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Global analysis has been applied to resolve components in multiple gas chromatography–mass spectrometry
(GC/MS) data sets. Global analysis methodology is based upon a parametrized model of the observed data,
including random (and possibly also systematic) errors. Each elution profile is described as a function of a
small number of parameters. We successfully based the description of elution profiles on an exponentially
modified Gaussian. The mass spectra were described non-parametrically. Model usefulness is judged by the
quality of the fit and whether the estimated parameters that describe the elution profiles and mass spectra of
components are physically interpretable. Advantages of the method are most evident with multiple data sets
and overlapping elution profiles. Differences between data sets are described by alignment parameters and
by relative amplitude parameters. The estimated mass spectrum is identical between experiments. Global
analysis and multivariate curve resolution alternating least squares (MCR-ALS) are the only methods
currently developed for component resolution for the case of completely co-eluting compounds in mass
spectrometry data. In the present contribution global analysis is shown to have better performance than
MCR-ALS in terms of the estimated mass spectra for a variety of simulated GC mass spectrometry datasets
representing components that are completely co-eluting.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The component resolution problem for an m×n matrix of data D1

can be stated as the problem of estimating the matrices C1 and S from
D1 in

D1 = C1ST ð1Þ

such that the matrix C1 is m×ncomp, and each column represents the
evolution of a component of D1 in the variable with which the rows of
D1 are resolved, and such that the matrix S is n×ncomp, and each
column represents the component of D1 in the variable with which
the columns of D1 are resolved. For chemistry applications the
components often correspond to the different chemical compounds
in the sample underlying the measurements, and the problem is
sometimes referred to as deconvolution. Usually it is assumed that the
noise applied to D1 is comprised of independent identically dis-
tributed Gaussian processes and C1 and S are estimated under least
squares criteria.

It is often of interest to perform component resolution of many
related data matrices D1,…, DK simultaneously, where the datasets are
related in that they represent componentswith the same properties in

the variable with which the columns of Di are resolved, giving rise to
the equation

D1
D2
v
DK

2664
3775 =

C1
C2
v
CK

2664
3775ST ð2Þ

By analogues of the Beer–Lambert law, the linear relation
contained in Eqs. (1) and (2) well-describes many varieties of two-
way data arising in spectroscopy and spectrometry experiments. The
stochastic element of the model is neglected in Eqs. (1) and (2), but is
often assumed to be comprised of additive Gaussian white noise, as
we will assume throughout.

Algorithms to solve the component resolution problems as
formulated above may be roughly categorized as those that use
constraints but no parametric model, and those that employ a
parametric (that is, functional) description for some aspect of the
data. The former category of algorithms is often termed self-modeling
curve resolution (SMCR) techniques, and has been recently reviewed
[1]. An important self-modeling curve resolution technique that we
will concentrate on here is multivariate curve resolution alternating
least squares (MCR-ALS) [2–4], which has a long and successful history
of application to a variety of analytical problems [5].

The class of algorithms that employ a parametric model for some
aspect of the data includes global analysis algorithms that describe
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each component of Ci in terms of a nonlinear function, and treat the
entries of S as conditionally linear parameters that are not described
functionally. Global analysis methods have been widely applied to
component resolution problems in spectroscopy [6–8] and micro-
scopy [9–11] applications, where the optimized parameters of the
functional description of Ci are interpreted physically, allowing insight
into the dynamical processes underlying the data. Methods that are
hybrid in the sense that they use MCR-ALS to iteratively improve
estimates for C1, …, CK and S, but refine the MCR-ALS estimates for C1,
…, CK by fitting them with a parametric model each time C1, …, CK is
updated have also been investigated [12,13].

In this study, we will consider MCR-ALS and global analysis for
component resolution problems in mass spectrometry data. Whereas
MCR-ALS has awell-developed history of successful application in this
domain [14–17], software tools for the application of global analysis
methods to mass spectrometry data are described here for the first
time. Section 3 shows via several case studies a proof-of-concept of
the utility of global analysis for component resolution problems
arising in gas chromatography–mass spectrometry data.

Mass spectrometry data associated with a particular sample is
often stored as a matrix Di resolved with respect to time and mass-to-
charge ratio (m/z), so that each data point is a count of the number of
molecular fragments having a given m/z measured at a given time.
Then Ci represents elution profiles of components in time and S
represents mass spectra. The aim of component resolution in the
context of mass spectrometry datasets D1, …, DK is to determine the
mass spectra of components and, possibly, obtain the retention times
of components, where the retention time is defined as the time at
which an elution profile is maximal. Estimated mass spectra and
retention times are matched against mass spectra and retention times
of known compounds stored in a library [18], allowing the compounds
represented by the estimated spectra to be identified. The relative
concentration of a particular component k in the samples represented
by datasets Di and Dj may be estimated by the quotient between
the area of the estimated elution profiles of the component, that is, by
Ci[, k]/Cj[, k].

In the case that the elution profiles of two or more components are
overlapping, the components are said to be co-eluting, as in Fig.1. If the
profiles overlap exactly and have the same shape, as in the bottom
panel of Fig. 1, only by analyzing several datasets simultaneously in

which the amplitude of the profiles varies are the components
possible to resolve. Much attention has been paid to the resolution
problem in the case of co-eluting components [3,17]. MCR-ALS is
currently considered to be the unique method capable of resolving
components in the case of completely overlapping elution profiles
[14]. We present global analysis as an alternative component
resolution methodology for the case that compounds are completely
co-eluting, and make available open source implementations of MRC-
ALS and global analysis in the form of packages for the R language and
environment [19], so that others may reproduce the examples
discussed here and possibly extend the methodology.

The remainder of this study is organized as follows: Section 2
introduces the global analysis methodology for the analysis of time-
resolved spectroscopy data. Section 3 shows several applications of
global analysis to component resolution problems in measured gas
chromatography–mass spectrometry (GC/MS) data. Section 4 gives an
overview of the non-parametric MCR-ALS methodology for compo-
nent resolution problems. Section 5 compares the performance of
MCR-ALS and global analysis in terms of the matching factor of
estimated mass spectra in a simulation study inspired by the GC/MS
data discussed in Section 3. Sections 6 and 7 contain discussion and
conclusions, respectively.

