
S 1

Supplementary Information

pyglotaran: a lego-like Python framework for global and target analysis
of time resolved spectra
Ivo H.M. van Stokkuma, Jörn Weißenborna, Sebastian Weiganda,b, Joris J. Snellenburga

aDepartment of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam,
De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands

bInstitut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin,
Germany

The Jupyter notebooks and the preprocessed data can be downloaded from
https://github.com/glotaran/pyglotaran-release-paper-supplementary-information/releases, so that
the reader can reproduce all results.

Figure S 1. The structure of 4TT (inset) with its normalized absorption spectrum (black curve), the
normalized pump pulse spectrum (red curve), and normalized photoluminescence spectrum (blue
curve is the fit and blue dots are the data) obtained pumping the sample at 330 nm. Figure adopted
from 1.

Figure S 2. Overview of the estimated DOAS and phases. (A) Cosine oscillations with frequencies nν
(in /cm) (where n is the DOAS number) and damping rates γ (in 1/ps) written in the legend at the
left, using the appropriate color. Scaling of the DOAS is such that the product of the DOAS and the
damped oscillation is the contribution to the fit. (B) Estimated DOAS. (C) Estimated phase profiles of
the DOAS.

S 2

Figure S 3. Estimation of the laser intensity fluctuations responsible for the residual structure in Figure
5A by fitting the residual spectrum against the data. Further details can be found in the 4TT Jupyter
notebook.

Figure S 4. First left (B) and right (C) singular vectors resulting from the singular value decomposition
(SVD) of the residual matrix (A) after correcting the data for the laser intensity fluctuations. The black
line in (A) represents the location of the maximum of the IRF, which is described by a third order
polynomial function of the wavenumber.

S 3

Figure S 5. Summary statistics of the optimized parameters, screenshot from the
sequential_doas_4TT.ipynb Jupyter notebook.

S 4

Figure S 6. Selected time traces of raw rc data in CH2Cl2 after excitation at 530 nm data (in mOD, red)
and fit (black). Wavelength is indicated in the title of the panels. Note that the time axis is linear until 1
ps (after the maximum of the IRF), and logarithmic thereafter. Rms error of the fit is 0.59 mOD. Note
the presence of the prezero baseline, especially with wavelengths 527, 597 nm, and higher.

Figure S 7. Selection of the data until 0.2 ps before the center of the IRF, demonstrating the prezero
baseline in the raw data (A), and the baseline corrected data (B).

Figure S 8. Estimated prezero baseline.

S 5

Figure S 9. Chemical structures of the supramolecular systems rcg, rcgcr, gcrcg. Figure adopted from 2.
Note that the c is omitted from the labels in the figure.

Figure S 10. Formulas for the fitting of the guidance SADS3, screenshot from the
target_rcg_compare_part2.ipynb Jupyter notebook.

S 6

Figure S 11. Cartoon in side-view of possible fluorescent species in the Synechocystis ΔPSI mutant.
Depicted are a PB-PSII complex with both PSII RCs open (A), both closed (B), and a PB that is not
coupled to any PSII (C). Key: blue, rods consisting of three hexamers; top and basal core cylinders
respectively in magenta, red and orange; green, PS II dimer. Dark arrows represent intra-PB EET;
yellow arrows represent EET from the PB core to PSII. An “X” stands for a closed PSII RC. Panel D
depicts the location of the different pigments in the structure. The letters D,E,F indicate the three
different APC680 pigments. The approximate length for each subunit is based on 4. Figure adopted
from 5.

D

S 7

Modeling language
The core of pyglotaran is the modeling language which is a declarative Domain-Specific Language (DSL)
that is designed to describe the behavior of systems in terms of their states and how they interact with
one another, in a modular and composable manner. The DSL is split up into two parts, the parameter
definitions and the model definitions referencing parameters from the parameter definitions by their
name. Using the DSL pyglotaran functions as an engine that interprets the model and parameter
definitions and applies them to fit the data.

Expressive user defined names
Traditionally Problem Solving Environment (PSE) like the pyglotaran predecessors Glotaran 6 and TIMP
7 use an index based description for models and parameters definitions. While this is very close to the
mathematical description and implementation using matrixes and vectors, it puts a lot of mental load on
the user who needs to keep track of what which index means and constantly translate back and forth
between an index based description and the kinetic model describing the same physical system.

To reduce the mental load for users and simplify the translation between the kinetic model and its
description pyglotaran allows and encourages to use meaningful and verbose names both in the
model as well as in the parameter definitions (Figure S 12).

