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ABSTRACT The flavoprotein AppA from Rhodobacter sphaeroides contains an N-terminal, FAD-binding BLUF photoreceptor
domain. Upon illumination, the AppA BLUF domain forms a signaling state that is characterized by red-shifted absorbance by
10 nm, a state known as AppARED. We have applied ultrafast spectroscopy on the photoaccumulated AppARED state to investigate
the photoreversible properties of the AppA BLUF domain. On light absorption by AppARED, the FAD singlet excited state
FADRED* decays monoexponentially in 7 ps to form the neutral semiquinone radical FADH

d

, which subsequently decays to the
original AppARED molecular ground state in 60 ps. Thus, FADRED* is deactivated rapidly via electron and proton transfer, probably
from the conserved tyrosine Tyr-21 to FAD, followed by radical-pair recombination. We conclude that, in contrast to many other
photoreceptors, the AppA BLUF domain is not photoreversible and does not enter alternative reaction pathways upon absorption of
a second photon. To explain these properties, we propose that a molecular configuration is formed upon excitation of AppARED that
corresponds to a forward reaction intermediate previously identified for the dark-state BLUF photoreaction. Upon excitation of
AppARED, the BLUF domain therefore enters its forward reaction coordinate, readily re-forming the AppARED ground state and
suppressing reverse or side reactions. The monoexponential decay of FAD* indicates that the FAD-binding pocket in AppARED is
significantly more rigid than in dark-state AppA. Steady-state fluorescence experiments on wild-type, W104F, and W64F mutant
BLUF domains show tryptophan fluorescence maxima that correspond with a buried conformation of Trp-104 in dark and light
states. We conclude that Trp-104 does not become exposed to solvent during the BLUF photocycle.

INTRODUCTION

BLUF domains constitute a novel class of flavin-binding,

blue-light photoreceptors. These domains have been identi-

fied in purple photosynthetic bacteria, cyanobacteria, uni-

cellular eukaryotic algae, and heterotrophic bacteria (1–6).

The functions and photochemistry of AppA, a protein of 450

amino acids and its truncated version of 125 amino acids that

noncovalently binds a FAD chromophore, have been studied

extensively. The full-length and truncated AppA BLUF do-

mains show the same UV/Vis spectroscopic changes on blue-

light illumination (7,8). The C-terminal domain of AppA that

is mainly involved in redox-sensing supposedly binds the

repressor protein PpsR (6). Recently, it was demonstrated

that a heme cofactor is also bound to a C-terminal domain of

the protein (9). The signaling state of AppA is triggered by

blue light and manifested as a ;10-nm, red-shifted, visible

absorption spectrum (Fig. 1). This red-shifted species, also

known as AppARED, is formed on an ultrafast timescale (10).

Under blue-light illumination and/or at high oxygen tension,

AppA releases PpsR, which then represses the transcription

of the photosynthesis genes (6,11–13). In low light and low

oxygen tension, AppA is complexing with PpsR to suppress

its activities. The AppA BLUF domain has a very long re-

covery time of tens of minutes after its activation, which is

about 10-fold to a few 100-fold slower than most of its

counterparts. The crystallographic structures of the AppA

and other BLUF domains and the solution structure of AppA

(14–19) show that these domains have similar folds and a

number of conserved residues surrounding the FAD chro-

mophore. They have a characteristic ferredoxin-like fold that

consists of a five-stranded b-sheet and two a-helices. The

chromophore is entrapped in a pocket that is flanked by two

a-helices, with the b-sheets as the pocket base. Fig. 2 shows a

close-up of the FAD-binding pocket with the hydrogen-bond

patterns in the dark and light states, as proposed by Anderson

et al. (14).

The AppA BLUF domain is thought to exhibit light-

induced structural changes in the AppA protein backbone

to regulate the repressor PpsR, which is associated at the

C-terminal of the full-length protein. It was shown that the

C4¼O of FAD becomes strongly hydrogen-bonded in the light

state (20), which could be attributed to a rearrangement of the

intricate hydrogen bonds surrounding the chromophore. It

also was proposed that this rearrangement mainly involves

two conserved residues (Tyr-21 and Gln-63), which are lo-

cated in the vicinity of N5 of the FAD, and flipping of Gln-63
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(14,21,22), which causes a temporary disruption and rear-

rangement of hydrogen bonds that are directly interacting

with C4¼O (20,23) (Fig. 2). Studies also have suggested that

these events are further relayed to Trp-104 to induce struc-

tural changes in the protein backbone through the b5 strand

(14,20,24,25). However, the actual location of Trp-104 in

dark and light states remains controversial, as various BLUF

x-ray structures show the conserved Trp in a solvent-exposed

conformation (16,18,19) rather than in the vicinity of FAD

(14,15,21).