2. Parametric model-based global analysis

The recovery of C1, …, CK and S from D1, …, DK can be approached
via global analysis methods based on a parametric model [8]. In the
mass spectrometry context, a parametric model is applied to the
description of the elution profiles C1,…, CK, so that each elution profile
in each dataset is described by a peak function such as the
exponentially modified Gaussian (EMG). The process of model fitting
optimizes the parameters describing the elution profiles and treats the
mass spectra as conditionally linear on their estimates. Usually the
criterion optimized is the sum of squared differences between the
model evaluated at the parameter estimates and the data. In this case
the model fitting problem is an instance of separable non-linear least
squares, which is possible to address with the variable projection
algorithm [20]. In mass spectrometry applications the data represent
counts and can be expected to behave as a Poisson distributed
stochastic process. Since the number of counts is usually large,
minimization of the actual log-likelihood function would offer very
little improvement over optimization of the sum of squared deviations
[21].

2.1. Functions for the description of elution profiles

Many functions are possible to apply to the description of
chromatographic peaks [22]. The exponentially modified Gaussian
(EMG) function is the most popular in practice and can be used to
describe a variety of peak shapes with a relatively small number of
parameters. It employs three parameters, location λ, full width at half-
maximum (FWHM) Δ, and rate k to determine each elution profile c
over a vector of times t as

c t;λ;Δ; kð Þ = exp −ktð Þ
2

exp k λ + k
eΔ2

2

 ! !
1 + erf

t− λ + k eΔ2
� �
ffiffiffi
2

p eΔ
24 358<:

9=; ð3Þ

where eΔ =Δ= 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log 2ð Þ

p� �
. With a positive decay rate k the elution

profile exhibits a tail. To describe fronting, a negative decay rate k can
be used, and the time argument is reversed.

Thus the model for D1 representing ncomp components reads

D1 t; μð Þ = ∑
ncomp

l = 1
c t;λl;Δl; klð ÞSl μð Þ ð4Þ

Fig. 1. The plots on the left depict slices of a chromatogram inwhich overlapping elution
profiles are represented, shown in the plots on the right. The elution profiles in the top
plots are overlapping, but not completely so, allowing a variety of algorithms to be
applied for component resolution. The plots on the bottom involve completely
overlapping components, and only by simultaneously analyzing datasets in which the
amplitudes of the components vary is resolution possible, with either MCR-ALS or
global analysis.
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where μ means the m/z axis. For an additional experiment p we
assume that the shape parameters kl and Δl are independent of
experiment, and introduce alignment parameters λp (assumed to be
identical for all components), and amplitude parameters αl, p, yielding
a model parametrized as

Dp t; μð Þ = ∑
ncomp

l = 1
c t;λl + λp;Δl; kl
� �

al;pSl μð Þ ð5Þ

When the shape varies with experiment, or when the alignment
varies between components because of interaction, additional para-
meters can easily be introduced.

It is usually desirable to keep the total number of parameters
describing the elution profiles as low as possible, which renders the
model better determined and faster to optimize. To address the
problem of intensity ambiguity, one of the amplitude parameters is
fixed for each component. The amplitude of each component is fixed
in one dataset, so that the other amplitudes describing the component
are relative to the fixed value and the model is well-determined.
Provided all components are present in the D1, it is often convenient
to fix the amplitude parameters of all components in this dataset to
1, while allowing all amplitude parameters in datasets D2, …, DK to
remain free.

2.2. Data selection and pre-processing

As in MCR-ALS [14], for global analysis the data is cut into time
windows so that D1,…, DK represent on the order of 1–10 components,
as described in Section 4.2. Instead of correcting for a baseline in the
data, which can be problematic in the case that its contribution is
changing in time, global analysis allows the possibility of modeling the
baseline term as a component, assigned its own mass spectrum. It is
also possible to allow the parameter describing the location of each
elution profile to vary per-dataset, meaning that pre-alignment is not
a prerequisite for data analysis.

2.3. Number of components and starting estimates

The estimation of the number of components proceeds along the
same lines as for MCR-ALS, as described in Section 4.3.

Starting estimates for global analysis may be estimated by
obtaining starting estimates as for MCR-ALS as described in Section
4.4, and then fitting the desired functional description of the elution
profiles to these estimates. The decision regarding which parameters
to make common between elution profiles in different datasets is at
present made by hand, though automation would be desirable. For
numerical reasons, the starting values should not result in peaks
associated with precisely the same parameter values (shifting the
location of one peak slightly resolves any problems).

2.4. Parameter estimation

For each component cl(t) is described by an EMG function with
three parameters kl, λl and Δl. Each additional experiment p requires
one time shift parameter λp for alignment, and ncomp amplitude
parameters a=[a1, p, a2, p, …, ancomp,p] representing the amplitude of
each component, so that we end up with (2+nexp)ncomp+nexp−1
intrinsically nonlinear parameters for nexp experiments. The mass
spectra S contain ncompnμ parameters, where nμ is the number of
masses represented by the data, so that the number of parameters
represented by S is typically on the order of 103. These parameters,
however, are conditionally linear, and can be eliminated analytically
from the problem using the variable projection method reviewed by
[20]. Note that in this way the model fitting process proceeds much
more efficiently. Since negative values of S cannot be interpreted,
these parameters are constrained to nonnegative values. The in-

corporation of nonnegativity constraints on the conditionally linear
parameters S within global analysis is described by [23,24] and is
implemented using a nonnegative least squares (NNLS) algorithm by
Lawson and Hanson [25,26].

A background contribution may be assumed to be constant in the
time window analyzed (and has only a mass spectrum, but no
parameters). More complex formulations of the background contribu-
tion are possible by introduction of a slope parameter or some other
more flexible parametric description.

2.5. Residual analysis

The application of global analysis to measured data described in
Section 3 uses the following methodology to analyze the residuals,
detect outliers, and deal with saturation effects.

The residual matrix is analyzed using a singular value decomposi-
tion (SVD):

Dres t; μð Þ =D t; μð Þ−Dfit t; μð Þ = ∑
m

i = 1
ui tð ÞsiwT

i μð Þ ð6Þ

where ui andwi are the left and right singular vectors, si are the sorted
singular values, and m is the minimum of the number of rows and
columns of the data matrix. When multiple experiments are sim-
ultaneously analyzed the residual matrices are concatenated. Extra
measures are needed to identify residuals that are caused by detector
saturation, and to identify outliers.

A residual caused by detector saturation is defined by Dres(t, μ)N
α1Dfit(t, μ) and D(t, μ)Nα2, where α1 and α2 are values that depend
upon the experiment. This definition depends upon Dfit and thus must
be determined iteratively.

