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2Quantitative Fluorescence Spectral Analysis
3of Protein Denaturation

4Ivo H.M. van Stokkum and Sergey P. Laptenok

5Abstract

6This chapter describes a procedure of global analysis of the steady-state spectra measured with different
7concentrations of the denaturant to quantitatively study protein denaturation. With the help of physico-
8chemical models, relevant spectral parameters that characterize the folding intermediate and thermody-
9namic parameters that describe a three-state model N , I , U can be estimated.
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121 Introduction

13During denaturant-induced equilibrium (un)folding of a particular
14protein, a molten globule-like folding intermediate is formed [1].
15Here we describe how the steady-state fluorescence spectrummon-
16itored as a function of the denaturant concentration can be used to
17infer the properties of the folding intermediate with the help of
18global analysis [2].

192 Materials

20Materials, Protein Expression, and Purification. All chemicals used
21were of the highest purity available. The concentration guanidine
22hydrochloride (GuHCl) was determined by measuring the refrac-
23tive index of the sample used, as described previously [3]. A variant
24of apoflavodoxin from Azotobacter vinelandii, which contains two
25tryptophan residues (i.e., W74-W128-F167 (WWF)), was obtained
26and purified as described [3]. In all experiments protein concentra-
27tion was 4 μM in 100-mM potassium pyrophosphate buffer,
28pH ¼ 6.0. Temperature was set to 25 �C.
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29Steady-State Fluorescence Spectra. Steady-state fluorescence spectra
30were obtained with a Fluorolog 3.2.2 spectrofluorometer (Horiba,
31Jobin Yvon, Optilas, Alphen aan den Rijn, the Netherlands), as
32described previously [3]. The excitation wavelength was 300 nm,
33excitation and emission slit widths were 2 nm, and emission spectra
34were recorded between 305 and 400 nm with 1-nm steps. All
35spectra were corrected for wavelength-dependent instrumental
36response characteristics. Background fluorescence emission was
37measured under the same circumstances, except that now no pro-
38tein is present in the samples, and was subsequently subtracted from
39the corresponding fluorescence spectra of samples with protein.

403 Methods

3.1 Determination

of the Number of

Components

Contributing to the

Steady-State

Fluorescence Spectra

41The steady-state spectra measured at nd denaturant concentrations
42can be collated in a matrix Ψ where a column of the nλ � nd matrix
43Ψ contains a spectrum measured at nλ wavelengths at a particular
44denaturant concentration, whereas a row contains the emission
45measured at a particular wavelength at nd denaturant concentra-
46tions. The rank of this matrix Ψ can be estimated with the help of
47the singular value decomposition (SVD) [4–11] (see Note 1).
48Figure 1 depicts the results from the singular value decomposi-
49tion (SVD) analysis of the data matrix Ψ obtained from denaturant-
50induced unfolding of WWF apoflavodoxin. The scree plot of the
51singular values (Fig. 1b) shows a kink after i ¼ 3 indicating the
52presence of at least three significant components [12]. The first
53three LSVs and RSVs (black, red, and blue in Fig. 1c, d) show clear
54structure. The fourth LSV and RSV (light green) are noise-like
55traces. In conclusion, SVD indicates that three species are present
56in the data matrix. There are several methods to resolve these
57species; most well known are soft modeling (e.g., Multivariate
58Curve Resolution (MCR) [13–15]) and hard modeling with the
59help of models that incorporate physicochemical knowledge and
60aim for the estimation of parameters that are physicochemically
61interpretable. The latter approach is termed global analysis [11,
6216]. Advantages of hard over soft modeling have been demon-
63strated [13, 17]. A prerequisite for global analysis (see Note 2) is
64the availability of suitable physicochemical models.
65

3.2 Global Analysis

of the Steady-State

Fluorescence Spectra

with the Help of a

Spectral Model

66At each GuHCl denaturant concentration, the observed emission
67spectrum ψðλÞ is described as a linear combination of spectra arising
68from native protein (n), folding intermediate (i), and unfolded
69protein (u):