A time-resolved transient absorption spectroscopy study of

AppA shows that the red-shifted state AppARED is formed

directly from the FAD singlet excited state on a subnano-

second timescale (10). In contrast to AppA BLUF, an ultra-

fast transient absorption study of the Slr1694 BLUF domain

from Synechocystis shows the formation of intermediate

anionic and neutral FAD semiquinone radicals before gen-

erating the red-shifted state (26). AppA probably goes

through similar intermediates; these escape detection, how-

ever, because initial electron transfer from Tyr-21 to FAD is

.103 slower than in Slr1694. Studies of site-directed mu-

tants on conserved residues Tyr-21 and Trp-104 have shown

that the photocycle is abolished upon mutation of Tyr-21,

whereas the photocycle for the Trp-104 mutant is retained

(8,24,27). An increase in the quantum yield of the AppARED

formation from 0.24 in the wild-type to 0.38 was reported in

the W104F mutant (27,28). Tyr-21 mutants show evidence of

electron and proton transfer from Trp-104 to FAD (28,29).

Moreover, both mutants exhibit a multiexponential decay of

the FAD singlet excited state due to conformational flexi-

bility of Tyr and Trp (28). These observations indicate that

electron and proton transfer from Tyr is indispensable in

generating the red-shifted state of BLUF domains, and that

electron transfer from Trp-104 provides a nonproductive,

excited state, deactivation pathway. The result is further

confirmed by the Tyr-21/Trp-104 double mutant, which

shows a total inhibition of photoactivation of AppA with a

monoexponential decay of FAD* producing the FAD triplet

state, indicating the absence of any appreciable photochem-

istry between the chromophore and nearby residues (28).

In addition to the extensively studied dark-state photo-

chemistry of AppA and other BLUF domains, the investi-

gation into the light-state photochemistry of AppA BLUF

domains also is highly interesting. It was observed in a pre-

vious study (29) that the light-state photochemistry of AppA

might involve electron and proton transfer and the formation

of neutral flavin semiquinone. One property that is of great

interest is the photoreversibility of a photoreceptor. Photo-

reversibility in this context means the reversion of the in-

ductive effect of the first light stimulus by a second light

stimulus or by more subsequent light stimuli. It has been

shown in other blue-light photoreceptors, such as flavin

FIGURE 1 UV-vis absorption spectra of wild type AppA BLUF domain

and W104F AppA BLUF domain mutant in dark and light states. The lower

spectra show the light-minus-dark absorption difference spectra.

FIGURE 2 The x-ray structure of the Rhodobacter

sphaeroides AppA BLUF domain. The left and right

panels represent a close-up of the vicinity of the FAD

chromophore in the dark and light orientations of the

conserved glutamine, as proposed by Anderson et al.

(14).
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mononucleotide-binding LOV domains, that the signaling

state in its adduct cysteine formation is reversible by a sec-

ond, near-ultraviolet (UV) excitation (30). Photoreversible

processes are well-documented in other photoreceptors such

as the phytochromes (31–35), rhodopsins (36–39), PYP (40),

and, very recently, Arabidopsis cryptochrome (41). Such

properties might have implications related to their physio-

logical function because most light-sensing proteins are

constantly under light pressure during the daytime.

In our study, we have used ultrafast transient absorp-

tion spectroscopy to investigate the photochemistry of the

AppARED state by continuous blue-light background illu-

mination. We have further monitored the relative position of

Trp-104 in dark and light states by studying the tryptophan

fluorescence of wild-type AppA and the W64F and W104F

mutants, which bind only one of the two tryptophans in

the AppA BLUF domain, located at the b3 and b5 strands,

respectively.

