
Vol.:(0123456789)1 3

Photochemical & Photobiological Sciences
https://doi.org/10.1007/s43630-023-00460-y

ORIGINAL PAPERS

Pyglotaran: a lego‑like Python framework for global and target
analysis of time‑resolved spectra

Ivo H. M. van Stokkum1 · Jörn Weißenborn1 · Sebastian Weigand1,2 · Joris J. Snellenburg1

Received: 16 April 2023 / Accepted: 12 July 2023
© The Author(s) 2023

Abstract
The dynamics of molecular systems can be studied with time-resolved spectroscopy combined with model-based analysis.
A Python framework for global and target analysis of time-resolved spectra is introduced with the help of three case studies.
The first study, concerning broadband absorption of intersystem crossing in 4-thiothymidine, demonstrates the framework's
ability to resolve vibrational wavepackets with a time resolution of ≈10 fs using damped oscillations and their associated
spectra and phases. Thereby, a parametric description of the “coherent artifact” is crucial. The second study addresses multi-
chromophoric systems composed of two perylene bisimide chromophores. Here, pyglotaran's guidance spectra and lego-like
model composition enable the integration of spectral and kinetic properties of the parent chromophores, revealing a loss
process, the undesired production of a radical pair, that reduces the light harvesting efficiency. In the third, time-resolved
emission case study of whole photosynthetic cells, a megacomplex containing ≈500 chromophores of five different types is
described by a combination of the kinetic models for its elements. As direct fitting of the data by theoretical simulation is
unfeasible, our global and target analysis methodology provides a useful ‘middle ground’ where the theoretical description
and the fit of the experimental data can meet. The pyglotaran framework enables the lego-like creation of kinetic models
through its modular design and seamless integration with the rich Python ecosystem, particularly Jupyter notebooks. With
extensive documentation and a robust validation framework, pyglotaran ensures accessibility and reliability for researchers,
serving as an invaluable tool for understanding complex molecular systems.

To be submitted to a special collection of scientific papers in
the "Photochemical and Photobiological Sciences" in honor of
Fred Brouwer https:// www. sprin ger. com/ journ al/ 43630.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s43630-023-00460-y&domain=pdf
http://orcid.org/0000-0002-6143-2021
https://orcid.org/0000-0002-1428-0221
https://www.springer.com/journal/43630

 Photochemical & Photobiological Sciences

1 3

Graphical abstract

Keywords Photosynthesis · Target analysis · Fluorescence · Transient absorption · Ultrafast spectroscopy

1 Introduction

Time-resolved spectroscopy is widely used in photochemis-
try and photobiology for investigating the dynamic proper-
ties of complex systems [1–4]. The global and target analysis
methodology has been developed to model multidimensional
datasets from these systems [5–9]. Here, global refers to a
simultaneous analysis of all measurements; whereas, target
refers to the applicability of a particular target model [10].
Fred Brouwer inspired the early developments of global and
target analysis [11–13]. Several tools for global and target
analysis exist in the public domain [14–21]. While some of
these tools provide, as pyglotaran, a modular and Python-
based approach, they have different foci for the analysis.
The aim of this paper is to introduce pyglotaran [22], a lego-
like Python problem-solving environment [23] for global
and target analysis of time-resolved spectra. Several new
features that are now becoming publicly available will be
demonstrated with the help of an in depth presentation of
two recent transient absorption case studies [24, 25], namely
the usage of guidance spectra and the parametric descrip-
tion of the “coherent artifact” (CA) [2, 26]. Vibrational

wavepackets [27, 28] will be described with the help of
damped oscillations [26, 29]. Finally, in a third case study,
the time-resolved emission of whole photosynthetic cells
can be described by the contributions of all the megacom-
plexes present, thus resolving the energy transfer pathways
[30] with the help of spectral area constraints [31]. These
case studies explore systems containing 1, 2, or 3, and ≈500
chromophores, with compartmental models [32] describing
5 or 6 spectrally distinct species or states. The temporal reso-
lution ranges from ≈10 fs to ≈10 ps.

The paper is organized as follows: We assume the
reader is familiar with the basics of global and target
analysis [7], with some foundational information included
in the Supplementary Information (SI) Jupyter notebooks
[33]. In the methods section, we summarize the methodo-
logical advancements since 2004, which are then illus-
trated through the case studies in the results and discus-
sion section. Next, we present the design of the pyglotaran
problem-solving environment and discuss software engi-
neering aspects and future developments. In the results
and discussion section, we provide a concise description
of the salient analysis results, with extended descriptions

Photochemical & Photobiological Sciences

1 3

available in the SI Jupyter notebooks. Interested readers
can download the Jupyter notebooks and pre-processed
data to reproduce all results. Pyglotaran extends the FAIR
data principles [34] by not only enabling users to share
their data, pre-processing steps, and analysis results, but
also by open-sourcing its software analysis tools and pro-
viding Jupyter notebooks for full reproducibility. To dem-
onstrate this commitment to transparency and reproduc-
ibility, readers can download the Jupyter notebooks and
pre-processed data associated with this paper to reproduce
all the presented results, thus fostering a more collabora-
tive and robust scientific community.

2 Methods

Crucial to virtually all global and target analysis is the
superposition principle, expressing that the response of a
complex system can be described by a linear superposition
of the contributions from several components. We will first
consider transient difference absorption spectroscopy, and
then time-resolved emission spectroscopy. The superposition
principle is schematically depicted in Fig. 1 for a single data
set, that will be explained in detail in the first case study. The
data matrix (first row) shows a complex spectral evolution
(second row) with damped oscillations (third row) and a
pronounced coherent artifact straddling time zero (fourth
row, cf. the trace at 600.5 nm in the first row). The fifth row
depicts the analysis of the remaining structure in the residual
matrix of the fit.

In broadband absorption spectroscopy [35, 36], the evo-
lution of the ground- and excited-state vibrational wave
packets created by the short laser pulse is described with
a superposition of damped oscillations. The amplitude of
a damped oscillation cos(�nt) exp(−�nt) as a function of
the detection wavelength constitutes a damped oscillation-
associated spectrum (DOASn(�)) with an accompanying
wavelength-dependent phase �n(�) [29] (cf. row three of
Fig. 1). When the vibrational evolution can be considered
independently from the electronic evolution (Born–Oppen-
heimer approximation), we arrive at a superposition of the
electronic and vibrational contributions to the time-resolved
spectrum (TRS):

where Nstates electronically excited states are present in the
system, with populations cS

l
(t)(superscript S stands for spe-

cies), and species’ spectral properties, the species associated
difference spectra (SADSl(�)) (cf. row two of Fig. 1). The

TRS(t, �) =
∑Nstates

l=1
c
S

l
(t�, �)SADS

l
(�),

+
∑Nosc

n=1
cos(�

n
t
�−�

n
(�)) exp(−�

n
t
�)DOAS

n
(�),

+
∑2

m=0
i
(m)(t)IRFAS

m
(�) + residual(t, �),

populations are determined by an unknown compartmental
model [32], that depends upon the unknown kinetic param-
eters � . In the target analysis constraints on the SADS are
needed to estimate all parameters � and SADSl(�) . t′ indicates
that the actual model function still must consider the instru-
ment response function (IRF) by means of convolution. The
next term describes the coherent artifact, with a weighted
sum of the zeroth, first and second derivative of the IRF i(t)
[2] (cf. row four of Fig. 1). Finally, the residual represents
the part of the data that is not described by the parameterized
model (cf. row five of Fig. 1).

For every wavelength, the matrix formula for this super-
position model is given by

where the matrix CS consists of columns cS
l
(t) . A Gauss-

ian shaped IRF is used, with parameters μ for the time of
the IRF maximum and Δ for the full width at half maxi-
mum (FWHM) of the IRF. The matrices Cos(�, � ,�,Δ)
and Sin(�, � ,�,Δ) contain the damped oscillations, and the
matrices A and B comprise their amplitudes. To limit the
number of free parameters, we assume wavelength inde-
pendence of the eigenfrequency �n and of the damping rate
�n.

The final term, which describes the coherent artifact,
contains a matrix IRF(�,Δ�) with as columns the i(m)(t) .
The SADS and IRFAS and also the amplitudes A and B
are unconstrained conditionally linear parameters, that can
be implicitly solved for (per wavelength) using the variable
projection algorithm [37, 38].

When the IRF width Δ is larger than ≈150 fs the damped
oscillations will be virtually averaged out, and for every
wavelength, the matrix formula for this superposition model
reduces to [40]:

In time-resolved emission spectroscopy, the IRF is gen-
erally much wider than 150 fs, and the presence of a pos-
sible scatter component can be described by the IRF shape
(i.e., the zeroth derivative). The species’ spectral properties
are called the Species Associated Spectra (SASl(�)) and we
have for every wavelength (disregarding a possible scatter
component)

Since emission cannot be negative, the SAS are nonnega-
tive conditionally linear parameters, that can be implicitly
solved for (per wavelength) [39, 40].

In most experiments, the location of the maximum of the
IRF is wavelength dependent. This so-called dispersion can

TRS = CS(�,�,Δ) ⋅ SADS + Cos(�, � ,�,Δ) ⋅ A
+ Sin(�, � ,�,Δ) ⋅ B + IRF(�,Δ′) ⋅ IRFAS,

TRS = CS(�,�,Δ) ⋅ SADS + IRF(�,Δ) ⋅ IRFAS.

TRS = CS(�,�,Δ) ⋅ SAS.

 Photochemical & Photobiological Sciences

1 3

well be described by a polynomial function of the wave-
length [7] or of its reciprocal, the wavenumber [2]. This
introduces, typically, 1–3 “nuisance” parameters. Moreo-
ver, the whole kinetic model must be recomputed for every

wavelength, which greatly increases the computation time.
An independent experiment that involves a coherent artifact
with dispersion must also be modeled with the above for-
mulas [26].

Fig. 1 Example of a time-resolved difference absorption Spectrum and fit thereof (row 1), with the help of a compartmental model (row 2), the
damped oscillations (row 3), a “coherent artifact” (CA) (row 4) and the residual (row 5). Further explanation in text

Photochemical & Photobiological Sciences

1 3

3 Results and discussion

3.1 Broadband absorption case study
of intersystem crossing in 4‑thiothymidine

In a recent study, it was demonstrated that coherent vibra-
tional modes promote the ultrafast internal conversion and
intersystem crossing in thiobases [25]. Here, we will present
the target analysis of 4-thiothymidine (4TT). The structure
and steady-state spectra of 4TT are shown in Figure S1.
The IRF width of ≈35 fs FWHM enables the resolution

of damped oscillations that can be assigned to vibrational
modes. The coherent artifact is clearly visible in the trace
at 600.5 nm in Fig. 2, with large contributions of the IRF
derivatives (Fig. 3).