To identify outliers all residuals at a particular m/z value of ex-
periment p are sorted, and the Lower and Upper Fourth are deter-
mined, and the Fourth Spread. Then the Lower Limit (LL) and Upper
Limit (UL) are defined as

LL = Lower Fourth−αd Fourth Spread ð7Þ

UL = Upper Fourth + αd Fourth Spread ð8Þ

The data points associated with residuals outside these Lower and
Upper Limits are identified as outliers [27]. Experimentally we found
that a typical value of α useful in the context of GC/MS data is 5. A low
weight is applied to huge signals that can saturate the detector e.g. the
trimethylsilyl (TMS) peak atm/z 73. Likewise, low weights are applied
to outliers and residuals caused by detector saturation (determined by
the above procedures). High weights can be applied to characteristic
masses provided the signal-to-noise ratio is sufficient. Instrument
nonlinearity is currently neglected, but in principle it could be
included in themodel function. The global analysis method developed
here was applied to two large sets of data, namely tomato data sets
described in [28] consisting of 37 different tomato fruit varieties, and
standard mixture data described in [14] comprising samples with up
to 101 different chemical compounds. No preprocessing was applied
to the data, except for a baseline correction when needed.

2.6. Refinement

After a global analysis a further refinement is possible. The
estimated mass spectra can be used in a weighted NNLS fit for each
time point of each dataset p to estimate the amplitudes of the
concentrations, so that ct in Dpt

W=SWct has solution

ct = NNLS SW ;DW
pt

� �
ð9Þ

where the superscript W is used to indicate that weights are applied,
and Dpt

W is a column vector of all masses at time t of experiment p. SW

152 I.H.M. van Stokkum et al. / Chemometrics and Intelligent Laboratory Systems 95 (2009) 150–163



Author's personal copy

is the weighted matrix of estimated mass spectra. The refinement
provides an opportunity to check the assumed peak shape and peak
resolution.

2.7. Implementation

The global analysis method discussed here is publicly available
under the terms of the GNUGeneral Public License in the form of theR
package TIMP [29], from the Comprehensive R Archive Network
(CRAN) [19].

2.8. Identification

The mass spectra estimated via global analysis in Section 3 were
searched against the NIST05 library [30] extendedwith the Golmmass
spectral library [31] of derivatized compounds. For each spectrum 10
hits were retrieved. The matching factors reported by the MS Search
2.0 program [30] are between 0 (no match) and 1000 (perfect match).
Two different values for the matching factors, MF and RMF, are
reported. In the calculation of MF the experimental spectrum is used
as a template, whereas for RMF the template is the library spectrum.
Comparable MF and RMF values indicate that there are no additional
and/or missing values in either of the spectra. To increase the re-
liability of the identificationwe have included the retention index (RI)

in the evaluation of the library hits. However, RI data are available for
only a small fraction of the compounds in the NIST05 library.
Therefore we have used a recently developed quantitative structure-
retention index model [32] for the estimation of RI based upon the
structure of the compounds.

3. Application of global analysis to measured GC/MS data

We successfully performed over 100 case studies on selected time
windows using different amounts of datasets, fromwhich we present
here four illustrative examples. The first and second case study
presented in Section 3.1 are referred to as Tomato I and Tomato II,
respectively, while the first and second case study described in Section
3.2 are referred to as Mixture I and Mixture II, respectively.

3.1. Tomato data

The case studies here demonstrate the ability of global analysis to
resolve two overlapping components and resolve correct mass spectra
in the case of saturation effects (case study Tomato I) and the ability to
resolve six overlapping peaks (case study Tomato II).

In case study Tomato I, we use six tomato samples (e.g., datasets)
and focus on a small part of the chromatogram where two com-
ponents clearly overlap. Atm/z values of 70 and 71 the peak location is
below RI 787 and above RI 788, respectively, indicating that these are
characteristic masses, whereas at anm/z value of 67 both components
contribute almost equally. These six data sets (shown at selected m/z
values in Fig. 2) were simultaneously analyzed, resulting in the mass
spectra of Fig. 3 (Top). Both mass spectra were successfully identified
as elaborated in Table 1. The mass spectrum at RI 786.6 was identified
as 3(Z)-Hexenal. The first five hits retrieved from the library had very
similar MF and RMF values but their RI's differed. Using both the
matching factors and RI, 3(Z)-Hexenal was selected as the best hit. The
component at RI 788.5 was identified as Hexanal. There was a much
larger difference between the MF values of Hexanal and the rest of the
hits. Also, the predicted RI was close to that estimated in the
experiment. These two compounds have been previously identified
in tomato samples [28,33].

The estimated FWHM parameters are 1.6 and 1.7 RI units, and the
locations of these two peaks are somewhat more than one FWHM

Fig. 2. Tomato I. Representative traces (aligned with estimated shift parameters) below saturation threshold atm/z values of 67, 70 and 71. Colors indicate the six different data sets,
solid lines are data and dashed lines indicate fit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Tomato I. (Top) Normalized mass spectra with location λ of peak maximum
indicated in the upper right corner. (Bottom) Estimated elution profiles with linetypes
indicating the different experiments. The contribution of each component to each data
set is the product of each elution profile times the associated normalizedmass spectrum
times the scaling factor 10,259,207.

Table 1
Identifications for Tomato I and II case studies described in Section 3.1

Name RI MF RMF RIlit RIpred

3(Z)-Hexenal 786.6 842 843 799 813
Hexanal 788.5 901 902 784 827
Benzyl Alcohol 1039.4 898 902 1026 1006
3,5-Octadien-2-ol 1040.6 723 738 – 1095
5-Methyl-3-hepten-2-one 1040.6 716 758 – 966
Chloro-2-hydroxy-propanoic acid 1041.1 613 643 – 1081
5-Ethyl-2(5H)-Furanone 1042.0 844 865 952 1004
2-Isobutylthiazole 1042.8 841 861 1013 1122
1-ethyl-4-methyl-Benzene 1043.3 598 711 952 1009

153I.H.M. van Stokkum et al. / Chemometrics and Intelligent Laboratory Systems 95 (2009) 150–163
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apart. The estimated decay rate parameters are both about 0.8/RI,
indicating appreciable tailing. These components could not be reliably
resolved by analysis of individual data sets using e.g. the Automated
Mass Spectral Deconvolution and Identification System (AMDIS)
program [34]. The estimated elution profiles are depicted in Fig. 3
(Bottom). Note that the amount of component present in the data sets
varies appreciably, as indicated by the different linetypes.

