)|P〉. (53)

The moments of the structure functions are related to expectation values of particular quark
operators. In a field theory these matrix elements depend on a renormalization scaleµ2 and
thus a similar renormalization scale dependence must be present for the structure functions.
In some cases such as the rule in Eq. (52) the resultis scale independent. This is true if the
operator combination corresponds to a conserved current. The situation is different for the
second moment that appears in the momentum sumrule in Eq. (45),∫ 1

−1
dx x q(x, lnµ2) =

∫ 1

0
dx x [q(x, lnµ2)+ q(x, lnµ2)]

= 〈P|ψ(0) iγ+∂+ψ(0)|P〉(µ2)

2 (P+)2
= εq(µ

2), (54)

where εq is defined in〈P|ψ(0) iγµ∂νψ(0)|P〉 = 2εq PµPν + · · · and is the relative
contribution of quarks to the energy momentum tensor of the proton (the dots indicate
trace terms∝ M2 gµν). Only the first moment of the sum including quarkand gluon
distributions in the proton is scale independent as the local operator turns out to be the
energy momentum stress tensor of QCD.

Forpolarized structure functions the lowest moment is given by∫ 1

−1
dx 
q(x, lnµ2) =

∫ 1

0
dx [
q(x, lnµ2)+
q(x, lnµ2)]

= 〈P|ψ(0)γ
+γ5ψ(0)|P〉(µ2)

2 P+
= 
q(µ2). (55)

The quantity
q appears in〈P|ψ(0)γ+γ5ψ(0)|P〉 = 2M 
q Sµ, the matrix element
of the axial current, whereSµ is the spin vector for the nucleon. Also thisis in general
not independent of the renormalization scale. In particular the flavor singlet axial current
is not conserved (because of the Adler–Bardeen–Jackiw-anomaly). It implies, however,
a breaking independent of the flavor of the quarks. For the non-singlet axial currents
that are important in the flavor-changingweak decays of baryons, e.g. for the neutron
∝ τ+ γ µγ5, the current is conserved and the corresponding matrix elements are scale
independent. From the neutron decay one deduces the (scale independent) flavor non-
singlet combinations


q3 = 
u(µ2)−
d(µ2) = G A = 1.259, (56)

while from hyperon decays one finds (usingSU(3) symmetry),


q8 = 
u(µ2)+
d(µ2)− 2
s(µ2) ≈ 0.6, (57)
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in terms of these combinations and thescale-dependent singlet combination,


Σ (µ2) = 
u(µ2)+
d(µ2)+
s(µ2), (58)

one has

Γ p/n
1 (x) = 1

9

Σ (µ2)± 1

12

q3+ 1

36

q8. (59)

A sum rule involving only flavor non-singlet combinations is for example thepolarized
Bjorken sum rule [11],∫ 1

0
dx [gep

1 (x)− gen
1 (x)] =

1

6

q3 = G A

6
≈ 0.21, (60)

in reasonable agreement with experiment. Note that this result is a factor 0.75 smaller than
the naive expectation for whichG A = 
q3 = 5/3 instead ofG A ≈ 1.26. A long-known
explanation for this reduction is the relativistic nature of quarks in hadrons implying a
sizablep-wave contribution in the lower components of the quark spinor that reduces the
spinor densitiesψγ5γ3ψ = ψ†σzψ.

Using the result forΓ p
1 or Γ n

1 as the third input one can solve for
Σ , leading to

Σ ≈ 0.2, very small compared to the naive expectations
Σ being of the order of 0.75
(taking the same reduction factor for relativistic quarks as forG A). This wasknown as the
‘proton spin puzzle’. At present we know that the scale dependence is important and that
the deep inelastic measurements imply
Σ (20 GeV2) ≈ 0.2.

7. QCD corrections to structure functions and quark distributions

There are two sorts of corrections that appear when higher orders in the strong coupling
are included. The first concerns the relation of structure functions and quark distributions.
The structure functions or sum rules constructed from them get parts that are proportional
to αs . For instance, the longitudinal structure function no longer remains zero, violating
the Callan–Gross relation at orderαs . Another example is the spin sum rule, which gets a
correction(1− αs/π), or explicitly (including also the next order [12]),∫ 1

0
dx

[
g p

1 (x, Q2)− gn
1(x, Q2)

]
= G A

6

(
1− αs

π
+ α2

s

π2 (−4.5833+ f/3)

)
, (61)

where f is the number of (active) flavors. This gives an excellent explanation of the
experimental resultΓ p

1 − Γ n
1 ≈ 0.19 being somewhat smaller thanG A/6= 0.21.