ψðλÞ ¼ cnfnðλÞ þ cifiðλÞ þ cufuðλÞ (1)
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70Steady-state fluorescence spectra obtained of protein at 0 and
714.72 M GuHCl are used as reference spectra that characterize the
72native and unfolded protein, respectively. The steady-state fluores-
73cence spectrum of the folding intermediate was modeled as
74a skewed Gaussian in the energy domain (�v ¼ 1=λ) and is described
75by three parameters: peak location �vmax, width Δ�v, and skewness
76b [16, 18]:

fið�vÞ ¼ �v5 expð� lnð2Þflnð1þ 2bð�v � �vmaxÞ=Δ�vÞ=bg2Þ (2)

77where the parameter �vmax is the Franck-Condon wave number of
78maximum emission. The full width at half maximum (FWHM) is
79given by Δ�v1=2 ¼ Δ�v sinhðbÞ=b (see Note 3).
80Now all spectra are globally analyzed as a linear combination of
81spectra arising from native protein, folding intermediate, and
82unfolded protein. The three parameters that describe the shape of

0

1

2

3

4

5

330 350 370 390

0M

5M

wavelength, nm

flu
or

es
ce

nc
e 

in
te

ns
ity

, a
.u

.

5

6

7

8

0 5 10 15 20 25

Lo
g(

S
V

i)

index, i

-0.2

-0.1

0

0.1

0.2

0.3

310 330 350 370 390
wavelength, nm

le
ft 

si
ng

ul
ar

 v
ec

to
rs

, a
.u

.

0

-0.4

-0.2

0.2

0.4

0 1 2 3 4 5
GuHCl, M

rig
ht

 s
in

gu
la

r v
ec

to
rs

, a
.u

.

a b

c d

Fig. 1 Results from the singular value decomposition (SVD) analysis of the data matrix collated from steady-
state fluorescence data obtained from denaturant-induced unfolding of WWF apoflavodoxin. (a) Denaturation
trajectory of steady-state fluorescence spectra obtained at increasing concentrations of denaturant. (b) Scree
plot of the singular values shows a kink after i ¼ 3 indicating the presence of at least three significant
components. (c) The first four left singular vectors (LSVs) (colored black, red, blue, and light green,
respectively). (d) The accompanying first four right singular vectors (RSVs)
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83the spectrum of the folding intermediate and the concentrations of
84each folding species are the unknown parameters that need to be
85estimated from a global fit of all data. The nλ � nd matrix Ψ can be
86written as a matrix product.

Ψ ¼ F ð�vmax;Δ�v; bÞCT (3)

87where the F matrix contains three columns fn fið�vmax;Δ�v; bÞfu
� �

88and nλ rows and the C matrix contains three columns cncicu
� �

89and nd rows. The rank of the C, F, or Ψ matrix is three, consistent
90with the SVD. The concentration parameters were constrained to
91be nonnegative (seeNote 4). The estimated spectrum of the folding
92intermediate is depicted in red in Fig. 2a. Note that is blue shifted
93relative to that of the unfolded protein (blue). The estimated
94spectral parameters are �vmax ¼ 29; 290� 40=cm, Δ�v ¼ 4; 830� 30,
95and b ¼ �0:209� 0:006. The root mean square error of the fit was
960.41 % of the maximum of the data. The matrix of residuals resulting
97from the global analysis can best be diagnosed with the help of its
98SVD. Shortcomings of the model used show up as trends in the most

310 330 350 370 390
wavelength, nm

0

0.2

0.4

0.6

0.8

1

flu
or

es
ce

nc
e 

in
te

ns
ity

, a
.u

.

310 330 350 370 390
wavelength, nm

-0.2

0

0.2

LS
V,

 a
.u

.