Examples of saturation are depicted in Fig. 4. Note that at these
massesmost of the peak is clipped, and it is essential to reconstruct the
original shape using the unclipped tails of the elution profile. In this
way a reliable estimate of themass spectrum can also bemade at these
critical masses. It turns out that this is essential for adequate
identification of the compounds present in the samples. From a further
in depth analysis of the residuals (visible as systematicmisfit at e.g. the
μ value of 41) we infer that a small instrument nonlinearity may be
present. In this way, these two overlapping components have been
successfully analyzed in 37 different tomato varieties simultaneously.

In the case study Tomato II we present an in-depth analysis of a
much smaller peak around RI 1042 in six tomato samples.

Note the large differences in the shapes of the elution profiles in
Fig. 5, and also the differences in the amplitudes of the datasets, as
indicated by the different colors. E.g., at m/z values of 58 and 99 the
cyan and red are largest, peaking near RI 1043, whereas at 57 green
and blue dominate, peaking somewhat earlier, and at 105 blue and
black dominate. To describe these differences six components were
needed to fit the data, whosemass spectra are shown in Fig. 6 (Top). In
this region Tikunov et al. [28] have identified the components at RI
1039.4 and 1042.8 as Benzyl alcohol and 2-Isobuthylthiazole. These
compounds were found as the best hits also in our analysis (see
Table 1). The component at RI 1042.0 was identified as 5-Methyl-2

(5H)-furanone, a compound recently found to be present in small
amounts in tomato [35]. The best hit for the component at RI 1041.2
was that of a chlorinated acid. Both the MF and RMF values were very
low which makes the identification doubtful. Also, only a few
chlorinated compounds have been identified in tomato [33]. Unsatu-
rated alcohol (3,5-Octadien-2-ol) and ketone (5-Methyl-3-Hepten-2-
one) had very similar MF and RMF values with the mass spectra at RI
1040.6. The RI's were also close to the experimental value. These two
compounds have not been identified in tomato but other unsaturated
alcohol and ketones are known to be present. There was a large
difference between the MF and RMF values for the hits of the mass
spectrum at RI 1043.3. This is an indication that the extracted mass
spectrum is not pure probably due to the small contribution of the
component. The hit list for this component contained compounds
with very different RI's. The best hit based on RI was for 1-Ethyl-4-
methyl-benzene, a compound known to be present in tomato [33].

The estimated elution profiles of the components are depicted in
Fig. 6 (Bottom). The estimated FWHMparameters are again around 1.6
RI units, thus the locations of these six components are within a range
of 2.5 FWHM.

Note that the contributions of the fifth and sixth component
(indicated by cyan, and black) are very small, as evident from Fig. 6
(Bottom). Nevertheless they can be reliably estimated from these six
tomato varieties.

3.2. Standard mixture data

Two benefits of global analysis will be illustrated in turn with case
studies Mixture I and Mixture II on standard mixture data from [14].
The data were previously analyzed in [14] with a self-modeling

Fig. 4. Tomato I. Representative traces (aligned with estimated shift parameters) above saturation threshold atm/z values of 41, 56 and 69. Colors indicate the six different data sets,
solid lines are data and dashed lines indicate fit. Symbols indicate saturation data points. The two tails of the peak are connected by straight lines. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Tomato II. Representative traces (aligned with estimated shift parameters) at m/z values between 57 and 109. Colors indicate the different data sets, solid lines are data and
dashed lines indicate fit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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method, hierarchical MCR-ALS. The example in Mixture I shows the
ability of global analysis to resolve components with small amplitude
relative to a large peak nearby. The ability of global analysis to resolve
highly overlapping components is illustrated by the example in
Mixture II. Both examples will proceed using only a small amount of
data (6 or 3 data sets), whereas [14] used a large amount of designed
data (62 data sets) that are analyzed simultaneously. The data are
designed in that the concentration of some components is made to
vary between datasets. Four representative traces from six standard
mixture datasets are depicted in Fig. 7. Note that the peak atm/z=327
is about 200 times smaller than the maximum of the next peak atm/z
values of 73 and 219. Furthermore the presence of the baseline
aggravates this resolution problem.

The red mass spectrum in Fig. 8 (Top) was identified as trans-
caffeic acid-3TMS (MF 949, RMF 949), and the green baseline
spectrum shows TMS related peaks near 73 and 147. The blue and
black mass spectra could not yet be identified. Although hits with
relatively good matching factors were retrieved, the library RI's for

these compounds did not match the experimental RI. The global
analysis algorithmwith nonnegativity constraints on the mass spectra
results in estimates for the black mass spectrum that are zero at
masses below 217. Apparently it was not possible to estimate its small

Fig. 6. Tomato II. (Top) Normalized mass spectra with location λ of peak maximum
indicated in the upper right corner. (Bottom) Estimated elution profiles with colors
indicating the six components, and linetypes indicating the different experiments. The
contribution of each component to each data set is the product of each elution profile
times the associated normalized mass spectrum times the scaling factor of 519,121. In
order to improve visibility of the small concentrations, we have used a square root
scaling of the maxima. Thus e.g. the black concentration maximum at about 0.1
corresponds to a true maximum of about 0.01. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7.Mixture I. Representative traces (aligned with estimated shift parameters) atm/z
values between 73 and 327. Colors indicate the six different data sets, solid lines are data
and dashed lines indicate fit. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. Mixture I. (Top) Normalized mass spectra with location λ of peak maximum
indicated in the upper right corner. Zero is the baseline spectrum. (Bottom) Estimated
elution profiles with colors indicating the four components, and linetypes indicating the
different experiments. The contribution of each component to each data set is the
product of each elution profile times the associated normalized mass spectrum times
the scaling factor of 243,828. In order to improve visibility of the small concentrations,
we have used a square root scaling of the maxima. Thus e.g. the black concentration
maximum at about 0.05 corresponds to a true maximum of about 0.0025. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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amplitude (relative to the huge caffeic acid peak) near e.g. m/z=73.
The estimated elution profiles of the components depicted in Fig. 8
(Bottom) highlight the small black component contribution.

The analysis for theMixture I case study concerns the region from RI
2110–2134. Likewisewe analyzed all bands in the region from Retention
Index 1902–2433 in small time windows, using only 3 or 6 of the
datasets simultaneously. Compared to hierarchical MCR-ALS methodol-
ogy as described in [14], global analysis resolves many more small
components using only a very limited amount of data. The Mixture II

case studyconcernsa particularly difficult overlap region fromRetention
Index 1938–1945. Five different components are present, with two pairs
almost completely overlapping. In the three different data sets the
amounts of these overlapping components were different by experi-
mental design, thus allowing to resolve them (analogous to the natural
component variability with tomato varieties).