The second type of corrections give the scale dependence of the quark and gluon matrix
elements appearing in the moments of structure functions, e.g.
u(Q2), or they can be
obtained immediately for the fullx-dependent quark distributions, known as evolution
equations,

∂q(x, ln Q2)

∂ ln Q2
= αs(Q2)

2π

∫ 1

x

dz

z
q(z) Pqq

(
x

z

)
. (62)
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Fig. 4. Ladder diagrams used to find the evolution equations.

Fig. 5. The simplest (parton-level) diagrams for semi-inclusive scattering, of which we consider one-particle
inclusive leptoproduction. Note that also the diagram with opposite fermion flow has to be added.

where

Pqq (ξ) = 4

3

1+ ξ2

(1− ξ)+ + 2δ(1− ξ) (63)

with ∫ 1

0
dx

f (x)

(1− x)+
≡
∫ 1

0
dx

f (x)− f (1)

1− x
(64)

while this splitting function describes how QCD corrections arising fromq → qG splitting
are incorporated into the parton distributions (Fig. 4(a)), one needs in addition other
splitting functions such asPqG describing how quark and gluon distribution functions mix
(Fig. 4(b)). Since gluons are flavor-blind, non-singlet and valence distribution functions are
not affected by such corrections.

The splitting function for the polarized distribution functions is given by


Pqq(x) = Pqq(x) = 4

3

1+ ξ2

(1− ξ)+ + 2δ(1− ξ). (65)
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8. Quark correlation functions in 1PI leptoproduction

We now consider the case in which one particleis detected in coincidence with the
scattered lepton, one-particle inclusive or 1PI leptoproduction. The kinematics of this
process is already in the picture given before (Fig. 2). With a target hadron (momentum
P) and a detected hadronh in the final state (momentumPh ) one has a situtation in which
two hadrons are involved and the operator product expansion cannot be used. Within the
framework of QCD and knowing that the photon orZ0 current couples to the quarks, it
is possible to write down a diagrammatic expansion for leptoproduction, within the deep
inelastic limit(Q2→∞) as relevant diagrams only the ones given inFig. 5for 1-particle
inclusive scattering.

In analogy with the case of inclusive scattering, we also in 1-particle inclusive scattering
parametrize the momenta with the help of two lightlike vectors, which are chosen now
along the hadron momenta,

q2 = −Q2

P2 = M2

P2
h = M2

h

2 P · q = Q2

xB
2 Ph · q = −zh Q2



←→




Ph = zh Q√
2

n− + M2
h

zh Q
√

2
n+

q = Q√
2

n− − Q√
2

n+ + qT

P = xB M2

Q
√

2
n− + Q

xB
√

2
n+

An additional invariantzh comes in. Note that the expansion is appropriate for the so-called
current fragmentation, in which case the produced hadron ishard with respect to the target
momentum, i.e.P · Ph ∼ Q2. The minus componentp− is irrelevant in the lower soft
part, while the plus componentk+ is irrelevant in the upper soft part. Note that after the
choice ofP andPh one can no longer omit a transverse component in the other vector, in
the consideration above put in the momentum transferq. One sees that one has (up to mass
effects) the relation

qµT = qµ + xB Pµ − Pµh
zh
≡ −QT ĥµ. (66)

This relation allows the experimental determination of the ‘transverse momentum’ effect
from the external vectorsq, P and Ph which are in general not collinear. The vectorĥ
defines the orientation of the hadronic plane inFig. 2.

An important consequence in the theoretical approach (Fig. 5) is that one can no longer
simply integrate over the transverse components of the quark momenta.