0

0.2

0.4

0.6

0.8

1

co
nc

en
tra

tio
n

0 1 2 3 4 5
GuHCl, M

GuHCl, M
0 1 2 3 4 5

-0.2

0.2

0.4

-0.0
R

S
V,

 a
.u

.

a

c d

b

Fig. 2 Global analysis of steady-state fluorescence data matrix with the help of a spectral model. (a) Steady-
state fluorescence spectra of WWF apoflavodoxin in 0 M GuHCl (native protein, black) and in 4.72 M GuHCl
(unfolded protein, blue), respectively. The steady-state fluorescence spectrum of the folding intermediate (red )
is modeled as a skewed Gaussian and is estimated from the global analysis of all unfolding data. (b) Estimated
concentrations of the different folding species (colored black, red, and blue) as a function of denaturant
concentration. The sum of the three concentrations is shown as a thin light green line. (c, d) Results from the
singular value decomposition of the residual matrix. (c) The first LSV. (d) The first RSV
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99important left or right singular vectors. No such trends are present in
100the first (black) and second (red) LSVor RSV (Fig. 2c, d). Therefore,
101the fit can be accepted.
102In this way the product cifi can be estimated, and thus, we can
103determine the shape of ci as a function of the GuHCl denaturant
104concentration. In order to estimate the concentration ci relative to
105the other concentrations, we use the constraint that the sum
106cn þ ci þ cu should be close to one at all GuHCl concentrations.
107This is estimated by means of a subsequent linear regression.
108All estimated concentrations are depicted in Fig. 2b, as well as
109this sum cn þ ci þ cu (depicted in light green). The small deviations
110of this sum from one are considered acceptable.
111

3.3 Global Analysis

of the Fractions of the

Different Folding

Species with the Help

of a Thermodynamic

Model

112As shown by Bollen et al. [1], denaturant-induced equilibrium
113unfolding of apoflavodoxin is described by a three-state model:
114N , I , U, in which N represents native, U represents unfolded
115molecules, and I is a folding intermediate. Consequently, the two
116corresponding equilibrium constants (i.e., KIN and KUI) and asso-
117ciated free energy differences (i.e., ΔG0

IN and ΔG0
UN) are

KIN ¼ ½N�
½I� ¼ exp �ðΔG0

IN þmIN � ½D�Þ=0:59� �
KUI ¼ ½I�

½U� ¼ exp �ðΔG0
UI þmUI � ½D�Þ=0:59� � (4)

118where mIN and mUI describe the denaturant dependence of ΔG0
IN

119and ΔG0
UI. The number 0.59 in this equation equals the gas con-

120stant R times temperature T (¼298 K) and is in kcal/mol. The
121fractional populations of each folding state (cU, cI, cN) follow from

cU ¼ 1

1þKUI þKIN �KUI

cI ¼ KUI

1þKUI þKIN �KUI

cN ¼ KIN �KUI

1þKUI þKIN �KUI

(5)

122Global analysis yielded the fractional populations (Fig. 2b) of
123the folding species at a particular denaturant concentration, and
124these fractions were subsequently used to estimate ΔG0

IN, mIN,

125ΔG0
UI, and mUI.

126A least absolute values (LAV, see Note 5) approach was used
127during global analysis, because this approach is more robust against
128outliers than the least squares (LS) method (see Note 6). The LAV
129criterion that is minimized as a function of the thermodynamic
130parameters is

min
X
i

ciU� � ciU
�� ��þ ciI� � ciI

�� ��þ ciN� � ciN
�� �� !

(6)
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131where cU, cI, and cN are calculated with Eq. 5 and cU*, cI*, and cN* are
132the normalized concentrations (seeNote 7) from the global analysis
133(Fig. 2b), with i the summation index, which corresponds to the
134different concentrations of denaturant used. The results from the
135global analysis of the fractions of the different folding species, with
136the help of a thermodynamic model, are depicted in Fig. 3. The fit is
137considered satisfactory. The thermodynamic parameters estimated
138with LS or LAV listed in Table 1 are well interpretable [2]. The
139difference in the estimated values between the LAV and LS criteria
140is within 10 % relative precision and thus not significant. This is no
141surprise, since there are no large outliers here. However, in general
142it is advisable to use the LAV method [19, 20] when available.
143

t:1 Table 1
Thermodynamic parameters estimated from GuHCl-induced equilibrium unfolding of WWF
apoflavodoxin (see Note 8)