Figure S 12. Schematic illustrating the relation between the kinetic model (see also Figure 6) and the
corresponding parts of pyglotaran model and parameter definitions for the 4TT case study.

Model definition structure
Since pyglotaran and its DSL are under active development and considering that the DSL can be extended
via the pyglotaran plugin system it is more expedient to explain the core concepts in an abstract manner
than to discuss the concrete syntax of the current model definition implementation.

In its core the model definition consists of two main parts: the model element definitions and the dataset
definitions (Figure S 12). The model element definitions define reusable elements which can be
combined for each dataset in the dataset definitions describing the data measured in that dataset. The
parts of the model definition mostly follow a nested mapping (key-value pairs) pattern where the keys
alternate between keywords defining the functionality and free user defined names which provide the
meaning. This groups functionally similar parts together, with the most top-level key always being a
keyword. Keywords can be categorized into required and optional keywords, where required keywords
are mandatory for an element to provide its base functionality and optional keywords can further
customize the functionality.

S 8

Figure S 13. Abstract schematic of the model definition structure illustrating the relation between
model element definitions and dataset definitions as well as the nested alternating pattern of
keywords and user defined names and references to parameter names.

The most notable required keyword of model elements is the type which defines the overall
functionality of the element, and which other keywords can be used with it. While the value for the
type is always a string, what values can be used for it depends on the installed plugins that define the
value by which they are referred to in their implementation. Pyglotaran already comes with built-in
model element plugins for the most common analysis needs in time-resolved spectroscopy which don’t
require an additional installation and can be used out-of-the-box.

What structure the value for a keyword key should have depends on the type of the element itself. The
value of oscillation key in the doas element (Figure S 13) for example expects a nested mapping where
the keys are user defined names for oscillations and the value is a mapping with the keywords frequency
and rates as keys and the values being references to parameter names in the parameter definition for the
corresponding values. While the value of rates key in the decay element expects a mapping where the keys
have the form (<user-defined-compartment-name>, <other-user-defined-compartment-name>) in to-
from-notation and the values reference the name of the corresponding transition rate parameter.
Whereas the keys in the artifact element don’t use a mapping at all but expect an integer value
between 1 and 3 in case of the order key and a reference to the name of a parameter in case of the
width key.

The reference implementation of the file format used for the model definition uses the YAML markup
language which is designed to be intuitive and easy to read, using indentation to indicate nesting and a
minimal use of punctuation. But which file formats are supported can easily be extended using the
plugin system (described below) for model file reading and writing.

Parameter definition
The parameter definition connects the name a parameter is referred to with the value which will be
used as the starting value in the optimization process and allows to define additional options for the
parameter. The naming of the parameter is free to the user’s desire with very few restrictions like that
it cannot be a reserved keyword in the python programming language and that only ASCII characters
are allowed. For a better structuring the parameter naming allows the creation of groups to bunch up
parameters that contextually belong together making it easier to focus on those, while the group
names provide the verbosity to determine what the intended usage of the parameter is. When

S 9

referring to a parameter the group it belongs to become part of its name with a dot (.) denoting the
parent child relationship between parent group and child.

Two input styles for the parameter definition are supported: a nested input style using the YAML
markup language and a flattened table like style input using the format CSV, xlsx or ods. The
advantage in using the nested YAML syntax is that groups of parameters which belong contextually
together are also visually grouped due to the indentation based YAML syntax, options can be applied
to a whole group in a single line and the short name (name inside of a group) can be used which
simplifies visual differentiation between parameters. The advantage of the table style is that it uses
the full name of the parameter including the groups which makes it easier to look it up in the model
definition and search for it.

If a parameter should not be changed during optimization the vary option can be set to false, which
will exclude this parameter from the optimization. This is useful for parameters like the initial input to
the compartments, to manually help the optimizer to get out of a local minimum when it gets stuck or
to speed up optimization when focusing to improve a selected part of the model.

To set boundaries for the parameters that their values should not pass the minimum and maximum
options can be used when using an algorithm in the optimization that supports boundaries.

The most powerful feature of the parameter definition is the usage of an expression allowing to define
relations between parameters using equations. This can be used to enforce prior knowledge of a
systems behavior, reducing the number of free parameters since this parameter is implicitly set to not
be varied which consequently also improves the optimization.