8.1. Structure functions and cross sections

For an unpolarized (or spin 0) hadron in the final state the symmetric part of the tensor
is given by

MWµν
S (q, P, Ph ) = −gµν⊥ HT + t̂µ t̂ν HL

+ t̂{µĥν}HLT + (2 ĥµĥν + gµν⊥ )HT T . (67)
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Noteworthy is that also an antisymmetric term in the tensor is allowed,

MWµν
A (q, P, Ph) = −i t̂ [µĥν]H′LT . (68)

Clearly the lepton tensor in Eq. (15) or (19) is able to distinguish all the structures in the
semi-inclusivehadron tensor.

The symmetric part gives the cross section for unpolarized leptons,

dσO O

dxBdy dzhd2qT
= 4π α2 s

Q4 xBzh

{(
1− y + 1

2
y2
)
HT + (1− y)HL

− (2− y)
√

1− y cosφ�h HLT + (1− y) cos 2φ�h HT T

}
(69)

while the antisymmetric part gives the cross section for a polarized lepton (note the target
is not polarized!)

dσL O

dxBdy dzhd2qT
= λe

4π α2

Q2 zh

√
1− y sinφ�h H′LT . (70)

Of course many more structure functions appear for polarized targets or if one considers
polarimetry in the final state. In this case the (theoretically) most convenient way to
describe the spin vector of the target is via an expansion of the form

Sµ = −SL
MxB

Q
√

2
n− + SL

Q

MxB
√

2
n+ + ST . (71)

One has up toO(1/Q2) correctionsSL ≈ M (S · q)/(P · q) and ST ≈ S⊥, where the
subscript⊥ still refers to perpendicular toq andP. For apure state one hasS2

L + S2
T = 1,

in general this quantity being less or equal than one.

8.2. The parton model approach

The expression forWµν can be rewritten as a nonlocal product of currents and it is a
straightforward exercise to show by inserting the currentsjµ(x) = : ψ(x)γµψ(x) : that
for 1-particle inclusive scattering one obtains in tree approximation

2MWµν(q; PS; Ph Sh) = 1

(2π)4

∫
d4x eiq·x 〈PS| : ψ j (x)(γµ) j kψk(x) :

×
∑

X

|X; Ph Sh〉〈X; Ph Sh | : ψ l(0)(γν)liψi (0) : |PS〉

= 1

(2π)4

∫
d4x eiq·x 〈PS|ψ j (x)ψi (0)|PS〉(γµ) j k

×〈0|ψk(x)
∑

X

|X; Ph Sh〉〈X; Ph Sh |ψ l(0)|0〉(γν)li

+ 1

(2π)4

∫
d4x eiq·x 〈PS|ψk (x)ψ l(0)|PS〉(γν)li

×〈0|ψ j (x)
∑

X

|X; Ph Sh〉〈X; Ph Sh |ψi (0)|0〉(γµ) j k,
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=
∫

d4 p d4k δ4(p + q − k) Tr
(
Φ(p)γµ∆(k)γν

)
+
{

q ↔−q

µ↔ ν

}
, (72)

where

Φi j (p) = 1

(2π)4

∫
d4ξ ei p·ξ 〈PS|ψ j (0)ψi (ξ)|PS〉,

∆kl(k) = 1

(2π)4

∫
d4ξ eik·ξ 〈0|ψk(ξ)

∑
X

|X; Ph Sh〉〈X; Ph Sh |ψ l(0)|0〉.

Note that inΦ (quark production) a summation over colors is assumed, while in∆ (quark
decay) an averaging over colors is assumed. The quantitiesΦ and∆ correspond to the
blobs inFig. 5 and parametrize the soft physics, leading to the definitions of distribution
and fragmentation functions [13,14]. Soft refers to all invariants of momenta being small
as compared to the hard scale, i.e. forΦ(p) one hasp2 ∼ p · P ∼ P2 = M2 � Q2.

In general many more diagrams have to be considered in evaluating the hadron tensors,
but in thedeep inelastic limit they can be neglected orconsidered as corrections to the soft
blobs. We return to this later.