Note the large differences in the shapes of the elution profiles at
the three characteristic masses in Fig. 9, and also the differences in the
amplitudes of the datasets, as indicated by the different colors. The
estimated mass spectra shown in Fig. 10 (Top) were successfully
identified, and the matching factors are shown in Table 2. Strikingly,
just outside of this region two more mass spectra were identified as
galacturonic acid at RI 1930 (MF 808/RMF 829) and RI 1953 (MF 862/
RMF 875). [14] only reported two galacturonic acid peaks at RI 1940.2
and 1956.5. The difference between our RI 1953 and their RI 1956.5
can be well explained by absolute alignment uncertainty. They also
report trans-p-coumaric acid at 1943.5 and coniferylalcohol at 1942.8,
which is also about 3 RI units higher. Alignments of 3 RI units between
their samples are common. We currently have no explanation for the
two extra putative galacturonic acid peaks at RI 1930 and RI 1942.8.
The estimated elution profiles of the components depicted in Fig. 10
(Bottom) demonstrate again the importance of amplitude variability
for the resolution of overlapping components. Note also that the solid
red elution profile is delayed relative to the dotted and dashed one.

3.3. Refinement of results

To further check the adequacy of the assumed EMG peak shape, we
estimated concentration profiles according to the refinement
described in Section 2.6. The profiles in Fig. 11 are very similar to
the EMG shapes in Figs. 3 (Bottom), 6 (Bottom), 8 (Bottom), and 10
(Bottom). The improvement in theweighted rootmean square error of
the fit was 36% and 15% in case studies Tomato I and II, and 29% and
58% in case studies Mixture I and II. The green elution profiles of
Mixture II deviate most from an EMG peak shape.

4. Multivariate curve resolution alternating least squares (MCR-ALS)

WhileMCR-ALS has been presentedmany times in the literature, we
present it here again in order to make the discussion of the comparison
of the methodology with global analysis in Section 5 more concrete.
Since it is known in advance that negative values in an elution profile or

Fig. 9. Mixture II. Representative traces (aligned with estimated shift parameters) at m/z values of 218, 308 and 324. Colors indicate the three different data sets, solid lines are data
and dashed lines indicate fit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Mixture II. (Top) Normalized mass spectra with location λ of peak maximum
indicated in the upper right corner. (Bottom) Estimated elution profiles with colors
indicating the five components, and linetypes indicating the different experiments. The
contribution of each component to each data set is the product of each elution profile
times the associated normalizedmass spectrum times the scaling factor of 538,383. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Table 2
Identifications for case studies Mixture I and Mixture II described in Section 3.2

Name RI MF RMF RIlit

L-tyrosine 1938.9 795 882 1939
Galacturonic acid 1938.9 755 816 1940
Coniferylalcohol 1940.6 911 931 1944
Trans-p-coumaric acid 1941.2 887 900 1947
Galacturonic acid 1942.8 841 874 1961
Trans-caffeic acid (3TMS) 2133.1 949 949 2141
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mass spectrum are not physically interpretable, we present the basic
algorithmwith non-negativity constraints on both C1, …, CK and S.

Algorithm 1 alternates calls to Algorithms 2 and 3, optimizing C1,…,
CK and S according to non-negative least squares criteria while
considering either S or C1, …, CK as fixed. The stopping criterion is
usually based on the change in the residual difference between two
iterations falling beneath some threshold. Note that ‘rbind’ refers to
bindingmatrices together along their rows, and ‘nrow’ and ‘ncol’ refer to
the number of rows and columns in a given matrix, respectively. ‘NNLS’
refers to a non-negative least squares algorithm such as that of Lawson
and Hanson [25,26], a FORTRAN implementation of which is freely
available via the Netlib repository [36] and in the R package nnls [37].

In practice, Algorithm 1 is often modified to include other
constraints on C1, …, CK and S, the most important of which are
described in Section 4.1.

Algorithm 1. MCR-ALS(C1, …CK, S, D1, …, DK)

Algorithm 2. getS(C1, …CK, S, DAll)

Algorithm 3. getC(C1, …CK, S, DK)

Before MCR-ALS based on Algorithm 1 can be applied, it is
necessary to decide what constraints to include, what number of

components (i.e., columns of Cj and S) to use, and what the starting
estimates for either C1, …, CK or S should be. These prerequisites are
described in turn.

4.1. Constraints for use in MCR-ALS

While MCR-ALS works in the absence of a parametric model, it
allows the application of constraints to the elution profiles and mass
spectra. Commonly applied constraints include non-negativity of the
elution profiles and mass spectra [38,39], unimodality of elution
profiles [40], selectivity or equality constraints that account for
intervals of data or datasets where a component is known to have
zero amplitude or known amplitude [2], and normalization or closure
constraints that help avoid problems associated with intensity
ambiguities [41].

Unimodality constraints may be desirable in the case that the
estimated elution profiles returned by Algorithm 1 have a bi-or-multi-
modal shape that is believed to be unlikely given knowledge of the
experimental set-up. For the application of unimodality constraints a
simple modification of Algorithm 1 suffices; before returning an
elution profile, the unimodal vector that is closest to the estimated
elution profile in a least squares sense is determined and returned. The
unimodal vector to be returned may be efficiently determined via a
method based on isotonic regression [42] and implemented in the R

package Iso [43].
In the case that it is known that a component is not present in a

given dataset, a selectivity constraint may fix its elution profile to zero
(likewise, if the component has a known elution profile, the profile
may be fixed at the known shape). A heuristic that has been
successfully applied to the analysis of GC/MS datasets checks if the
retention time of an elution profile is within some threshold value of
the median retention time for that component over all datasets. If not,
the elution profile is set to zero (that is, its contribution is removed) in
the deviating dataset [14].