Structure of the result and relation to the model definition
Optimization results generated by pyglotaran can be categorized into overall results for the whole
analysis and per dataset results in the data attribute (Figure S 13). Each dataset result can be further
categorized into a general section and one or more element dependent sections which depend upon the
elements used in the dataset definition of that particular dataset inside the model definition.

The result for the overall analysis contains the optimized parameters, optimization history and the
parameter history for the whole analysis, as well as optimization metrics like the degrees of freedom and
root mean square error.

The per dataset results can be accessed by the same names that the datasets were referred to in the
model definition. The general part consists of information which is independent of the elements used in
the model definition such as the original data, the fitted data, and the residual. In addition, each model
element used in the model definition for a dataset also adds information specific to the type of the element.
The decay component of type kinetic for example adds information about the species concentration and
species associated spectra (SAS). The names of the saved information are in general only dependent on the
type of an element and not on the freely chosen name, an exception to the rule are elements whose type
can occur multiple times per dataset in which case the name is suffixed with the name of the element in the
model definition (e.g., a_matrix_decay for the 4TT example in Figure S 14).

S 10

Figure S 14. Schematic of the general structure of a result object and its relation to the model
definition. The information saved in the result can be categorized into overall results for the whole
analysis and per dataset results. The per dataset results use the same name as the dataset in the
model definition and can be categorized into general information independent of model elements and
element specific information. The per dataset results include some redundant information, which
could be calculated from other saved values (e.g., 𝑓𝑖𝑡𝑡𝑒𝑑_𝑑𝑎𝑡𝑎 = 𝑑𝑎𝑡𝑎 − 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙). This is done for
the convenience of the user, who can use the redundant information to plot the results in external
plotting software without the need to compute those values and can be configured using
SavingOptions.

Plugin system
Pyglotaran uses a plugin system for model elements and for reading and writing files. While the builtin
plugins already provide the functionality needed by most users, the plugin system provides additional
modularity, flexibility, extendibility, and the possibility for seamless integration with other software.
The plugins can be created by third-party developers or by the users themselves and can provide new
features and capabilities that are not included in pyglotaran itself. The file io plugins are split into two
categories the ProjectIo plugins for the model, parameter definitions, and results and the DataIo
plugins to read and write data. Pyglotaran already allows for many different input and output data
formats (e.g. plain ASCII and NetCDF). To illustrate the use case, creating a DataIo plugin allows one to
read and/or write new file formats without the need for an additional conversion step. Whereas
creating a result saving plugin allows for integration with other software. By registering a file io plugin
with the extension of a file format, pyglotaran is able to automatically determine which plugin to use
when reading or writing a given file (on https://pyglotaran.readthedocs.io/, search for: write own
plugin). To ensure that the right plugin is used when multiple plugins are registered under the same
name the plugins are also registered with their fully qualified name (python import path) and the user
can override which plugin to use (on https://pyglotaran.readthedocs.io/, search for: using plugins).
Creating a model element plugin allows researchers to add new analysis capabilities as well as the
ability to share the details of their research with the wider scientific community, allowing for
reproducibility, easier collaboration, and improving scientific progress.

S 11

Software development
To ensure efficient development and high-quality code, several key practices have been implemented
in the development of the pyglotaran ecosystem. Firstly, version control is managed through git and
GitHub, using the GitHub flow model and branch protection to manage changes and ensure code
quality. This allows multiple developers to collaborate on the codebase simultaneously while
maintaining version history and control over changes.

All the development happens in the glotaran organization on GitHub, that besides the new python
projects also contains the legacy projects TIMP7, and Glotaran6, which are still maintained but not
further developed. The most notable components of the pyglotaran ecosystem are pyglotaran-extras
[pygta-extras], pyglotaran-examples and pyglotaran-validation which together build the basis for the
pyglotaran validation framework.

Code is structured using packages and modules, making it easier to organize and navigate through the
codebase. Quality assurance is ensured using linters, formatters, and type checkers, which help to
catch errors and enforce consistency in the code.

Continuous Integration and -Delivery (CI/CD) are utilized to automate the building and testing of the
software, ensuring that the code is always in a working state. Automated documentation, both
generated and manually curated, is also provided to facilitate understanding of the codebase and to
help new users get up to speed quickly.

Automated dependency updates ensure that the software remains up to date with the latest
libraries/frameworks and potential problems are discovered early. Deployment is handled through
PyPI and conda-forge, making it easier for users to install and use the software.

Overall, these practices ensure that pyglotaran is high-quality, well-maintained software that is
efficient to develop, test, and use.