9. Collinear parton distributions

The form ofΦ is constrained by hermiticity, parity and time-reversal invariance. The
quantity depends besides the quark momentump on the target momentumP and the spin
vectorS and one must have

[Hermiticity] ⇒ Φ†(p, P, S) = γ0 Φ(p, P, S) γ0, (73)

[Parity] ⇒ Φ(p, P, S) = γ0 Φ( p̄, P̄,−S̄) γ0, (74)

[Time reversal] ⇒ Φ∗(p, P, S) = (−iγ5C)Φ( p̄, P̄, S̄) (−iγ5C), (75)

whereC = iγ 2γ0,−iγ5C = iγ 1γ 3 and p̄ = (p0,−p).
To obtain the leading contribution in inclusivedeep inelastic scattering one can integrate

over the componentp− and the transverse momenta (see discussion in the section where
the parton model has been derived). This integration restricts the nonlocality inΦ(p). The
relevant soft part then is a particular Dirac trace of the quantity

Φi j (x) =
∫

dp− d2 pT Φi j (p, P, S)

=
∫

dξ−

2π
ei p·ξ 〈P, S|ψ j (0)ψi (ξ)|P, S〉

∣∣∣∣
ξ+=ξT=0

, (76)

depending on the lightcone fractionx = p+/P+. Whenone wants to calculate the leading
order in 1/Q for a hard process, one looks for leading parts inM/P+ becauseP+ ∝ Q.
The leading contribution [15] turns out to be proportional to(M/P+)0,

Φ(x) = 1

2

{
f1(x) � n+ + SL g1(x) γ5 � n+ + h1(x)

γ5 [� S⊥, � n+]
2

}
. (77)
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The precise expression of the functionsf1(x), etc. as integrals over the amplitudes can be
easily written down after tracing with the appropriate Dirac matrix,

f1(x) =
∫

dξ−

4π
ei p·ξ 〈P, S|ψ(0)γ+ψ(ξ)|P, S〉

∣∣∣∣
ξ+=ξT=0

, (78)

SL g1(x) =
∫

dξ−

4π
ei p·ξ 〈P, S|ψ(0)γ+γ5ψ(ξ)|P, S〉

∣∣∣∣
ξ+=ξT=0

, (79)

Si
T h1(x) =

∫
dξ−

4π
ei p·ξ 〈P, S|ψ(0) iσ i+γ5ψ(ξ)|P, S〉

∣∣∣∣
ξ+=ξT=0

, (80)

including flavor indices, the functionsf q
1 (x) = q(x) andgq

1(x) = 
q(x) are precisely the
functions that we encountered before.

The third function in the above parametrization is known astransversity or transverse
spin distribution [16]. Including flavor indices one also denoteshq

1(x) = δq(x). In the same
way as we have seen for f1(x) andg1(x), the functionh1 can be interpreted as a density,
but oneneeds instead of the projectors on quark chirality states,PR/L = 1

2(1± γ5), those
on quark transverse spin states,P↑/↓ = 1

2(1± γ iγ5). Onehas

f1(x) = f1R(x)+ f1L(x) = f1↑(x)+ f1↓(x), (81)

g1(x) = f1R(x)− f1L(x), (82)

h1(x) = f1↑(x)− f1↓(x). (83)

This results in some trivial bounds such asf1(x) ≥ 0 and|g1(x)| ≤ f1(x). We already
did discuss the support and charge conjugation properties off1(x). The analysis for all
these functions shows that the support is in all cases−1 ≤ x ≤ 1, while the charge
conjugation properties of the functions aref (x) = − f (−x) (C-even) for f1 andh1 and
f (x) = + f (−x) (C-odd) forg1.

The Dirac structure forh1 in terms of chirality states isψ RψL and ψ LψR . Such
functions are calledchiral-odd. Since the QCD-interactions preserve chirality, this function
cannot be measured in inclusive deep inelastic scattering.

While the evolution equations forq(x) and 
q(x) require quark–quark and
quark–gluon splitting functions, the evolution forδq(x) does not involve mixing with gluon
distributions because ofthe chiral-odd nature ofδq(x). Thesplitting function is given by

δPqq (ξ) = 4

3

2ξ

(1− ξ)+ + 2δ(1− ξ). (84)

10. Bounds on the distribution functions

The trivial bounds on the distribution functions (|h1(x)| ≤ f1(x) and|g1(x)| ≤ f1(x))
can be sharpened. For instance one can look explicitly at the structure in Dirac space of the
correlation functionΦi j . Actually, we will look at the correlation functions(Φ γ0)i j , which
involve at leading order matrix elementsψ†

+ j (0)ψ+i (ξ). Onehas in Weyl representation
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(γ 0 = ρ1, γ i = −iρ2σ i , γ5 = iγ 0γ 1γ 2γ 3 = ρ3) the matrices

P+ =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


 , P+γ5 =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1


 , P+γ 1γ5 =




0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0


 .