ΔG 0
UI mUI ) ΔG 0

IN mIN ΔG 0
UN mUNt:2

Criterion (kcal/mol) (kcal/mol M�1) (kcal/mol) (kcal/mol M�1) (kcal/mol) (kcal/mol M�1)t:3

LAV �2.9 1.5 �3.3 3.6 �6.2 5.1t:4

LS �3.0 1.5 �3.1 3.4 �6.1 4.9t:5
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Fig. 3 Global analysis of the fractions of the different folding species with the
help of a thermodynamic model. Symbols indicate relative concentrations of the
three species (colored black, red, and blue) as a function of the denaturant
concentration estimated in Fig. 2b (diamonds: native; squares: intermediate;
triangles: unfolded). Solid lines depict global LAV fit
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1444 Notes

1451. The singular value decomposition (SVD) is a model-free matrix
146factorization technique, which decomposes the data into a sum
147of orthonormal vector products scaled by singular values.
148Here, the left singular vector (LSV) represents spectral dimen-
149sion and the right singular vector (RSV) represent denaturant
150concentration dimension. The contribution to the data is the
151product of the nth left singular vector and right singular vector
152scaled by the nth singular value. The singular vectors are
153ordered based on their contribution to the data as represented
154by the magnitude of the singular values as shown in the scree
155plot. The ordinate of this scree plot is logarithmic. Ideally, the
156transition between data and noise appears as a kink in the scree
157plot. The technique can be used to explore the number of
158independent components in the data matrix, which is an impor-
159tant aspect of defining an initial model.

1602. Public domain software for global analysis is available [21, 22].

1613. Note that the expression for the skewed Gaussian contains
162a term lnð1þ 2bð�v � �vmaxÞ=Δ�vÞ=b for which a limit exists
163when skewness parameter b approaches zero. Since limb!0

164lnð1þ bxÞ=b ¼ x the expression simplifies to fið�vÞ ¼ �v5

165exp ð� lnð2Þf2ð�v � �vmaxÞ=Δ�vÞg2Þ which is a normal Gaussian
166with FWHM Δ�v. In practical computations with nonzero b,
167the argument of the natural logarithm has to be tested first. If it
168is positive, the amplitude fið�vÞ can be computed, else fið�vÞ � 0.

169
170For the actual computation of fið�vÞ at a particular wave-
171length λ, one substitutes �v ¼ 1=λ in Eq. 2. The conversion from
172wavelength to wave number [23], f ð�vÞ ¼ λ2f ðλÞ, is already
173taken into account in Eq. 2 [11].

1744. There are several ways to ensure nonnegativity of the concen-
175tration parameters. Firstly, one can use unconstrained least
176squares and estimate the nonlinear spectral shape parameters
177(peak location �vmax, width Δ�v, and skewness b) and the matrix
178of conditionally linear parameters C with the help of the vari-
179able projection algorithm [16, 24]. When some of the esti-
180mated concentration parameters become negative, they can be
181constrained to zero, which means that at that denaturant con-
182centration a certain component does not contribute. After
183imposing the constraint, the data have to be refitted. This
184process can be automated with the help of the nonnegative
185least squares algorithm [25] in combination with the variable
186projection algorithm [26].

1875. Least absolute valuesminimization canmost easily be done using
188the Excel Solver function or with dedicated algorithms [27].

Spectral Modelling



1896. Outliers are often present with this small number (typically
19015–25 denaturant concentrations) of data points. A disadvan-
191tage of LAV analysis is that it does not report standard errors.
192An estimate of the relative standard errors is 10 %.

1937. The small deviations of the sum cn þ ci þ cu from 1 (indicated
194in light green in Fig. 2b) that were present are removed when
195dividing by this sum. The normalized concentrations are
196defined as cN� ¼ cn=ðcn þ ci þ cuÞ, cI� ¼ ci=ðcn þ ci þ cuÞ, and
197cU� ¼ cu=ðcn þ ci þ cuÞ at each denaturant concentration.

1988. Note that ΔG0
UN and mUN which describe the thermodynamic

199stability against unfolding have been computed using

200ΔG0
UN ¼ ΔG0

UI þ ΔG0
IN and mUN ¼ mUI þmIN.
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