We employ a sequential kinetic scheme with four states
which we tentatively name S2, S1, hot T1’, and T1, i.e., we
assume the kinetic scheme S2 → S1 → hot T1’ → T1. The
populations and estimated SADS are shown in Fig. 4. The
kink at 1 ps in Fig. 4A results from the time axis being linear
until 1 ps, and logarithmic thereafter [41].

Fig. 2 Overview of the data
of 4TT in phosphate-buffered
saline (PBS) after excitation
at 330 nm (top) and selected
time traces (bottom) (in mOD,
red) and fit (black). Wavelength
is indicated in the title of the
panels. Note that the time axis
of the time traces is linear until
1 ps (after the maximum of the
IRF), and logarithmic there-
after. Rms error of the fit is
0.12 mOD

Fig. 3 Coherent artifact of 4TT in PBS after excitation at 330 nm. (A)
0th, 1st, and 2nd derivative of the IRF (blue, orange, green) which
possessed a FWHM Δ’ of 35 fs. (B) scaled IRFAS. Scaling of the

IRFAS is such that the product of the IRFAS and the IRF derivative
is the contribution to the fit. Thus, the blue IRFAS has the largest
contribution to the fit

 Photochemical & Photobiological Sciences

1 3

Four damped oscillations have been used, one of which
was time-reversed and is attributed to the coherent artifact.
The DOAS and phases of the other three damped oscillations
are shown in Figure S2.

Although at first glance the fit looks satisfactory (Fig. 2,
bottom) and the rms error of 0.12 mOD is small, the residual

matrix of the fit still shows some structure, cf. the vertical
lines in Fig. 5A. These lines can tentatively be attributed to
pump laser intensity fluctuations. This suggests refining the
analysis and correct for these laser intensity fluctuations by
estimating whether the residual spectrum at a certain time
is proportional to the data. If so, the data can, thus, be cor-
rected. This is demonstrated in Figure S3. The rms error
decreases to 0.065 mOD, and the residuals show virtually
no more structure (Figure S4).

It is difficult to interpret the S1 SADS, red in Fig. 4B, it
still contains substantial stimulated emission around 430 nm,
suggesting that it is a mixture of relaxed S2 and S1. There-
fore, we adopted the kinetic scheme in Fig. 6 which contains
five states, S2, relaxed S2’, S1, hot T1’ and T1. Associated
with these states, there are five lifetimes. Several kinetic
schemes have been tested, until we arrived at the scheme
of Fig. 6 with well interpretable SADS that are in accord-
ance with the theory [25]. The precision of the estimated
parameters is reported in the result object (Figure S5). The
relaxed S2’ SADS (green in Fig. 7) is free from triplet (blue
in Fig. 7) features. The S1 SADS (red) shows two ESA bands
and a small SE around 430 nm.

Fig. 4 Populations (A) of the kinetic scheme S2 → S1 → hot
T1’ → T1 and estimated SADS (B, in mOD) resulting from the
sequential kinetic analysis of 4TT in PBS. Note that the time axis in

A is linear until 1 ps (after the maximum of the IRF), and logarith-
mic thereafter. Estimated lifetimes: 74 fs (black), 284 fs (red), 1.76 ps
(green), and long lived (blue)

Fig. 5 First left (B) and right (C) singular vectors resulting from the singular value decomposition (SVD) of the residual matrix (A). The black
line in (A) represents the location of the maximum of the IRF, which is described by a third-order polynomial function of the wavenumber

S2 8256 S1
5504

S2' 4360
1600 2250

T1'
410

T1
1

Fig. 6 Kinetic scheme used for the target analysis of 4TT in PBS. All
rate constants in ns−1. Key: lifetimes: 73 fs (S2(1ππ*), black), 168 fs
 (S’

2(1ππ*), green), 444 fs (S1(1nπ*), red), 2.4 ps (T1’(3ππ*), magenta)
and long lived (T1(3ππ*), blue)

Photochemical & Photobiological Sciences

1 3

The contribution of the damped oscillations to the fit and
the quality of the fit are demonstrated for the 510 nm data in
Fig. 8. Note that the main decay of the damped oscillations
(turquoise) corresponds to the main decay of S2 (black),

suggesting that these oscillations live on (relaxed) S2. In
the refined target analysis four DOAS have been resolved,
the vertical lines in Fig. 9 indicate nodes concomitant with
a phase jump in the 458 cm−1 DOAS (red, at 415 and 460
nm), in the 213 cm−1 DOAS (blue, at 393, 429, and 479 nm),
and in the 847 cm−1 DOAS (green, at 526 nm). These results
are further discussed in [25].

3.2 Transient absorption case study
of the chromophoric systems rc and rcg

The primary event in molecule-based light energy con-
version systems is light harvesting. We studied perylene
bisimide-calix[4]arene multichromophoric systems com-
posed of two different types of perylene bisimide (PBI)
chromophores, red (r), and green (g) PBIs (named after their
colors as solids) connected by calix[4]arene (c) [24, 42]. Fig-
ure 10A depicts the chemical structure of the supramolecular
system rcg, and the absorption and emission properties of
the parent chromophores rc and gc are shown in Fig. 10B.
Due to the excellent overlap of the rc emission and the gc

Fig. 7 Populations (A) of the target kinetic scheme from Fig. 6 and estimated SADS (B, in mOD) resulting from the target analysis of 4TT in
PBS. Note that the time axis in A is linear until 1 ps (after the maximum of the IRF), and logarithmic thereafter

Fig. 8 Decomposition of the 4TT in PBS data at 510.4 nm (in mOD,
orange, and the fit, gray). CA is the sum of the IRFAS and CA
damped oscillations (decay rates > 50/ps), doas is the sum of the four
damped oscillations with decay rates < 30/ps. Note that the time axis
is linear until 1 ps (after the maximum of the IRF), and logarithmic
thereafter

Fig. 9 Overview of the estimated DOAS and phases. A Cosine oscil-
lations with frequencies �n (in cm−1) (where n is the DOAS number)
and damping rates � (in ps−1) written in the legend at the left, using
the appropriate color. Scaling of the DOAS is such that the product

of the DOAS and the damped oscillation is the contribution to the fit.
B Estimated DOAS. (C) Estimated phase profiles of the DOAS. The
vertical lines in (B, C) indicate nodes concomitant with a phase jump

 Photochemical & Photobiological Sciences

1 3

absorption (dotted red and solid green lines in Fig. 10B) and
the close proximity fast Förster excitation energy transfer
(EET) is found after excitation of the r moiety [42]. How-
ever, the rc chromophore has inherent dynamic properties,
which must be considered in a target analysis.

An important part of the data analysis is the pre-pro-
cessing of the raw data. In the rc Jupyter notebook in the
supplementary information, it is demonstrated how a global
analysis is used to demonstrate the presence of a pre-zero
baseline in the data (Figure S6, Figure S7), and how this
baseline can then be estimated (Figure S8) and subtracted
from the raw data. Throughout this manuscript, we refer to
pre-processed data.

After 530 nm excitation of rc in CH2Cl2, the coherent
artifact is well described by the wavelength-dependent
IRF(�,Δ�) ⋅ IRFAS (Fig. 11). Representative traces demon-
strating the excellent quality of the fit are shown in Fig. 12.

The extensive spectral evolution of rc can be described
with four excited states r1 → r2 → r3 → r4 → ground state,

resulting in four rate constants kr2,r1, kr3,r2, kr4,r3, kr4 (where
we use the kto,from convention, and kr4 denotes the decay
rate to the ground state) and four rc-SADS. This sequen-
tial scheme (Fig. 13A) neglects the branching decay to
the ground state of the first three states, since kr4 is much
smaller than the other three rate constants. As a refinement
one could add this decay channel, assuming a rate of decay
to the ground state kr4 for all four states. The perylene red
chromophore shows a strong spectral evolution in time,
especially from 550 to 750 nm (Fig. 13B).

The first target analysis of rcg considers that the 530 nm
also directly excites the g moiety (≈12% of the r absorption,
Fig. 10B) and to the rc-kinetic scheme the four EET to g rate
constants kg,r1, kg,r2, kg,r3, kg,r4 are added. By plotting the first
left and right singular vectors resulting from the singular
value decomposition (SVD) of the residual matrix, we can
identify systematic patterns in the residuals, which may indi-
cate potential issues with the model. Here, the fit using this

Fig. 10 A Chemical structure of
the supramolecular system rcg,
figure adopted from [43]. B UV/
Vis absorption (red, solid) and
fluorescence emission spectra
(red, dotted) of tetraphenoxy-
substituted (red) PBI compound
rc; UV/Vis absorption (green,
solid) and fluorescence emis-
sion spectra (green, dotted)
of dipyrrolidino-substituted
(green) PBI compound gc. All
spectra are taken in CH2Cl2

Fig. 11 Coherent artifact of rc in CH2Cl2. A 0th, 1st, and 2nd deriva-
tive of the IRF (blue, orange, green) which possessed a Full Width
at Half Maximum (FWHM) of 119 fs. B scaled IRFAS. Scaling of
the IRFAS is such that the product of the IRFAS and the IRF deriva-
tive is the contribution to the fit. Thus, the blue IRFAS has the largest

contribution to the fit. It shows large amplitudes straddling 530 nm,
the excitation wavelength. In addition, Raman scattering is visible
as negative peaks at 580 and 636 nm, and positive peaks at 460 and
512 nm

Photochemical & Photobiological Sciences

1 3

model is unsatisfactory since the left and right singular vec-
tors of the residual matrix (Fig. 14A, B) show large trends,
especially during the first 10 ps around 590 and 780 nm.

Therefore, a loss process is introduced: the formation of a
radical pair state, called rcgRP, from r1 or r2, which requires
two new rate constants krcgRP,r1, krcgRP,r2 . Thus, the rcg sys-
tem can be described by the four rc-SADS, the g-SADS
and the rcgRP-SADS, and the twelve rate constants:
kr2,r1, kr3,r2, kr4,r3, kr4;kg,r1 , kg,r2 , kg,r3 , kg,r4;krcgRP,r1, krcgRP,r2 and
the decay rates to the ground state kg, k����� . This kinetic
scheme is schematically depicted in Fig. 15B and the dif-
ferential equation is shown in Figure S10.