The good projector only leaves two (independent) Dirac spinors, one righthanded(R), one
lefthanded(L). On this basis of goodR and L spinors the for hard scattering processes
relevantmatrix (Φ � n−) is given by

(Φ � n−)i j (x) =
(

f1 + SL g1 (S1
T − i S2

T ) h1

(S1
T + i S2

T ) h1 f1 − SL g1

)
. (85)

One can also turn theS-dependent correlation functionΦ into a matrix in thenucleon
spin space via the standard spin 1/2 density matrix ρ(P, S). The relation isΦ(x; P, S) =
Tr [Φ(x; P) ρ(P, S)]. Writing

Φ(x; P, S) = ΦO + SL ΦL + S1
T Φ1

T + S2
T Φ2

T , (86)

one has on the basis of spin 1/2 target states withSL = +1 andSL = −1 respectively

Φss ′(x) =
(

ΦO + ΦL Φ1
T − i Φ2

T

Φ1
T + i Φ2

T ΦO − ΦL

)
. (87)

GeneralizingΦ(p) to matrix elements between states〈P, s| and |P, s′〉 one has for the
matrix M = (Φ � n−)T (transposed in Dirac space)v†Mv ≥ 0 for any direction v in
Dirac space. On the basis+R,−R,+L and−L the matrix in quark⊗ nucleon spin-space
becomes

(88)

Of this matrix any diagonal matrix element must always be positive, hence the eigenvalues
must be positive, which gives a bound on the distribution functions stronger than the trivial
bounds, namely

|h1(x)| ≤ 1

2
( f1(x)+ g1(x)) (89)

known as the Soffer bound [17].
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11. Transverse momentum dependent correlation functions

Without integration overpT , the softpart is

Φ(x, pT ) =
∫

dξ−d2ξT

(2π)3
ei p·ξ 〈P, S|ψ(0)ψ(ξ)|P, S〉

∣∣∣∣∣
ξ+=0

. (90)

For the leading order results one can write down parametrizations which for the parts
involving unpolarized targets(O), longitudinally polarized targets(L) and transversely
polarized targets(T ) up to parts proportional toM/P+ take the form [18,19]

ΦO (x, pT ) = 1

2

{
f1(x, pT ) � n+ + h⊥1 (x, pT )

i [� pT , � n+]
2M

}
(91)

ΦL(x, pT ) = 1

2

{
SL g1L(x, pT ) γ5 � n+ + SL h⊥1L(x, pT )

γ5 [� pT , � n+]
2M

}
(92)

ΦT (x, pT ) = 1

2

{
f ⊥1T (x, pT )

εµνρσ γ
µnν+ pρT SσT
M

+ pT · ST

M
g1T (x, pT ) γ5 � n+

+ h1T (x, pT )
γ5 [� ST , � n+]

2

+ pT · ST

M
h⊥1T (x, pT )

γ5 [� pT , � n+]
2M

}
. (93)

All functions appearing here have a natural interpretation as densities. This is seen as
discussed before for thepT -integrated functions. Now it includes densities such as the
density of longitudinally polarized quarks in a transversely polarized nucleon(g1T ) and
the density of transversely polarized quarks in a longitudinally polarized nucleon(h⊥1L).

Upon integration overpT not all functions survive. We are then left withf1g1(x)
obtained after integration ofg1L(x, pT ) and h1(x) with contributions fromh1T (x, pT )

andh⊥1T (x, pT ).
Evolution is directly related to the asymptotic behavior of the functions. The assumption

that the functions vanish sufficiently fast as a function of the invariantsp · P andp2, which
at constantx implies a sufficiently fast vanishing as a function ofp2

T , simply turns out not
to be true. Assuming that the result forp2

T ≥ µ2 is given by the diagram shown inFig. 4
onefinds that the extra distribution written in terms ofpT becomes

f1(x, p2
T )

p2
T≥µ2

�⇒ 1

π p2
T

αs(µ
2)

2π

∫ 1

x

dy

y
Pqq

(
x

y

)
f1(y;µ2), (94)

which gives f1(x;µ2) ≡ π ∫ µ2

0 dp2
T f1(x, p2

T ) a logarithmic scale dependence.
Actually we find that different functions survive when one integrates overpT weighting

with pαT , e.g.