Normalization and closure constraints, which are discussed in
more detail elsewhere [41], may be of use to deal with the problem of
intensity ambiguity. For any scalar m and elution profile ci and mass
spectrum si

T, cim(1/m)si
T=cisi

T, meaning that increasing the estimate of
ci by a factor of m gives a model that fits the data equally well, as long
as the mass spectrum si

T is multiplied by a factor of 1/m. The
normalization constraint is typically applied to the spectra, and may
constrain ||siT||2=1, or constrain the maximum of siT to be one. A closure
constraint is usually implemented on the rows C1, …, CK, and
constrains the sum of the elements of each row of matrix Cj to be
equal to a known constant, as for instance is desirable for reaction-
based systems, where the elution profiles obey a mass balance

Fig. 11. Elution profiles estimated for the four case studies considered in Sections 3.1 and 3.2 after the refinement described in Section 2.6, with the scaling conventions as in Figs. 3
(Bottom), 6 (Bottom), 8 (Bottom), and 10 (Bottom).
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equation. Typically application of either normalization or closure is
desirable, but not both types of constraint simultaneously.

4.2. Data selection and pre-processing

In the case that themass spectrometry data contain on the order of
1–10 components, it is possible to treat all data at once. Otherwise, for
the case of complex samples containing hundreds or thousands of
different components, the resolution problem is approached by
dividing the datasets into time intervals, so that data D1, …, DK

represent timewindows of the full data that contain on the order of 1–
10 components. Typically the time-windows are demarcated by points
of low intensity, so that each set of data matrices D1, …, DK contains
the entire elution profile of the represented components [14].

In addition to time-window selection, baseline subtraction,
alignment of datasets by peak matching and data smoothing are
commonly performed prior to application of MCR-ALS. These pre-
processing techniques are something of an art in themselves, and the
optimal set of techniques is highly dependent on the particular
experimental conditions [14].

4.3. Number of components

While many heuristics exist in the literature for the determination
of the number of components present in a dataset Di, methods based
on principal component analysis (PCA) [44] or a singular value de-
composition seem most popular [45], and are based on the
assumption that any components to be resolved contribute more to
the data than the noise term. For application to spectroscopy data, a
heuristic has been suggested that performs MCR-ALS with an in-
creasing number of components until the greatest number of
components is found such that the retention times of the estimated
elution profiles are in the same order in each dataset [14]. If it is
known in advance that there is a baseline term in the data, it may be
modeled with an extra component not subject to unimodality
constraints [17].

4.4. Starting estimates

Most heuristics for obtaining starting values derive estimates for
C1, …, CK as opposed to S. Popular methods to obtain starting values
for C1, …, CK involve the use of evolving factor analysis [46] and the
SIMPLISMA algorithm [14,47]. Algorithm 1 is sensitive to starting
values in that both the final estimates for C1, …, CK and S and the
number of iterations required to meet stopping criteria depend on the
initial values of C1, …, CK or S.

4.5. Implementation

The MCR-ALS methods discussed are publicly available under the
terms of the GNU General Public License in the form of the R packages
ALS [48] from the ComprehensiveR Archive Network (CRAN) [19]. The
package includes scripts to repeat the MCR-ALS results described in
Section 5.

5. Comparison of global analysis and MCR-ALS

MCR-ALS proceeds by iteratively solving constrained least squares
problems, whereas global analysis requires the solution of a nonlinear
optimization problem that usually takes the form of a separable
nonlinear regression. For typical problems, MCR-ALS will be much
faster than global analysis (requiring on the order of seconds as
opposed to minutes). Furthermore, MCR-ALS requires significantly
less hand-work in determining the model form.

Global analysis describes the data using a small number of free
parameters as compared to MCR-ALS. For example, for the analysis of

two datasets where each dataset represents two components having
elution profiles described by an EMG with the same shapes but
different amplitudes per-dataset, only 8 intrinsically nonlinear
parameters completely determine the model. In contrast, the number
of free parameters in each iteration of MCR-ALS is equal to the number
of entries in C1, …, CK or S. Whether the large number of free
parameters employed by MCR-ALS is an advantage or a liability
depends on the specifics of the component resolution problem. For
datasets in which the elution profiles are difficult to describe in terms
of a model with a small number of parameters, MCR-ALS may provide
a significantly better fit, due to its flexibility. However, as wewill show
in the remainder of this section, the relatively large number of
parameters used by MCR-ALS may preclude the resolution of
components in certain situations.

It is well-established that MCR-ALS is a useful and powerful
component resolution tool. Therefore we will not concentrate on
examples in which MCR-ALS is successful, which are abundant in the
literature, but rather on those problems inwhich it performs poorly in
terms of the matching factor of the estimated mass spectra as
compared to global analysis. Many properties of the data affect the
performance of both algorithms, such as the presence or absence of
shape differences in the elution profiles, overlap/distance in time
between locations of the elution profiles, amplitude differences of
components between datasets, relative abundances of components,
similarity of the underlying mass spectra, signal-to-noise ratio of the
data, starting values, and number of datasets available for simulta-
neous analysis. The present study necessarily examines only a subset
of the problem instances possible to encounter as these properties
vary, though indicates some strengths and weaknesses of the
algorithms that may be extrapolated to many other cases.

5.1. A basic example

We consider an example in which the data consists of two
simulated GC/MS datasets that each represent two co-eluting
components, shown in Fig. 12, with associated mass spectra shown
in the top row of Fig. 13. This simulated data is inspired by the Mixture
I case study described in Section 3.2. The parameters for the EMGs
used to simulate the elution profiles are given in Table 3. The datasets
represent integer time points 5720–5800 and integer masses 50–449.

In order to introduce a stochastic element into the data (that is,
noise) we let a deterministic data point represent the parameter λ of a
Poisson distribution. The Poisson distribution has density

p xð Þ = λx exp −λð Þ=x! ð10Þ

for x=0,1, 2,…. Themean and variance are E(X)=Var(X)=λ. The signal-
to-noise ratio (SNR) of amatrixof datawith Poisson distributed noise is
defined to be the square root of themaximumdeterministic data point.
To obtain data with SNR 1000 (which is encountered in GC/MS
experiments) we scale the deterministic simulated dataset to contain
106 counts in the maximum data point, and then consider each data
point to represent the λ in a Poisson process via the R function rpois.