The main results from the rc in CH2Cl2 experiment
are the four rate constants (Fig. 13A) and the four SADS

(Fig. 13B). The four rate constants are used in the kinetic
scheme of rcg (Fig. 15B). The estimated rc-SADS are used
to guide the SADS of the r1, r2, r3, r4 species in the target
analysis of rcg by adding the rc-SADS as data to be fitted
using the rcg-SADS. This is demonstrated in Fig. 16, where
the dashed lines indicate the fit. The formulas for the fit-
ting of the guidance SADS are shown in Figure S10. The
usage of the guidance spectra allows for some flexibility, to
accommodate small differences in the experimental condi-
tions or the wavelength calibration or the white light of the
probe, when the experiments have been performed on differ-
ent days. It circumvents the more complicated simultaneous
analysis of multiple datasets by selectively adding only the
relevant information, i.e., here the four rc-SADS and the

Fig. 12 Selected time traces of rc in CH2Cl2 after excitation at 530
nm data (in mOD, red) and fit (black). Wavelength is indicated in the
title of the panels. Note that the time axis is linear until 1 ps (after the

maximum of the IRF), and logarithmic thereafter. Rms error of the fit
is 0.33 mOD

Fig. 13 Populations A and SADS (B, in mOD) of the four sequential compartments of rc in CH2Cl2. Key: gray, orange, red, purple: successively
relaxed r* states. Note that the time axis in (A) is linear until 1 ps (after the maximum of the IRF), and logarithmic thereafter

 Photochemical & Photobiological Sciences

1 3

g-SADS. Without the guidance SADS it would have been
impossible to take the r* spectral evolution properly into
account in the rcg target analysis, since, e.g., the population
of r4 is very small (purple in Fig. 17A).

rcg shows the typical spectral evolution of the r chromo-
phore, as well as EET to g (see the 730 nm bleach in the
g SADS) and r−. formation, characterized by the 575 nm
bleach and the 780 nm absorption (black SADS). The tri-
chromophoric systems rcgcr and gcrcg (Figure S9) can
be analyzed with slightly modified versions of this kinetic
scheme resulting in the concentrations depicted with dotted
and dashed lines in Fig. 17A. Note that in gcrcg which con-
tains two accepting chromophores, the g population (dashed
green) rises faster, but also that of the rcgRP (dashed black),

Fig. 14 First left and right singular vectors resulting from the singular
value decomposition (SVD) of the residual matrix of rcg in CH2Cl2
resulting from a target analysis using a kinetic scheme without (A, B)
or with (C, D) the rcg radical pair state. Note that panels (A, B) show

large trends, whereas panels (C, D) show only small trends. The rms
error of the fit decreases from 0.27 to 0.23 mOD. Note that the time
axis in (A, C) is linear until 1 ps (after the maximum of the IRF), and
logarithmic thereafter

A rc dcm B rcg dcm
r1 r1 305
7727 145 7727

r2 r2 305 15%
1577 145 1577

r3 rcgRP 7% 78%

151 94 r3 459

r4 151

0.57 r4 459 g
0.57 0.33

Fig. 15 Kinetic schemes used for the simultaneous target analysis of
rc (A) and rcg (B) in CH2Cl2. All rate constants in ns−1. Key: gray,
orange, red, purple: successively relaxed r1, r2, r3, r4; dark green: g;
black, rcgRP: rcg radical pair. Vertical arrows indicate relaxation of
an excited state, or decay. Horizontal arrows represent energy transfer
to g

Fig. 16 Fit of the guidance SADS used in the target analysis

Photochemical & Photobiological Sciences

1 3

cf. also the amplitude matrices in the gcrcg Jupyter note-
book in the SI. These results are further discussed in [24].

3.3 Time‑resolved emission case study of whole
photosynthetic cells

The time-resolved emission spectrum of whole photosyn-
thetic cells contains the contributions from all the pig-
ment–protein complexes present. In cyanobacteria the
phycobilisome (PB) is the light harvesting antenna, which
contains phycocyanin (PC) and allophycocyanin (APC) pig-
ments that absorb the light between 400 and 650 nm. The
excitations of the antenna pigments are efficiently transferred
to the chlorophyll-containing photosystems (PS) I and II
[44]. Megacomplexes consisting of PB, PSI, and PSII have
been demonstrated [45]. ΔPSI mutants which lack PSI [46]
have been used as a model system to study the properties of
the PB–PSII megacomplex [30]. PSII shows different prop-
erties when the reaction center (RC) is in the open or in the
closed state [47]. To model the EET rates in a whole cell,
we, thus, distinguish three basic types of megacomplexes
(Figure S11): PB–PSII with PSII in the open or the closed
state and non-transferring PB. Free PSII, not receiving PB
input, cannot be distinguished from the PSII in a PB–PSII
megacomplex. The minimal kinetic scheme of PB consists
of ten compartments [48]: three core cylinders with a con-
nected rod. Each rod consists of PC640 (cyan) and PC650
(blue) compartments, the top cylinder contains 24 APC660
pigments (magenta), the two basal cylinders consist of disks
with only APC660 pigments (red) and disks with APC660
(orange) and APC680 pigments (black). APC680 is the ter-
minal emitter that transfers the PB excitations to PSII. The
biexponential decay of the PSII dimer emission is described
by an equilibrium of a Chl a compartment (PSII open, green)
with a radical pair (RP) compartment [47, 49]. Spectral
equality constraints are employed linking the SAS of the

PC640, PC650, APC660 compartments. Thus, together with
APC680 and PSII there are only five different SAS. The RP
SAS is by definition zero. Spectral area constraints [31] have
been used to estimate the equilibria. The parameters of the
PB model have been taken from [48].

Fig. 17 Populations (A) of the target kinetic schemes from Fig. 15B
(for rcg) and estimated SADS (B, in mOD) of the simultane-
ous refined target analysis of rcg (solid), rcgcr (dotted) and gcrcg
(dashed) in CH2Cl2. Key: gray, orange, red, purple: successively

relaxed r1, r2, r3, r4 states; dark green: g; black, rcgRP: rcg radical
pair. Note that the time axis in (A) is linear until 1 ps (after the maxi-
mum of the IRF), and logarithmic thereafter

Fig. 18 Minimal kinetic scheme of the PB–PSII complex with RCs
open at room temperature (RT). Key: PC640 (cyan), PC650 (blue),
APC660 (red), APC680 (black), and PSII Chl a (green). Functional
compartmental model, with a zoom out of a rod consisting of three
lumped hexamers in the upper right. The magenta APC660 compart-
ment represents the top cylinder. The red rectangle indicates the two
basal cylinders. All microscopic rate constants are in ns−1. The com-
mon decay rate constant for excited PC and APC states of 0.78 ns−1
has been omitted for clarity

 Photochemical & Photobiological Sciences

1 3

To collect enough information four experiments have
been done, preferentially exciting the PB (590 nm excita-
tion) or the PSII Chla (400 nm excitation), with a shorter
or longer time range (TR2, IRF ≈7 ps FWHM and TR4,
IRF ≈18 ps FWHM). Representative traces demonstrating
the excellent quality of the fit are shown in Fig. 19. From
the simultaneous target analysis of the four experiments,
the rate of energy transfer from PB to PSII can be esti-
mated (Fig. 18), together with the SAS of the five dif-
ferent species (Fig. 20), and the fractions of the differ-
ent complexes (Table 1). They are megacomplex scaling
parameters of the model, cf. the dPSI Jupyter notebook
in the SI.

The PB–PSII megacomplex contains ≈500 chromophores
of five different types PC640, PC650, APC660, APC680
and Chl a (in PSII). The properties of the estimated SAS
(Fig. 20B, D) are in agreement with the literature [47, 50].
The main finding of this case study is the rate of EET from
APC680 to PSII in vivo of 50 ns−1. Pyglotaran enables the
combination of the kinetic models for PB [50] and for PSII

[47, 49], cf. Figure 18. These results are further discussed
in [30].

3.4 Conclusion from the case studies

Since with these complex systems, it is unfeasible to directly
fit the data by a theoretical simulation, our global and target
analysis methodology provides a useful ‘middle ground’
where the theoretical description and the fit of the experi-
mental data can meet (Fig. 1). In the first case study, we
employed DOAS and IRFAS to describe the vibrational
wavepackets. Theoretical chemistry computations then com-
plemented the interpretation of the target analysis results
[25]. In the second case study, computations [42] confirmed
that the estimated energy transfer rates from the red to the
green chromophore are in agreement with the Förster reso-
nance energy transfer mechanism. Such computations are
not possible with the PB–PSII megacomplex which contains
≈500 chromophores. Here, the functional compartmental
model (Fig. 18) is the best possible theoretical description.

Fig. 19 Selected time traces of the emission at 4 wavelengths (indi-
cated in the title of the panels) after 400 or 590 nm excitation at RT.
Key: 400 TR2 (gray), 400 TR4 (cyan), 590 TR2 (orange), 590 TR4
(green). Black, blue, red, and dark green lines indicate the simulta-

neous target analysis fit of the four data sets. Note that the time axis
is linear until 100 ps and logarithmic thereafter. Note also that each
panel is scaled to its maximum. Overall rms error of the fit was 8.15

Photochemical & Photobiological Sciences

1 3

4 Design of the lego‑like problem‑solving
environment pyglotaran

The design of pyglotaran is based upon the well-known
cycle of scientific discovery model specification–parameter
estimation–model validation [16]. This cycle is illustrated
in Fig. 21 and summarized for the rc and rcg case study in
Table 2.

4.1 Model specification

The model specification in pyglotaran is designed to be lego-
like, allowing for the easy declaration and reuse of building

blocks. The core of pyglotaran is the modeling language
which is a declarative domain-specific language (DSL) that
is designed to describe the behavior of systems in terms of
their states and how they interact with one another, in a mod-
ular and composable manner. A DSL enables a user unfamil-
iar with scientific modeling, computing, and programming
to express the analysis of complex systems without detailed
knowledge about the interiors of pyglotaran. Pyglotaran is a
very general implementation of separable problems, which
enables usage beyond the kinetic models presented here.
The DSL is split up into two parts, the parameter definitions
and the model definitions referencing parameters from the
parameter definitions by their name. Using the DSL, pyglo-
taran functions as an engine that interprets the model and
parameter definitions and applies them to fit the data. To
reduce the mental load for users and simplify the translation
between the kinetic model and its description, pyglotaran
allows and encourages to use meaningful and verbose names
both in the model and in the parameter definitions (Figure
S12). The DSL is further detailed in the SI section Modeling
language and illustrated in the Jupyter notebooks. The plain
text model description feature allows for the use of version
control software (e.g., git), ensuring that all changes are
tracked and recorded.