MATERIALS AND METHODS

The detailed preparations of the wild-type AppA and W104F AppA BLUF

proteins were described previously (10,27). The W64F AppA BLUF protein

was prepared similarly to the W104F AppA BLUF protein as described by

Laan et al. (27). The mutagenesis primers that we used had the following

nucleotide sequences: 59-GGGCGTCTTCTTCCAGTTCCTCGAGGGCC-

ACCCCGCCG-39 and 59- CGGCGGGGTGGCCCTCGAGGAACTGGA-

AGAAGACGCCC-39. Mutated bases are indicated in bold. The constructs

were verified by sequencing (BaseClear, Leiden, The Netherlands).

Ultrafast transient absorption spectroscopy was done with a 1-kHz

Ti:sapphire-base regenerative amplification system (Coherent Inc., Moun-

tain View, CA; BMI, Evry, France) as described previously (42). A pump

beam of 400 nm with energy of ;500 nJ obtained from a frequency doubling

of the 800 nm Ti:sapphire output was used to excite the sample. A low-

intensity white-light probe beam was generated by focusing an 800-nm beam

on a CaF2 crystal and overlapped with the pump beam in the sample with an

optical density (OD) ;0.4 at 450 nm in a 2-mm pathlength cell. A blue light

emitting diode (;1 W) with a maximal emission at 460 nm was used to

generate continuous background illumination to convert the majority of the

proteins to their light state. A flow cuvette was used during the measurement

for a faster refreshing rate of the sample (;4 ml). Absorption changes were

recorded for a delay #4 ns, with a time resolution of ;150 fs. We did ex-

periments with and without background illumination in H2O buffer (10 mM

Tris HCl at pH 8), in D2O buffer for the wild-type AppA, and in H2O buffer

for the W104F mutant only.

All time-gated spectra were analyzed globally using a sequential kinetic

scheme, 1/2/3/. . . and so on, with rate constants k1 . k2 . k3 . . . .

and so on. The amplitudes associated with the concentration of each com-

ponent are called EADS. Importantly, the dark- and light-state experiments

were analyzed simultaneously. In this target analysis, we estimated a re-

maining small fraction of dark-state photocycle in the light-state experiment

of ;10%. Thus, we routinely estimated four lifetimes and associated EADS

for the dark-state photocycle and two lifetimes and associated EADS for the

light-state photocycle. Details of the global and target analysis methods can

be found elsewhere (43).

The steady-state fluorescence measurements were done using a Fluorolog

Tau-3 lifetime system (Horiba Jobin Yvon, Longjumeau, France). Samples

,0.1 OD/cm at 280 nm in H2O buffer, which was placed in a quartz cuvette of

1-cm pathlength, were excited at 280 nm, and the emissions were monitored

from 290 nm to 540 nm. All samples were prepared from a dilution of wild-

type, W64F, and W104F AppA with protein concentrations of 0.40 OD/cm at

the 446-nm absorption peak of the flavin.

RESULTS

Ultrafast spectroscopy of the AppA
photoactivated state

Femtosecond transient absorption spectroscopy was car-

ried out on the wild-type AppA that was converted to its

photoactivated state AppARED by means of strong blue

background illumination. Fig. 3 a shows kinetic traces on

excitation at 400 nm for AppA in H2O buffer in the absence

and presence of background illumination (black and gray

lines, respectively). The former reproduced our previous

result ((10), Supplementary Material, Data S1). Strikingly,

the background-illuminated AppA showed a marked dif-

ference from the AppA sample without background illu-

mination as evidenced in the kinetic traces shown in Fig.

3 a, gray lines.

Fig. 3 b shows the result of a target analysis of the time-

resolved data that uses two lifetimes to describe the spectral

evolution of background-illuminated AppA (black lines).

Each lifetime is associated with an EADS. The first EADS

(Fig. 3 b, black solid line) corresponds to the singlet excited

state of AppARED, hereafter denoted as FAD*RED. The neg-

ative band at ;460 nm corresponds to ground state bleaching

of FAD, whereas the positive bands at 523 nm and at

wavelengths longer than 640 nm is typical FAD* excited

state absorption. The stimulated emission band of FAD*RED is

located at 565 nm. These bands are very similar to those

of FAD* in dark-state AppA as described by Gauden et al.