Fig. 12. The elution profiles represented in the two simulated datasets. In dataset 1 (left)
the profiles have slightly different amplitude compared to the profiles in dataset 2
(right). Both components are represented by EMG functions, with the location
parameter of the first component (dark grey) 1 time unit before that of the second
component (light grey). Parameter values used to generate these profiles over the
vector of integer times 5720–5800 are given in Table 3.
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In order to judge how well an estimated mass spectrum s
resembles the mass spectrum u used in simulating the data, the
normalized dot product matching factor function

cos u; sð Þ = ud s
jjujj jjsjj ð11Þ

is useful [18,49]. The normalized dot product matching factor of the
spectra shown in the top row of Fig. 13 is almost 0, as the spectra are
very dissimilar. If the abundance ratio of components p and q is
defined as

ab p; qð Þ =
sum Cj ;p½ �S ;p½ �T

� �
sum Cj ; q½ �S ; q½ �T

� � ð12Þ

where Cj[, p] and Cj[, q] are the elution profiles p and q over all times,
S[, p] and S[, q] are the mass spectra p and q over all masses, and the
sum function takes the sum of all matrix elements. In this way Eq.
(12) represents the number of counts contributed to the data by the
component p divided by the number of counts contributed by
component q. Under this definition the abundance ratio of component
1 to component 2 is ≈2.1 in dataset 1 and ≈3.1 in dataset 2; the
difference in abundance ratios between datasets is due to the
difference in the amplitude of the first elution profile.

In applying MCR-ALS to resolving components in the simulated
data, we apply constraints for non-negativity of C1, …, CK and S,
unimodality of C1, …, CK, and normalization of each mass spectrum
such that the maximum value is one. For global analysis, the mass
spectra and amplitudes of the elution profiles are constrained to non-

negative values. The starting values for both MCR-ALS and global
analysis are taken to be the elutionprofiles used in simulation, butwith
location parameters shifted to 5757 and 5753. The stopping criterion
used for MCR-ALS is reduction of the residual difference by no more
than 0.001 between iterations or completion of 100 iterations. The
stopping criteria for global analysis were the defaults used by the
Levenberg–Marquardt non-linear regression algorithm implemented
in the R package minpack.lm, or completion of 50 iterations. In all
problems considered in this study, allowing the algorithms to run for
more iterations results in further reductions in the sum of squared
errors but does not change the matching factor of the estimated mass
spectra with the mass spectra used in simulation by more than ≈5%.

Fig. 13 shows that for this problem, MCR-ALS does not resolve the
spectral signature of both components, whereas global analysis
estimates the mass spectra well. The normalized dot product
matching factor of the estimated spectra and the spectra used in
simulation over 100 noise realizations of the problemwere calculated.
Global analysis results in matching factors for both components that
are always N0.99, whereas MCR-ALS does not well-resolve both

Fig. 13. The spectra on the top row are those used in simulating the data. The second row contains representative spectra estimated by global analysis. The third row contains
representative spectra estimated by MCR-ALS, in which the spectra are not well resolved.

Table 3
Tabulated are the parameters for the two EMGs used to describe the elution profiles in
both datasets

Component 1 Component 2

Location 5754 5755
FWHM 7 7
Rate 1 1

The elution profiles have amplitudes 1 and 2, respectively, in dataset 1, and amplitudes
1.5 and 2 respectively, in dataset 2. The resulting EMGs are shown graphically in Fig. 12.
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spectra. By examination of many stochastic realizations of the data, it
is clear that the results of both algorithms are stable with respect to
this level of noise. We turn to a more thorough simulation study to
further investigate the resolution power of the techniques.

5.2. Varying distance between components

The example put forth in Section 5.1 can be studied as the location
of component 1with respect to the location of component 2 ismade to
vary. We simulate pairs of datasets with different distances between
the locations of the components, as collated in Table 4 and shown
graphically in Fig. 14. All other experimental parameters are as
described previously in Section 5.1.

For each pair of datasets, 25 different stochastic realizations are
generated. The left plots of Fig. 15 show the averagematching factor of
the mass spectra estimated by MCR-ALS and global analysis with the
mass spectra used in simulation over 25 stochastic realizations of each
pair of datasets. As the distance between the components increases,
MCR-ALS is better able to solve the problem, but does not resolve
components when the distance between the locations of the
components is small. Global analysis is able to estimate both mass
spectra well in all cases. When the distance between the components
is reduced to zero, both global analysis and MCR-ALS do not resolve
the underlying mass spectra. Both methods also fail in the case that
only one of the two datasets is analyzed.

5.3. Mass spectra with increased matching factor

Wehave performed the same simulation study as in Section 5.2 but
usingmass spectrawith a largermatching factor (0.31 as opposed to 0),
inspired by the Tomato I case study described in Section 3.1, which are
shown in Fig. 3 (Top). We again simulate pairs of datasets with varying
locations of the first component, as collated in Table 4 and shown
graphically in Fig. 14. The right plots in Fig. 15 show the average
matching factor of the mass spectra estimated by MCR-ALS and global
analysis with the mass spectra used in simulation, again as averages
over 25 stochastic realizations of eachpair of datasets. As in Section5.2,
global analysis is better able to estimate the underlying mass spectra
when the separation between the location of the components is small.

5.4. Varying SNR

Returning to the study in Section 5.2, we choose a distance
between the components for which both global analysis andMCR-ALS
estimated the mass spectra of both components well, namely the
problem instance with elution profiles separated by 6 time units
described in Section 5.2, and a distance for which global analysis
succeeds in estimating the mass spectra well, but MCR-ALS does not,
namely the problem instance with the elution profiles separated by 1
time unit described in Section 5.2.

We simulated these problem instances for SNR 500, 200, 100 and
25, to examine the robustness of the results to noise, examining the
performance of the algorithm in terms of the matching factor of the
estimated spectra with the mass spectra used in simulating the data.
For all these SNRs, for both problems, the algorithms performed
qualitatively the same as under SNR 1000, with differences of less than
b5% in the resulting averagematching factors of the estimated spectra
compared to the values used in simulation over 25 noise realizations

for each SNR considered. Hence the results described in previous
sections are stable with respect to the noise level of the data.

5.5. Sensitivity to starting values and stopping criteria

For the problem considered in Section 5.1, using starting values for
the elution profiles that are slightly shifted (e.g., by three time units)
from the values used to simulate the elution profiles, MCR-ALS
continues to reduce the sum of squared errors for many iterations
(N10,000) provided the stopping criterion is altered to allow con-
tinuation even if the differences in the residuals between iterations
are very small. Eventually MCR-ALS reaches the same minimum in
sum of squared errors it finds in only a few iterations when given
perfect starting values for the elution profiles. However, the estimated

Table 4
Eleven pairs of datasets are simulated for the studies in Sections 5.2 and 5.3, each of which represents elution profiles over integer times 5720–5800 with different distances between
the location of the components

Dataset pair 1 2 3 4 5 6 7 8 9 10 11

Location separation 0.01 0.05 0.1 0.25 0.5 1 2 3 4 5 6

The resulting EMGs are shown graphically in Fig. 14.