Table 1 Estimated fractions of the different complexes in the experi-
ments at RT in the four experiments (in acquisition order)

590 exc 590 exc 400 exc 400 exc

TR2 (%) TR4 (%) TR2 (%) TR4 (%)
PB–PSII open 84 82 51 50
PB–PSII closed 12 10 28 33
Non-transferring PB 4 8 21 17

Fig. 20 Target analysis of the PB–PSII complex at RT. Total concen-
trations and SAS estimated after 590 (A, B) or 400 (C, D) nm exc.
Key: PC640 (cyan), PC650 (blue), APC660 (red), APC680 (black),

and PSII Chl a (green). Note that the time axis is linear until 100 ps
and logarithmic thereafter

 Photochemical & Photobiological Sciences

1 3

4.2 Parameter estimation

The parameter estimation distinguishes nonlinear param-
eters (nlp) and conditionally linear parameters (clp). The
clp can be either nonnegative (with SAS) or unconstrained
(with SADS, A, B, IRFAS) [29]. In the model definition,
this is specified using “residual_function: non_negative_
least_squares” and “residual_function: variable_projection”,
respectively. To link the clp across multiple datasets, the
option “link_clp: True” can be used.

Spectral relations between the clp can be specified, con-
straints to zero, and penalties based upon the area of the
SA(D)S. For a relation between the clp of two components
one would add to the model specification, e.g.:

Here, the clp of s1 and s2 are related with a scaling
parameter (rel.r1) over the interval from 0 to 1000.

For a zero-constraint, one would add to the model speci-
fication, e.g.:

Fig. 21 At the left, the model
specification–parameter estima-
tion–model validation cycle of
scientific discovery. The logo on
the right-hand side symbolizes
the crucial role of pyglotaran in
this cycle

Table 2 The scientific discovery cycle of the rc and rcg case study

Model specification–parameter estimation Model validation

rc raw data, introducing two elements: the sequential scheme with 4
compartments (4 SADS) and the coherent artifact (3 IRFAS), and
the dispersion of the location of the maximum of the IRF

Residual analysis indicates the pre-zero baseline (Figure S5, Figure S6),
after correction for this baseline resulting in the (pre-processed) rc
data

rc data target analysis with spectral equality constraints to regularize
the first SADS

Residual analysis indicates satisfactory residuals (Fig. 12, Fig. 14) and
interpretable SADS (Fig. 13), IRFAS (Fig. 11) and kinetic parameters
(Fig. 15A)

First target of the rcg system, introducing a kinetic scheme with 5
compartments where each r compartment transfers energy to g. New
elements are the four guidance spectra estimated from rc (Fig. 16)

Residual analysis indicates large trends in the first left and right singular
vectors of the residual matrix (Fig. 14A,B)

Second target of the rcg system, introducing a 6th compartment
(rcgRP) (Fig. 15B)

Residual analysis indicates no more significant trends in the first left and
right singular vectors of the residual matrix (Fig. 14C,D). However,
this single data set results in a noisy rcgRP SADS

Simultaneous target analysis of rcg, gcrcg, and rcgcr (three multi-
chromophoric systems, with analogous kinetic schemes for the gcrcg
and rcgcr systems) results in more robust estimation of the rcgRP
SADS

Residual analysis indicates that the full linking of all the SADS results
in a suboptimal fit of all data

Refined simultaneous target analysis of rcg, gcrcg, and rcgcr with
linking of the rcgRP SADS only, results in a nice rcgRP SADS
(Fig. 17)

Residual analysis indicates excellent fit of all data, with satisfactory
residuals and interpretable SADS (Fig. 17), IRFAS and kinetic param-
eters. All kinetic schemes are internally consistent

Photochemical & Photobiological Sciences

1 3

Here, the clp for the s12 component are forced to be zero
in the interval from 1 to 1000.

For penalties based upon the (difference) in area of the
SA(D)S [31] one would add to the model specification, e.g.:

Here, the difference in the area of the clp (which are the
SAS of components s11 (PS2) and s1 in this case) in the
interval between 1 and 1000 is penalized, where the area
of the s1 SAS is scaled with the parameter area.PS2.
The penalty itself is scaled with a weight of 0.1 in this case
before adding it to the residual vector that affects the mini-
mization process.

The examples given above are all taken from the ΔPSI
mutant emission case study where they can be studied in
context. Since the clp constraints decrease the amount of
the free clp parameters, they are very important in the target
analysis [7, 31].

The starting values for the nonlinear parameters can be
specified in two ways. Initially, with the help of a param-
eters.yml file analogous to model.yml file described in the
SI. After optimization a csv file of the estimated nonlinear
parameters can be written, which can then more easily be
modified in model refinement, and subsequently be used as
the new starting values for the nonlinear parameters.

The actual parameter estimation process employs the non-
linear least squares function scipy.optimize.least_squares
[51], which is based upon an optional optimization algo-
rithm, and is demonstrated in the Jupyter notebooks in the
SI. After the fit, summary statistics are computed, most
importantly the rms error of the fit and the t-values of the
estimated nonlinear parameters (Figure S5).

4.3 Model validation

The model validation process in the pyglotaran framework
is essential for ensuring that the generated models are accu-
rately capturing the underlying dynamics of the molecular

systems. This process involves a series of steps, which we
outline below, along with relevant figures and supplemen-
tary information that can be found in the Jupyter notebooks
provided in the SI.

1. Plotting overlays of data and fits: Visual inspection of
the fitted model against the experimental data is the
first step in assessing the quality of the model (Fig. 2,
Fig. 12, Fig. 19). This comparison helps to identify any
significant deviations between the model's predictions
and the observed data.

2. Analyzing residuals: Examining the matrix of residuals
for each dataset provides valuable insight into the mod-
el's performance. By plotting the first left and right sin-
gular vectors resulting from the singular value decompo-
sition (SVD) of the residual matrix (Fig. 14), researchers
can identify systematic patterns in the residuals, which
may indicate potential issues with the model.

3. Inspecting t-values of estimated parameters: After vali-
dating the residuals, it is essential to check the t-values
of the estimated parameters (Figure S5). Ideally, t-values
should be larger than two, indicating that the parameters
are statistically significant.

4. Assessing the scientific interpretability of nonlinear
parameters (nlp) and conditionally linear parameters
(clp): Once the fit's residuals and estimated param-
eters are deemed acceptable, researchers must evaluate
whether the obtained nlp and clp are scientifically inter-
pretable. This process often marks the beginning of a
new round in the scientific discovery cycle (Fig. 21),
where researchers refine their models and hypotheses
based on the insights gained from the analysis.

4.4 Reporting and conclusion

An essential aspect of the scientific process, not fully cov-
ered by Fig. 21 is the effective reporting and communication
of the results. Clear and concise reporting of the models,
their parameters, and validation outcomes is crucial for
the broader scientific community to understand, evaluate,
and build upon the findings. In this context, the Jupyter
notebook-style interface of pyglotaran proves to be highly
advantageous.

The Jupyter notebook-style interface, typically imple-
mented through Jupyter notebooks, allows researchers to
combine code, output, visualizations, and descriptive text in
a single, interactive document. This format greatly facilitates
the reporting process by enabling researchers to:

1. Document their work in a transparent and reproducible
manner: The Jupyter notebook interface makes it easy
to share the complete analysis pipeline, from data pre-

 Photochemical & Photobiological Sciences

1 3

processing to model validation, with colleagues and col-
laborators.

2. Visualize and explain their results: Pyglotaran's inte-
gration with popular Python plotting libraries, such as
matplotlib [52], allows for the creation of compelling
and informative visualizations. Researchers can seam-
lessly incorporate these visualizations into the Jupyter
notebook, alongside explanations of their significance
and interpretation.

3. Collaborate and share their findings: Jupyter note-
books can be easily shared with collaborators, who can
then review, modify, or extend the analysis. Moreover,
the Jupyter notebook format is conducive to sharing
research findings in online repositories or supplementary
materials, allowing for greater visibility and accessibil-
ity of the results.

The Jupyter notebook-style interface plays a pivotal role
in streamlining the reporting process, fostering collabora-
tion, and promoting transparency in the scientific discovery
process. By enabling researchers to effectively communi-
cate their findings, pyglotaran not only contributes to the
advancement of time-resolved spectroscopy analysis but
also supports the broader scientific community in uncover-
ing new insights and understanding of complex molecular
systems.

4.5 Software engineering: the pyglotaran
ecosystem

The development of pyglotaran [22] is standing on the
shoulders of giants in multiple ways. On the one hand, it
benefits from decades of knowledge and lessons learned by

interacting with users of predecessor software TIM [23],
TIMP [16], and Glotaran [18]. On the other hand, it relies
on battle-proven Python scientific libraries like scipy [51],
numpy [53], numba [54] and xarray [55], instead of trying
to reinvent the wheel.

To ensure efficient development and high-quality code,
several key practices have been implemented in the devel-
opment of the pyglotaran [22] ecosystem (see also the SI
section Software development):

1. Version control: Managed through Git and GitHub,
using the GitHub flow model and branch protection
to manage changes and ensure code quality. This ena-
bles multiple developers to collaborate on the codebase
simultaneously while maintaining version history and
control over changes.

2. Organization: All development happens within the Glo-
taran organization on GitHub, which, besides the new
Python projects, also contains the legacy projects Glo-
taran [18] and TIMP [16]. These legacy projects are still
maintained but not further developed. The most notable
components of the pyglotaran ecosystem include pyglo-
taran extras, pyglotaran examples, and pyglotaran vali-
dation, which together form the basis for the pyglotaran
validation framework.

3. Code structure: Code is organized using packages and
modules, making it easier to navigate and manage the
codebase.

4. Quality assurance: Linters, formatters, and type check-
ers are used to catch errors and enforce consistency in
the code.

Table 3 Feature comparison of glotaran + TIMP and pyglotaran

Glotaran + TIMP pyglotaran

User interface Glotaran is the GUI for the R-Package TIMP Use through external tools (e.g., VS Code, Jupyter notebooks)
Usability GUI; drag and drop modeling, double-click to plot Scripts (notebooks) and text-based modeling files

lab journal-like experience of working
Core functionality Global and target analysis

Limited support for multiple datasets
Basic kinetic modeling
Basic parameter relations

Global and target analysis
Designed to support multiple datasets
Advanced kinetic modeling with DOAS, IRFAS and guidance

spectra
Mathematical expressions in parameter relations

Integration Self-contained; limited import/export functionality
Only access to a subset of internal data

Easy to integrate with the entire Python ecosystem
Direct access to all internal data

Plotting Limited number of plots with very limited customizability Fully customizable plots and easy access to the raw data to make
non-standard plots

Development Limited maintenance only Active development
Extendability Not easily extendable; needs changes to Glotaran (Java)

and TIMP (R) and the communication layer (RServe)
Designed to be extendable via a plugin system
Python knowledge required

Support No support, only critical bugs
Slow response, Email

Active community
GitHub issue tracker

Photochemical & Photobiological Sciences

1 3

5. Continuous Integration and Delivery (CI/CD): These
processes automate the building and testing of the soft-
ware, ensuring that the code is always in a working state
(Figure S15, Figure S16, Figure S17, Figure S18).

6. Documentation: Automated documentation, both gen-
erated and manually curated, is provided to facilitate
understanding of the codebase and help new users get
up to speed quickly.