Φα
∂ (x) ≡

∫
d2 pT

pαT
M

Φ(x, pT ) = 1

2

{
− g(1)1T (x) SαT � n+γ5− SL h⊥(1)1L (x)

× [γ
α, � n+]γ5

2
− f ⊥(1)1T εαµνργ

µnν−SρT − h⊥(1)1
i[γ α, � n+]

2

}
, (95)
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involving transverse moments defined asg(1)1T (x) =
∫

d2 pT (p2
T /2M2) g1T (x, pT ), and

similarly for the otherfunctions. The functionsh⊥1 and f ⊥1T areT-odd. As we will explain
in the section on color gauge invariance they donot vanish because time reversal invariance
cannot be used for the transverse moments. Also for fragmentation functions they will not
vanish. TheT -odd functions correspond to unpolarized quarks in a transversely polarized
nucleon( f ⊥1T ) or transversely polarized quarks in an unpolarized hadron(h⊥1 ). Theeasiest
way to interpret the functions is by considering their place in the quark production matrix
(Φ(x, pT ) � n−)T , whichbecomes [20]

In this representationT -odd functions appear as imaginary parts,f ⊥1T = Im g1T and
h⊥1 = Im h⊥1L .

12. Fragmentation functions

Just as for the distribution functions one can perform an analysis of the soft part
describing the quark fragmentation [14]. One needs

∆i j (z, kT ) =
∑

X

∫
dξ+d2ξT

(2π)3
eik·ξ Tr〈0|ψi (ξ)|Ph , X〉〈Ph , X |ψ j (0)|0〉

∣∣∣∣∣
ξ−=0

. (96)

For the production of unpolarized (or spin 0) hadronsh in hardprocesses one needs to
leading order in 1/Q the(Mh/P−h )0 part of the correlation function,

∆O(z, kT ) = z D1(z, k′T ) � n− + z H⊥1 (z, k′T )
i [� kT , � n−]

2Mh
. (97)

The arguments of the fragmentation functionsD1 and H⊥1 are z = P−h /k− andk′T =−zkT . The first isthe (lightcone) momentum fraction of theproduced hadron, the second
is the transverse momentum of the produced hadron with respect to the quark. The
fragmentation function D1 is the equivalent of the distribution functionf1. It can be
interpreted as a quark decay function, giving the probability of finding a hadronh in a
quark. Thequantity nh =

∫
dz D1(z) is the number of hadrons. The normalization of the

fragmentation functions is given by
∑

h

∫
dz z Dq→h

1 (z) = 1.
The functionH⊥1 , interpretable as the difference between the numbers of unpolarized

hadrons produced from a transversely polarized quark depending on the hadron’s
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transverse momentum, is allowed becauseof the non-applicability of time reversal
invariance [21]. This is natural for the fragmentation functions [22,23] because of the
appearance of out-states|Ph , X〉 in the definition of∆, in contrast tothe plane wave
states appearing inΦ. The functionH⊥1 is of interest because it ischiral-odd. This means
that it can be used to probe the chiral-odd quark distribution functionh1, which can be
achieved e.g. by measuring a particular azimuthal asymmetry of produced pions in the
current fragmentation region.

The spin structure of fragmentation functions is also conveniently summarized by
explicitly giving it on a R and L chiral quark basis, for which we find for decay into
spinzero hadrons,

(98)

12.1. Examples of azimuthal asymmetries

Transverse momentum dependence shows up in theazimuthal dependence in the SIDIS
cross section (viâh or transverse spin vectors), in most cases requiring polarization
of beam and/or target or requiring polarimetry [24,25]. Examples of leading azimuthal
asymmetries, appearing for polarized leptoproduction are

〈
QT

M
sin(φ�h − φ�S)

〉
OT
= 2πα2 s

Q4
|ST |

(
1− y + 1

2
y2
)