(10), except that the positions of the bands are red-shifted by

;10 nm, confirming that the singlet excited state of light-

adapted AppA (i.e., AppARED) was populated. The spectral

shapes are also similar to those reported earlier for FAD in

solution and flavin in the LOV2 domain of phototropin

(44,45). The first EADS evolves into the second EADS

(Fig. 3 b, black dashed line) in 7 ps, which shows a reduced

bleaching at ;460 nm and a broad absorption band between

500 nm and 650 nm. This spectral signature corresponds to

that of the neutral semiquinone radical FADH
d

(26,46). The

second EADS decays to the baseline (i.e., to the molecular

ground state of AppARED) in 60 ps. Fig. S2 in Data S1 shows

the results for the AppA BLUF domain dissolved in D2O

buffer. There is no significant change in the rate of the for-

mation of the semiquinone intermediate FADH
d

from FAD*

(9 ps in D2O vs. 7 ps in H2O). However, the lifetime of the

second EADS, 150 6 20 ps, shows a strong kinetic isotope

effect of 2.5 upon hydrogen/deuterium (H/D) exchange.

Our results show the neutral semiquinone radical FADH
d

as an intermediate in the light-state photochemistry of wild-

type AppA. This indicates that, upon excitation of FAD, fast

electron transfer occurs, followed by proton transfer to the

FAD chromophore from a nearby amino acid residue to form

the FADH
d

semiquinone intermediate in 7–9 ps. The FADH
d

semiquinone intermediate subsequently decays to the origi-

nal ground state of AppARED, probably through a radical-pair

recombination mechanism in 60 ps.
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Similar results were observed in the W104F mutant of

AppA under background illumination. Fig. 3 b shows the

results for the W104F mutant global analysis, which includes

two kinetic components. The first EADS (gray solid line) is

similar to that observed in wild-type AppA and is assigned to

FAD*RED accordingly. This EADS evolves in 4 ps to the

second EADS (gray dashed line), which shows a spectral

signature that can be assigned to the neutral semiquinone

radical FADH
d

, as in wild-type AppA. This component

decays in 45 ps to the baseline.

FIGURE 3 (a) Kinetic traces recorded in the

AppA BLUF domain in H2O buffer on excita-

tion at 400 nm in the dark state (black lines) and

the light state (gray lines). Conversion to the

light state was carried out through background

illumination. The solid lines denote experimen-

tal data; the gray solid lines contain an estimated

fraction of 10% of the dark-state photocycle;

and the dashed lines are fits from a global

analysis. Note that the time axis is linear up to

5 ps and logarithmic thereafter. (b) EADS that

follow from a global analysis of the light-state

(background-illuminated) time-resolved data of

wild-type (black lines) and W104F mutant

(gray lines) AppA BLUF in H2O buffer.
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Steady-state tryptophan fluorescence of
wild-type AppA, W64F, and W104F

In view of recent studies suggesting the possibility of the

flipping of Trp-104 and its resulting solvent exposure in ei-

ther the dark or light state of AppA, in concerted movement

with Met106 (16,17), we made tryptophan fluorescence

measurements to assess the tryptophan microenvironment of

AppA in its dark and light (photoactivated) states. Wild-type

AppA has two tryptophans: Trp-104, which is in close

proximity to FAD on the b5 strand, and Trp-64, located on

the b3 strand. Fluorescence experiments were done on wild-

type AppA and the W64F and W104F mutants, with exci-

tation at 280 nm. Fig. 4 a shows the results for wild-type

AppA in dark (solid line) and light (dashed line) states. We

observed an emission maximum at 334 6 2 nm in both the

dark and light states, and a slight decrease by 7% of the

fluorescence intensity in the latter. This result for the wild-

type AppA BLUF domain is consistent with that previously

reported by Kraft et al. (8). The W64F mutant (which binds

Trp-104 as its only tryptophan) has an emission peak at 328 6

2 nm in the dark state (Fig. 4 b, solid line). Upon photoac-

tivation, the fluorescence maximum shifts to 331 6 2 nm, and

the intensity decreases by ;25% (Fig. 4 b, dashed line). The

W104F mutant shows a tryptophan emission maximum at

336 6 2 nm in both dark and light states (Fig. 4 c). The

intensity decreases slightly in the light state, with little or no

shifting for the peak position.

DISCUSSION

The photochemistry of light-state AppA

We did an ultrafast transient absorption measurement on the

wild-type and W104F AppA BLUF domain with and without

blue-light background illumination. The light-state mea-

surement showed different excited-state dynamics compared

to the dark state. The occurrence of the FADH
d

neutral

semiquinone intermediate has not been observed in the

photochemistry of dark-state AppA (10). FAD radical in-

termediates, however, have been observed in the forward

reaction of the Synechocystis Slr1694 BLUF domain (26).