7. Dependency management: Automated dependency
updates ensure that the software remains up-to-date with
the latest libraries/frameworks and potential problems
are discovered early.

8. Deployment: Handled through PyPI and Conda-forge,
making it easier for users to install and use the software.

Overall, these practices ensure that pyglotaran is a high-
quality, well-maintained software package that is efficient to
develop, test, and use.

4.6 Glotaran versus pyglotaran

The pyglotaran project was developed based on the les-
sons learned with glotaran + TIMP and its support. While
the learning curve of pyglotaran is steeper it provides a lot
more capabilities, extendability and customizability. Due
to its text-based nature, it can in principle be integrated
into a GUI. Table 3 contains a feature comparison of glota-
ran + TIMP and pyglotaran.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s43630- 023- 00460-y.

Acknowledgements We thank Sergey Laptenok for help with design-
ing the more modern logo features, critical reading, and helpful discus-
sion. We thank Artur Nenov for helpful discussion.

Data availability statement The Jupyter notebooks and the preproc-
essed data can be downloaded from https:// github. com/ glota ran/ pyglo
taran- relea sepap er- suppl ement ary- infor mation/ relea ses, so that the
reader can reproduce all results.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Holzwarth, A. R. (1995). Time-resolved fluorescence spectros-
copy, in Methods in Enzymology. Academic Press, 246, 334–362.

 2. Kovalenko, S. A., Dobryakov, A. L., Ruthmann, J., & Ernsting,
N. P. (1999). Femtosecond spectroscopy of condensed phases
with chirped supercontinuum probing. Physical Review A, 59,
2369–2384.

 3. vandeVen, M., Ameloot, M., Valeur, B. & Boens, N. (2005) Pit-
falls and Their Remedies in Time-Resolved Fluorescence Spec-
troscopy and Microscopy, Journal of Fluorescence, 15, 377–413.

 4. Berera, R., van Grondelle, R., & Kennis, J. T. M. (2009). Ultrafast
transient absorption spectroscopy: Principles and application to
photosynthetic systems. Photosynthesis Research, 101, 105–118.

 5. Beechem, J. M., Ameloot, M., & Brand, L. (1985). Global and
Target Analysis of Complex Decay Phenomena. Instrumentation
Science & Technology, 14, 379–402.

 6. Holzwarth, A. (1996) Data analysis of time-resolved measure-
ments, in Biophysical Techniques in Photosynthesis, eds. J. Amesz
and A. Hoff, Kluwer Academic Press, Dordrecht, pp. 75–92.

 7. van Stokkum, I. H. M., Larsen, D. S., & van Grondelle, R. (2004).
Global and target analysis of time-resolved spectra. Biochimica Et
Biophysica Acta, 1657, 82–104.

 8. van Stokkum, I. H. M., Larsen, D. S., & van Grondelle, R. (2004).
Erratum to “Global and target analysis of time-resolved spectra.”
Biochimica Et Biophysica Acta, 1658, 262–262.

 9. Ruckebusch, C., Sliwa, M., Pernot, P., de Juan, A., & Tauler, R.
(2012). Comprehensive data analysis of femtosecond transient
absorption spectra: A review. Journal of Photochemistry and Pho-
tobiology C: Photochemistry Reviews, 13, 1–27.

 10. Arcioni, A., & Zannoni, C. (1984). Intensity deconvolution in
fluorescence depolarization studies of liquids, liquid crystals and
membranes. Chemical Physics, 88, 113–128.

 11. van Stokkum, I. H. M., Brouwer, A. M., van Ramesdonk, H. J. &
Scherer, T. (1993) Multiresponse parameter estimation and com-
partmental analysis of time resolved fluorescence spectra: Appli-
cation to conformational dynamics of charge-separated species in
solution. Proc. Kon. Ned. Akad. v. Wetensch., 96, 43–68.

 12. Hoff, W. D., Van Stokkum, I. H. M., Van Ramesdonk, H. J., Van
Brederode, M. E., Brouwer, A. M., Fitch, J. C., . . . Hellingwerf,
K. J., (1994). Measurement and Global Analysis of the Absor-
bency Changes in the Photocycle of the Photoactive Yellow Pro-
tein from Ectothiorhodospira-Halophila, Biophysical Journal, 67,
1691–1705.

 13. van Stokkum, I. H. M., Scherer, T., Brouwer, A. M., & Verhoeven,
J. W. (1994). Conformational dynamics of flexibly and semirig-
idly bridged electron donor-acceptor systems as revealed by spec-
trotemporal parametrization of fluorescence. Journal of Physical
Chemistry, 98, 852–866.

 14. Beechem, J. M. (1989). A second generation global analysis pro-
gram for the recovery of complex inhomogeneous fluorescence
decay kinetics. Chemistry and Physics of Lipids, 50, 237–251.

 15. Dioumaev, A. K. (1997). Evaluation of intrinsic chemical kinetics
and transient product spectra from time-resolved spectroscopic
data. Biophysical Chemistry, 67, 1–25.

https://doi.org/10.1007/s43630-023-00460-y
https://github.com/glotaran/pyglotaran-releasepaper-supplementary-information/releases
https://github.com/glotaran/pyglotaran-releasepaper-supplementary-information/releases
http://creativecommons.org/licenses/by/4.0/

 Photochemical & Photobiological Sciences

1 3

 16. Mullen, K. M., & van Stokkum, I. H. M. (2007). TIMP: An R
Package for Modeling Multi-way Spectroscopic Measurements.
Journal of Statistical Software, 18, 1–46.

 17. van Wilderen, L. J. G. W., Lincoln, C. N., & van Thor, J. J. (2011).
Modelling Multi-Pulse Population Dynamics from Ultrafast Spec-
troscopy. PLoS ONE, 6, e17373.

 18. Snellenburg, J. J., Laptenok, S. P., Seger, R., Mullen, K. M., & van
Stokkum, I. H. M. (2012). Glotaran: A Java-based Graphical User
Interface for the R-package TIMP. Journal of Statistical Software,
49, 1–22.

 19. Slavov, C., Hartmann, H., & Wachtveitl, J. (2015). Implementation
and Evaluation of Data Analysis Strategies for Time-Resolved
Optical Spectroscopy. Analytical Chemistry, 87, 2328–2336.

 20. Müller, C., Pascher, T., Eriksson, A., Chabera, P., & Uhlig, J.
(2022). KiMoPack: A python Package for Kinetic Modeling of
the Chemical Mechanism. The Journal of Physical Chemistry A,
126, 4087–4099.

 21. Uhlig, J. (2022). KiMoPack - Open source tool for the analysis
of transient spectral data. https:// doi. org/ 10. 5281/ zenodo. 60491 86

 22. Weißenborn, J., Snellenburg, J. J., Weigand, S. & van Stokkum, I.
H. M. (2022) pyglotaran: a Python library for global and target
analysis, https:// doi. org/ 10. 5281/ zenodo. 45340 43

 23. van Stokkum, I. H. M., & Bal, H. E. (2006). A Problem Solving
Environment for interactive modelling of multiway data. Concur-
rency and computation: Practice and experience, 18, 263–269.

 24. van Stokkum, I. H. M., Wohlmuth, C., Würthner, F., & Williams,
R. M. (2022). Energy transfer in supramolecular calix[4]arene—
Perylene bisimide dye light harvesting building blocks: Resolv-
ing loss processes with simultaneous target analysis. Journal of
Photochemistry and Photobiology, 12, 100154.

 25. Teles-Ferreira, D. C., van Stokkum, I. H. M., Conti, I., Ganzer, L.,
Manzoni, C., Garavelli, M., . . . de Paula, A. M. (2022). Coherent
vibrational modes promote the ultrafast internal conversion and
intersystem crossing in thiobases, Physical Chemistry Chemical
Physics, 24, 21750–21758.

 26. van Stokkum, I. H. M., Kloz, M., Polli, D., Viola, D., Weißenborn,
J., Peerbooms, E., . . . Kennis, J. T. M. (2021). Vibronic dynamics
resolved by global and target analysis of ultrafast transient absorp-
tion spectra, The Journal of Chemical Physics, 155, 114113.

 27. Dobryakov, A. L., Kovalenko, S. A., & Ernsting, N. P. (2003).
Electronic and vibrational coherence effects in broadband tran-
sient absorption spectroscopy with chirped supercontinuum prob-
ing. The Journal of Chemical Physics, 119, 988–1002.

 28. Dobryakov, A. L., Kovalenko, S. A., & Ernsting, N. P. (2005).
Coherent and sequential contributions to femtosecond transient
absorption spectra of a rhodamine dye in solution. The Journal
of Chemical Physics, 123, 044502.

 29. van Stokkum, I. H. M., Jumper, C. C., Snellenburg, J. J., Scholes,
G. D., van Grondelle, R., & Malý, P. (2016). Estimation of
damped oscillation associated spectra from ultrafast transient
absorption spectra. The Journal of Chemical Physics, 145,
174201.

 30. Acuña, A. M., Van Alphen, P., Van Grondelle, R., & Van Stok-
kum, I. H. M. (2018). The phycobilisome terminal emitter trans-
fers its energy with a rate of (20 ps)–1 to photosystem II. Photo-
synthetica, 56, 265–274.

 31. Snellenburg, J. J., Dekker, J. P., van Grondelle, R., & van Stok-
kum, I. H. M. (2013). Functional Compartmental Modeling of the
Photosystems in the Thylakoid Membrane at 77 K. The Journal
of Physical Chemistry B, 117, 11363–11371.

 32. Godfrey, K. (1983). Compartmental models and their application.
Academic Press.

 33. Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier,
M., Frederic, J., . . . Willing, C. (2016). Jupyter Notebooks - a
publishing format for reproducible computational workflows, in
Positioning and Power in Academic Publishing: Players, Agents

and Agendas, eds. F. Loizides and B. Schmidt, IOS Press, pp.
87–90.

 34. Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton,
G., Axton, M., Baak, A., . . . Mons, B. (2016). The FAIR Guid-
ing Principles for scientific data management and stewardship,
Scientific Data, 3, 160018.

 35. Liebel, M., & Kukura, P. (2013). Broad-Band Impulsive
Vibrational Spectroscopy of Excited Electronic States in the
Time Domain. The Journal of Physical Chemistry Letters, 4,
1358–1364.

 36. Liebel, M., Schnedermann, C., Wende, T., & Kukura, P. (2015).
Principles and Applications of Broadband Impulsive Vibra-
tional Spectroscopy. The Journal of Physical Chemistry A, 119,
9506–9517.

 37. Golub, G. H. & LeVeque, R. J. (1979). Extensions and uses of the
variable projection algorithm for solving nonlinear least squares
problems, Proc. of the 1979 Army Numerical Analysis and Comp.
Conf., ARO Report 79-3, pp. 1–12.