Development infrastructure and tooling
Each project in the pyglotaran ecosystem as well as pyglotaran itself are developed using professional
state of the art software development technologies and practices, as well as an extensive set of
different tests that need to be passed by each change as well as code reviews from the maintainer
before it can be added to the project. The passing of those tests is enforced by using branch
protection with requires each change to pass all CI/CD tests (see below) including the QA-tools (see
below) and have at least one approving review.

Development workflow using GitHub
GitHub is a web-based platform that provides version control using git and collaboration features for
software development projects. It allows developers to store their code repositories in the cloud,
provides version control features to track changes to code over time, and includes collaboration
features like managing issues, pull requests (PR), and code reviews. Additionally, it offers Continuous
Integration and Continuous Delivery to automate building, testing, and deploying of code changes.

Development follows the GitHub branching model where each developer only works on their fork of
the main repository and submits PRs to the main repository to get a change incorporated. After the
changes are reviewed and all tests are passed these changes get squash merged into the main branch of
the repository resulting in a clean linear history, where details of the changes and discussions can be
looked up in the PR itself. The details on how to contribute to a project can be looked up in the
contribution section of each project’s documentation.

Quality assurance tools
Quality assurance tools (QA-tools) are an essential part of modern software development, and they
play a critical role in improving the quality and maintainability of the code. In the Python development
world, several quality assurance tools are widely used, such as linters, formatters, and type checkers.

S 12

Linters are tools that analyze code for potential errors, bugs, and style issues. They can identify
common mistakes like syntax errors, undefined variables, or unused imports. Linters can enforce coding
conventions and best practices, ensuring that code is consistent and easy to read. This type of tool can
save developers significant amounts of time by catching issues early in the development cycle.

Formatters, on the other hand, are tools that help developers to enforce a consistent code style. They
can help ensure that the code adheres to indentation, line length, and other formatting rules. In
addition to enforcing consistency, formatters can also automatically fix common formatting issues, such
as incorrect whitespace or inconsistent line breaks. The result is code that is easier to read and
maintain.

Type checkers are another critical quality assurance tool in Python. They help ensure that code adheres
to the specified types of variables, arguments, and return values. By catching type-related errors before
runtime, type checkers can help developers avoid bugs and improve code quality. Type checkers can also
improve code understanding by helping developers understand the flow of data and logic in their code.

By using quality assurance tools like linters, formatters, and type checkers, Python developers can
ensure that their code is consistent, error-free, and adheres to best practices and conventions. This, in
turn, can help improve the reliability, maintainability, and readability of code, and reduce the time and
effort required for testing and debugging. Ultimately, the use of quality assurance tools helps to
improve the overall quality of software development, making it more efficient and effective.

The pyglotaran development uses the pre-commit framework to manage the quality assurance tools and
their versions. This ensures that each committed code change is up to standards by intercepting the
commit if any of the checks fails, leading to a cleaner commit history and an easier review process.

Continuous-Integration and Continuous-Delivery
Continuous-Integration and -Delivery (CI/CD) is a set of software development practices that aim to
improve the speed and quality of software delivery by automating the process of building, testing, and
deploying software.

Continuous Integration (CI) is the process of regularly integrating code changes into a shared code
repository, typically using tools like Git, and ensuring that the codebase is always in a working state.
This involves running automated tests and checks on the codebase to catch errors and issues early on.

Continuous Delivery (CD) is a practice where developers automate the process of deploying code
changes to production. With Continuous Delivery, every code change is automatically built, tested, and
prepared for deployment. Once the code changes have passed all tests and quality checks, they are
automatically deployed to a staging or testing environment. The code changes can then be manually
promoted to the production environment later.

In the context of software builds and distributions, CI/CD involves setting up automated pipelines that
build, test, and package software changes, and then automatically deploy them to target environments.
This ensures that software changes are thoroughly tested and validated before they are released to end-
users and helps to reduce the time and effort required to deliver software updates.

Software Documentation
The documentation of the projects consists of handwritten guides and API documentation generated
from the source code using Sphinx. To autogenerate documentation for the source code Sphinx uses
the docstring added by the developers which are also shown in editors to guide users on how to use
each part of the software and explain what the configuration options and intended usage are. The
documentation for the current development version and each release is hosted on Read the Docs,
allowing online access to the documentation websites as well as downloads as PDF or epub.