The background illumination experiments of AppA showed

that, upon excitation of AppARED, FADH
d

was formed on the

picosecond timescale, which in turn relaxed in 60 ps to the

original ground state of AppARED, likely via radical-pair

recombination. A pronounced isotope effect was observed in

the decay of FADH
d

, thus suggesting proton or hydrogen

transfer from FADH
d

to the protein. As judged from the re-

duced bleach of FADH
d

compared to that of FAD* (Fig. 3 b),

there is a deactivation pathway for the FAD* singlet excited

state of AppARED that causes ;65% of the FAD* population

to relax back to ground state of AppARED before formation of

FADH
d

. The photochemistry of the AppARED state is sum-

marized schematically in Fig. 5.

For the Synechocystis Slr1694 BLUF domain, the forma-

tion of the anionic FAD
d� radical was followed by the neutral

FADH
d

semiquinone radical on a picosecond timescale,

demonstrating that electron transfer constituted the primary

light-driven reaction (26). Here, we did not observe the an-

ionic FAD
d� radical in the spectral evolution of light-state

AppA. However, given the almost identical FAD*RED decay

rates for AppA in H2O and D2O (7 and 9 ps, respectively), we

consider it likely that a light-driven electron transfer would be

followed by proton transfer to FAD. The FAD
d� radical was

unobserved probably because of the rate-limiting, initial

electron transfer.

Because of the rise of the neutral semiquinone FADH
d

radical in ,10 ps, it is obvious that electron and proton

transfer occurs from the immediate vicinity of the FAD
d

.

There are two candidate donors—the conserved Tyr-21 and

Trp-104—which are anchored with the flavin through a

hydrogen-bonded network (14). The light-state W104F re-

sults were very similar to those of wild-type AppA, especially

for the rise and the decay of FADH
d

on approximately the

same timescales (Fig. 3 b). Thus, electron and proton transfer

most likely originated from Tyr-21. This result also suggests

that Tyr-21 is unlikely to form a p-p stacking with the flavin

in the AppARED state, as was proposed previously (8). Such a

configuration would have resulted in an electron transfer in

,1 ps and a charge recombination in ,10 ps as observed in

the riboflavin-binding protein (47).

The excited-state lifetime of FAD* in the AppARED state

(7 ps) is more than an order of magnitude shorter than that of

AppA in the dark state (which has a dominant 590-ps decay

component). Such a dramatic increase of electron transfer

rate may be explained by changes of the FAD and Tyr-21

redox potentials that follow from the altered hydrogen-bond

patterns, possibly combined with a slight decrease of the

donor-acceptor distance.

FIGURE 4 Tryptophan fluorescence measurements on (a) wild-type, (b)

W64F mutant, and (c) W104F mutant of the AppA BLUF domain at 280 nm

excitation in dark (solid lines) and light (dashed lines) states.
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BLUF domains are not photoreversible

An important result from this study concerns the observation

that the AppA BLUF domain is not photoreversible, nor does

it enter alternative reaction pathways on absorption of a

second photon. The nonphotoreversibility probably repre-

sents an inherent characteristic of all BLUF domains and sets

this family of photoreceptors apart from essentially all other

photoreceptors, including phytochromes, rhodopsins, PYP,

LOV domains, and cryptochromes (30–41). Interestingly,

although color discrimination between dark and light states

(representing receptor and signaling states) is significant in

most photoreceptors, it is not significant in BLUF domains.

BLUF domains only show a modest red-shift by 10 nm of the

otherwise broad oxidized flavin absorption, limiting any

potential physiological utility of photoreversible properties.

It is important to note that the chemical state of the chro-

mophore in BLUF domains is identical in the dark and the

light states (i.e., oxidized FAD); only the hydrogen-bond

pattern with nearby protein side chains is different. In con-

trast, the chromophore in other photoreceptors has undergone

an isomerization often coupled with (de)protonation (rho-

dopsin, phytochrome, and PYP), a reduction (cryptochrome),

or covalent bond formation (LOV domains), all of which

are chemical modifications more readily influenced by light

absorption.