 38. Nagle, J. F. (1991). Solving complex photocycle kinetics - theory
and direct method. Biophysical Journal, 59, 476–487.

 39. Lawson, C. L., & Hanson, R. J. (1974). Solving Least Squares
Problems. Prentice Hall.

 40. Mullen, K. M., & van Stokkum, I. H. M. (2009). The variable
projection algorithm in time-resolved spectroscopy, microscopy
and mass spectrometry applications. Numerical Algorithms, 51,
319–340.

 41. Satzger, H., & Zinth, W. (2003). Visualization of transient absorp-
tion dynamics – towards a qualitative view of complex reaction
kinetics. Chemical Physics, 295, 287–295.

 42. Hippius, C., van Stokkum, I. H. M., Gsanger, M., Groeneveld, M.
M., Williams, R. M., & Würthner, F. (2008). Sequential FRET
processes in calix[4]arene-linked orange-red-green perylene
bisimide dye zigzag arrays. Journal of Physical Chemistry C,
112, 2476–2486.

 43. Hippius, C. (2007). Multichromophoric Arrays of Perylene Bisim-
ide Dyes - Synthesis and Optical Properties; Multichromophore
Perylenbisimidkaskaden - Synthese und optische Eigenschaften,
PhD Thesis, Universität Würzburg, Fakultät für Chemie und
Pharmazie, 2007.

 44. Tian, L., van Stokkum, I. H. M., Koehorst, R. B. M., Jongerius,
A., Kirilovsky, D. & van Amerongen, H. (2011). Site, Rate, and
Mechanism of Photoprotective Quenching in Cyanobacteria, Jour-
nal of the American Chemical Society, 133, 18304–18311.

 45. Liu, H., Zhang, H., Niedzwiedzki, D. M., Prado, M., He, G.,
Gross, M. L., & Blankenship, R. E. (2013). Phycobilisomes
Supply Excitations to Both Photosystems in a Megacomplex in
Cyanobacteria. Science, 342, 1104–1107.

 46. Shen, G., Boussiba, S., & Vermaas, W. F. (1993). Synechocystis
sp PCC 6803 strains lacking photosystem I and phycobilisome
function. The Plant Cell, 5, 1853–1863.

 47. Tian, L., Farooq, S., & van Amerongen, H. (2013). Probing the
picosecond kinetics of the photosystem II core complex in vivo.
Physical Chemistry Chemical Physics, 15, 3146–3154.

 48. van Stokkum, I. H. M., Gwizdala, M., Tian, L., Snellenburg, J. J.,
van Grondelle, R., van Amerongen, H., & Berera, R. (2018). A
functional compartmental model of the Synechocystis PCC 6803
phycobilisome. Photosynthesis Research, 135, 87–102. https:// doi.
org/ 10. 1007/ s11120- 017- 0424-5

 49. van Stokkum, I., (2018). Systems biophysics: Global and target
analysis of light harvesting and photochemical quenching in vivo,
in Light Harvesting in Photosynthesis, eds. R. Croce, R. van Gron-
delle, H. van Amerongen and I. van Stokkum, CRC Press, Boca
Raton, ch. 20, pp. 467–482.

 50. van Stokkum, I. H. M., Gwizdala, M., Tian, L., Snellenburg, J. J.,
van Grondelle, R., van Amerongen, H., & Berera, R. (2018). A

https://doi.org/10.5281/zenodo.6049186
https://doi.org/10.5281/zenodo.4534043
https://doi.org/10.1007/s11120-017-0424-5
https://doi.org/10.1007/s11120-017-0424-5

Photochemical & Photobiological Sciences

1 3

functional compartmental model of the Synechocystis PCC 6803
phycobilisome. Photosynthesis Research, 135, 87–102.

 51. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy,
T., Cournapeau, D., et al. (2020). SciPy 1.0: fundamental algo-
rithms for scientific computing in Python, Nature Methods, 17,
261–272.

 52. Hunter, J. D. (2007). Matplotlib: A 2D graphics environment.
Computing in Science and Engineering, 9, 90–95.

 53. Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R.,
Virtanen, P., Cournapeau, D., et al. (2020). Array programming
with NumPy, Nature, 585, 357–362.

 54. Lam, S. K., Pitrou, A. & Seibert, S. (2015). Numba: a LLVM-
based Python JIT compiler, presented in part at the Proceedings
of the Second Workshop on the LLVM Compiler Infrastructure
in HPC, Austin, Texas.

 55. Hoyer, S., & Hamman, J. (2017). xarray: N-D labeled Arrays and
Datasets in Python. Journal of Open Research Software. https://
doi. org/ 10. 5334/ jors. 148

Authors and Affiliations

Ivo H. M. van Stokkum1 · Jörn Weißenborn1 · Sebastian Weigand1,2 · Joris J. Snellenburg1

 * Ivo H. M. van Stokkum
 i.h.m.van.stokkum@vu.nl

1 Department of Physics and Astronomy and LaserLaB,
Faculty of Science, Vrije Universiteit Amsterdam, De
Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

2 Institut für Festkörperphysik, Technische Universität Berlin,
Hardenbergstr. 36, 10623 Berlin, Germany

https://doi.org/10.5334/jors.148
https://doi.org/10.5334/jors.148
http://orcid.org/0000-0002-6143-2021
https://orcid.org/0000-0002-1428-0221

S 1

Supplementary Information

pyglotaran: a lego-like Python framework for global and target analysis
of time resolved spectra
Ivo H.M. van Stokkuma, Jörn Weißenborna, Sebastian Weiganda,b, Joris J. Snellenburga

aDepartment of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam,
De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands

bInstitut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin,
Germany

The Jupyter notebooks and the preprocessed data can be downloaded from
https://github.com/glotaran/pyglotaran-release-paper-supplementary-information/releases, so that
the reader can reproduce all results.

Figure S 1. The structure of 4TT (inset) with its normalized absorption spectrum (black curve), the
normalized pump pulse spectrum (red curve), and normalized photoluminescence spectrum (blue
curve is the fit and blue dots are the data) obtained pumping the sample at 330 nm. Figure adopted
from 1.

Figure S 2. Overview of the estimated DOAS and phases. (A) Cosine oscillations with frequencies nν
(in /cm) (where n is the DOAS number) and damping rates γ (in 1/ps) written in the legend at the
left, using the appropriate color. Scaling of the DOAS is such that the product of the DOAS and the
damped oscillation is the contribution to the fit. (B) Estimated DOAS. (C) Estimated phase profiles of
the DOAS.

S 2

Figure S 3. Estimation of the laser intensity fluctuations responsible for the residual structure in Figure
5A by fitting the residual spectrum against the data. Further details can be found in the 4TT Jupyter
notebook.

Figure S 4. First left (B) and right (C) singular vectors resulting from the singular value decomposition
(SVD) of the residual matrix (A) after correcting the data for the laser intensity fluctuations. The black
line in (A) represents the location of the maximum of the IRF, which is described by a third order
polynomial function of the wavenumber.

S 3

Figure S 5. Summary statistics of the optimized parameters, screenshot from the
sequential_doas_4TT.ipynb Jupyter notebook.

S 4

Figure S 6. Selected time traces of raw rc data in CH2Cl2 after excitation at 530 nm data (in mOD, red)
and fit (black). Wavelength is indicated in the title of the panels. Note that the time axis is linear until 1
ps (after the maximum of the IRF), and logarithmic thereafter. Rms error of the fit is 0.59 mOD. Note
the presence of the prezero baseline, especially with wavelengths 527, 597 nm, and higher.

Figure S 7. Selection of the data until 0.2 ps before the center of the IRF, demonstrating the prezero
baseline in the raw data (A), and the baseline corrected data (B).

Figure S 8. Estimated prezero baseline.

S 5

Figure S 9. Chemical structures of the supramolecular systems rcg, rcgcr, gcrcg. Figure adopted from 2.
Note that the c is omitted from the labels in the figure.

Figure S 10. Formulas for the fitting of the guidance SADS3, screenshot from the
target_rcg_compare_part2.ipynb Jupyter notebook.

S 6

Figure S 11. Cartoon in side-view of possible fluorescent species in the Synechocystis ΔPSI mutant.
Depicted are a PB-PSII complex with both PSII RCs open (A), both closed (B), and a PB that is not
coupled to any PSII (C). Key: blue, rods consisting of three hexamers; top and basal core cylinders
respectively in magenta, red and orange; green, PS II dimer. Dark arrows represent intra-PB EET;
yellow arrows represent EET from the PB core to PSII. An “X” stands for a closed PSII RC. Panel D
depicts the location of the different pigments in the structure. The letters D,E,F indicate the three
different APC680 pigments. The approximate length for each subunit is based on 4. Figure adopted
from 5.

D

S 7

Modeling language
The core of pyglotaran is the modeling language which is a declarative Domain-Specific Language (DSL)
that is designed to describe the behavior of systems in terms of their states and how they interact with
one another, in a modular and composable manner. The DSL is split up into two parts, the parameter
definitions and the model definitions referencing parameters from the parameter definitions by their
name. Using the DSL pyglotaran functions as an engine that interprets the model and parameter
definitions and applies them to fit the data.

Expressive user defined names
Traditionally Problem Solving Environment (PSE) like the pyglotaran predecessors Glotaran 6 and TIMP
7 use an index based description for models and parameters definitions. While this is very close to the
mathematical description and implementation using matrixes and vectors, it puts a lot of mental load on
the user who needs to keep track of what which index means and constantly translate back and forth
between an index based description and the kinetic model describing the same physical system.

To reduce the mental load for users and simplify the translation between the kinetic model and its
description pyglotaran allows and encourages to use meaningful and verbose names both in the
model as well as in the parameter definitions (Figure S 12).

Figure S 12. Schematic illustrating the relation between the kinetic model (see also Figure 6) and the
corresponding parts of pyglotaran model and parameter definitions for the 4TT case study.

Model definition structure
Since pyglotaran and its DSL are under active development and considering that the DSL can be extended
via the pyglotaran plugin system it is more expedient to explain the core concepts in an abstract manner
than to discuss the concrete syntax of the current model definition implementation.

In its core the model definition consists of two main parts: the model element definitions and the dataset
definitions (Figure S 12). The model element definitions define reusable elements which can be
combined for each dataset in the dataset definitions describing the data measured in that dataset. The
parts of the model definition mostly follow a nested mapping (key-value pairs) pattern where the keys
alternate between keywords defining the functionality and free user defined names which provide the
meaning. This groups functionally similar parts together, with the most top-level key always being a
keyword. Keywords can be categorized into required and optional keywords, where required keywords
are mandatory for an element to provide its base functionality and optional keywords can further
customize the functionality.