S 13

Dependency updates
In contrast to classical compiled desktop applications that come with a fixed set of dependencies,
python packages typically only define a minimal version requirement for dependencies to allow
interoperability of multiple packages in an environment. On the one hand this allows users to use
different packages without their requirements conflicting and breaking functionality. On the other
hand, this makes it nondeterministic for developers which specific versions of dependencies the users
have installed, and new releases of a dependency can possibly break functionality. Therefore, the
development is done with the dependencies pinned to specific versions creating a deterministic and
reproducible reference environment. It also allows to automate dependency updates using the update
service dependabot which is integrated into github. Dependabot will create a pull request for each
new release of a dependency which triggers the automated tests and ensures that the software works
properly with the new version of the dependency or allows developers to disallow this specific version
when installing the software and file a bug report/make create a fix for that dependency.

Release and Deployment
Releases are done using GitHub releases on the corresponding project which allow to have a rich
description of the release itself and its changes, as well as automatically creating a git tag for the
release which allows to download the source code of the project for that particular release. Creating
the git tag then triggers the CI/CD workflow, runs all tests again and in the case of a package builds
source and binary distributions of the package that are uploaded to Python Package Index (PyPI). The
release on PyPI then gets picked up by the conda-forge bot which will create a PR to the corresponding
conda-forge feedstock repository, which contains the build recipe to create a release on conda-forge.
This allows for additional manual adjustments of the build recipe (e.g., changed dependencies) and
ensures that the conda build is also tested before it is released.

Figure S 15. Schematic of the automated release process of python packages. When creating a
release on github a git tag is created which triggers the CI/CD workflow to run test and upload source
and binary distributions to PyPI. The release on PyPI is then used to create a pull request to the
corresponding feedstock repository updating the conda build recipe, test the created build and create a
release to conda-forge.

Deprecation warnings
To allow improvements of pyglotaran as well as its DSL without breaking functionality for users
pyglotaran uses deprecation warnings. Those warnings provide users with guidance on what changes
they need to make to their code and/or model definition to ensure compatibility with the latest
version. Users can take proactive steps to update their code, avoiding costly and time-consuming
issues that may arise from using deprecated features. The clear and concise explanations of the
changes required to ensure compatibility with future versions also allow for a gradual and incremental
upgrade path of existing case studies done with older versions of pyglotaran by doing incremental

S 14

updates. The deprecation framework of pyglotaran was built for maximum development flexibility and
its capabilities range from the renaming of functions, methods, and classes to moving source files to
different locations with minimal development effort (see the documentation
https://pyglotaran.readthedocs.io/en/latest/contributing.html#deprecations). To ensure that the
provided deprecation warning is correct the existence of the new and old usage is verified in self-tests
of the deprecation function. When a new release is prepared the deprecation functions raise errors if
a deprecation is overdue, which ensures that the deprecated functionality is removed, and the source
code is kept clean. A list of new deprecations and removal of deprecated functionality for each version
can be found on the release-page (https://github.com/glotaran/pyglotaran/releases) for that version
as well as the changelog in the documentation
(https://pyglotaran.readthedocs.io/en/latest/changelog.html).

Ecosystem
While pyglotaran functions as the engine allowing to fit complex case studies in a way which wasn’t
possible before, its ecosystem provides convenience functions for plotting, documentation, and validation
of the analysis result.

Pyglotaran-Extras
The pyglotaran-extras [pygta-extras] are a collection of very high-level helper functions for plotting
and inspecting results from a parameter estimation using pyglotaran with a strong focus on time-
resolved spectroscopy. One main purpose is to provide users with a quick and easy way to get feedback
on the quality of their analysis without the need of detailed knowledge about the structure of the
generated result dataset(s) and the usage of the xarray API 8. The other purpose is to provide cross
version compatibility to inspect result datasets. The plotting functionality focusses on providing a
starting point for publication ready figures while allowing for the full customization and flexibility
provided by matplotlib 9.

Pyglotaran-Examples
The pyglotaran-examples were historically grown as a development tool to validate results from
pyglotaran manually against published and simulated results of its pre-decessors, which was mostly
done by comparing plots. It still serves the purpose of validation using pyglotaran-validation and the
comparison-results branch which is validated manually each time it is updated (e.g., to accommodate
improvements or fix bugs). But now it also serves as usage documentation, demonstrating different
features of the pyglotaran model language depending on which system is analyzed.