×
∑
a,ā

e2
a xB f ⊥(1)a1T (xB)D

a
1(zh). (99)

〈
QT

Mh
sin(φ�h + φ�S)

〉
OT
= 4πα2 s

Q4
|ST | (1− y)

∑
a,ā

e2
a xB ha

1(xB)H
⊥(1)a
1 (zh). (100)

The notation〈W 〉 is the qT -integrated crosssection with weightW . The factor QT is
included, because it together with the direction̂h combines toqT , allowing a defolding
of the crosssection in distribution and fragmentation parts (one of them weighted with
transverse momentum). Note thatboth of these asymmetries involveT -odd functions,
which can only appear in single spin asymmetries. The latter can easily be checked from
the conditions on the hadronic tensor, which are the same as those in Eq. (9)–(11). They
require an odd number of spin vectors entering in the symmetric part and an even number
of spins entering in the antisymmetric part of the hadron tensor. An extended review of
transverse momentum dependent functions and transversity can be found in Ref. [26].
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Fig. 6. Examples of gluonic diagrams that must be included at subleading order in lepton hadron inclusive
scattering (left) and the soft part entering this process (right).

13. Inclusion of subleading contributions

If one proceeds up to order 1/Q one also needs terms in the parametrization of the
soft part proportional toM/P+. Limiting ourselves to thepT -integrated correlations one
needs [15]

Φ(x) = 1

2

{
f1(x) � n+ + SL g1(x) γ5 � n+ + h1(x)

γ5 [� ST , � n+]
2

}

+ M

2P+

{
e(x)+ gT (x) γ5 � ST + SL hL(x)

γ5 [� n+, � n−]
2

}
. (101)

The functiongT , for instance, shows up in inclusive scattering off a transversely polarized
nucleon(|S⊥| = 1). Oneneeds to include subleading(1/Q) in the handbag diagram,
as well as gluonic diagrams as shown inFig. 6. For these gluon diagrams one needs
bilocal matrix elements containing 1/Q; one only needs the matrix element of the bilocal
combinationsψ(0) g AαT (ξ) ψ(ξ) andψ(0) g AαT (0) ψ(ξ). The sum of the contributions
produces matrix elementsΦα

D(x) involving matrix elements of bilocal combinations
ψ(0) iDα

T ψ(ξ) for which one can use the QCD equations of motion to relate them to
the functions appearing inΦ,

Φα
D(x) =

M

2

{
−
(

x gT − m

M
h1

)
SαT � n+γ5

− SL

(
x hL − m

M
g1

) [γ α, � n+]γ5

2

}
. (102)

The distribution functiongT e.g. shows up in the corresponding structure function of
polarized inclusive deep inelastic scattering

2M Wµν
A (q, P, ST ) = i

2MxB

Q
t̂ [µεν]ρ⊥ S⊥ρ gT (xB), (103)

leading for the structure functiongT (xB, Q2) defined in Eq. (25) to the result

gT (xB, Q2) = 1

2

∑
q

e2
q

(
gq

T (xB)+ gq̄
T (xB)

)
. (104)
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In the process of integrating the correlation functions overp−, pT and finally overp+,
consecutively restraining the nonlocality to lightfront-separated fields,lightcone-separated
fields and local fields, interesting relations can be derived. For instance, the correlators∫

dx Φ[γ µγ5](x) must yield gA SµT (for any µ), which means that the functions in the

nonlocal correlatorsΦ[γ+γ5](x) and Φ[γ αγ5](x) (α transverse) yield the same result
after integration overx ,

∫
dx g1(x) =

∫
dx gT (x) or

∫
dx g2(x) = 0, known as the

Burkhardt–Cottingham sumrule [27]. For quark–quark correlators, similar considerations
yield relations between the subleading functions and the transverse momentum dependent
leading functions, referred to asLorentz invariance relations, such as [28,24]

gT = g1+ d

dx
g(1)1T . (105)

An interesting result is obtained by combining this relation with an often used
approximation, in which the interaction-dependent partΦα

A is set to zero. In that case the
differenceΦα

D − Φα
∂ vanishes. Using Eqs. (95) and (102) this gives

x g̃T = x gT − g(1)1T −
m

M
h1 = 0. (106)

One then can eliminateg(1)1T and obtain a relation betweengT , g1 and g̃T (assuming
sufficient neat behavior of the functions). Forg2 = gT − g1 this relation takes the form

g2(x) = −
[

g1(x)−
∫ 1

x
dy

g1(y)

y

]
+ m

M

[
h1(x)

x
−
∫ 1

x
dy

h1(y)

y2

]
, (107)

the Wandzura–Wilczek approximation [29] for g2, which in particular when one neglects
the quark mass term provides a simple and often used estimate forg2. It has become the
standard with which experimentalists compare the results forg2.