S 8

Figure S 13. Abstract schematic of the model definition structure illustrating the relation between
model element definitions and dataset definitions as well as the nested alternating pattern of
keywords and user defined names and references to parameter names.

The most notable required keyword of model elements is the type which defines the overall
functionality of the element, and which other keywords can be used with it. While the value for the
type is always a string, what values can be used for it depends on the installed plugins that define the
value by which they are referred to in their implementation. Pyglotaran already comes with built-in
model element plugins for the most common analysis needs in time-resolved spectroscopy which don’t
require an additional installation and can be used out-of-the-box.

What structure the value for a keyword key should have depends on the type of the element itself. The
value of oscillation key in the doas element (Figure S 13) for example expects a nested mapping where
the keys are user defined names for oscillations and the value is a mapping with the keywords frequency
and rates as keys and the values being references to parameter names in the parameter definition for the
corresponding values. While the value of rates key in the decay element expects a mapping where the keys
have the form (<user-defined-compartment-name>, <other-user-defined-compartment-name>) in to-
from-notation and the values reference the name of the corresponding transition rate parameter.
Whereas the keys in the artifact element don’t use a mapping at all but expect an integer value
between 1 and 3 in case of the order key and a reference to the name of a parameter in case of the
width key.

The reference implementation of the file format used for the model definition uses the YAML markup
language which is designed to be intuitive and easy to read, using indentation to indicate nesting and a
minimal use of punctuation. But which file formats are supported can easily be extended using the
plugin system (described below) for model file reading and writing.

Parameter definition
The parameter definition connects the name a parameter is referred to with the value which will be
used as the starting value in the optimization process and allows to define additional options for the
parameter. The naming of the parameter is free to the user’s desire with very few restrictions like that
it cannot be a reserved keyword in the python programming language and that only ASCII characters
are allowed. For a better structuring the parameter naming allows the creation of groups to bunch up
parameters that contextually belong together making it easier to focus on those, while the group
names provide the verbosity to determine what the intended usage of the parameter is. When

S 9

referring to a parameter the group it belongs to become part of its name with a dot (.) denoting the
parent child relationship between parent group and child.

Two input styles for the parameter definition are supported: a nested input style using the YAML
markup language and a flattened table like style input using the format CSV, xlsx or ods. The
advantage in using the nested YAML syntax is that groups of parameters which belong contextually
together are also visually grouped due to the indentation based YAML syntax, options can be applied
to a whole group in a single line and the short name (name inside of a group) can be used which
simplifies visual differentiation between parameters. The advantage of the table style is that it uses
the full name of the parameter including the groups which makes it easier to look it up in the model
definition and search for it.

If a parameter should not be changed during optimization the vary option can be set to false, which
will exclude this parameter from the optimization. This is useful for parameters like the initial input to
the compartments, to manually help the optimizer to get out of a local minimum when it gets stuck or
to speed up optimization when focusing to improve a selected part of the model.

To set boundaries for the parameters that their values should not pass the minimum and maximum
options can be used when using an algorithm in the optimization that supports boundaries.

The most powerful feature of the parameter definition is the usage of an expression allowing to define
relations between parameters using equations. This can be used to enforce prior knowledge of a
systems behavior, reducing the number of free parameters since this parameter is implicitly set to not
be varied which consequently also improves the optimization.

Structure of the result and relation to the model definition
Optimization results generated by pyglotaran can be categorized into overall results for the whole
analysis and per dataset results in the data attribute (Figure S 13). Each dataset result can be further
categorized into a general section and one or more element dependent sections which depend upon the
elements used in the dataset definition of that particular dataset inside the model definition.

The result for the overall analysis contains the optimized parameters, optimization history and the
parameter history for the whole analysis, as well as optimization metrics like the degrees of freedom and
root mean square error.

The per dataset results can be accessed by the same names that the datasets were referred to in the
model definition. The general part consists of information which is independent of the elements used in
the model definition such as the original data, the fitted data, and the residual. In addition, each model
element used in the model definition for a dataset also adds information specific to the type of the element.
The decay component of type kinetic for example adds information about the species concentration and
species associated spectra (SAS). The names of the saved information are in general only dependent on the
type of an element and not on the freely chosen name, an exception to the rule are elements whose type
can occur multiple times per dataset in which case the name is suffixed with the name of the element in the
model definition (e.g., a_matrix_decay for the 4TT example in Figure S 14).

S 10

Figure S 14. Schematic of the general structure of a result object and its relation to the model
definition. The information saved in the result can be categorized into overall results for the whole
analysis and per dataset results. The per dataset results use the same name as the dataset in the
model definition and can be categorized into general information independent of model elements and
element specific information. The per dataset results include some redundant information, which
could be calculated from other saved values (e.g., 𝑓𝑖𝑡𝑡𝑒𝑑_𝑑𝑎𝑡𝑎 = 𝑑𝑎𝑡𝑎 − 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙). This is done for
the convenience of the user, who can use the redundant information to plot the results in external
plotting software without the need to compute those values and can be configured using
SavingOptions.

Plugin system
Pyglotaran uses a plugin system for model elements and for reading and writing files. While the builtin
plugins already provide the functionality needed by most users, the plugin system provides additional
modularity, flexibility, extendibility, and the possibility for seamless integration with other software.
The plugins can be created by third-party developers or by the users themselves and can provide new
features and capabilities that are not included in pyglotaran itself. The file io plugins are split into two
categories the ProjectIo plugins for the model, parameter definitions, and results and the DataIo
plugins to read and write data. Pyglotaran already allows for many different input and output data
formats (e.g. plain ASCII and NetCDF). To illustrate the use case, creating a DataIo plugin allows one to
read and/or write new file formats without the need for an additional conversion step. Whereas
creating a result saving plugin allows for integration with other software. By registering a file io plugin
with the extension of a file format, pyglotaran is able to automatically determine which plugin to use
when reading or writing a given file (on https://pyglotaran.readthedocs.io/, search for: write own
plugin). To ensure that the right plugin is used when multiple plugins are registered under the same
name the plugins are also registered with their fully qualified name (python import path) and the user
can override which plugin to use (on https://pyglotaran.readthedocs.io/, search for: using plugins).
Creating a model element plugin allows researchers to add new analysis capabilities as well as the
ability to share the details of their research with the wider scientific community, allowing for
reproducibility, easier collaboration, and improving scientific progress.

S 11

Software development
To ensure efficient development and high-quality code, several key practices have been implemented
in the development of the pyglotaran ecosystem. Firstly, version control is managed through git and
GitHub, using the GitHub flow model and branch protection to manage changes and ensure code
quality. This allows multiple developers to collaborate on the codebase simultaneously while
maintaining version history and control over changes.

All the development happens in the glotaran organization on GitHub, that besides the new python
projects also contains the legacy projects TIMP7, and Glotaran6, which are still maintained but not
further developed. The most notable components of the pyglotaran ecosystem are pyglotaran-extras
[pygta-extras], pyglotaran-examples and pyglotaran-validation which together build the basis for the
pyglotaran validation framework.

Code is structured using packages and modules, making it easier to organize and navigate through the
codebase. Quality assurance is ensured using linters, formatters, and type checkers, which help to
catch errors and enforce consistency in the code.

Continuous Integration and -Delivery (CI/CD) are utilized to automate the building and testing of the
software, ensuring that the code is always in a working state. Automated documentation, both
generated and manually curated, is also provided to facilitate understanding of the codebase and to
help new users get up to speed quickly.

Automated dependency updates ensure that the software remains up to date with the latest
libraries/frameworks and potential problems are discovered early. Deployment is handled through
PyPI and conda-forge, making it easier for users to install and use the software.

Overall, these practices ensure that pyglotaran is high-quality, well-maintained software that is
efficient to develop, test, and use.

Development infrastructure and tooling
Each project in the pyglotaran ecosystem as well as pyglotaran itself are developed using professional
state of the art software development technologies and practices, as well as an extensive set of
different tests that need to be passed by each change as well as code reviews from the maintainer
before it can be added to the project. The passing of those tests is enforced by using branch
protection with requires each change to pass all CI/CD tests (see below) including the QA-tools (see
below) and have at least one approving review.

Development workflow using GitHub
GitHub is a web-based platform that provides version control using git and collaboration features for
software development projects. It allows developers to store their code repositories in the cloud,
provides version control features to track changes to code over time, and includes collaboration
features like managing issues, pull requests (PR), and code reviews. Additionally, it offers Continuous
Integration and Continuous Delivery to automate building, testing, and deploying of code changes.

Development follows the GitHub branching model where each developer only works on their fork of
the main repository and submits PRs to the main repository to get a change incorporated. After the
changes are reviewed and all tests are passed these changes get squash merged into the main branch of
the repository resulting in a clean linear history, where details of the changes and discussions can be
looked up in the PR itself. The details on how to contribute to a project can be looked up in the
contribution section of each project’s documentation.

Quality assurance tools
Quality assurance tools (QA-tools) are an essential part of modern software development, and they
play a critical role in improving the quality and maintainability of the code. In the Python development
world, several quality assurance tools are widely used, such as linters, formatters, and type checkers.

S 12

Linters are tools that analyze code for potential errors, bugs, and style issues. They can identify
common mistakes like syntax errors, undefined variables, or unused imports. Linters can enforce coding
conventions and best practices, ensuring that code is consistent and easy to read. This type of tool can
save developers significant amounts of time by catching issues early in the development cycle.

Formatters, on the other hand, are tools that help developers to enforce a consistent code style. They
can help ensure that the code adheres to indentation, line length, and other formatting rules. In
addition to enforcing consistency, formatters can also automatically fix common formatting issues, such
as incorrect whitespace or inconsistent line breaks. The result is code that is easier to read and
maintain.

Type checkers are another critical quality assurance tool in Python. They help ensure that code adheres
to the specified types of variables, arguments, and return values. By catching type-related errors before
runtime, type checkers can help developers avoid bugs and improve code quality. Type checkers can also
improve code understanding by helping developers understand the flow of data and logic in their code.

By using quality assurance tools like linters, formatters, and type checkers, Python developers can
ensure that their code is consistent, error-free, and adheres to best practices and conventions. This, in
turn, can help improve the reliability, maintainability, and readability of code, and reduce the time and
effort required for testing and debugging. Ultimately, the use of quality assurance tools helps to
improve the overall quality of software development, making it more efficient and effective.

The pyglotaran development uses the pre-commit framework to manage the quality assurance tools and
their versions. This ensures that each committed code change is up to standards by intercepting the
commit if any of the checks fails, leading to a cleaner commit history and an easier review process.

Continuous-Integration and Continuous-Delivery
Continuous-Integration and -Delivery (CI/CD) is a set of software development practices that aim to
improve the speed and quality of software delivery by automating the process of building, testing, and
deploying software.