Fig. 14. Elution profiles used in simulating the pairs of datasets used in Sections 5.2 and
5.3; each row represents a pair of datasets with a different location of the first
component. Each elution profile is represented by an EMG having the parameter values
given in Table 3, except for the location of the first component, which is less than the
location of the second component by the values given in Table 4.
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spectra do not well-represent the spectra used in simulation, and are
associated with a matching factor of b0.9. There are therefore a range
of values for the elution profiles and mass spectra that result in the
same sum of squared errors underMCR-ALS. That is, there are bands of
feasible solutions, not a unique description of the elution profiles and
mass spectra that result in the best model fit. This is due to the
relatively large number of parameters used for the description of the
elution profiles under MCR-ALS, and is an issue that has been studied
in detail elsewhere [41,50]. Fig. 16 shows that shifting the starting
values for the elution profiles from the values used in simulation for
the problem described in Section 5.1 results in varying estimates for
the mass spectra under MCR-ALS. This is in contrast to the estimates
for the mass spectra returned by global analysis, which always well
approximate the mass spectra used in simulation.

5.6. Sensitivity to abundance ratio of components

By increasing the magnitude of the first mass spectrum relative to
the magnitude of the second mass spectrum used in simulating the
data, it is possible to vary the number of counts contributed to the data
by each of the two components, so that the abundance ratio defined in
Eq. (12) varies. For the problem described in Section 5.2 where the
distance between the location of the components is 6 time units, and
both MCR-ALS and global analysis estimate the components well, we

Fig. 15. The normalized dot product matching factor of the estimated spectra and the spectra used in simulation for global analysis (top) and MCR-ALS (bottom). Results for
component 1 are shown as black diamonds, and for component 2 as grey circles. As the separation of the components is increased, the component resolution problem is rendered
progressively easier. The left plots are for the data in Section 5.2, whereas the right plots are for the data in Section 5.3. MCR-ALS well-resolves the spectra only at a separation of 6.

Fig. 16. The normalized dot product matching factor of the estimated spectra and the
spectra used in simulation for global analysis (top) and MCR-ALS (bottom) as the
starting value for the location of the elution profiles is shifted in time units from the
values used in simulation. Results for component 1 are shown as black diamonds, and
for component 2 as grey circles. MCR-ALS converges to mass spectra estimates that are
different from the actual underlying mass spectrawhen the starting values are less than
perfect. The results shown are average matching factors over 10 stochastic realizations
of the data.

Fig. 17. The normalized dot product matching factor of the estimated spectra and the spectra used in simulation for global analysis (top plots) and MCR-ALS (bottom plots) as the
abundance of the first component relative to the second is made to increase. Matching factors shown are averages over 25 stochastic realizations of the data. The left and right plots
are for data with the underlying mass spectra shown in the top row of Fig. 13 and in Fig. 3 (Top), respectively.
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examined how the performance varies in terms of the estimated mass
spectra as the abundance ratio of component 1 to component 2 is
made to vary. We also examined this same problem but using the
spectra shown in Fig. 3 (Top). The breakdown of the resolution power
of the techniques was qualitatively similar as the abundance of
component 1 to component 2 increases, as shown in Fig. 17.

6. Discussion

While global analysis is a powerful component resolution tool,
much additional work is necessary to render it a suitable tool for high-
throughput applications. Of particular importance is the development
of heuristics for model specification.

Other tools for component resolution of mass spectrometry data
such as the “Automated Mass Spectral Deconvolution and Identifica-
tion System” (AMDIS) by the National Institute of Standards and
Technology [34] have the great advantage of being much more fully
automatic, and are integrated with libraries of mass spectra so as to
best facilitate the end goal of compound identification. However, they
are not able to deal with the problem of completely overlapping
components or multiple datasets. The ideal software would combine
the best features of all available methodologies. Thenwhen one of the
faster methods based on peak-finding in the chromatogram or MCR-
ALS fail to resolve components, global analysis could be applied. This
would require the formulation of heuristics to decide when applica-
tion of global analysis is likely to offer improved estimates of the
underlying spectra. Possible heuristics could be based on rank analysis
of the data, or prior knowledge indicating the expected number of co-
eluting components present.

Further research into the utility of methods suggested by [12,13],
that are hybrid in the sense that they use MCR-ALS to iteratively
improve estimates for C1, …, CK and S, but refine the MCR-ALS
estimates for C1, …, CK by fitting these elution profiles with a
parametric model, is also of interest for the problems discussed here.
Such methods are promising for reducing the sensitivity to starting
values of MCR-ALS studied in Section 5.5.

7. Conclusions

Benefits of global analysis are: (1) direct quantitative estimation of
parameters of interest, and (2) the quality of the fit can be judged from
residual analysis. The parameters of interest are the mass spectra of
the components, and their elution profiles, in particular the Retention
Index that can be calculated from the location parameter of each
elution profile. The precision of these parameters can be estimated as
well. If the singular vectors of the residual matrix show only little
structure, this indicates that the data have been fitted up to the noise
level, and thus all information has been extracted. If they do show
structure, this can indicate that the assumed EMG shape is not fully
adequate, or it can indicate that an extra component is needed to fit
the data. These benefits apply when analyzing single or multiple
datasets. However, with simultaneous global analysis of multiple
datasets there are more benefits. Overlapping components can more
easily be resolved when they are present in different amounts, which
occurs naturally when comparing biological samples. The estimated
parameters (in particular the mass spectra) are more robust against
systematic measurement errors. The nuisance parameters (most
importantly for alignment) can be directly estimated as well. The
model allows the imposition of common shapes for elution profiles
across data sets, and common retention time differences between
components across data sets.

Global analysis and MCR-ALS methodologies for component
resolution in time-resolved mass spectrometry data have been
compared in simulation studies in which the elution profiles used to
generate the data are completely overlapping. Problem instances have
been presented in which global analysis is able to estimate the mass

spectra of all components well, whereas MCR-ALS fails to do so. Such
problem instances arise when elution profiles are completely over-
lapping, making the component resolution task difficult.

While global analysis is powerful for component resolution,
especially for data representing co-eluting compounds, it requires
more run-time, and at present is less automated than other techniques
based on peak-finding and MCR-ALS. Possible improvements in
accuracy offered by the method must therefore be carefully weighed
against losses in efficiency. Further study and development of the
method for mass spectrometry applications is warranted.
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