The comparison of the Synechocystis Slr1694 BLUF do-

main photochemistry in its dark state with that of light-state

AppA presented in our study provides important clues on the

molecular mechanistics that underlie the absence of photo-

reversibility of BLUF domains. The photocycle in the dark-

state of Synechocystis BLUF domains is initiated by electron

transfer from Tyr, followed by proton transfer resulting in an

FADH
d

-Tyr
d

radical pair and hydrogen-bond switch. After

65 ps, there is a radical pair recombination that results in the

red-shifted product state (26). It is interesting to note that the

lifetime of FADH
d

of the forward reaction in Synechocystis
(65 ps) is essentially identical what we observed (60 ps).

Also, the kinetic isotope effect is identical in both cases, as

the time constants become 180 ps and 150 ps in D2O for

Synechocystis and AppA BLUF, respectively. Our observa-

tions strongly suggest that the FADH
d

species in the forward

reaction of Synechocystis and in the AppARED photochem-

istry represent identical molecular configurations. We thus

propose that, on excitation of FAD in the AppARED state, the

system enters the forward reaction coordinate after electron/

proton transfer from Tyr-21 to FAD, resulting in FADH
d

, and

that the AppARED state is readily re-formed in 60 ps without a

switch of the hydrogen-bond network. In this way, potential

deleterious side reactions also are suppressed. The molecular

transformations associated with such events are depicted

in Fig. 5,which shows that the hydrogen-bond pattern on

electron/proton transfer from Tyr-21 to FAD resulting in

FADH
d

-Tyr
d

in AppARED is identical to that proposed for the

Synechocystis BLUF domain (26). Fig. 6 shows the overall

photocycle scheme for AppA BLUF domains with inclusion

of the light-state photochemistry.

The FAD-binding pocket tightens
on photoactivation

Our study also demonstrates that the decay of FAD* is

strictly monoexponential in the AppARED state, occurring in

FIGURE 5 Photochemistry of the AppA BLUF

domain in its light state with proposed molecular

configurations. See text for details.
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7 ps. This result contrasts strongly with the multiexponential

decays found for FAD* in dark-state BLUF domains, i.e.,

wild-type AppA, AppA mutants, and Slr1694 (10,26,28,48).

The multiexponential decay of FAD* in wild-type AppA

and the Y21 and W104 single mutants was explained by the

slow timescale (microseconds–milliseconds) exchange of the

conserved Tyr and Trp residues between different confor-

mational states (15). This led to subpopulations with varia-

tions in the distance between FAD and the aromatic residues

and an ensuing distribution of light-driven electron transfer

rates as a result (10,28). In light-state AppA, Tyr-21 becomes

strongly hydrogen-bonded to Gln-63, leading to a decrease of

its conformational freedom (21). Also, Gln-63 becomes

strongly hydrogen-bonded to C4¼O of FAD (20). These

events may result in an overall tightening of the FAD-binding

pocket with a well-defined distance between FAD and Tyr-21

and, for this reason, a single-exponential electron transfer

rate. These observations suggest that the BLUF domain

‘‘collapses’’ onto a single, well-defined structure upon pho-

ton absorption from multiple conformations in the vicinity of

FAD in the dark state.

Trp-104 remains buried in dark- and
light-state AppA

The emission spectra of wild-type AppA and its tryptophan

mutants in both dark and light states peak between 328 and

336 nm. Given the comprehensive study by Reshetnyak et al.

(49) in which tryptophan fluorescence maxima are correlated

with tryptophan positions in a large number of protein

structures, the Trp in AppA can be grouped in class I fluo-

rophores that have averaged emission spectra maxima at

331 6 4.8 nm. This class of fluorophores has low total

accessibility of indole rings by the solvent (,10%) and yet

has enough structural mobility to form hydrogen-bonded

exciplexes and dipole relaxation during the lifetime of a

fluorophore in the excited state.

In particular, the tryptophan of interest for the BLUF sig-

naling mechanism—Trp-104—is monitored selectively in

the W64F mutant. The position of the Trp-104 fluorescence

maxima in the dark state (328 nm) indicates that Trp-104 falls

well within the class I criteria and assumes a buried confor-

mation within the confinement of the protein (49,50). Thus,

our results indicate that Trp-104 is located in close proximity

to FAD in the dark state, in agreement with the x-ray structure

(14) and the solution structure (15,21) of wild-type AppA.