Continuous Integration (CI) is the process of regularly integrating code changes into a shared code
repository, typically using tools like Git, and ensuring that the codebase is always in a working state.
This involves running automated tests and checks on the codebase to catch errors and issues early on.

Continuous Delivery (CD) is a practice where developers automate the process of deploying code
changes to production. With Continuous Delivery, every code change is automatically built, tested, and
prepared for deployment. Once the code changes have passed all tests and quality checks, they are
automatically deployed to a staging or testing environment. The code changes can then be manually
promoted to the production environment later.

In the context of software builds and distributions, CI/CD involves setting up automated pipelines that
build, test, and package software changes, and then automatically deploy them to target environments.
This ensures that software changes are thoroughly tested and validated before they are released to end-
users and helps to reduce the time and effort required to deliver software updates.

Software Documentation
The documentation of the projects consists of handwritten guides and API documentation generated
from the source code using Sphinx. To autogenerate documentation for the source code Sphinx uses
the docstring added by the developers which are also shown in editors to guide users on how to use
each part of the software and explain what the configuration options and intended usage are. The
documentation for the current development version and each release is hosted on Read the Docs,
allowing online access to the documentation websites as well as downloads as PDF or epub.

S 13

Dependency updates
In contrast to classical compiled desktop applications that come with a fixed set of dependencies,
python packages typically only define a minimal version requirement for dependencies to allow
interoperability of multiple packages in an environment. On the one hand this allows users to use
different packages without their requirements conflicting and breaking functionality. On the other
hand, this makes it nondeterministic for developers which specific versions of dependencies the users
have installed, and new releases of a dependency can possibly break functionality. Therefore, the
development is done with the dependencies pinned to specific versions creating a deterministic and
reproducible reference environment. It also allows to automate dependency updates using the update
service dependabot which is integrated into github. Dependabot will create a pull request for each
new release of a dependency which triggers the automated tests and ensures that the software works
properly with the new version of the dependency or allows developers to disallow this specific version
when installing the software and file a bug report/make create a fix for that dependency.

Release and Deployment
Releases are done using GitHub releases on the corresponding project which allow to have a rich
description of the release itself and its changes, as well as automatically creating a git tag for the
release which allows to download the source code of the project for that particular release. Creating
the git tag then triggers the CI/CD workflow, runs all tests again and in the case of a package builds
source and binary distributions of the package that are uploaded to Python Package Index (PyPI). The
release on PyPI then gets picked up by the conda-forge bot which will create a PR to the corresponding
conda-forge feedstock repository, which contains the build recipe to create a release on conda-forge.
This allows for additional manual adjustments of the build recipe (e.g., changed dependencies) and
ensures that the conda build is also tested before it is released.

Figure S 15. Schematic of the automated release process of python packages. When creating a
release on github a git tag is created which triggers the CI/CD workflow to run test and upload source
and binary distributions to PyPI. The release on PyPI is then used to create a pull request to the
corresponding feedstock repository updating the conda build recipe, test the created build and create a
release to conda-forge.

Deprecation warnings
To allow improvements of pyglotaran as well as its DSL without breaking functionality for users
pyglotaran uses deprecation warnings. Those warnings provide users with guidance on what changes
they need to make to their code and/or model definition to ensure compatibility with the latest
version. Users can take proactive steps to update their code, avoiding costly and time-consuming
issues that may arise from using deprecated features. The clear and concise explanations of the
changes required to ensure compatibility with future versions also allow for a gradual and incremental
upgrade path of existing case studies done with older versions of pyglotaran by doing incremental

S 14

updates. The deprecation framework of pyglotaran was built for maximum development flexibility and
its capabilities range from the renaming of functions, methods, and classes to moving source files to
different locations with minimal development effort (see the documentation
https://pyglotaran.readthedocs.io/en/latest/contributing.html#deprecations). To ensure that the
provided deprecation warning is correct the existence of the new and old usage is verified in self-tests
of the deprecation function. When a new release is prepared the deprecation functions raise errors if
a deprecation is overdue, which ensures that the deprecated functionality is removed, and the source
code is kept clean. A list of new deprecations and removal of deprecated functionality for each version
can be found on the release-page (https://github.com/glotaran/pyglotaran/releases) for that version
as well as the changelog in the documentation
(https://pyglotaran.readthedocs.io/en/latest/changelog.html).

Ecosystem
While pyglotaran functions as the engine allowing to fit complex case studies in a way which wasn’t
possible before, its ecosystem provides convenience functions for plotting, documentation, and validation
of the analysis result.

Pyglotaran-Extras
The pyglotaran-extras [pygta-extras] are a collection of very high-level helper functions for plotting
and inspecting results from a parameter estimation using pyglotaran with a strong focus on time-
resolved spectroscopy. One main purpose is to provide users with a quick and easy way to get feedback
on the quality of their analysis without the need of detailed knowledge about the structure of the
generated result dataset(s) and the usage of the xarray API 8. The other purpose is to provide cross
version compatibility to inspect result datasets. The plotting functionality focusses on providing a
starting point for publication ready figures while allowing for the full customization and flexibility
provided by matplotlib 9.

Pyglotaran-Examples
The pyglotaran-examples were historically grown as a development tool to validate results from
pyglotaran manually against published and simulated results of its pre-decessors, which was mostly
done by comparing plots. It still serves the purpose of validation using pyglotaran-validation and the
comparison-results branch which is validated manually each time it is updated (e.g., to accommodate
improvements or fix bugs). But now it also serves as usage documentation, demonstrating different
features of the pyglotaran model language depending on which system is analyzed.

Validation
In the 0.5.0 release of pyglotaran the manual validation of results and testing of their consistency was
extended by automatic tests which were later moved into its own repository pyglotaran-validation.
This change allows for a better extendability in the future to cross validate pyglotaran against a wider
range of other of software operating in the same domain. As well as decoupling the validation of generated
results from the main project reducing the barrier for contributions. The validation itself does not use
pyglotaran but operates on the data directly to prevent overlooking or even misinterpreting issues with the
data it is supposed to validate due to circular logic.

Validation framework
The pyglotaran projects use GitHub Actions as their CI-CD platform. The automation pipelines are called
workflows and are defined as plaintext files in yaml syntax inside the special folder .github/workflows
inside of the repositories allowing to put them under version control and easily review changes to the
infrastructure. Workflows consist of a definition of events on which the workflows should be executed and
a definition of jobs that should be run. The jobs themselves define a list of steps to setup reproducible
testing/build environments and run the necessary commands. Steps can either run commands in the
shell or use predefined Actions to simplify more complex tasks and improve the readability of the
workflow. Using the so-called matrix strategy (Figure S 17) allows to parametrize jobs and reduce
duplications to for example run tests across different operating systems and python versions. For a

S 15

more dynamic creation of the matrix a custom step that generates the matrix can be used (Figure S
18). Having reproducible environments in which tests and builds are executed is crucial to guarantee that
the software behavior is also reproducible and consistent.

Figure S 16 Schematic overview how the different projects in the pyglotaran ecosystem interact with
another using the CI. For example, if a change is to be made to pyglotaran the unit tests and
benchmarks contained inside the pyglotaran repository as well as integration tests and result
validation using pyglotaran-extras, pyglotaran-examples and pyglotaran-validation are triggered.

Figure S 17 Schematic illustration of the pyglotaran CI-CD workflow. First the QA-tools and manifest-
check are run to ensure that the code is up to standards and all files that should be part of a release
are in fact included, as well as tests that the documentation builds properly and does not contain dead
links. Only after those tests have passed the unit tests are run for all supported python versions and
operating systems. In case of a release all tests but the doc-links tests need to pass before a release on
PyPI is created.

S 16

Figure S 18 Schematic illustration of the pyglotaran integration test workflow using github actions
defined in the pyglotaran-examples and pyglotaran-validation repositories. The github action of the
examples first generates a list of all available examples and then runs them in parallel and uploads the
results to an artifact cache, those results are then downloaded and validated against the established and
manually validated standards.

References
1. D. C. Teles-Ferreira, I. H. M. van Stokkum, I. Conti, L. Ganzer, C. Manzoni, M. Garavelli, . . . A.

M. de Paula, Coherent vibrational modes promote the ultrafast internal conversion and
intersystem crossing in thiobases, Physical Chemistry Chemical Physics, 2022, 24, 21750-
21758.

2. C. Hippius, PhD Thesis, Universität Würzburg, Fakultät für Chemie und Pharmazie, 2007.
3. I. H. M. van Stokkum, C. Wohlmuth, F. Würthner and R. M. Williams, Energy transfer in

supramolecular calix[4]arene—Perylene bisimide dye light harvesting building blocks:
Resolving loss processes with simultaneous target analysis, Journal of Photochemistry and
Photobiology, 2022, 12, 100154.

4. A. A. Arteni, G. Ajlani and E. J. Boekema, Structural organisation of phycobilisomes from
Synechocystis sp strain PCC6803 and their interaction with the membrane, Biochim. Biophys.
Acta, 2009, 1787, 272-279.

5. A. M. Acuña, P. Van Alphen, R. Van Grondelle and I. H. M. Van Stokkum, The phycobilisome
terminal emitter transfers its energy with a rate of (20 ps)–1 to photosystem II,
Photosynthetica, 2018, 56, 265-274.

6. J. J. Snellenburg, S. P. Laptenok, R. Seger, K. M. Mullen and I. H. M. van Stokkum, Glotaran: a
Java-based Graphical User Interface for the R-package TIMP, Journal of Statistical Software,
2012, 49, 1-22.

7. K. M. Mullen and I. H. M. van Stokkum, TIMP: An R Package for Modeling Multi-way
Spectroscopic Measurements, Journal of Statistical Software, 2007, 18, 1 - 46.

8. S. Hoyer and J. Hamman, xarray: N-D labeled Arrays and Datasets in Python, Journal of Open
Research Software, 2017, DOI: 10.5334/jors.148.

9. J. D. Hunter, Matplotlib: A 2D graphics environment, Computing in Science and Engineering,
2007, 9, 90--95.

	Pyglotaran: a lego-like Python framework for global and target analysis of time-resolved spectra
	Abstract
	Graphical abstract
	1 Introduction
	2 Methods
	3 Results and discussion
	3.1 Broadband absorption case study of intersystem crossing in 4-thiothymidine
	3.2 Transient absorption case study of the chromophoric systems rc and rcg
	3.3 Time-resolved emission case study of whole photosynthetic cells
	3.4 Conclusion from the case studies

	4 Design of the lego-like problem-solving environment pyglotaran
	4.1 Model specification
	4.2 Parameter estimation
	4.3 Model validation
	4.4 Reporting and conclusion
	4.5 Software engineering: the pyglotaran ecosystem
	4.6 Glotaran versus pyglotaran

	Anchor 18
	Acknowledgements
	References