14. Color gauge invariance

We have so far disregarded two issues. The first issue is that the correlation functionΦ
discussed in previous sections involves twoquark fields at different space–time points and
hence is not color gauge invariant. The second issue is the gluonic diagrams similar to the
ones we have discussed in the previous section (seeFig. 6), among which also correlation
functions appear involving matrix elements with longitudinal(A+) gluon fields,

ψ j (0) g A+(η) ψi (ξ).

These do not lead to any suppression. The reason is that because of the+-index in the gluon
field the matrix element is proportional toP+, p+ or M S+ rather than the proportionality
to M SαT or pαT that one gets for a gluonic matrix element with transverse gluons.

A straightforward calculation, however, shows that the gluonic diagrams with one or
more longitudinal gluons involve matrix elements (soft parts) of operatorsψψ, ψ A+ ψ,
ψ A+A+ ψ, etc. thatcan be resummed into a correlation function

Φi j (x) =
∫

dξ−

2π
ei p·ξ 〈P, S|ψ j (0)U(0, ξ) ψi (ξ)|P, S〉

∣∣∣∣
ξ+=ξT=0

, (108)



268 P.J. Mulders / Progress in Particle and Nuclear Physics 55 (2005) 243–269

Fig. 7. The gauge link structurein the quark–quark correlatorΦ in SIDIS (a) and DY (b) respectively

whereU is a gauge link operator

U(0, ξ) = P exp

(
−i
∫ ξ−

0
dζ− A+(ζ )

)
(109)

(path-ordered exponential with path along−-direction). Et voila, the unsuppressed gluonic
diagrams combine into a color gauge invariant correlation function [30]. We note that at
the level ofoperators, one expands

ψ(0)ψ(ξ) =
∑

n

ξµ1 . . . ξµn

n! ψ(0)∂µ1 . . . ∂µnψ(0), (110)

in a set of local operators, but only the expansion of the nonlocal combination with a gauge
link

ψ(0)U(0, ξ) ψ(ξ) =
∑

n

ξµ1 . . . ξµn

n! ψ(0)Dµ1 . . . Dµnψ(0), (111)

is an expansion in terms of local gauge invariant operators.
For thepT -dependent functions, one finds that inclusion ofA+ gluonic diagrams leads

to a color gauge invariant matrix element with links running viaξ= = ±∞ [31,32]. For
instance in lepton–hadron scattering one finds

Φ(x, pT ) =
∫

dξ−d2ξT

(2π)3
ei p·ξ 〈P, S|ψ(0)U [+](0, ξ) ψ(ξ)|P, S〉

∣∣∣∣∣
ξ+=0

, (112)

where the linkU [+] is shown in Fig. 7(a). We note that the gauge link involves
transverse gluons [33,34], showing that in processes involving more hadrons the effects
of transverse gluons are not necessarily suppressed, as has also been shown in explicit
model calculations [35].

Moreover, depending on the process the gauge link can also run via minus infinity,
involving the link in Fig. 7(b). This is for instance the case in Drell–Yan processes. The
transverse momentum dependent distribution functions also are no longer constrained by
time-reversal, as the time reversaloperation interchanges theU [+] andU [−] links, leading
to the appearance ofT -odd functions in Eq. (95), such as the Sivers functionf (1)1T [36].
The process dependence of the gauge link, however, points to particular sign changes
when single spin azimuthal asymmetries in semi-inclusive leptoproduction are compared to
those in for instance Drell–Yan scattering. For such effects the measurement of transverse
momentum dependence is a must, since the specific link structure [37] does not matter in
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pT -integrated functions, in which both links inFig. 7reduce to the same straight-line link
connecting 0 andξ .
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