In the nomenclature of Reshetnyak et al. (49), partially

solvent-exposed Trp belongs to class II, with a Trp fluores-

cence maximum between 337 and 348 nm, as has been

observed for light-state PYP (51), for example. Strikingly,

Trp-104 has a fluorescence maximum at 331 nm in the AppA

light state and so belongs to class I rather than class II. Al-

though the fluorescence of Trp-104 shifts to the red by 3 nm,

we conclude that it does not become solvent-exposed upon

illumination. Our observations provide evidence against

light-induced, reversible solvent exposure of the conserved

Trp (or vice versa), as proposed on the basis of crystal struc-

tures of the AppA C20S mutant (16) and the Synechocystis
Slr1694 BLUF domain (17).

Upon photoactivation, the tryptophan fluorescence inten-

sity of the W64F mutant decreases significantly by ;25%,

indicating that the fluorescence from Trp-104 is more

strongly quenched in the light state than in the dark state.

Tryptophan fluorescence quenching is a common phenome-

non that is caused by electron transfer from the indole ring to

a nearby backbone amide in most cases and to other acceptors

less frequently (52). The decrease of Trp-104 fluorescence in

the light state may be explained by a local conformational

change of Trp-104 that brings it in closer proximity to such an

electron acceptor.

Our results show that the microenvironment in Trp-104

does not change dramatically between dark and light states;

the change occurred on a timescale of minutes during which

the illumination took place and the fluorescence spectra were

FIGURE 6 General photocycle scheme for BLUF

domains in dark and light states. See text for details.
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recorded. The AppA BLUF domain crystal structures (Pro-

tein Data Bank: 1YRX, 2BUN, and 2IYG) show that Trp-64

is located on the b3 strand and at the center of the dimer-

ization interface (14–16). Thus, dimerization of the molecule

would restrict the movement of Trp-64 but not of Trp-104,

excluding the possibility that Trp-104 remains buried as a

consequence of dimerization.

Our results for the W64F mutant are slightly different from

those reported by Yuan et al. (17) for the Synechocystis
Slr1694 BLUF domain. Slr1694 binds a single Trp at posi-

tion 91, which is equivalent to Trp-104. Fluorescence max-

ima at 333 and 335 nm for dark and light states were

observed, which are red-shifted by 4–5 nm with respect to

those of the W64F mutant. The origin of these differences

remains unclear; we note, however, that the fluorescence

results observed by Yuan et al. (17) also can be categorized in

class I.

The W104F mutant, which monitors the fluorescence from

Trp-64, shows a fluorescence maximum at 336 nm in both

dark and light states. Trp-64 falls well within class I and is on

the edge of class II, indicating that Trp-64 experiences a more

polar environment than Trp-104. The tryptophan fluores-

cence spectra of wild-type AppA and the W104F mutant are

nearly identical, which indicates that the total fluorescence

intensity is very likely dominated by Trp-64 with only a

minor contribution by Trp-104 in wild-type AppA.

CONCLUSIONS

We have investigated the photochemistry of the AppA BLUF

domain that was converted to its light-state AppARED by

continuous background illumination. We have demonstrated

that, under these circumstances, the neutral semiquinone

radical FADH
d

is generated from the FAD* singlet excited

state on the picosecond timescale, which in turn relaxes back

to its original ground state AppARED in 60 ps. We conclude

that the BLUF domain, in contrast to most other known

photoreceptors, is not photoreversible and does not enter

alternative reaction paths upon absorption of a second pho-

ton. To explain the observed phenomena, we propose that,

upon excitation of AppARED, a molecular configuration

involving the radical pair FADH
d

-Tyr
d

is formed that corre-

sponds to a forward reaction intermediate previously identi-

fied for the dark-state BLUF photoreaction (26). Thus, upon

excitation of AppARED, the BLUF domain enters its forward

reaction coordinate, readily re-forming the AppARED ground

state and so suppressing any reverse or side reaction. We

observe a single exponential decay of FAD* in the AppARED

state, which is consistent with a significant tightening of the

FAD-binding pocket in the light as compared to the dark

state. Finally, tryptophan fluorescence experiments on the

W64F mutant have indicated that the highly conserved

tryptophan, Trp-104, does not become solvent-exposed at

any time during the photocycle. This observation challenges

the light-induced, concerted Trp-104–Met-106 ‘‘flip’’ model

that was proposed on the basis of BLUF crystal structures

(16,17).
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