Validation
In the 0.5.0 release of pyglotaran the manual validation of results and testing of their consistency was
extended by automatic tests which were later moved into its own repository pyglotaran-validation.
This change allows for a better extendability in the future to cross validate pyglotaran against a wider
range of other of software operating in the same domain. As well as decoupling the validation of generated
results from the main project reducing the barrier for contributions. The validation itself does not use
pyglotaran but operates on the data directly to prevent overlooking or even misinterpreting issues with the
data it is supposed to validate due to circular logic.

Validation framework
The pyglotaran projects use GitHub Actions as their CI-CD platform. The automation pipelines are called
workflows and are defined as plaintext files in yaml syntax inside the special folder .github/workflows
inside of the repositories allowing to put them under version control and easily review changes to the
infrastructure. Workflows consist of a definition of events on which the workflows should be executed and
a definition of jobs that should be run. The jobs themselves define a list of steps to setup reproducible
testing/build environments and run the necessary commands. Steps can either run commands in the
shell or use predefined Actions to simplify more complex tasks and improve the readability of the
workflow. Using the so-called matrix strategy (Figure S 17) allows to parametrize jobs and reduce
duplications to for example run tests across different operating systems and python versions. For a

S 15

more dynamic creation of the matrix a custom step that generates the matrix can be used (Figure S
18). Having reproducible environments in which tests and builds are executed is crucial to guarantee that
the software behavior is also reproducible and consistent.

Figure S 16 Schematic overview how the different projects in the pyglotaran ecosystem interact with
another using the CI. For example, if a change is to be made to pyglotaran the unit tests and
benchmarks contained inside the pyglotaran repository as well as integration tests and result
validation using pyglotaran-extras, pyglotaran-examples and pyglotaran-validation are triggered.

Figure S 17 Schematic illustration of the pyglotaran CI-CD workflow. First the QA-tools and manifest-
check are run to ensure that the code is up to standards and all files that should be part of a release
are in fact included, as well as tests that the documentation builds properly and does not contain dead
links. Only after those tests have passed the unit tests are run for all supported python versions and
operating systems. In case of a release all tests but the doc-links tests need to pass before a release on
PyPI is created.

S 16

Figure S 18 Schematic illustration of the pyglotaran integration test workflow using github actions
defined in the pyglotaran-examples and pyglotaran-validation repositories. The github action of the
examples first generates a list of all available examples and then runs them in parallel and uploads the
results to an artifact cache, those results are then downloaded and validated against the established and
manually validated standards.

References
1. D. C. Teles-Ferreira, I. H. M. van Stokkum, I. Conti, L. Ganzer, C. Manzoni, M. Garavelli, . . . A.

M. de Paula, Coherent vibrational modes promote the ultrafast internal conversion and
intersystem crossing in thiobases, Physical Chemistry Chemical Physics, 2022, 24, 21750-
21758.

2. C. Hippius, PhD Thesis, Universität Würzburg, Fakultät für Chemie und Pharmazie, 2007.
3. I. H. M. van Stokkum, C. Wohlmuth, F. Würthner and R. M. Williams, Energy transfer in

supramolecular calix[4]arene—Perylene bisimide dye light harvesting building blocks:
Resolving loss processes with simultaneous target analysis, Journal of Photochemistry and
Photobiology, 2022, 12, 100154.

4. A. A. Arteni, G. Ajlani and E. J. Boekema, Structural organisation of phycobilisomes from
Synechocystis sp strain PCC6803 and their interaction with the membrane, Biochim. Biophys.
Acta, 2009, 1787, 272-279.

5. A. M. Acuña, P. Van Alphen, R. Van Grondelle and I. H. M. Van Stokkum, The phycobilisome
terminal emitter transfers its energy with a rate of (20 ps)–1 to photosystem II,
Photosynthetica, 2018, 56, 265-274.

6. J. J. Snellenburg, S. P. Laptenok, R. Seger, K. M. Mullen and I. H. M. van Stokkum, Glotaran: a
Java-based Graphical User Interface for the R-package TIMP, Journal of Statistical Software,
2012, 49, 1-22.

7. K. M. Mullen and I. H. M. van Stokkum, TIMP: An R Package for Modeling Multi-way
Spectroscopic Measurements, Journal of Statistical Software, 2007, 18, 1 - 46.

8. S. Hoyer and J. Hamman, xarray: N-D labeled Arrays and Datasets in Python, Journal of Open
Research Software, 2017, DOI: 10.5334/jors.148.

9. J. D. Hunter, Matplotlib: A 2D graphics environment, Computing in Science and Engineering,
2007, 9, 90--95.

